
������������	
����	������������������������������

Hongjing Wu, Erik de Kort

Department of Mathematics and Computing Science
Eindhoven University of Technology
PO Box 513, 5600 MB Eindhoven

the Netherlands

email: h.wu@tue.nl, erik.de.kort@asml.nl

������
�� Many websites offer their users a lot of freedom to navigate through
a large hyperspace. Adaptive hypermedia systems (or AHS for short) aim at
overcoming possible ���������� ��� 	�
�������� �����
� by providing
adaptive navigation support and adaptive content. The adaptation is based on a
����
��� that represents relevant aspects about the user [2]. In most systems
navigation support is tied to the existing link structure. To provide users with
better understandable navigation, we discuss adaptive cross-references based on
concept relationships in AHAM. We define an authoring tool to generate a
cross-reference page for each page based on already defined relationships. With
these added cross-reference pages, we can easily provide adaptive cross-
references according to user features by AHAM.

��������� adaptive hypermedia, user modeling, navigation support, hyperme-
dia reference model, adaptation rules.

��� �� �!"#� �!��
The introduction of World Wide Web has made hypermedia the preferred paradigm
for user-driven access to information. Websites typically offer users a lot of freedom
to navigate through a large hyperspace. Unfortunately, this rich link structure of hy-
permedia applications may cause some usability problems:

• A typical hypermedia system presents the same links on a page, regardless of the
path a user has followed to reach this page. Even when providing navigational
help, e.g. through a map (or some fish-eye view) the system does not know which
part of the link structure is most important for the user. The map can thus not be
simplified by filtering (or graying out) links that are less relevant for the user.
Having personalized links or maps would eliminate some ����������� �����
��
that users have with hypermedia applications.

• Navigation in ways the author did not anticipate also causes 	�
��������������
�
� for the user: for every page the author must take into account what fore-
knowledge the user has when accessing that page. In order to do so the author
must at least consider all possible paths that lead to the current page. This is
clearly an impossible authoring task because there are more ways to reach a page
than any (human) author can foresee. In a traditional hypermedia application a
page is always presented in the same way. This may result in users visiting pages

 2

containing redundant information and pages that they cannot fully understand be-
cause they lack some expected foreknowledge. The website should really select
the pieces of information that are shown on a page, based on a history of which
pages the user has seen before, or provide easy access to extra information on the
concepts presented in the page.

Adaptive hypermedia systems (AHS) in general, and adaptive websites in particular
aim at overcoming the navigation and comprehension problems by providing ��������
������������������ and ��������	�����. The adaptation (or personalization) is based
on a user model that represents relevant aspects of the user such as preferences,
knowledge and interests. We focus on simple Web-based systems that can only gather
information about the user by observing the �������� behavior of that user. Each time
the user “clicks” on a link the system uses the selected link to update the user model
and to adapt the presentation accordingly.

In previous research we have shown that our AHAM model [2] can be used to de-
scribe content adaptation and link adaptation of AHS. Link adaptation as used in
many AHS guides users towards interesting information by changing the presentation
of link anchors. In general however, adaptation of the existing link structure alone is
not enough to solve all users’ navigation and orientation problems:

• It may not be possible to select a guided tour consisting of existing links, and of
only pages that are interested for a given user, because the interesting pages may
not form a connected sub graph in the whole link structure.

• It may take too many steps (possibly going through uninteresting pages) to guide
the user to the page(s) that deal with the topic the user is interested in.

To improve adaptive navigation support based on basic link structure in AHS, we pro-
pose 	���������	� ����������� ������� to supplement the above cases. Cross-
reference navigation support (or CRNS for short) aims to help the user when s/he
navigates through hyperspace following cross-references, i.e. conceptually related in-
formation. A cross-reference page provides meta-information for a “normal” page in
the form of links, and can thus be adapted according to user features.

While cross-references could be investigated at a more general level, we concentrate
on its use in AHS that can be described in the AHAM model. This paper is structured
as follows: in Section 2 we briefly review the AHAM reference model, thereby con-
centrating on the parts that are needed to describe adaptation functionality at an ab-
stract level. Section 3 discusses how to generate cross-reference pages and how to
provide cross-reference navigation support based on these pages. Section 4 draws
conclusions and describes our future work.

$�� ���%&���"'('����)'"��'*'�'��'�%!"'+�
Many adaptive hypermedia systems share parts of their architecture. Just like the
Dexter model [4][5], tried to capture the facilities offered by hypermedia systems of
its time (and of potential future systems), AHAM [2], (for Adaptive Hypermedia
Application Model) describes the common architecture of adaptive hypermedia
systems. Part of this common architecture is typical for Web applications: their event-
driven nature, where each page access results in a user-model update and an adaptive

nature, where each page access results in a user-model update and an adaptive presen-
tation. AHAM’s overall structure is an extension of the Dexter model. According to
AHAM each adaptive hypermedia application is based on three main parts:

• The application must be based on a ��
����
���, describing how the informa-
tion content of the application or “hyper-document” is structured (using concepts
and pages).

• The system must construct and maintain a fine-grained ����
��� that represents
a user’s preferences, knowledge, goals, navigation history and other relevant as-
pects.

• The system must be able to adapt the presentation (of both content and link struc-
ture) to the reading and navigation style the user prefers and to the user’s knowl-
edge level. In order to do so the author must provide an �����������
��� con-
sisting of ���������������. An AHS itself may offer built-in rules for common
adaptation aspects. This reduces the author’s task of providing such rules. In
fact, many AHS do not offer an adaptation rule language; the way in which the
user model is updated and the presentation adapted is then completely predefined.

The division into a ��
����
��� (DM), ����
��� (UM) and �����������
���
(AM) provides a clear separation of concerns when developing an adaptive hyperme-
dia application. The main shortcoming in many current AHS is that these three factors
or components are not clearly separated. Modeling an existing AHS in AHAM may
not be straightforward because AHAM requires these parts to be made explicit, and
the adaptive behavior to be described using adaptation rules. However, using AHAM
enables us to clearly describe how an AHS works, how different AHS compare, and
also how to design new and more powerful AHS.

The AHS consists not only of the three sub-models (mentioned above) but also of an
��������������� (AE). The AE describes implementation dependent aspects of the
AHS. In previous work [7] we described design issues for a general-purpose AE, and
defined AHAM CA-rules to illustrate how sets of rules work together. We will use
these rules to describe the generation of adaptive cross-reference in Section 3.

Figure 1 shows the overall structure of an adaptive hypermedia application in the
AHAM model. The figure has been made to resemble the architecture of a hyperme-
dia application as expressed in the Dexter Model [4][5].

 4

�
Run-time Layer

Presentation Specification

Adaptation Model

Anchoring

Within-Component Layer

Domain
Model�

User
Model�

Storage Layer

�

*�,-���� : Structure of adaptive hypermedia applications

In this section we only present the elements of AHAM that we will need to discuss
how cross-reference navigation support (CRNS) can be expressed in AHAM.

$��� .��"����	�%���/�
The domain model of an adaptive hypermedia application consists of 	��	��� and
	��	��� ������������. Concepts are objects with a unique object identifier, and a
structure that includes attribute-value pairs and a sequence of anchors.

A concept represents an abstract information item from the application domain. It can
be either an atomic concept or a composite concept.

• An ���
�	�	��	�� corresponds to a fragment of information. It is primitive in
the model (and can thus not be adapted). Its attribute and anchor values belong to
the “Within-Component Layer” and are thus implementation dependent and not
described in the model.

• A 	�
������	��	�� has a sequence of children (sub-concepts) and a constructor
function that describes how the children belong together. The children of a com-
posite concept are either all atomic concepts or all composite concepts. A com-
posite concept with (only) atomic children is called a ���. The other (higher-
level) concepts are called ������	��	��	���.

The composite concept hierarchy must form a DAG (directed acyclic graph). Also,
every atomic concept must be included in one or more composite concepts.
*�,-���$ illustrates a part of a concept hierarchy.

 C

C1 C2 C3

composite concept

(smaller) composite concept

P1 P2 pages

F1 F2 F3 F4 fragment

*�,-���$: Part of a concept hierarchy.

A 	��	�������������� is an object (with a unique identifier and attribute-value pairs)
that relates a sequence of two or more concepts. Each concept relationship has a ���.
The most common type is the hypertext /�	0. In AHAM we consider other types of
relationships (abstract relationships) as well, which play a role in the adaptation, e.g.
the type �����1-�����. When a concept C1 is a prerequisite for C2 it means that the
user “should” read C1 before C2. This does not imply that there must be a link from
C1 to C2. It only means that the system somehow takes into account that reading about
C2 is not desired before some (enough) knowledge about C1 has been acquired.
Through link adaptation the “desirability” of a link will be made clear to the user.
*�,-���2 shows a small set of (only binary) concepts associated to one another by three
types of concept relationships: prerequisite, inhibit, and link.

 C1

C2

C4

C3

prerequisite

prerequisite

prerequisite

link link

link

link

link
inhibit

*�,-���2 : Example concept relationship structure�

Apart from the “implicit” relationship type and set of relationships that form the con-
cept hierarchy an AHS need not contain or support any other relationships. AHAM
can thus also represent applications without traditional hypertext links (like e.g. in
��������������� [6]). A relationship graph defines a certain connection among a set
of concepts. In Section 3 we will use relationship graphs to generate cross-reference
pages; these can be used to supplement the basic adaptive navigation support in AHS.

The atomic concepts, composite concepts and concept relationships together form the
��
����
��� (DM) of an adaptive hypermedia application.

 6

$�$� .��#����%���/�
A user model consists of named entities for which we store a number of attribute-value
pairs. For each user the AHS maintains a �������������	���, in which for each con-
cept in the DM the attribute values for that concept are stored. Because there can be
many relationships between ������	�� 	��	��� and 	��	�� content elements like
fragments and pages, a user model may contain many attributes per concept to indicate
how the user relates to the concept. Typical attributes would be ����������� (e.g.
in educational applications) and ������ (e.g. in encyclopedia, museum sites, or on-
line mail-order catalogs). The user model may also store information about what a
user has read about a concept, and for how long or how long ago, etc. Concepts can
furthermore be used (some might say abused) to represent “global” user aspects such
as preferences, goals, background, hyperspace experience, or a (stereotypical) classifi-
cation like student, employee, visitor, etc. For the AHS or the AHAM model the true
meaning of concepts is irrelevant.

In the sequel we will always consider UM as being the user model for a single user;
we do not discuss adaptation to group behavior.

$�2� .�����������	�%���/�
The AHAM model targets adaptive hypermedia applications that follow the ������
������ paradigm that is typical for the Web. The interaction with the system is de-
scribed through ���� generated by the user (or by an external source). Each event
triggers user model updates and results in an adaptive presentation. In [7] we intro-
duced a database-like language to express the effects of user actions as 	���������
�	��������� (AHAM CA-rules). This implies that we do not explicitly model ����
as events, but as updates to attributes that trigger rules. Accessing a web-page for in-
stance will result in a Boolean “access” attribute of the page (in the user model) to be-
come ���. The small example below illustrates the structure of these rules. (A syntax
description can be found in [7].)

C: ��/�
� P.access
A: -����� F.pres := “show”
 �.��� Fragment(P, F) �	� F.relevance = “recommended”

In this example we first see that the 	�������� for this rule is that P.access has become
true for some page P. When this happens (and because there is no additional �.���
clause in the condition) the �	���� is executed. In the action we look at fragments F of
page P. If a fragment is marked as “recommended” then that fragment will be shown.
This is indicated as a �������������	���	����� and represented as a “pres” attribute
of the fragment.

Note that the AHAM CA-rule language is just a vehicle for describing how an AHS
should perform user model updates and adaptation. It does not imply that we require
AHS to use such a language. Even when an AHS has only a built-in behavior, we can
still describe this using the AHAM CA-rule language. Also, we partition adaptation
rules into ����� to indicate that certain rules must always be executed before certain
other rules. The phases include IU, the initialization of the user model, UU-pre, the
user model updates that are performed before generating the presentation, GA, the

generation of the adaptation, and UU-post, the user model updates that come after the
presentation. The phases are a convenience for ensuring that the execution of the
rules has desirable properties such as ��
������� and 	������	, as discussed in [7].

$�3� .�����������	�'	,�	��
An AHS does not only have a domain model, user model and adaptation model, but
also an adaptation engine, which is a software environment that performs the follow-
ing functions:

• It offers generic page selectors and constructors. For each composite concept the
corresponding selector is used to determine which page(s) to display when the
user follows a link to that composite concept. For each page a constructor is used
for building the adaptive presentation of that page (out of its fragments). Page
constructors allow for dynamic content like a ranked list of links.

• It optionally offers a (very simple programming) language for describing new
page selectors and constructors. For instance, in AHA [1] a page constructor
consists of simple commands for the conditional inclusion of fragments.

• It performs adaptation by executing the page selectors and constructors. This
means selecting a page, selecting fragments, organizing and presenting them in a
specific way, etc. Adaptation also involves manipulating link anchors depending
on the state of the link (like enabled, disabled and hidden).

It updates the user model (instance) each time the user visits a page. The engine will
change some attribute values for each atomic concept of displayed fragments in a
page, of the page as a whole and possibly of some other (composite) concepts as well
(all depending on the adaptation rules).

The adaptation engine thus provides the implementation-dependent aspects, while
DM, UM, and AM describe the information and adaptation at the conceptual, imple-
mentation independent level. Note that DM, UM and AM together thus do not de-
scribe the complete behavior of an AHS. The same set of ��������������� may result
in a different presentation depending on the �	������
��� of the adaptation engine.

2�� ��!))��'*'�'��')������)��
Sometimes users do not want to follow the suggested navigation order, but rather skip
across to related information. It would therefore be helpful to have access to meta-
information for the concepts the user is reading about, especially through cross-
references that make related information readily reachable. These cross-references are
a collection of links to all concepts relevant to a (page)concept. Relevance is deter-
mined by examining the concept relationship graphs: there must be an (in)direct con-
nection between the concepts. Section 3.1 explains how to generate cross-reference
pages for each page in the DM. Section 3.2 explains how to update the user model for
generating the CRNS. Section 3.3 explains how to personalize the cross-references.

2��� 4�	������������������	
��5�,����
An authoring tool can generate a set of cross-references for each page to connected or
related concepts. It depends on the author and system what pages or abstract concepts
are included in this set. Also depending on the system, cross-references can be show

 8

as a part of the original page or in a separate page. For brevity and ease of reference,
we choose to organize a cross-reference set as an independent page called a 	�����
����	���� (CRP). A (page)concept may be connected with several abstract con-
cepts through one relationship graph or with several abstract concepts through differ-
ent relationship graphs. A CRP should contain a list of links that can be grouped ac-
cording to the type of relationship so that the user can easily find related concepts and
go directly to the related concepts. The CRP should be adaptable to a user’s knowl-
edge state for every referenced concept. Before generating CRNS, we first need to add
some requirements on the general definition of relationships in the DM of AHAM. We
then define a function to generate CRPs from the relationship graphs defined in the
DM.

AHAM provides a platform to define all kinds of relationships. For a clear under-
standing we distinguish between the hypertext link relationship, and other more ab-
stract relationships such as ��������� or 	����������. To allow a user to go directly
from one concept to a related concept, we have to create a hypertext link. If an ab-
stract concept has no direct representation (e.g. �� in �
Figure 2) a choice has to be made as to which hypertext links need to be created. For
the sake of argument we will assume that all related pages in the concept hierarchy are
included, but this is really an implementation decision and could possibly be a config-
urable option in the authoring tool.

Once all required hypertext links are created for a (page)concept, the corresponding
CRP can be generated. We can define a function to generate CRP for each page by us-
ing relationship graphs defined in the DM. There are different ways to generate cross-
references according to relationship type and connection distance (the length of the
shortest path in the relationship graph). For example, a CRP may contain links to rele-
vant concepts for just one specific relationship type �, or for all types of relationships.
Connection distance can be used to exclude certain links, and may be used as tool to
determine relevance.

Let us assume that � is a relationship graph with type �, � is a page, and � 	�����
����	 is a set consisting of relevant concept links to �. Relationship �!�"��# repre-
sents that � is directly related to � through relationship �"�while���!�"��# represents
that � is directly or indirectly related to � through relationship �. Function �����
generates the CRPs from the � 	���������	 set. Function ����� is part of the
authoring tool, so details are not relevant here. We illustrate four possible ways to the
function to generate CRPs:

� $�������
�% (only directly related concepts of relationship type R):

1. Select a relationship graph G with type R;
2. ��� all P in G ��
 P.cross-reference := ∅;
 ��� all C in G ���

� � �� R(C, P) �.�	 P.cross-reference := P.cross-reference ∪ {C};
3. ����� the CRP based on � 	���������	.

� $�������
�& (directly related concepts of all relationship types):

1. ��� all G in Relationship_Graphs ��
� ����all P in G ���

� � P.cross-reference := ∅;
2. ��� all G in Relationship_Graphs ��

� ��� all P in G ���
� ��� all C in G ��
 �� R(C, P) �.�	 P.cross-reference := P.cross-reference ∪ {C};

3. ����� the CRP based on � 	���������	.

� $�������
�' (all related concepts of relationship type R):

1. Select a relationship graph G with type R;
2. ��� all P in G ��

 P.cross-reference := ∅;
� ��� all C in G ���
� � �� R+(C, P) �.�	 P.cross-reference := P.cross-reference ∪ {C};

3. ����� the CRP based on � 	���������	.

� $�������
�((all related concepts of all relationship types):

1. ��� all G in Relationship_Graphs ��
 ��� all P in G ��
 P.cross-reference := ∅;
2. ��� all G in Relationship_Graphs ��
� ��� all P in G ��

 ��� all C in G ��
 �� R+(C, P) �.�	 P.cross-reference := P.cross-reference ∪ {C};

3. ����� the CRP based on � 	���������	.

2�$� #�����	,��.��#����%���/�
We briefly illustrate how the AHAM CA-rules are used to perform user model up-
dates, in which the concept relationships play a role. Adaptation is normally based on
�����	 of or �	�

�������� for concepts or pages. This is in turn deduced from
aspects like ������ or ������� (which must exceed some �������� to be consid-
ered sufficient to be taken into account). Below we give a possible rule that decides
whether a concept should be recommended based on whether the user has enough
knowledge about all prerequisite concepts.

C: ��/�
� C2.knowledge
 �.��� C2.knowledge ≥ C2.threshold
A: -����� C1.relevance := “recommended”
 �.��� Prerequisite(C2, C1)
 �	� 	����6���� (��/�
� C3

 10

 �.��� Prerequisite(C3, C1)
 �	� C3.knowledge < C3.threshold)

The rule is triggered when the knowledge of concept C2 is changed and when that
knowledge then matches or exceeds the required knowledge threshold for C2. The ac-
tion of the rule sets the relevance value for C1 to “recommended” if there are no unsat-
isfied prerequisites left for C1. (For efficiency reasons only concepts C1 are consid-
ered for which C2 is a prerequisite. Other concepts cannot be influenced by the
knowledge change for C2).

In order to describe the user model updates, changes to relevance of pages, and also
the resulting adaptation one needs many rules. We don’t describe them here, not just
because of the size restrictions for this paper, but also because every AHS has differ-
ent behavior and thus also a different description using AHAM CA-rules.

2�2� 5����	�/�7���.��������������	
���
In this section we discuss how to present a CRP. The relevant links presentation in the
reference page should be adapted to the user’s features. For example, we use color
metaphors as used for adaptive annotation to show the knowledge state for all links in
the cross-reference page.

The following rule describes that when a CRP is displayed, the system shows the rele-
vant concept links of this page by using the color metaphor for adaptation annotation.

C: ��/�
� CR.access
A: -����� F.pres := “green”
 �.��� Fragment(CR, F) �	� F.relevance = “recommended”

Here F can be a page or an abstract concept.) �����	 has been calculated in UU-
phase. The cross-reference page consists of a list of related page links or abstract con-
cept links depending on constructors of the cross-reference page. From the cross-
reference page users can go directly to related concepts. In this way we add additional
navigation paths that we call link-independent navigation support.

3�� �!��+#)�!�)���"�*# #�'�!���
With AHAM we are can define any relationship within AHS. We can then automati-
cally generate cross-references based upon these relationships. Using the basic func-
tionality of AHAM we are able to apply adaptation and personalization to these cross-
references to provide users with a better understandable navigation environment. This
method could be very useful for educational web applications; teachers should provide
the relationships among concepts for the course. It is less practical in large informa-
tion systems without a clear notion of an author. But the idea to provide relationship
based cross-references to assist the user while browsing through hyperspace is appli-
cable in web-based information systems in general. All that is needed are meaningful
relationships among pages, e.g. provided by semantic web techniques.

8�� �'*'�'��')�
[1] De Bra, P., Calvi, L., “AHA! An open Adaptive Hypermedia Architecture”. The New Re-

view of Hypermedia and Multimedia, pp. 115-139, 1998.

[2] De Bra, P., Houben, G.J., Wu, H., “AHAM: A Dexter-based Reference Model for Adap-
tive Hypermedia”. Proceedings of ACM Hypertext’99, Darmstadt, pp. 147-156, 1999.

[3] EI-Beltagy S. R., Hall, W., De Roure, D. and Carr, L. “Linking in Context”. Proceedings
of The 12th ACM Conference on Hypertext and Hypermedia, pp. 151-160, 2001.

[4] Halasz, F., Schwartz, M., “The Dexter Reference Model”. Proceedings of the NIST
Hypertext Standardization Workshop, pp. 95-133, 1990.

[5] Halasz, F., Schwartz, M., “The Dexter Hypertext Reference Model”. Communications of
the ACM, Vol. 37, nr. 2, pp. 30-39, 1994.

[6] Marshall, C.C., Shipman, F.M., “Spatial Hypertext: Designing for Change”. Communica-
tions of the ACM, Vol. 38, nr. 8, pp. 186-191, 1995.

[7] Wu, H., De Kort, E., De Bra, P., “Design Issues for General Purpose Adaptive Hyperme-
dia Systems”. Proceedings of the 12th ACM Conference on Hypertext and Hypermedia,
pp.141-150, 2001.

