The flow of data science
- Introduction [markdown, markup]
- A hasty tour inside R [images, markdown, markup]
- dplyr: a grammar of data manipulation [images, markdown,
markup]
- ggplot2: a grammar of data visualization [markdown, markup]
- Data Challenge: The Elo method in chess [markdown, markup]
- Modelling: find a good explanation for your data [markdown, markup]
- Demo – Life expectancy change over time [markdown,
markup]
- Data Challenge – Life expectancy change over time for each
continent [markdown,
markup]
- Communication [markup]
Network Science
- Basics
- Introduction [images, markdown, markup]
- Graph basics [images, markdown, markup]
- igraph: network analysis [markdown,
markup]
- tidygraph and ggraph: tidy network analysis and visualization [markdown, markup]
- Local analysis
- Centrality: usual suspects [markdown, markup]
- Centrality: recursive methods [graphs, markdown, markup]
- Data Challenge: A dolphin social network [markdown, markup]
- Power measures [markdown, markup]
- Data Challenge: Power and centrality in the European
natural gas market [markdown, markup]
- Signed networks [markdown, markup]
- Similarity and heterogeneity [markdown, markup]
- Data Challenge: Interdisciplinarity and autarchy in science
[markdown, markup]
- Group analysis
- Community detection and clustering [markdown, markup]
- Data Challenge: Cluster Italian soccer teams in performance
classes [markdown, markup]
- Data Challenge: Detect the most dangerous terrorists of
Madrid train bombing [markdown, markup]
- Global analysis
- Network models [markdown, markup]
- Connectivity and resilience [markdown, markup]
- Data Challenge: Attack the Madrid train bombing terror
network [markdown,
markup]
- Geodesic distances and small worlds [markdown, markup]
- Power laws and scale-free networks [markdown, markup]
- Assortativity [markdown, markup]
- Motifs [markdown, markup]
- Data Challenge: global analysis of a network [markdown, markup]
- Epidemics on networks [markdown, markup]
Text mining
- The tidy text format [markdown, markup]
- Sentiment analysis [markdown, markup]
- Analyzing word and document frequency [markdown, markup]
- Relationships between words: n-grams and correlations [markdown, markup]
- Converting to and from non-tidy formats [markdown, markup]
- Topic modeling [markdown, markup]
- Demo – Mining financial articles [markdown, markup]
- Demo – The great library heist [markdown, markup]
- Demo – Comparing Twitter archives [markdown, markup, data]