Preprints
- Atypical bifurcation for periodic solutions of φ-Laplacian systems submitted.
- Bifurcation of closed orbits of Hamiltonian systems with application to geodesics of the Schwarzschild metric, submitted.
- Nearly-circular periodic solutions of perturbed relativistic Kepler problems: the fixed-period and the fixed-energy problems submitted.
- Uniqueness, non-degeneracy, and exact multiplicity of positive solutions for superlinear elliptic problems, submitted.
Published papers
- A Poincaré–Birkhoff theorem for multivalued successor maps with applications to periodic superlinear Hamiltonian systems, J. Fixed Point Theory Appl. TBA (2025).
- Prescribed energy periodic solutions of Kepler problems with relativistic corrections, Topological Methods for Delay and Ordinary Differential Equations, Adv. Mech. Math., 51. Birkhäuser/Springer, Cham, 2024, 21–41.
- Periodic perturbations of central force problems and an application to a restricted 3-body problem, J. Math. Pures Appl. 186 (2024), 31-73.
- Homoclinic and heteroclinic solutions for non-autonomous Minkowski-curvature equations, Nonlinear Anal. 239 (2024), Paper No. 113419, 21 pp. ,
- Multiple positive solutions for nonlinear problems with indefinite weight: an overview of Fabio Zanolin's contributions, Rend. Semin. Mat. Univ. Politec. Torino 81 (2023), no. 1, 105–132.
- Positive solutions for a Minkowski-curvature equation with indefinite weight and super-exponential nonlinearity, Commun. Contemp. Math. 25 (2023), no. 4, Paper No. 2250005, 20 pp. ,
- Periodic solutions to superlinear indefinite planar systems: a topological degree approach, J. Differential Equations  363 (2023), 546–581. ,
- Equilibrium points, periodic solutions and the Brouwer fixed point theorem for convex and non-convex domains, J. Fixed Point Theory Appl. 24 (2022), no. 4, Paper No. 68, 24 pp. ,
- On the number of positive solutions to an indefinite parameter-dependent Neumann problem, Discrete Contin. Dyn. Syst. 42 (2022), no. 1, 21–71. ,
- Periodic solutions to a perturbed relativistic Kepler problem, SIAM J. Math. Anal. 53 (2021), no. 5, 5813–5834. ,
- Parabolic orbits in Celestial Mechanics: a functional-analytic approach, Proc. Lond. Math. Soc. 123 (2021), no. 2, 203–230. ,
- Bound sets for a class of φ-Laplacian operators, J. Differential Equations 297 (2021), 508–535. ,
- Uniqueness of positive solutions for boundary value problems associated with indefinite φ-Laplacian type equations, Open Math. 19 (2021), no. 1, 163–183. ,
- High multiplicity and chaos for an indefinite problem arising from genetic models, Adv. Nonlinear Stud. 20 (2020), no. 3, 675–699. ,
- Positive periodic solutions to an indefinite Minkowski-curvature equation, J. Differential Equations 269 (2020), no. 7, 5595–5645. ,
- Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight, Nonlinear Anal. 196 (2020), 111807, 14 pp. ,
- Multiplicity of clines for systems of indefinite differential equations arising from a multilocus population genetics model, Nonlinear Anal. Real World Appl. 54 (2020), 103108, 19 pp. ,
- Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator, NoDEA Nonlinear Differential Equations Appl. 26 (2019), no. 5, Paper No. 38, 27 pp.. ,
- An indefinite nonlinear problem in population dynamics: high multiplicity of positive solutions, Nonlinearity 31 (2018), no. 9, 4137–4161. ,
- Positive subharmonic solutions to superlinear ODEs with indefinite weight, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 2, 257–277. ,
- Three positive solutions to an indefinite Neumann problem: a shooting method, Nonlinear Anal. 166 (2018), 87–101. ,
- Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree, Trans. Amer. Math. Soc. 370 (2018), no. 2, 791–845. ,
- Positive subharmonic solutions to nonlinear ODEs with indefinite weight, Commun. Contemp. Math. 20 (2018), no. 1, 1750021, 26 pp. ,
- An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators, Topol. Methods Nonlinear Anal. 50 (2017), no. 2, 683–726. ,
- A note on a fixed point theorem on topological cylinders, Ann. Mat. Pura Appl. 196 (2017), no. 4, 1441–1458. ,
- Multiple positive solutions of a Sturm-Liouville boundary value problem with conflicting nonlinearities, Commun. Pure Appl. Anal. 16 (2017), no. 3, 1083–1102. ,
- Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations 262 (2017), no. 8, 4255–4291. ,
- Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 3, 449–474. ,
- Existence of positive solutions of a superlinear boundary value problem with indefinite weight, Discrete Contin. Dyn. Syst. 2015, Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl. 436-445. ,
- Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems, Adv. Differential Equations 20 (2015), no. 9-10, 937–982. ,
- Multiple positive solutions for a superlinear problem: a topological approach, J. Differential Equations 259 (2015), no. 3, 925–963. ,
Books
Theses
- Positive solutions to indefinite problems: a topological approach, Ph.D. thesis, SISSA (International School for Advanced Studies), Supervisor: Prof. Fabio Zanolin. ,
- Fixed point index, Krasnosel'skii theorems and existence of positive, Master thesis, University of Udine, Advisor: Prof. Fabio Zanolin. ,
- The mathematical foundations of the electromagnetic theory, Bachelor thesis, University of Udine, Advisor: Dr. Stefano Ansoldi. ,
Bibliometric indicators
Database | Publications | Total citations | h-index |
---|---|---|---|
Scopus | 43 | 325 | 11 |
Web Of Sciences | 42 | 274 | 11 |
MathSciNet | 31 | 224 | 10 |
Google Scholar | 52 | 403 | 12 |