1. Andò A., Breda D.: Numerical computation of periodic solutions of renewal equations from population dynamics, submitted.

  2. Breda D., De Reggi S., Scarabel F., Vermiglio R. and Wu J.: Bivariate collocation for computing R_0 in epidemic models with two structures, submitted.

  3. Ramirez A., Breda D. and Sipahi R.: A Scalable Approach to Compute Delay margin of a Class of Neutral-type Time Delay Systems, Siam J. Control Optim., 59(2):805-824, doi: 10.1137/19M1307408, 2021.

  4. Breda D., Florian F, Ripoll J. and Vermiglio R.: Efficient numerical computation of the basic reproduction number for structured populations, J. Comp. Appl. Math, 384, 113165, doi: 10.1016/j.cam.2020.113165, 2021.

  5. Breda D., Kuniya T., Ripoll J. and Vermiglio R.: Collocation of next-generation operators for computing the basic reproduction number of structured populations, J. Sci. Comput., 85(40), doi: 10.1007/s10915-020-01339-1, 2020.

  6. Andò A. and Breda D.: Convergence analysis of collocation methods for computing periodic solutions of retarded functional differential equations, SIAM J. Numer. Anal., 58(5):3010-3039 (2020), doi: 10.1137/19M1295015, full version on arXiv, 2020.

  7. Andò A., Breda D. and Gava G.: How fast is the linear chain trick? A rigorous analysis in the context of behavioral epidemiology, Math. Biosci. Eng., 17(5):5059-5084, doi: 10.3934/mbe.2020273, 2020.

  8. Scarabel F, Breda D., Diekmann D, Gyllenberg M and Vermiglio R.: Numerical bifurcation analysis of physiologically structured population models via pseudospectral approximation, Vietnam J. Math., doi: 10.1007/s10013-020-00421-3, 2020.

  9. Breda D. and Liessi D.: Approximation of eigenvalues of evolution operators for linear coupled renewal and retarded functional differential equations, Ric. Mat., doi: 10.1007/s11587-020-00513-9, 2020.

  10. Breda D. and Liessi D.: Floquet theory and stability of periodic solutions of renewal equations, J. Dynam. Differential Equations, doi: 10.1007/s10884-020-09826-7, 2020

  11. Andò A., Breda D. and Scarabel F.: Numerical continuation and delay equations: a novel approach for complex models of structured populations, Discret. Contin. Dyn. S. – S, doi: 10.1007/s10884-020-09826-7, 2020.

  12. Sadeghpour M., Breda D. and Orosz G.: Stability of linear continuous-time systems with stochastically changing delay, IEEE-TAC, 64(11):4741-4747, 2019.

  13. Breda D., Menegon G. and Nonino M.: Delay equations and characteristic roots: stability and more from a single curve, Electron. J. Qual. Theory Differ. Equ., 89:1-22, 2018.

  14. Breda D. and Della Schiava S.: Pseudospectral reduction to compute Lyapunov exponents of delay differential equations, Discret. Contin. Dyn. S. – B., 23(7): 2727-2741, 2018.

  15. Breda D. and Liessi D.: Approximation of eigenvalues of evolution operators for linear renewal equations, SIAM J. Numer. Anal., 56(3):1456-1481, 2018.

  16. Clamer V., Pugliese A., Liessi D. and Breda D.: Host coexistence in a model for Two Host — One Parasitoid interactions, J. Math. Biol., 2017, 75(2):419–441, 2017.

  17. Breda D., Diekmann O., Liessi D. and Scarabel F.: Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theory Differ. Equ., 65:1-24, 2016.

  18. Breda D., Diekmann O., Gyllenberg M., Scarabel F. and Vermiglio R.: Pseudospectral discretization of nonlinear delay equations: new prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Syst., 15(1):1-23, 2016.

  19. Beretta E. and Breda D.: Discrete or distributed delay? Effects on stability of population growth, Math. Biosci. Eng., 13(1):19-41, 2016.

  20. Breda D., Getto P., Sánchez Sanz J. and Vermiglio R.: Computing the eigenvalues of realistic Daphnia models by pseudospectral methods, SIAM J. Sci. Comput., 37(6):2607-2629, 2015.

  21. Breda D., Maset S. and Vermiglio R.: Pseudospectral methods for stability analysis of delayed dynamical systems, Int. J. Dyn. Control, 2, 143-153, 2014.

  22. Breda D. and Van Vleck E.: Approximating Lyapunov exponents and Sacker-Sell spectrum for retarded functional differential equations, Numer. Math., 126:225-257, 2014.

  23. Breda D., Diekmann O., Maset S. and Vermiglio R.: A numerical approach for investigating the stability of equilibria for structured population models, J. Biol. Dyn., 7(1):4-20, 2013.

  24. Breda D., Diekmann O., de Graaf W., Pugliese A. and Vermiglio R.: On the formulation of epidemic models (an appraisal of Kermack and McKendrick), J. Biol. Dyn., 6(2):103-117, 2012.

  25. Breda D., Maset S. and Vermiglio R.: Computing eigenvalues of Gurtin-MacCamy models with diffusion, IMA J. Numer. Anal., 32(3):1030-1050, 2012.

  26. Franceschetti A., Pugliese A. and Breda D.: Multiple endemic states in age-structured SIR epidemic models, Math. Biosci. Eng., 9(3):577-599, 2012.

  27. Breda D., Maset S. and Vermiglio R.: Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, SIAM J. Numer. Anal., 50(3):1456-1483, 2012.

  28. Breda D., Esseni D., Paussa A., Specogna R., Trevisan F. and Vermiglio R.: Comparison between Pseudospectral and Discrete Geometric Methods for Modelling Quantization Effects in Nanoscale Electron Devices, IEEE T. Magn., 48(2):203-206, 2012.

  29. Breda D., Maset S. and Vermiglio R.: Numerical recipes for investigating endemic equilibria of age-structured SIR epidemics, Discret. Contin. Dyn. S. – A, 32(8): 2675-2699, 2012.

  30. Breda D.: On characteristic roots and stability charts of delay differential equations, Int. J. Robust Nonlin., 22:892-917, 2012.

  31. Breda D. and Visetti D.: Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model, Math. Biosci., 235 (1):19-31, 2012.

  32. Beretta E. and Breda D.: An SEIR epidemic model with constant latency time and infectious period, Math. Biosci. Eng., 8(4):931-952, 2011.

  33. Paussa A., Conzatti F., Breda D., Vermiglio R., Esseni D. and Palestri P.: Pseudo-spectral methods for the efficient simulation of quantization effects in nanoscale MOS transistors, IEEE TED, 57(12):3239-3249, 2010.

  34. Sipahi R., Olgac N. and Breda D.: A stability study on first order neutral systems with three rationally independent time delays, Int. J. Syst. Sci., 41(12):1445-1455, 2010.

  35. Liu S., Beretta E. and Breda D.: Predator-prey model of Beddington-DeAngelis type with maturation and gestation delays, Nonlinear Analysis: Real World Applications, 11:4072-4091, 2010.

  36. Breda D., Maset S. and Vermiglio R.: Computation of asymptotic stability for a class of partial differential equations with delay, J. Vib. Control, 16(7-8):1005-1022, 2010.

  37. Breda D.: Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents, Diff. Int. Equations, 23(9-10):935-956, 2010.

  38. Breda D., Maset S. and Vermiglio R.: An adaptive algorithm for efficient computation of level curves of surfaces, Numer. Algorithms, 52(4):605-628, 2009.

  39. Breda D., Maset S. and Vermiglio R.: Numerical approximation of characteristic values of partial retarded functional differential equations, Numer. Math., 113(2):181-242, 2009.

  40. Breda D., Iannelli M., Maset S. and Vermiglio R.: Stability analysis of the Gurtin-MacCamy model, SIAM J. Numer. Anal., 46(2):980-995, 2008.

  41. Breda D., Cusulin C., Iannelli M., Maset S. and Vermiglio R.: Stability analysis of age-structured population equations by pseudospectral differencing methods, J. Math. Biol., 54(5):701-720, 2007.

  42. Breda D., Maset S. and Vermiglio R.: Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary condition, Appl. Numer. Math., 56(3-4):318-331, 2006.

  43. Breda D.: Solution operator approximation for characteristic roots of delay differential equations, Appl. Numer. Math., 56(3-4):305-317, 2006.

  44. Breda D., Maset S. and Vermiglio R.: Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27(2):482-495, 2005.

  45. Breda D., Maset S. and Vermiglio R.: Computing the characteristic roots for delay differential equations, IMA J. Numer. Anal., 24(1):1-19, 2004.

  46. Breda D., Maset S. and Vermiglio R.: Methods for numerical computation of characteristic roots for delay differential equations: experimental comparison, Sci. Math. Jpn., 58(2):377-388, 2003.