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Viewpoint Computation

• given:
– a camera model (e.g., position - orientation - FOV), and a 
domain D ⊂ ℝ7 of allowed camera parameters

– requirements about the visual composition of targets in the 
computed image

• compute a value for each camera parameter to 
(best) satisfy the requirements



Example

requirements: houses 1 and 2 completely visible, seen from the front; houses 
area on screen each about 10%



Approaches to VC
• algebraic: when we can establish an algebraic relation between 

requirements and camera parameters

– works only in very limited situations 

• in all other cases, we can use:

– constraint-based approaches: express requirements as constraints 
over D, find camera parameters c that satisfy constraints, or fail

– optimisation-based approaches: express requirements as a satisfaction 
function F:D→[0,1], find camera parameters c that maximise F



Visual Composition Requirements
• we consider the following types of visual composition requirements:

– size (width, height, area) of targets on screen

– visibility of targets on screen

– angle of targets with camera

• we need to:

– model each type of requirement as a satisfaction function f:D→[0,1]

– model the satisfaction function of a virtual camera c as some composition of 
the requirement satisfaction functions, i.e. F(f1,f2,…,fn):D→[0,1]



Modeling requirement functions
• a requirement has a type (size, visibility,…) and a desired value

– the “type” part computes the value v of a visual feature (size, visibility, 
angle) of a target t for a given camera, i.e. ftype(c):D→V where V is the 
set of possible values of the visual feature

– the “desired value” part computes a satisfaction value from the value of 
the visual feature, i.e. fdesired:V→[0,1] and can be e.g. modelled as a 
linear spline

• optimisation approaches typically need to sample a considerable 
number of points in D to find a good solution: therefore, computing 
ftype must keep into account accuracy vs cost

– compromise might depend on specific application demands 

example fdesired

to greater satisfaction. In the example of the two targets in
opposite zones of an aircraft, the system will have to choose one
of the targets and miss the other (which could be framed later). A
more subtle issue is the case where only certain properties of a
target can be satisfied. For example, it might be impossible to find
a camera that guarantees both the required size and (at least
partial) visibility. In this case, while the returned camera satisfies
certain target properties, it may not allow the viewer to under-
stand the events that involve the target. More generally, due to the
limited time available for virtual camera computation and the
stochastic nature of search, the Camera Operator might at times be
unable to find a virtual camera that satisfies all properties or even
all of the properties for some targets even if such a virtual camera
exists. In general, as the geometrical complexity of the scene and/
or the number of targets increase, this type of issues are more
likely to occur. An increase in geometrical complexity typically
translates into more time required to explore the scene in search
of a camera that satisfies the visibility properties. A larger number
of properties increases the time required to evaluate the satisfac-
tion of virtual cameras during the search process. We address all
these issues by evaluating the virtual camera that is computed by
the Camera Operator before using it to visualize events to the
viewer.

3.3. The Director module

The Director module manages the entire camera control pro-
cess. This module decides which camera is shown to the viewer,
how and when to transition to a new camera, issues virtual camera
computation requests to the Camera Operator and evaluates the
returned virtual camera. The Director module is executed at

regular time intervals (0.2 s), and its operation is schematized in
Fig. 2.

When it is time to change the camera to be shown to the
viewer, the Director takes the current targets list from the Event
Filter module, computes the list of properties, issues a virtual
camera computation request to the Camera Operator, and stops its
current execution. If instead this operation was performed during
the previous execution, the Director would take the virtual camera
that meanwhile has been computed by the Camera Operator,
evaluates it and decides if the camera should be used. In such a
scenario,the targets list is emptied.

The evaluation of the virtual camera returned by the Camera
Operator considers which of the targets are effectively framed, i.e.,
the involved events are recognizable. We define a target as
effectively framed by a virtual camera if its Size and Occlusion
properties have a minimum satisfaction value of 0.5 and 0.3,
respectively, out of 1. This corresponds to the target being half of
the preferred minimum screen area and half visible. For the other
properties, we rely on the virtual camera computation process to
maximize the satisfaction, but we also accept virtual cameras that
do not frame certain targets in the screen center or with the
required angle because these requirements could likely be difficult
or impossible to satisfy for multiple targets simultaneously. There-
fore, for each virtual camera, we compute two lists of targets:
targets that are effectively framed (framed targets) and frames that
are not effectively framed (missed targets). The evaluation has a
negligible computational cost because it was previously performed
during the search process. A virtual camera is deemed to be good
for the viewer when its framed target list contains at least one
target. If a virtual camera is not good, it is discarded. When the
Camera Operator fails to find a good camera in the allowed time

Table 1
Properties defined for each target object to compute a virtual camera. Weights reflect relative importance of properties and have been determined empirically. Slight
variations of weights would not alter substantially the result.

Property type Semantics Weight Satisfaction function

Size The target object should cover at least 10% of the screen area,
or less if there are multiple target objects

2.5

Occlusion The target should not be occluded by other objects 4.0

Framing The target object should be framed inside a screen rectangle
with minimum and maximum corners equal to (0.2,0.2)
and (0.8, 0.8), respectively, in viewport coordinates

1.0

Angle Camera in front of the object 1.0

Angle Camera parallel or slightly above object 1.5
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f(c) = fdesired(ftype(c))



Measuring Size (area)

• mesh vs bounding volume

– what about objects with holes

• rendering (and counting pixels)

• geometrical methods

– bounding sphere

– bounding box

rendering at 1000x750 rendering at 500x375 rendering at 80x60 rendering at 40x30 geometric evaluation

261.87 63.47 9.7 8.44 0.005

mean evaluation cost (milliseconds) in a scene after 1000 evaluations from random 
cameras



Measuring Visibility

• mesh vs bounding volume

– objects with holes

• rendering (and counting 
pixels)

• geometrical methods

– ray casting

rendering at 1000x750 rendering at 500x375 rendering at 80x60 rendering at 40x30 geometric evaluation

261.68 63.1 9.61 8.96 0.1

mean evaluation cost (milliseconds) in a scene after 1000 evaluations from 
random cameras



Angle

• the angle between a target-
specific vector u and the vector 
from t to the camera

– typically, u can be the forward
vector of the target (horizontal 
angle between camera and 
target), or its up vector (vertical 
angle between camera and 
target)

– other choices are possible, e.g., 
for a character, u could be the 
direction of the head



Computing Satisfaction
• typical solution is a weighted sum of individual f

– corresponds to logical AND of all requirements

– weights allow one to set requirements importance, but are not 
easy to manage

• can use also other logical operators (e.g. OR is max)



Solving VC

• due to complexity of the objective function and non-continuity (e.g., 
think visibility), black-box optimisation approaches are preferable

• use of random values (stochastic optimisation) to escape local 
minima

• population-based approaches have the additional advantage that 
poor initialisation can be corrected 

• Particle-Swarm Optimisation (PSO) has all these features and, 
moreover, it is known for fast convergence

– used by several authors, e.g. [Burelli et al. 2008, Abdullah et al. 2011, 
Ranon and Urli 2014]



PSO for VC
– idea: a swarm of cameras wanders through D in search of the optimum 

(i.e. the parameters c that maximise F)

– at each step, we move a camera and evaluate F on it 

– we always record:

• the best visited position in D for each camera (p)

• the global best visited position pg

– the equations for moving a camera from its position in D xn-1 to a new 
position xn are:

w, c1 and c2 are PSO-specific parameters; r1 and r2 are random numbers in [0,1]

toward both the best solution to the optimization problem found by each individual and

the global best solution.

More formally, given aD-dimensional (compact) search space S ∈ RD and a scalar

objective function f : S → R that assesses the quality of each point x ∈ S and has

to be maximized, a swarm is made up of a set of N particles, which are located in that

space. The i-th particle is described by threeD-dimensional vectors, namely:

– the particle current position xi = (xi1 , xi2 , . . . , xiD
);

– the particle velocity vi = (vi1 , vi2 , . . . , viD
), i.e., the way the particle moves in the

search space;

– the particle best visited position (as measured by the objective function f ) Pi =
(pi1 , pi2 , . . . , piD

), a memory of the best positions ever visited during the search.

The index of the particle that reached the global best visited position is denoted by g,
that is, g = arg maxi=1,...,N f(Pi).

At the beginning of the search (step n = 0), the particles are set at random locations
and with random velocities. The search is performed as an iterative process, which at

step n modifies the velocity and position vectors of each particle on the basis of the
values at step n− 1. The process evolves according to the following rules (superscripts
denote the iteration number):

vn
i = wn−1vn−1

i + c1r1

(

pn−1

i − xn−1

i

)

+ c2r2

(

pn−1
g − xn−1

i

)

(1)

xn
i = xn−1

i + vn
i i = 1, 2, . . . , N (2)

In these equations, the values r1 and r2 are two uniformly distributed random num-

bers in the [0, 1] range, whose purpose is to maintain population diversity. Constants c1

and c2 are respectively the so-called cognitive and social parameters, which are related

to the speed of convergence. The value wn is an inertia weight and it establishes the

influence of the search history on the current move. A high weight is related to a global

exploration, while a low weight allows a local exploration (also called exploitation). In

Section 4, we will discuss the values we have chosen for all the parameters (including

the number of particles and iterations).

Since at each iteration a solution to the problem is available (although it could not

be the optimal one), PSO belongs to the family of anytime algorithms, which can be

interrupted at any moment still providing a solution. In the general case, however, the

iterative process is run until either a pre-specified maximum number of iterations has

elapsed or the method has converged (i.e., all velocities are almost zero).

Having overviewed how PSO works, we now describe how we use it for searching

inside the feasible volumes computed in the previous phase. In our case, the PSO search

space is composed by all camera parameters, so it is a subset of R7. In particular, each

particle position in R7 completely defines a camera, i.e. it assigns a value to each of the

7 camera parameters (3 position coordinates, 3 orientation angles, and FOV angle):

– the first three dimensions (x0, x1, x2) correspond to the camera position. These

values will be kept inside the feasible volume during the optimization process;



PSO for VC

initialize n random cameras in array CAMERAS

i=0;

while (there is still time left) {

move CAMERAS[i];

evaluate F(CAMERAS[i]);

compute new local and global optima;

i = (i+1) mod n;

}

optimum = CAMERAS[g];



DEMO



Improving PSO
• unlucky random initialisation coupled with little 

available time (e.g. few milliseconds) and/or large 
search space can make PSO fail

• current methods to tackle this issue are:

– “smart” initialisation

– lazy F evaluation

– PSO parameters tuning



Smart Initialisation

• size and angle requirements are very common in VC problems

• it is quite easy to initialise a camera such that it roughly satisfies a 
size or angle requirement (or both)

• e.g., for size, we can compute a roughly optimal distance to a target 
by the formula

where target size and projection size are easily computed by using a 
bounding sphere, assumed centered on the screen 

• if a problem has k targets, we can distribute cameras among them, 
and initialise each camera around optimal values for the assigned 
target
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particle of the swarm. The value ! is an inertial weight
and it establishes the influence of the search history on
the current move; it linearly decreases, iteration after
iteration, from an maximum value (!

init

) to a minimum
one (!

end

). In general, it is known that the behavior
of a PSO solver changes significantly depending on the
values of these parameters, and finding suitable values
for specific problems or classes of problems is the topic
of several research papers. Particles can exit their domain
during search: in this case, the objective function is set
to a negative value without evaluating it.

Additionally, the PSO solver takes as input a maxi-
mum time budget T , and a satisfaction threshold ST 2 [0, 1].
The process ends whenever: (i) any particle reports a
satisfaction sat > ST · satmax, where satmax =

P
w

i

is
the maximum satisfaction ever obtainable by a particle,
or (ii) the time elapsed since starting PSO is greater than
the time budget. The stopping conditions are evaluated
each time a new global optimum has been found (sat-
isfaction threshold), and after each particle evaluation
(time budget).

When the solver stops, the current best particle is
returned as result.

3.5.1 Initializing Particles
Standard PSO initializes the particles with random po-
sition and velocities, since the algorithm has no knowl-
edge about the search space before starting iterations.
This strategy can have a negative impact on solving
time, because random initialization is not guaranteed
to produce particles that can quickly guide the search
process towards an optimum. This problem is common
to many stochastic optimization approaches.

As we discussed in Section 2, to tackle this prob-
lem, previous approaches have considered some kind
of properties (typically, Angle and Size) as geometric
operators that derive sub-regions of search space where a
property can be satisfied [6], [5], [3]. By intersecting the
derived sub-regions, one can derive a subset of search
space where candidates are initialized and search can
be somehow confined, however, with a considerable
computational cost [5].

In an effort to find a less costly approach, instead
of explicitly pruning the search space, we try to ini-
tialize each candidate in a position where at least one
property is partially satisfied. We achieve this through
an initialization process assigning a subset of the initial
particles to each property (depending on its weight), and
trying to initialize them in positions where the property
can be better satisfied. Then, during search, we allow
our candidates to explore all search space, and therefore
do not limit a priori our solutions in the case of over-
constrained problems.

We have determined methods that find viewpoint
positions with a certain estimated satisfaction for Size
and Angle properties. For example, for a Size property,
one can roughly estimate the distance the viewpoint v

should have from the target t for the Size of t

v

to be

a certain value by taking the bounding sphere of t and
assuming it is centered on screen, and then using the
well-known formula

distance =
target size

target’s projection size
· 1
tan(�/2)

where the size is that of the bounding sphere.
For any distance, a viewpoint v on the sphere centered

on t and with radius equal to the distance will (ap-
proximately) guarantee a certain Size of t

v

. Considering
a budget of particles to be assigned to a certain size
property, since our sat function is a linear spline, we treat
it as a probability density function, and use inverse trans-
form sampling so that more particles will be initialized
around the distances that give higher satisfaction. For an
Angle property, it is straightforward to derive a similar
procedure. The steps of the initialization process are the
following:

1) we determine two sets of particles, R (random) and
NR (non-random), such that: (i) |R| + |NR| = N

(the total number of particles); (ii) |R| = trunc(N *
r part), where r part 2 [0, 1] controls the fraction of
random particles we want to use;

2) for particles in R, the dimensions corresponding
to the position of the viewpoint are randomly
initialized in the search space;

3) for particles in NR, we consider the subset PS of
properties for which we have an analytical method
to find suitable viewpoint positions (currently, only
Size and Angle). We partition NR into |PS| subsets,
where each subset is associated to a property, and
the number of particles in the set depends on the
weight of the property (properties with greater
weight get more particles). For each subset and par-
ticle, the dimensions corresponding to the position
of the viewpoint are set according to the strategy
explained above;

4) for all particles, the dimensions corresponding to
the look-at point of the viewpoint are randomly
initialized inside the AABB of all problem targets;

5) for all particles, roll angle and FOV are randomly
initialized in the search space.

The expected advantages with respect to purely ran-
dom initialization are the following. First, setting the
look-at point randomly inside the AABB of all targets
ensures that (barring occlusions) initial candidates will
frame at least some of the targets. Second, properties
such as Size or Angle are very often used, as we typically
want targets to be at least recognizable by the user;
therefore, initializing candidates in areas where such
properties are satisfied (at least to some degree) is likely
much better than random initialization. Additionally, a
percentage of particles can still be randomly initialized to
promote exploration of the search space. In Section 4, we
will experimentally determine an optimal value of r part
for subdividing particles into the R and NR subsets.



Lazy F evaluation
• the evaluation of F can be terminated as soon as we know that 

we cannot improve on the camera local best value (lazy 
evaluation)

– the computed value would have no effect on camera movement

• we can then order the requirements by cost of evaluation 
(angle, size, visibility) so that we avoid computing unnecessary 
(and costly) requirements

• other strategies are possible, e.g. combine lazy evaluation with 
computing first the projection of bounding box of all targets, and 
then set the satisfaction of any requirement for the same target, 
if the projection is off-screen, to zero 



PSO parameters tuning
• the values of n (the number of cameras in the 

swarm), c1, c2, and w can greatly influence the 
behaviour of PSO

• given a set of scenes and VC problems, and a set 
of possible PSO parameter values, one can run all 
possible combinations, and then use statistical 
methods to derive optimal PSO parameter values

• in our experience, derived parameters are quite 
good for all similar settings



PSO parameters tuning

5 problems per scene

18720 combinations

20 runs per scene, problem, combination = 5’148’000 runs

considering 6 time budgets for PSO: 5, 10, 20, 40, 100, 200 milliseconds 
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3.5.2 Implications of our viewpoint representation
With our viewpoint representation, a particle following
the best one in the swarm is pushed to look towards
the same look-at point of the best particle. With a
representation using Euler angles, instead, a particle is
pushed to look in the same direction as the best particle,
which is not ideal if the two particles are far apart.
This kind of decoupling helps the look-at points to
drift towards the problem targets. However, in our case,
when, for a particle, the look-at point gets very close
to the viewpoint position, a small change in the position
itself can correspond to a large change in how properties
are satisfied. This is in theory a negative situation, since a
smooth objective space is more favorable for solvers like
PSO. However, due to the way we initialize particles,
such situations are not likely to happen at the beginning
of search; during search, even if this might happen for
a particle, it would likely have little consequences on
the overall search process, because PSO works with a
population of candidates.

4 EXPERIMENTAL EVALUATION

In this Section, we evaluate the effectiveness of our
approach, and of its specific improvements over prior
work. More specifically, we compare: (a) our approach,
as described in this paper; (b) our approach, using a
viewpoint representation with Euler angles (i.e., 7 com-
ponents instead of 8); (c) our approach, using traditional
lazy evaluation with properties ordered by decreasing
cost instead of the strategy described in Section 3.4; (d)
our approach, using random initialization of particles
instead of the strategy described in Section 3.5.1; (e) a
previous PSO-based approach by Burelli et al. [6].

For each variant, we have performed a specific param-
eters tuning phase to determine optimal values for the
solver parameters. As described in the previous Section,
the parameters are the number of particles (N ), the frac-
tion of random particles to be used in the initialization
(r part), and the other PSO parameters c1, c2, !

init

, and
!

end

. Hereinafter, we use the term setup to denote some
choice of values for the solver parameters. Parameters
tuning allows us to make fair comparisons between
different solving strategies, since any particular choice of
parameters could result in poor performances for some
strategy. For reasons of space and interest, we report full
results about the parameters tuning phase only for our
approach with all the proposed improvements.

4.1 Experimental setup
The approach described in this paper has been imple-
mented as a C++ library which can interface with vari-
ous rendering engines. The library uses the well-known
Bullet physics engine for ray casting and thus occlusion
assessment. As such, the entire scene is required to be
processed by Bullet to build a so-called collision world.
This can be done during scene loading and updates to

Scene Triangles Objects Scene AABB
city 474083 324 300 x 100 x 300 (vol: 9 x 106)
house 324182 50 120 x 23 x 100 (vol: 276 x 103)
rooms 110474 240 13.9 x 3.0 x 21.8 (vol: 909.06)

TABLE 5
Complexity measures about the tested scenes.

the collision world - when there are changes to the scene
- have a minimal cost. Bullet can use various shapes
for ray-casting: to maximize accuracy at the expense of
performance, we employed the original scene meshes,
instead of simpler bounding volumes. In the experimen-
tal evaluation, our library is interfaced with the Ogre
open-source rendering engine. All the experiments were
run on an Apple MacPro equipped with two 2.8GHz
Xeon processors, and 2 GBytes of RAM; however only a
single core was dedicated to each solver run.

4.1.1 Scenes and VC problems
We have employed three scenes, shown in Figure 1,
respectively modeling a part of a city (city), a large house
with several rooms and its exterior surroundings (house),
and a building floor with 8 rooms, a corridor, and some
humanoid characters (rooms). They differ by size (both in
terms of polygons and scene volume, see Table 5), spatial
layout, (all with several objects and potential occluders)
and are meant to cover exterior and interior settings.

Over these scenes, we defined 15 VC problems to
cover various typical situations, varying in the number
of targets and properties. The simplest problem requires
to frame one target at a specific size and angle, with
no occluded parts (3 properties); more complex ones
involve multiple targets (up to 4) with various desired
sizes, angles, levels of occlusion and with additional
framing or relative positioning requirements (the most
complex problem involving properties on 4 different
targets). For space reasons, problems and scenes are fully
described in the paper supplemental material.

For all problems, we set a satisfaction threshold of 1.0
(i.e., stop only if a perfectly good solution is found).
Out of the 15 problems, 7 were purposely built to be
not satisfiable, i.e. it is not possible to find a viewpoint
yielding full satisfaction, meaning that the search process
will use all available time. Since in real applications
one cannot always be sure that a VC problem will be
satisfiable, it is important to evaluate the behavior of a
VC approach also in these situations.

In every VC problem, the domain of possible view-
points, i.e. the solver’s search space, was set up as
follows: position and look-at point ranges to the AABB
of the scene (reported in table 5), roll angle set to zero
(which constrains the solver to provide shots aligned
with the natural horizon) and fixed field of view. The
last two requirements are typical in interactive 3D ap-
plications, and practically remove 2 out of 8 dimensions
from the search process; the position and look-at point
domains, instead, are purposely set to a worst case, in
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Name Meaning Values
N number of particles in PSO [20, 30, 40, 60, 80, 100, 130, 160, 200, 240, 290, 340, 380]
r part fraction of randomly initialized particles [0.0, 0.33, 0.66, 1.0]
c1 PSO cognitive parameter [0.0, 0.5, 1.0, 1.5, 2.0, 2.5]
c2 PSO social parameter [0.5, 1.0, 1.5, 2.0, 2.5]
!init PSO initial inertia weight [0.5, 1.0, 1.5, 2.0]
!end PSO final inertia weight [0.0, 0.5, 1.0]

TABLE 6
Possible solver parameters values in the experimental evaluation.

use r

part

= 0 (i.e., all particles are initialized in a non-
random fashion), while, for T = 10 and T = 20, it is
also effective to randomly initialize up to one third of
the particles, and up to two thirds for T = 40 and T =

100. For T = 200, there are winning setups that initialize
randomly all the particles, probably trading initial higher
satisfaction for a wider exploration of search space.

The social parameter c2 is greater or equal to 1 for the
winning configurations on most time budgets (except
T = 100). There are no restrictions to the cognitive
parameter c1, which suggests that it has no particular
influence on performances. The inertia weight parame-
ters’ values play an effect for T � 10 milliseconds: the
effective range for !

end

is [0.0, 0.5], while for !
init

values
smaller or equal than 1.0 are preferable.

4.3 Performances Results
Figure 2 presents various box plots that show the dis-
tribution of normalized satisfaction values of the found
viewpoints in the various time budgets, obtained by:
our approach, with parameters tuned (violet color); our
approach, before parameters tuning, i.e. using all pa-
rameter values in Table 6 (green color); our approach,
using a viewpoint representation with Euler angles,
with parameters tuned (cyan color); our approach, us-
ing traditional lazy evaluation, with parameters tuned
(blue color, labeled Non-smart evaluation in the figure);
our approach, using random initialization of particles,
with parameters tuned (yellow color); the PSO-based
approach described in [6] (red color). Our supplementary
material shows similar plots for each problem and scene.
Note that the aim of tuning is to find setups that work
better across all the problems. However, there is no
guarantee (and typically it is not the case) that the
winning configurations will work always better on every
problem, and some variants might work better in some
problem than the one that is better in general.

To compute normalized satisfaction, we divided the
optimal viewpoint satisfaction by the highest one reach-
able in the problem at hand. For satisfiable problems,
this is equal to the sum of the weights of the properties;
for unsatisfiable problems, it was set to the highest
satisfaction we could obtain by solving the problem 1000
times with T = 500 milliseconds. Note also that, for
each problem and configuration, the data below the 5

th

percentile and above the 95

th have been winsorized, in
order to reduce the effect of spurious outliers.

It is important to point out that, since the normalized
satisfaction is in the [0.0, 1.0] range, small differences
in the order of tenths can, for problems with several
properties, result in one property being or not satisfied at
all, with a noticeable visual difference in the final result.
To make an example, figure 3 displays three different
solutions to the same VC problem in the rooms scene,
respectively obtained with T = 10, T = 40 and T = 200.
The problem consists in framing three characters, such as
the farthest one in all screenshots is seen from the front
and with an eye level angle shot, unoccluded for at least
80%, and with height equal to 60% of the frame height;
the other two should be unoccluded, with height equal
to 60% of the frame height, and with an eye level or
slightly high shot angle. Moreover, Occlusion properties
have a double weight than others. The solutions we have
displayed in Figure 3 are close to the median satisfaction
we could obtain in the specific problem (which is unsat-
isfiable; the maximum satisfaction we could reach is 0.90
with T = 500). As we can see, with T = 10, the found
viewpoint (with normalized satisfaction equal to 0.71)
is not able to entirely frame the two closer characters
(with the closest less than half framed). With T = 40, the
found viewpoint (with normalized satisfaction equal to
0.83) better frames the three characters, but the farthest
one is too occluded; With T = 200, the found viewpoint
(with normalized satisfaction equal to 0.92) is finally able
to frame all three characters, with occlusions that are
minimally beyond the requirements.

4.3.1 Parameters tuning effect

How much does our approach gain by choosing a
winning setup, instead of a random one in the full
factorial? The answer is in the difference between the
green (our approach, parameters untuned) and the violet
(our approach, parameters tuned) box plots in Figure 2.
By looking at them, it is clear that parameters tuning in-
creases all the quartiles for every T . Also, the interquan-
tile range, a measure of variance, is always smaller for
winning setups, suggesting a more robust behavior. An
interesting sweet spot is at T = 40 milliseconds, where
the median satisfaction is very close to 1.0 despite the
relatively short time budget. Interesting results, however,
can be obtained also at T = 20, where the median
satisfaction is about 0.98. Note that the green box plot
includes data from the full factorial, i.e. all considered
combinations of parameters, including winning ones,
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Fig. 1. Scenes used in the experimental evaluation: from left to right, city, house, and rooms.

which we don’t give the solver any suggestion on where
the solution viewpoint could be located in the scene.
Finally, we used AABBs to compute targets properties.

Given that PSO is a randomized algorithm, we solved
each problem 20 times to provide a more reliable esti-
mate of the measured statistics. For each run, we logged
the satisfaction of the computed viewpoint, the triggered
PSO stopping condition, and the number of performed
viewpoint evaluations.

4.1.2 Time budgets
To cover a range of 3D applications with different time
constraints, we identified 6 time budgets (hereinafter,
denoted by T ): 5, 10, 20, 40, 100, and 200 milliseconds.
For instance, a time budget of 5-20 ms allows one,
roughly, to compute a new viewpoint for each frame,
while a time budget between 40 and 200 ms could be
suitable when a new viewpoint has to be computed from
every few frames to a few times per second.

4.1.3 Parameters Tuning
The approach we use for finding good solver param-
eter values is a variation of the popular parameters
tuning algorithm F-Race [30], which is based on the
Friedman rank sum test. F-Race starts with the so-
called full-factorial, i.e. the Cartesian product of all the
possible parameters domains and, at each iteration,
tries each setup against a single instance (in our case,
a (problem, repetition) pair). After each iteration, the
setups are ranked from the worst (high rank) to the
best (low rank), and a Friedman post-hoc analysis is
used to prune the setups that are inferior with statis-
tical significance. The process stops when there are no
more instances or one setup is left. Since our set of
instances is not that large, we decided to apply the
Friedman rank sum test directly on the whole set of
experiments (the full-factorial against all instances), to
obtain a more reliable parameter optimization process.
Therefore, for each instance, the setups are ranked from
best to worst satisfaction, then the rankings for each
setup are summed up to derive a measure of how good
the setup is across the set of problems.

To generate the full-factorial, one must first decide
how to sample the parameters space. By looking at PSO-
related literature and by running a preliminary set of

experiments to identify suitable parameters ranges, we
derived the possible values for each parameter shown
in Table 6. These settings yield a full-factorial of 18720

setups, which, considering the 15 VC problems and 20
runs for each, translates to 5148000 runs per time budget,
for a total of about 33 million runs of PSO for each tested
solver variant.

4.2 Parameters Tuning Outcome
For each time budget, the Friedman test found a sig-
nificant effect (↵ = 0.05) of parameters setup on the
computed satisfaction. Table 7 illustrates the main find-
ings of the Friedman post-hoc analysis, per time budget,
reporting (i) the number of winning setups, i.e. with
significantly lower ranking than the others (i.e., higher
satisfaction across the whole set of problems) and with
no statistically significant differences between them; (ii)
the best setup; (iii) parameter values used in the winning
setups; (iv) median number of viewpoint evaluations
performed, divided into full (i.e. when all problem prop-
erties were evaluated) and partial (i.e. when lazyLimit
was hit during viewpoint evaluation). Overall, the win-
ning configurations are about 0.008% of the full-factorial.

While the information reported in Table 7 is, of course,
only guaranteed to be valid for the problems we tested,
the diversity of scenes and problems in our experimental
evaluation should make winning setups quite robust on
other problems and scenes.

The number of particles in the winning setups (third
column of Table 7) is towards low values in the con-
sidered range for T = 5 (up to 30 particles), T = 10

(up to 40 particles), and T = 20, 40 (up to 60 particles).
As T increases, using any number of particles becomes
effective; note, however, that the number of particles of
the single best configuration for longest T s is signifi-
cantly lower than the maximum value of the allowed
range, namely 130 for T = 100 and 200 for T = 200.
Also, it is interesting to observe that, while we expected
low-particles setups to be more successful on the shorter
time budgets (where there is no time to handle a higher
number of particles), winning setups with low number
of particles are present also for longer time budgets.

Winning setups fully exploit our initialization strategy
on shorter time budgets: all winning setups for T = 5
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T (ms) How Best Restriction on parameters values Median evaluations
many (N, r part, c1, c2,!init,!end) full partial

5 102 20, 0, 2, 1.5, 1.5, 0 N  30, rpart = 0, c2 � 1, !end  0.5 60 13
10 167 30, 0, 2.5, 1.5, 0.5, 0 N  40, rpart  0.33, c2 � 1, !end  0.5 108 43
20 117 30, 0, 2, 2, 0.5, 0 N  60, rpart  0.33, c2 � 1, !init  1.5, !end  0.5 176 135
40 144 30, 0, 1.5, 2, 0.5, 0.5 N  60, rpart  0.66, c2 � 1, !init  1, !end  0.5 373 294
100 173 130, 0, 2, 2, 0.5, 0 rpart  0.66, !init  1, !end  0.5 707 625
200 218 200, 0, 1.5, 2.5, 0.5, 0.5 c2 � 1, !init  1, !end  0.5 1204 1206

TABLE 7
Winning (statistically equivalently good) setups found by Friedman post-hoc analysis, per time budget.

Fig. 2. Distribution of normalized satisfaction obtained in all problems for each tested variant.

meaning that an unfortunate choice of parameters (e.g.
choosing 100 particles with T  40) could cause much
worse performances than those shown in the box plot.

The statistical significance of this result is implied by
the nature of the tuning process (the Friedman test).

4.3.2 Initialization Strategy

We isolated the experiments where r

part

= 1 (i.e.,
random initialization of all particles), and performed
parameter tuning to derive the winning setups in this
particular case. The yellow (random initialization, pa-
rameters tuned) and violet (our approach, parameters
tuned) box plots in Figure 2 show the advantage of our
initialization strategy throughout all the time budgets.
This was confirmed by a paired one-sided Wilcoxon’s
signed-rank test, with p  0.05 for all time budgets. Note
that random initialization, in our tests, was not entirely
random, as the look at point was still initialized in the
AABB of the targets: without this, its results would have
been considerably worse.

4.3.3 Evaluation Strategy

Comparing the performances of our approach with the
version of it that uses a standard viewpoint lazy evalua-
tion approach (both after parameter tuning: respectively,
violet and blue box plots), we can see that in all time
budgets, the quartiles for our approach are better. With
more than T = 100, the two variants get closer in terms

of satisfaction, however the first quartile and minimum
for our approach is always better.

We ran a paired one-sided Wilcoxon’s signed-rank
test over the two distributions to assess the statistical
significance of this result, which was confirmed with
p  0.05 for all time budgets.

4.3.4 Viewpoint Representation

The advantage of our 8-values viewpoint representation
over a 7-values one using Euler angles can be seen
by comparing the cyan (Euler variant) and violet plots
(look-at variant) in Figure 2. From the plot it is clear
that the 8-values representation is always slightly better.
The Wilcoxon’s test confirms that the result is statistically
significant with p  0.05 for all time budgets.

4.3.5 Comparison with Burelli et al. [6]

The PSO-based approach described in [6] is an hybrid
constraint/optimization approach which, as discussed
in Sections 2 and 3.5.1, uses geometric operators to
derive a promising subset of search space where particles
are confined. Moreover, the approach by Burelli et al.
uses Euler angles to represent orientation, computes
the screen representation using bounding spheres, and
the same occlusion evaluation mechanism as the one
described in this paper (for a fair comparison, both
approaches used in the tests the same Bullet library
and collision world). We slightly adapted our problems
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test over the two distributions to assess the statistical
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4.3.4 Viewpoint Representation
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constraint/optimization approach which, as discussed
in Sections 2 and 3.5.1, uses geometric operators to
derive a promising subset of search space where particles
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uses Euler angles to represent orientation, computes
the screen representation using bounding spheres, and
the same occlusion evaluation mechanism as the one
described in this paper (for a fair comparison, both
approaches used in the tests the same Bullet library
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Conclusions

• VC cost is comparable to frame rendering; however, 
it can be spread among a few successive frames  

• all techniques presented in this part, and more, are 
implemented in the C# Unity Library available at 
https://github.com/robertoranon/Unity-ViewpointComputation
– quite easy to port to other engines (UE4 port is under way)
– easily implement your own properties, evaluation methods, 
solver
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