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Abstract: The concept of information is still lacking a complete understanding, as wit-
nessed by the large number of different meanings that overload the terms “data”, “knowl-
edge”, and “information”. In this paper, a definition of information (named epistemic
information) based on the knowledge states of agents is proposed. It is used to analyze,
understand, and explain some puzzling phenomena, like the subjectivity of information,
and the inconsistency between amount of information contained in a datum and amount
of information received. A “knowledge conservation principle” is also proposed and
justified.

1 Introduction

The Association for Computing Machinery (ACM) defines computer science as the science
of the algorithms that process information. Whereas, since Turing, Tarsky, and Church, the
concept of algorithm is quite well understood, the concept of information is still lacking a
complete understanding. The paramount manifestation of this impasse is perhaps the large
number of different meanings that overload the terms “data”, “knowledge”, and “informa-
tion” [15]. Many definitions of information have been proposed; we can classify them into
two groups: “hard sciences”vs. “soft sciences” information theories. The first group (in
which information is usually defined in an objective way) includes the well known Shan-
non’s information theory [24], the Algorithmic Information Theory, independently developed
by Chaitin, Kolmogorov, and Solomonoff [16], and the Semantic Information Theory intro-
duced by Bar-Hillel, Carnap, and Popper [13] and further developed by Dretske [9], Barwise
and Perry [2], and Devlin [7]. Besides these, there are others, perhaps less known, “soft
sciences” approaches (in which information is usually defined in a subjective way): Bateson
defined information as a difference [3], Brookes proposed that “information is a small bit of
knowledge” [5], and, more recently, Clancey expanded Bateson’s definition of information,
proposing that information is the detection of a difference that is functionally important for
an agent to adapt to a certain context [6].

In this paper I propose a new approach to this issue: I present definitions, examples, a
partially formalized graphical notation, and an analysis that leads to a better understanding
of some puzzling phenomena concerning information. This paper extends the work [19],
where a similar, though narrower, analysis is used to understand some crucial concepts of
information retrieval, with an emphasis on relevance [21]. Here I do not take into account the
information retrieval field.

The paper is structured in the following way: Section 2 sketches some concepts that are
the basis ofepistemic information, defined in Section 2.7.3. In Section 2.9 the obtained



scenario is analyzed and some of its limitations are singled out. The following of the paper
extends the scenario for overcoming these limitations. Section 7 concludes the paper and
sketches some future developments of this line of research.

2 Epistemic information: building blocks

2.1 Agents

I will assume that the world is populated byagents, thatact in theenvironment, or ‘External’
World (henceforth simplyworld), whatever it may be. I borrow the following definition of
an agent from a book that uses this concept as a basis for giving a uniform description of the
artificial intelligence field:

An agentis anything that can be viewed asperceivingits environment throughsensors
andactingupon that environment througheffectors. A human agent has eyes, ears, and
other organs for sensors, and hands, legs, mouth, and other body parts for effectors. A
robotic agent substitutes cameras and infrared range finders for the sensors and various
motors for effectors. A software agent has encoded bit strings as its perceptions and
actions. [23, page 31]

The agents can be biological (human, and more generally living, beings) or artificial (robots,
softbots, computers). Complexity is not necessary: simple entities like a thermostat or an
atom can be seen as an agent. There is an implicit but important assumption in this definition:
that we can separate the agent and the world he (she, it) is in. This assumption is usually
accepted in the artificial intelligence field, though there are some different viewpoints (e.g.,
[17]). My position is: let us accept this assumption as a work hypothesis, not as an established
truth, and let us see how far it will lead us.

2.2 Knowledge states and items

Some agents (we might call themcognitive agents; for the sake of brevity, in the following I
will omit the word “cognitive”, since I will speak of this kind of agents only) have an internal
Knowledge State(KS): through their sensors, the agents perceive (a portion of) the world and
representit into their KSs. The portion of a KS that corresponds to a portion of the world
is said therepresentationof that portion of the world into the KS. The representation of the
world can be more or lesscorrect(i.e.,corresponding to the world) andcomplete(i.e., taking
into account every aspect of the world). The acting of the agent in the world takes place on
the basis of his KS.

Each KS is a finite� collection of atomic components, that I callKnowledge Items(KI).
Each KS is thus a set of KIs, and in the following I use some of the usual notation of set
theory, as� (belong),� (subset),� (set difference),� (empty set),� (union),� (intersection),
and so on, with the usual meaning extended to KSs and KIs. I will use the capital letter�

(with some subscripts and/or superscripts) to denote the KSs, and lowercase� for the KIs.
Figure 1(a) sketches the scenario presented so far: an agent perceives a portion of the world
and represents it in� �, a subKS of his whole KS�.

The reader can imagine many alternatives for having a more concrete picture of KSs (and
KIs), for instance: logical theories (i.e.,sets of logical formulas) [12], semantic nets [23], sets

�Most of the paper would be unchanged if we relaxed this constraint. However, taking into account only
finite KS avoids some problems, though it is a significant limitation. I will come back later on this issue.
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Figure 1: KSs, KIs, and links.

of beliefs [12],� situations [1, 7, 9], recursive models [20], minds and ideas [3], and so on. I
do not take position among these (and many others) alternatives in this paper: I am interested
in proposing a higher level view, and I try to remain at a level of abstraction general enough
to comprise all of them.

2.3 Links

Whatever KSs and KIs are, I suppose that somelinks exist among KIs, similarly to what
happens in the well known Truth Maintenance Systems (TMS) or in the Recursive Models
[20]. This means that a KS can be (fuzzyly) partitioned into subKS, each (fuzzy) partition
containing the KIs more strongly linked. See for instance Figure 1(b): the KIs regarding,
say, Euclidean Geometry (as the concepts of triangle, square, Pitagora’s Theorem, and so on)
belong to one partition, while the KIs regarding, say, mammals belong to another partition.
Such partitions, besides being subjective, are neither absolute nor clear-cut: it is (almost)
always possible to find a link chain among two KIs. It is a fuzzy, or perhaps fractal, situation.
For instance, it is possible to link, say, a mammal with a square through the KSs about mice
and cages (see the links chain in Figure 1(b)). Moreover, the links themselves are a kind of
KIs, and this allows to have links among links (and so on), as the one, represented by the
dashed line in Figure 1(b), that links two links of the same kind,i.e., two “is-a” links.

The above assumptions are widely spread in many fields, for instance: artificial intelli-
gence (under the label “logicism” [12, 22]), situation semantics [7], cognitive science [11],
and human-computer interaction [8]. They can be criticized from many points of view (e.g.,
[4, 17, 18, 6]), but they will be useful in the following of this paper. Thus, again, I do not take
them as established truths, but as useful work hypotheses: for the sake of brevity, I avoid to
analyze the (many) philosophical implications of these issues.

�In this paper I will not distinguish between belief and knowledge (defined as a true belief, see [12]): an
agent can not distinguish if his KIs (or beliefs) are true or not.



2.4 Transitions

The KS of an agent may change as time goes on: when this happens, I say that atransition
from an initial KS �� to a final KS �� takes place. A transition can take place for two
different reasons:

� by (internal) inference: the agent reasons, reflects, and modifies his KS without any input
from the world. This will be calledinferential transition; it is the only kind of transition
that can take place in an agent without sensors;

� by perceiving a datum: through his sensors, the agent perceives something (a datum) from
the world and this leads to the modification of his KS (a transition into another KS). This
will be callednoninferential transition. If the datum leads to a change of the KS then the
datum is said tocarry information. Note that everything can be a datum, evennothing
(i.e.,no reception from the world), because nothing is different from something, and so it
can carry information [3]. Thus an inference and a null datum are two different things.

2.5 �� and��

Let us analyze in more detail a single transition. The modification that takes place in the KS
can be described by the differences between the initial KS�� and the final KS�� . What is
added to�� is a subKS here indicated by�� and what is removed from�� is indicated by
��. In Figure 2(a) the two KSs�� and�� are represented by circles, the subKS�� added
to the KS by the little white semi-circle on the border of the KS, and the removed subKS��

by the little black semi-circle. The transition between the two KSs is represented by an arrow
labeled by the corresponding datum (or by ‘infer’ if it is an inferential transition). Finally, a
time instant can be associated to each KS (in the figure,�� and�� are the time instants of��

and�� , respectively).
�� and�� can be defined in a formal way, using set difference:

Definition 1 (�� and ��) Given an initial KS�� and a final KS�� ,

�� � �� ��� � �� � �� ��� � �	

Besides adding new KIs (��), a transition can also lead to the removal of some subKS
(��). This happens, for instance, when the agent forgets something, or when the agent
changes his knowledge about a fact, believed true in the KS before a transition and false later.
As an example, consider an agent knowing that� � � � �; in his KS (� � in Figure 2(b))
he has a KI which represents the expression (labeled with “� � � � �” in figure), a KI to
represent the truthness (labeled withtrue), and a link, that is a KI too (the arrow), for linking
the two previous KIs.� Now, many transitions can take place, for instance the following three
(see the figure):��� the agent forgets that “� � � � �” was true (��): �� � 
link�; ����
the agent forgets what it was that was true (��): �� � 
“� � � � �”�; and (���� the agent
discovers that “� � � � �” is false, and not true (��): �� � 
link�, �� � 
link’ ,false�.

Finally, note that the addition and removal of KIs can be complex operations, since the
KIs linked to the added or removed KIs are affected too, in a recursive way. This will be
discussed in Section 2.8.

�Of course, in the KS there will be KIs for “1”, “+”, “3”, “=”, and perhaps further ones. Let us disregard
them.
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Figure 2: Differences among the initial and final KS of a transition.

2.6 Networks of possible KSs

It is possible to imagine anetwork(à la Kripke [14]) of the possible KSs of an agent: the
nodes of the network are KSs, among which some are ‘real’ KSs (i.e.,KSs actually possessed
by the agent, sometime) while other ones are possible KSs that do not become ‘real’ ones (i.e.,
the agent does not possess them, though he could); the arcs of this network are the transitions
from one KS to another one. We have already seen an example of a network of KSs in
Figure 2(b); in Figure 3 a more complex situation is presented, and some transitions among
possible KS are represented. The KSs and transitions in the figure are the possible ones, but
only one path from�� to�� is followed in the reality, for instance the one with the thickest
lines, while the other KSs remain only possible ones.

2.7 Data, knowledge, and information

The concepts presented so far (agents, knowledge states, knowledge items, links, transitions,
��, ��, and networks) allow us to propose some definitions of three terms (and concepts)
“data”, “knowledge”, and “information”, clearly distinguishing among them.

2.7.1 Data

A datumis adifferencein the world: it is something physical, that can be observed. Given a
particular datum, an agent may be capable of perceiving it or not (depending on his sensors).
Sometimes, even if the sensors would allow to perceive the datum, the actual perception does
not take place, for instance because the agent does not note the datum, or because he is not
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Figure 3: KSs and transitions among them.

interested in it. For instance, an (ultra)sound produced by an ultrasonic dog whistle is a
datum that cannot be perceived by the human sensors; a dog is able to perceive it, though
the perception might not happen at all if the dog is strongly focused on something more
important (eating a tasty bone). Thus a datum can be, for a given agent,potential (if the
datum is perceivable) oractual(if the datum is perceived): this dichotomy is quite important,
and I will extensively discuss it later, in Section 4.

There are some well known definitions of the “amount of information” in a datum (e.g.,
Shannon, Chaitin, Solomonoff, Kolmogorov). I will use the term “information” for some-
thing different, and I will speak of theamount of a datum�, denoted by���. And I will not
choose a specific definition among them. Note that it is often very difficult, if not impossi-
ble, to measure the amount of a datum using one of the above well known definitions. For
instance, if the datum is a book, or a painting, or a natural language utterance, and so on.
Sometimes, the measurement is feasible.

2.7.2 Knowledge

We can assume thatknowledgeexists inside a KS only: knowledge is what the KIs are made
of, like “matter” is what the atoms are made of. In this way, either a (printed) book does not
contain knowledge, or it is an agent. Both positions seem maintainable: on the one side, we
all should agree that if a book is an agent, it is at least a very peculiar kind of agent (no input
from the world, and no action), but on the other side we often say, for instance, “there is a lot
of knowledge in that book”. I will come back later on this issue.

2.7.3 Information

When a datum is perceived by an agent, it can lead to a modification of the agent’s KS, that
changes, say, from�� to �� . When this happens, the datum has carried someinformation
to the agent. We have two choices here: either the information can be intrinsic in the datum
(and an agent can perceive all or a part of it), or the information is subjective, contextual and
depends also on the agent’s KS. Here I follow the latter choice: the information carried by a
datum is the difference between the two (final and initial) KSs. I call the information defined



hereepistemic information, since it is based on the KS of an agent. More in detail:

Definition 2 (Epistemic information) Given an agent in an initial KS�� , receiving a datum
�, and ending up in a final KS�� , the information carried by� is defined as the ordered pair

������� �� � � 
��� ���

(see Figure 2(a);�� and�� are defined in Definition 1). �	

This is a way of expressing the difference among the two (final and initial) KSs. We could
also define�� � 
��� ��� and write������ � �� � � ���

Let’s give some definitions that will be useful in the following.

Definition 3 (Quantity of knowledge, ���) Thequantity of knowledge��� in a KS� is the
number of KIs in�. �	

This definition is perhaps too naive, but it is adequate in the following. Let’s remark that
if we had infinite KSs, there would be a problem here: a KS� with an infinite numerable
number of KIs would have the same quantity of knowledge of another KS� � with the same
KIs plus one. But an agent with the second KS (� �) “knows more” than an agent with the
first KS (�), and this seems not satisfactory.

Definition 4 (Variation of the quantity of knowledge, ����)

���� � ��� � � ���� � ���� � ����� �	

If ���� is positive (negative), there is more (less) knowledge after the transition.

Definition 5 (Quantity of information, ���)

��� � ���� � �
��� ���� � ����� ����� �	

The quantity of an ordered pair�
	�
�� is defined here as�
	�
�� � �	�� �
�, where	 and

 are disjunct, and���� is different from���� (the variation of the quantity of knowledge,
Definition 4).�� and�� must be disjoint: if a KI were in both�� and��, it would have
been added and then removed (or vice-versa) in the same transition.

2.8 Perception and restructuring

A noninferential transition between two KSs is not a mere accumulation of knowledge, but
involves a restructuring of the KS. The research in the field of belief revision [10] is on
this topic; three kinds of transitions are defined:expansion(just adding something to a KS),
contraction(removing something), andrevision(modifying something,i.e.,a contraction fol-
lowed by an expansion). All three of these have to preserve two conditions on the KS:consis-
tency(an agent cannot believe both one thing and its negation) andlogical omniscience(an
agent believes all the logical consequences of anything he believes). Many considerations
could be done on this issue (e.g.,are logical omniscience and consistency too strong require-
ments?), but they would lead us too far. What is relevant here is the need of restructuring the
KS after receiving a datum. On the basis of the above sketched framework, this is explained
by means of the links: the KIs linked to the added or removed ones are affected too, in a
recursive way.
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Therefore, the noninferential transition caused by a datum� can be divided into two
parts, as shown in Figure 4: a firstperceptiontransition (labeled with the datum� in figure)
in which the datum is perceived and something is immediately added to or removed from
�� , obtaining� �; and a secondrestructuringtransition (labeled with���� for “restructuring
because of datum�”) in which the restructuring operation takes place, and the KIs linked to
the added (��

�) or removed (��
�) KIs are affected. The resulting modification of the KS

is anyway fully represented by�� and��, thus in the following I will sometimes treat a
noninferential transition as an atomic one.

Of course, there are two problems:��� understanding when a perceptual transition ends
and a restructuring transition starts, and���� understanding the difference between restruc-
turing and inferential transitions. I do not investigate the first point and I will assume that
restructuring and inferential transitions are the of same kind.

Summarizing, the KS plays a fundamental role in an agent receiving data: the information
carried depends on the KS of the agent, and it should be said that a datum is ‘interpreted’ (not
‘received’) by an agent on the basis of his KS. It is possible to define aninterpretation
function

int: Data� KS� KS

that, given as argument a datum and a KS, assumes as value the KS resulting from the transi-
tion: in Figures 2(a) and 4,int������ � �� . On the basis of what above said (see Figure 4),
this function can be divided into two components (perception and restructuring)

perc: Data� KS� KS� restr: Data� KS� KS�

such thatint(d,K) = restr(d,perc(d,K))�
Let’s note that themeaningof a datum can be defined in a similar way to information:

in Figure 4, the meaning of the datum� is Meaning������ � 
��
�� ��

�� � 
perc������ �
�� � �� � perc��������

2.9 Some remarks

Many concepts have been defined: agents, KSs, KIs, links, transitions,��, ��, network of
possible KSs, data, knowledge, and, finally, information.

Also Bateson [3] and Brookes [5] define information as a difference, but in ways that
are different from the above proposed one. Bateson defines an item of information as a
difference (in the world) that makes another difference: on the basis of the above definitions,
Bateson’s difference is a (perceived) datum. Brookes proposes in his “fundamental equation”
�	�
 � �� � �	� � ��
, that “information is a small bit of knowledge”: a “knowledge
structure”�	�
 is changed to a new knowledge structure�	����
 by the information��.
Brookes’s view is more similar to the one proposed here than Bateson’s one, but it is anyway



different: Brookes’s knowledge and information are measured in the same units, while this is
not true for epistemic information.

With the above proposed epistemic information, we can remark that the same datum can
carry different information, both to two different agents (if the KSs of the two agents are dif-
ferent) and to the same agent in different time instants (if the KSs of the agent in the two time
instants are different). For instance, if the datum is an utterance in some language, an agent
understanding such a language can obtain information, while an agent not understanding the
language cannot.

Moreover, two different data can carry the same information. For instance, an utterance
uttered in two different languages carries the same information to an agent understanding
both languages (and already knowing that the speaker knows both languages). A number
expressed through different ‘formats’ (�, “eight”, VIII, ���� in binary notation,�� in octal
base) carries the same information to an agent not ‘sensible’ to the difference of the base.

There are anyway some issues deserving further explanation:

1. The same datum sometimes carries the same information to different (human) agents.
Why? It is not maintainable that there are human beings with identical KSs: we need
further explanation.

2. The amount of received information seems not always related to the amount of data:

�
� A huge datum� (i.e.,a datum with a high���) can give a very small amount of infor-
mation to an agent (for instance, if he cannot understand�, or if he already knows�,
and so on).

��� On the other side, a single ‘bit’ (i.e., an atomic datum, as yes/no, 0/1, true/false,
on/off) can carry an huge amount of information to an agent in a proper KS,i.e., a
KS with a high knowledge “pressure” (borrowing the term from physics), in which a
single bit triggers some transitions with a high difference between the initial KS and
the final KS.

This data-information inconsistency is quite disappointing. If we used everyday speak-
ing, it should be named information-information inconsistency. In everyday use of the
language, there are (at least) two meanings of “information”. On the one side we often
say “there is a lot of information in that book (that figure, those words, and so on)”, thus
supporting an objective view of information, a view that considers information as intrinsic
in its support. On the other side we often also say “this book (figure, words,. . . ) gives
no information to me”. A longer Japanese textcontainsmore information than a shorter
one, but a Japanese textgivesno information at all to me (because I do not understand
Japanese). With the terminology proposed here, the inconsistency is less worrying (a
longer Japanese text is a large data, and its interpretation gives no information to me) but
still deserving further analysis.

3. There seems to be no “knowledge conservation principle”. This is not necessarily a prob-
lem, but it is at least strange that information and knowledge, sometimes, seem to be
created from nothing, or to disappear. Moreover, such a principle could help us in better
understanding the concepts of information and knowledge.

These remarks can not be explained in the above framework. Some new concepts are
needed: they are introduced in the following sections.



3 Prerequisite KS

As above said, the definition of information proposed here implies a subjective concept of
information, accordingly to what happens in the real world. However, in everyday life, the
same datum sometimes brings the same information to different agents (remark 1 in Sec-
tion 2.9). Why? This may be explained assuming that the KSs of the agents that populate
the real world (human beings) are similar for genetic and social factors. But this is less true
if we consider people from different cultures,e.g.,Europeanvs.Asiatic, or different kinds of
agent,e.g.,human beingsvs.computers,� and it is surely true that there are no human beings
with identical KSs: some further explanation is needed.

The explanation proposed here is that the information received through a particular datum
does not depend on the whole initial KS, but only on a part of it, that can be namedprereq-
uisitesubKS. In this way, the subjectiveness of information is less evident. This prerequisite
subKS, indicated by�� , must be such that the information received by the agent would not
change if the initial KS of the agent were just�� instead of the whole KS.

Let us see an example. An agent believes a wrong version of Pitagora’s Theorem (for
instance “the sum of the squares on the two catheti is greater than the square on the hy-
potenuse”, or
� � �� � ��, instead of the well known correct version
� � �� � ��). When
the agent receives the proof of the right version of the theorem (a datum), his KS changes
accordingly. Referring to Figure 5(a) (in which the noninferential transition is taken as an
atomic one), we have:�� is the initial KS of the agent;� is the proof of the right version
of the theorem;�� is the prerequisite KS and represents the notions of triangle, square, and
so on, necessary for understanding the theorem;�� is the final KS of the agent;�� is the
subKS representing the correct version of the theorem; and�� is the subKS representing the
truthness of the wrong version of the theorem. Obviously, the KS of the agent may contain
something more than��, ��, and�� , but this is not relevant in this example.

Intuitively speaking, it is possible to characterize�� referring to what the agent has to do
with the received information, with his motivations, aims, interests. A more formal definition
is the following.

Definition 6 (Prerequisite KS, �� ) Given an initial KS�� , a final KS�� , and a transition
labeled with a datum�, �� is defined as a KS such that:

��� It is a subKS of the initial KS:�� � ��.

���� The information carried by� to the agent in a KS�� would not be different if the
initial KS were just�� . Using the int function defined at the end of Section 2.8:
I����� � int������� � I����� � int����� ��.�

����� �� is minimal: � �� � � �� such that the previous condition���� holds. �	

Note that on the basis of this definition we obtain a restriction on�� and�� : �� � ��

(a particular case being�� � �). This means that the removed subKS must be a part of the
prerequisite KS (otherwise���� does not hold, as it is easy to see), and this is quite reasonable.
Therefore, Figure 5(a) should be modified as Figure 5(b) (where�� � �� ), and Figure 5(c)
shows how the information carried by a datum depends on�� only: �� and�� are the
same in Figures 5(b) and 5(c).

�This might be an explanation of all the difficulties encountered in computer science, especially in artificial
intelligence: a high difference between the KSs of the two kinds of agents, human beings and computers.

�Or: �int������ ��� ��� � int������� � �int����� � ��� ��� � int����� ��.
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There are some problems with this definition. If we had infinite KSs, there are some
situations in which a prerequisite KS does not exists, because of the minimality condition:
in some infinite sets, like in the open interval�����
, the minimum does not exist, and the
infimum does not belong to the set. This is another reason to restrict ourselves to the finite
case. However, even in the finite case, the prerequisite KS might be not univocal, since the
information carried by a datum could be the same also with disjoint�� (as in Figure 5(e)).
These issues are not studied in more detail in this paper.

If we split the noninferential transition into the perception and restructuring ones, the
situation becomes slightly more complex. The prerequisite KS changes after receiving� (see
Figure 5(d)):��

� is the prerequisite KS for the perception transition,��
� for the restructuring

one, and the prerequisite KS for the whole noninferential transition is�� � ��
� ���

� . The
above conditions���–����� hold for such a�� , and analogous ones can be defined (using the
percandrestr functions) for each of the two transitions:

���� ��
� � �� ;

����� 
perc������ ��� � �� � perc������� � 
perc�����
� � ��

�
� � �

�
� � perc�����

� ��;
�

������ ��
� is minimal, that is� �� � � �

� such that the previous condition����� holds.

���� ��
� � �� ;

����� 
restr���� �� �� �� � � � restr���� ��� � 
restr�����
� � ��

�
� � �

�
� � restr�����

� ��;

������ ��
� is minimal, that is� �� � � �

� such that the previous condition����� holds.

�Or: Meaning������ � Meaning����� �.



4 The actual-potential dichotomy

The data-information inconsistency (Section 2.9, remark 2) is not completely explained by
�� . We can understand it by making explicit the dichotomy between actual and potential
data, knowledge, and information, as proposed in the following subsections.

4.1 Data

We have already seen in Section 2.7.1 that a datum can be actual or potential: remember the
whistle that is a potential but not an actual datum for the busy dog (and it is not even potential
for a human being, because his sensors do not allow him to perceive it), or think of a detail
not seen by a detective. Both of these data are differences in the world (potential data), but
they are actual data only if perceived. This might be an explanation of the data-information
inconsistency, but it is only partial: if it is true that an agent might not perceive a datum, and
thus obtain no information from it (remark 2�
� in Section 2.9), the symmetric remark 2���
cannot be explained on these basis.

4.2 Knowledge

Kact Kpot

x+1248=2726 x=1478

K

Figure 6:� � Kact� Kpot.

We can divide the KS of an agent into two parts, and
speak ofactual knowledge(Kact) and potential knowl-
edge(Kpot). I do not give formal definitions ofKact and
Kpot. Instead, I propose some examples. Let us consider
a theorem prover. It is a particular kind of agent: once
axioms and inference rules are fixed, the set of the deriv-
able theorems is determined, and thus one could say that
the theorem prover has the knowledge of all the derivable
theorems before deriving them. Now, a better distinction
can be obtained: the theorem prover has the potential knowledge of the derivable, and not
yet derived, theorems, and has the actual knowledge of the derived theorems only. Another
example is presented in Figure 6: an agent has a KS with the KI “� � �
�� � 
�
�”; if
the agent knows elementary arithmetic, he “knows” in some sense that� � ����. But this
knowledge can be only potential, and become never actual if the agent is not interested in
knowing the value of�. As a last example, let us explain the belief that “mathematicians
are doing nothing”, meaning that they are producing no new knowledge. After the actual-
potential distinction, it is correct to say that mathematicians are not producing newKpot,
while they are producing newKact.

Therefore, we can say that� � Kact� Kpot, and we can divide each KS in two parts, as
in Figure 6: the white part represents theKact, the grey one theKpot of the KS�.

It is important not to mistake theKact-Kpot dichotomy with the manifest-latent knowl-
edge dichotomy: they are similar but different.

Definition 7 (Kman and Klat) Themanifest knowledge(abbreviated with Kman in the fol-
lowing) of an agent is the knowledge that is revealed by his behavior, while thelatent knowl-
edge(Klat) is the knowledge that the agent anyway has, but cannot be ascertained by observ-
ing the agent’s behavior only.

In other terms, an agent can use his knowledge for acting, and on the basis of his actions it
is possible to understand what knowledge that agent has. Here are some examples of this
distinction:



� A book can be regarded as an agent that has no knowledge, since it has no perception of
the world, and does not act. But I prefer to say that a book does possess knowledge, even
if it is only latent and not manifest.

� I did not know that a friend of mine knows Latin, until when I heard him translating a
Latin sentence into English. His knowledge of Latin was latent, but actual.

� A theorem prover that prints the theorems it is deriving on the screen is an agent that has
the actual knowledge of the printed theorems, and this knowledge is manifest. It is also
possible to imagine a computer program that prints onlysomeof the derived theorems;
in that case, theKman is only a portion of itsKact: there is also theKlat of all the not
printed but derived theorems (that can be used for deriving other theorems).

The total actual knowledge of an agent is obtained addingKmanandKlat: Kact � Kman�
Klat; let us also note that the inferential and restructuring transitions are transformations of
Kpot into Kact: they do not add any new knowledge.

4.3 Information

Also information can be actual or potential. As we have seen in the previous section, the
equation� � �
�� � 
�
� is a datum that can carry the information that� � ����. But
this information can be only potential, and not become actual, for an agent not interested
in knowing �’s value. In the following, I will useIact and Ipot for actual and potential
information, respectively.

Iact and Ipot can be formally defined on the basis ofKact-Kpot distinction (see Fig-
ure 7(a), that refines Figure 2(a)). First of all, let us note that�� and�� are made up by
an actual part and a potential one:�� � Kact� � Kpot� and�� � Kact� � Kpot�� (we
also haveKact� � Kact� � Kact� , Kpot� � Kpot� � Kpot�, Kact� � Kact� � Kact� , and
Kpot� � Kpot� � Kpot� ). Now we can define:

Definition 8 (Iact and Ipot)

Iact������ �� � � 
Kact��Kact��� Ipot����� � �� � � 
Kpot��Kpot��� �	

We can also writeIact������ �� � � �Kact � 
Kact� � Kact� �Kact� � Kact� � and
Ipot������ �� � � �Kpot � 
Kpot� � Kpot� �Kpot� � Kpot� �. So far, I have spoken of one
kind of information only, without distinguishing betweenIact andIpot.

To relate�, Iact, andIpot, I define the sum of two information items as the sum of two
ordered pairs, taking a special care for keeping disjoint the added and removed parts�� and
��:

Definition 9 (Information sum, �)


	�
� � 
���� � 
�	 � �� � �
 ���� �
 ��� � �	 � ���� �	

On the basis of this definition,� � Iact � Ipot (i.e., ������� �� � � Iact����� � �� � �
Ipot������ �� �). In the definition, it is necessary to subtract
�� and	�� to avoid that a
potential KI that becomes actual (or viceversa) increases���. As a matter of fact, even if we
know that	 � 
 � � �� � �, we do not know if	 �� and
 � � are empty or not,i.e.,
if there is some potential KI that becomes actual (or viceversa), and these transformations
should not increase���.

We can also define:
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(c) Kpot andKact in perception and restructuring transitions.

Figure 7:Kact, Kpot, Iact, andIpot.

Definition 10 (Amount of Iact and Ipot) The amount of Iact (or, alternatively, Ipot) is the
number of added actual (potential) KIs plus the number of removed actual (potential) KIs:

�Iact� � ��Kact� � �Kact��� �Kact��� �Ipot� � ��Kpot� � �Kpot��� �Kpot��� �	

Now, it follows that:��� � �Iact � Ipot� � �Iact� � �Ipot�. The equality holds if and only if
there are no transformations ofKpot in Kact, or viceversa.

4.4 Discussion

The actual-potential knowledge dichotomy permits to better understand the data-information
inconsistency. Concerning remark 2�
� in Section 2.9, a huge datum� (a lot of bits) can lead
to a small amount of changes in theKact part of�, but to a huge amount of changes in the
Kpot part (see Figure 7(b)). Concerning remark 2���, if an agent has a highKpot, a small
datum can lead to a very different KS (by a heavy restructuring operation): a lot ofKpot
becomesKact. See Figure 7(c): the initial KS�� is partitioned intoKact� andKpot� . The
perceiving of a small datum� leads, after the perception transition, to adding a very small��

and removing a very small��, without changing in a significant way the partition between
actual and potential KSs:Kact� �� Kact� andKpot� �� Kpot�. After the restructuring transi-
tion, the actual and potential KSs change, since actual knowledge is derived from potential
knowledge:Kact� ��� Kact� andKpot� ��� Kpot� (andKact� � Kact� andKpot� � Kpot� ).

Now the data-information inconsistency appears less worrying: when an agent perceives
a huge datum, a part of it can lead to a change inKpot. When the agent receives a small
datum (a few bits), theIact received before the restructuring operation is a small amount, that
can trigger a huge restructuration transforming a lot ofKpot into Kact. The human agents
are conscious of theirKact only; therefore they perceive the modification in theirKact while
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Figure 8: Knowledge pressure.

they do not perceive (or at least perceive in a more confused way) the modification in their
Kpot. The data-information inconsistency is thus perceived in an amplified way, while it is
relieved ifKpot is taken into account.

5 Knowledge pressure

The Kact-Kpot dichotomy helps to explain the data-information inconsistency described in
Section 2.9. But there are still certain information phenomena observed (usually in an intro-
spective way) by human beings that can not be explained on this basis and require further
analysis. For instance, consider a simple agent, knowing elementary arithmetic. It has (Fig-
ure 8(a)) a KS�� at time��, and can receive either one of the two data�� and�� (equations
systems) in Figure 8(b).�� and�� can lead to two KSs��� and��� at time��. The��

��

and��
�� are similar, and contain the three equations in�� and��, respectively. There seems

to be no significant difference between��� and���, and if the datum�� � 
� � �� were
received at time��, the two KSs��� and��� at time�� would be obtained, with two new KIs
in each of��

�� and��
�� for the values of� and� . However, if�� � 

 � �� is received

at time��, the difference between��� and��� becomes important:��
�� contains only two

KIs for 
 � � and� � �, while��
�� contains three KIs for
 � �, � � �, and� � 
. The

difference between��� and��� is more evident if�� and�� are the equation systems in
Figure 8(c) and�� � 

� � ��, since in this case��

�� has 101 KIs and��
�� has just 2 KIs.



The difference between the two KSs��� and��� in Figure 8(a) cannot be explained on
the basis of theKact-Kpot distinction introduced in the previous section:� �� and��� have
the sameKpot (that we can assume empty). The explanation is that the knowledge in a subKS
of ��� is, in some sense, more concentrated, since a single datum can trigger a lot of restruc-
turing or inferential operations: there is a subKS of��� that has a highknowledge pressure
(“tension” or “density” might be two alternative terms). On the other side, the knowledge in
��� is more spread, since there are many data that can trigger some restructuring or inferen-
tial operations. More precisely, in��� there are 200 of these data, the values of
� � � �
���,
while the corresponding data in��� are 101, the values of
� � � �
���.

6 Knowledge conservation principle

It is commonly accepted that conservation principles for information and for knowledge do
not exist. After a first analysis, this seems not questionable. Human beings reason, think, and
find (discover, invent) something “new”. When an agent “tells” something to another agent,
the knowledge seems duplicated. When a teacher gives a lesson, the knowledge in his mind is
multiplied, since each of the students has (more or less) the same knowledge after the lesson.
Finally, people do forget: where has the knowledge that was in their mind gone? In this
section I instead show that, on the basis of the concepts presented in the previous sections,
it is possible to define aconservation principle for knowledge, analogous to conservation
principles of physics (energy, momentum, and so on). The aim is to show that for each
isolated system the total amount of knowledge is constant. I will present the knowledge
conservation principle in the next subsections, with increasing generality.

6.1 Agent types

It is possible to imagine agents of different kinds, depending on their capabilities. The capa-
bilities that an agent could have can be classified as follows:

Perception. Depending on how much an agent perceives of the world. There is a range of
values (a continuum), with two extremes: acomplete perceptionagent has a complete
perception of the world, whereas ano perceptionone is completely isolated from his
environment and thus his KS can change by means of inferential transitions only. In
between we haveperceivingagents with various perception levels. Human beings are
not complete perception agents: we cannot perceive some kinds of data (infrared light,
ultrasounds, etc.) and our perception of a datum depends on our previous KS.

Reasoning. Depending on how much the agent is capable of deriving new KIs from his KS,
expliciting the potential KIs. Also in this case there is a range of values, with two
extremes: anomniscientagent, capable of making actual all his potential knowledge
(while a non-omniscient agent cannot derive something), and anonreasoningagent,
completely unable of deriving new KIs. In between there are many different agents,
with different reasoning kinds: monotonic or non monotonic, deductive or inductive,
and so on.

Memory. Depending on how much the agent is capable of keeping, conserving his KS.
Again, we have a range of values. Apermanent memoryagent does never lose portions
of his KS, while ano memoryagent immediately loses his KS. In between we have
various kinds ofvolatile memoryagents. For instance, human beings sometime forget,
while computers can be regarded as permanent memory agents (apart from failures).
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Figure 9: The transformation ofKpot in Kact during an inferential transition.

Therefore, a no perception, nonreasoning, and with permanent memory agent (e.g., a
book) will have astaticKS (a KS that does not change as time goes on), while an agent with
adynamicKS must have some degree of either perception, inference, or volatile memory.

These agent kinds are important also because, in my opinion, a science of information can
be found only if the right simplifications and abstractions are made. In physics, one speaks
of ideal conditions: no friction, point mass, ideal environment with no external forces, and
so on. I believe that for finding some good results in the information world we need to make
similar simplifications and thus not to start fromhumaninformation processing, but from
simple-agentinformation processing. Some examples of the results that one can obtain are
presented in the following.

6.2 A no perception, permanent memory agent

Let us take a no perception, permanent memory agent with a KS�� � Kact� � Kpot� .
The total amount of knowledge of the agent is��� � � �Kact�� � �Kpot� �. If there is an in-
ferential transition transformingKpot into Kact (see Figure 9) and leading to a KS�� �
Kact� � Kpot� , then we can postulate that�Kact� � � �Kact� � (the actual knowledge in-
creases) and�Kpot� � � �Kpot� � (the potential knowledge decreases). In a more restrictive
way, no knowledge is actuallycreated, there is just atransformationprocess, and the amount
of (actual and potential) knowledge in the KS of a no perception agent cannot increase.

Postulate 1 (Knowledge conservation principle) The knowledge of a no perception, per-
manent memory agent agent remains constant as time goes on:

Kpot� � Kact� � Kpot� � Kact� � �	

This postulate implies that������ � const(or ��	

��
�


� �) and���� � ��Kpot����Kact� �
� (explicitly resembling the “action and reaction” law of dynamics).

6.3 A complete perception, permanent memory agent

Let us consider an agent with a KS�� � Kpot��Kact� (see Figure 7(a)). If the agent receives
a datum� that leads to a transition to another KS�� � Kpot� � Kact� , the information
received is� � �� � 
��� ��� � 
�� � �� � �� � �� �, and we can not postulate that
��� � � ��� �� ��� (whatever definition of��� we use), because, for instance, the agent might
already know what� carries.

On the basis of the distinction betweenKpotandKact, we can only postulate that��� � �
��� � � ���. The equality can hold only if��� is, besides completely perceived by the agent,
completely novel to him. If we take into account actual information only (as human beings



tend, introspectively, to do), the equality does not hold, since some of the information re-
ceived might be potential only. Thus, a huge datum� that leads to a little amount ofIact if
one considersKact only, actually might lead to a huge amount of� (Ipot) as soon as theKpot
is taken into account.

Such an agent is not an isolated system, thus his amount of knowledge can be not con-
stant. Nevertheless, if we take into account a wider and closed system (containing the agent
receiving the datum and the agent sending it), we can maintain that a conservation principle
holds, as shown below.

6.4 An agency

Sometimes a creation of knowledge can seem to take place, for instance if an agent	� is
communicating to a set of� agents
	�� � � � � 	�� something that only he knows (some KIs
in the KS of	� and not in the KSs of	�� � � � � 	�). After the communication act,Kact and
Kpotof 	� are constant, whereasKactandKpotof the other agents have changed. The higher
� is, the higher the proliferation of knowledge.

Again, this is a short-sighted view. Let us consider theagency(the set of all the agents)
� � 
	�� � � � � 	��. Now� is an agent itself: it acts socially, interacting with the world. But
if � is an agent, it has a KS, with actual and potential parts, and when	� communicates to
	�� � � � � 	�, theKact of � increases, while theKpotof � decreases. Postulate 1 holds in this
case too.

Let’s take another example: if I receive a Japanese text on paper, my KS does not change
(apart from details). If I also have a Japanese-English dictionary, the agency made up by my-
self, the Japanese text, and the dictionary has the potential knowledge of what the translated
text means to me.

If an agency is made up of permanent memory agents and completely isolated, itsKpot
tends to become actual. When all the agents have the same KS, nothing can change. It is
something like the second principle of thermodynamics: the entropy of a closed system tends
to increase, and such a system will end up in a “thermic dead”. This might mean that we are
going towards an “information dead”, but the situation is not so simple, since new agents are
continuously created in the real world.

6.5 A forgetting agent

The conservation principle just presented does not hold in some situations, since an agent
may forgetsome of his subKSs. If the agent is isolated, then knowledge is lost, but this is an
ideal case (as soon as something examines the agent, it is no more isolated). If we have an
agent	� in an agency� � 
	�� 	��, as soon as	� forgets a KI�, theKpot of � increases,
since	� can tell� to 	�: there is no knowledge destruction, but only transformation from
Kact (of 	�) into Kpot (of �).

7 Conclusions and future work

This research is still at a preliminary stage, and there are many future developments.
Infinite KSs should perhaps be taken into account. One might wonder if there exists

some agent in the real world with an infinite number of KIs in the actual part of his KS,
or even in the potential part of his KS. A theorem prover seems to be such an agent, with
an infinite amount of potential knowledge, though it needs an infinite amount of time for
having an infinite number of actual KIs. Besides discussing if in the real world there exist



infinite KSs, an analysis of the cases that are left out by restricting ourselves to the finite
case should be done, and the effectiveness of the approximation obtained with the finite case
should be evaluated. Also the problems about existence and univocity of the prerequisite KS
�� (Section 3) deserve further attention.

The scenario presented in this paper should be enriched in order to include into the de-
scription some new items: a more detailed analysis of what is inside the KSs (the dichotomies
knowledgevs.metaknowledge [12], implicitvs.explicit knowledge, and other ones should be
taken into account; also the links should be analyzed more in depth, as they seem to play an
important role in the transitions between KSs); a more dynamic vision of KSs (in this paper,
I have preferred to define static KSs in order to avoid the problems related to logical omni-
science [12], and this is the reason for putting the inferences outside the KSs; the alternative
way of including the inferences inside the KSs—and thus take into account the area of belief
revision [10]— should be considered); and the intention of an agent [7] (the aims and goals
play a crucial role in the interpretation of a datum; they might shed light on the above recalled
existence and univocity problems of�� ; and they are dynamic,i.e., they can change when a
transition between KSs takes place).

The subjectivity of epistemic information might lead to important changes to the data
transmission field. Source encoders might add semantic redundancy for safer transmissions;
the data processing theorem might no longer hold; if a sender agent has to send some huge
data to a receiver, and if the sender knows something about the KS of the receiver, the trans-
mission can be done more effectively (what is already known by the received has not to be
sent).

Many questions are still open. Data themselves might be considered as agents, thus hav-
ing their own KSs: does this answer the problem of measuring the amount of a datum���
(it could be defined as the quantity of the KS of the datum)? The links between the theory
sketched here and physics should be clarified: is there something analogous to heat or fric-
tion? What happens in the “agency of all the agencies”? Is its knowledge constant? What
happens when new agents are created? How do these ideas relate to the field of agent com-
puting? How do they affect the human computer interaction research? Do they support the
search for more personalized user interfaces and systems? Is it possible to fully formalize this
work, looking for an axiomatic theory? Is it possible to experimentally verify these ideas?
Since the KS of an agent observing another agent may change (thus leading to a change in the
agency made of by the two agents), do we have some kind of “knowledge indetermination
principle”?

As a final remark, let’s note that if the ideas presented in this paper are correct, the two
worlds of information and matter seem to be described by similar laws. What does this mean
with respect to the Cartesian mind-body dualism? Do they support the view that mathemat-
ical descriptions of the nature are consistent with our perceptions only because we invented
mathematics using our mental categories, and the same categories are used for perceiving the
nature with our senses?
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