Life expectancy for a country is the mean length of life over people of a country. Using variables life expectancy and population of a country:
Given a set \(S = X \cup Y\), with \(X = \{x_1, \ldots, x_{n_x}\}\) and \(Y = \{y_1, \ldots, y_{n_y}\}\), we can compute the mean of \(S\) \[\mu = \frac{\sum_i x_i + \sum_i y_i}{n_x + n_y}\] using only the means and sizes of \(X\) and \(Y\) as the weigthed mean of the means of \(X\) and \(Y\):
\[\mu = \frac{\frac{\sum_i x_i}{n_x} \cdot n_x + \frac{\sum_i y_i}{n_y} \cdot n_y}{n_x + n_y}\]
library(dplyr)
library(ggplot2)
library(gapminder)
gapminder_continent =
gapminder %>%
mutate(lifeExpXpop = lifeExp * pop) %>%
group_by(continent, year) %>%
summarise(wsum = sum(lifeExpXpop), popSum = sum(pop)) %>%
mutate(lifeExp = wsum / popSum) %>%
select(-wsum, -popSum)
gapminder_continent %>%
ggplot(aes(year, lifeExp, colour = continent)) +
geom_line() +
theme_classic()
gapminder_earth =
gapminder %>%
mutate(lifeExpXpop = lifeExp * pop) %>%
group_by(year) %>%
summarise(wsum = sum(lifeExpXpop), popSum = sum(pop)) %>%
mutate(lifeExp = wsum / popSum) %>%
select(-wsum, -popSum)
gapminder_earth %>%
ggplot(aes(year, lifeExp)) +
geom_line() +
theme_classic()