: informatiques , mathématiques

Algorithms and techniques for
virtual camera control

Session 4: Viewpoint Computation

M. Christie, Univ. Rennes 1

C. Lino, Univ. Rennes 1
R. Ranon, Univ. Udine

Viewpoint Computation

* given:

— a camera model (e.g., position - orientation - FOV), and a
domain D C R’ of allowed camera parameters

— requirements about the visual composition of targets in the
computed image

* compute a value for each camera parameter to
(best) satisfy the requirements

—

requirements: houses 1 and 2 completely visible, seen from the front; houses
area on screen each about 10%

Approaches to VC

- algebraic: when we can establish an algebraic relation between
requirements and camera parameters

— works only in very limited situations

* In all other cases, we can use:

— constraint-based approaches: express requirements as constraints
over D, find camera parameters c¢ that satisfy constraints, or fail

— optimisation-based approaches: express requirements as a satisfaction
function F:D—[0, 1], find camera parameters ¢ that maximise F

Visual Composition Requirements

« we consider the following types of visual composition requirements:

— size (width, height, area) of targets on screen
— visibility of targets on screen

— angle of targets with camera

e we need to:

— model each type of requirement as a satisfaction function f:D—[0, 1]

— model the satisfaction function of a virtual camera ¢ as some composition of
the requirement satisfaction functions, i.e. F(f1,12,...,frn).D—[0,1]

B¢ —

Modeling requirement functions

« arequirementhas a type (size, visibility,...) and a desired value

— the “type” part computes the value v of a visual feature (size, visibility,
angle) of a target t for a given camera, i.e. ftype(€):D— V where V is the

set of possible values of the visual feature 0" angle of camera with 21t
target front vector

— the “desired value” part computes a satisfaction value from the value of
the visual feature, i.e. fdesired: V[0, 7] and can be e.g. modelled as a

linear spline
f (C) =1, desired (ftype(c))

example fdesired

« optimisation approaches typically need to sample a considerable
number of points in D to find a good solution: therefore, computing
ftype must keep into accountaccuracy vs cost

— compromise might depend on specific application demands

B¢

Measuring Size (area)

 mesh vs bounding volume

— what about objects with holes

* rendering (and counting pixels)

* geometrical methods

— bounding sphere

— bounding box

rendering at 1000x750 rendering at 500x375 |rendering at 80x60 rendering at 40x30 geometric evaluation

261.87 63.47 9.7 8.44 0.005

B¢

Measuring Visibility

* mesh vs bounding volume

— objects with holes

* rendering (and counting

pixels)

* geometrical methods

— ray casting

rendering at 1000x750

rendering at 500x375

rendering at 80x60

rendering at 40x30

geometric evaluation

261.68

63.1

9.61

8.96

0.1

B¢

Angle

* the angle between a target-
specific vector u and the vector
from t to the camera

— typically, u can be the forward
vector of the target (horizontal
angle between camera and
target), or its up vector (vertical
angle between camera and
target)

— other choices are possible, e.qg.,
for a character, u could be the
direction of the head

Computing Satisfaction

 typical solutionis a weighted sum of individual f

F(c) =) wifi(c)
)
— corresponds to logical AND of all requirements

— weights allow one to set requirements importance, but are not
easy to manage

* can use also other logical operators (e.g. OR is max)

Br —

Solving VC

* due to complexity of the objective function and non-continuity (e.g.,
think visibility), black-box optimisation approaches are preferable

« use of random values (stochastic optimisation) to escape local
minima

* population-based approaches have the additional advantage that
poor initialisation can be corrected

» Particle-Swarm Optimisation (PSO) has all these features and,
moreover, it is known for fast convergence

— used by several authors, e.g. [Burelli et al. 2008, Abdullah et al. 2011,
Ranon and Urli 2014]

B¢ —

PSO for VC

— idea: a swarm of cameras wanders through D in search of the optimum
(i.e. the parameters ¢ that maximise F)

— at each step, we move a camera and evaluate F on it

— we always record:
» the best visited position in D for each camera (p)

» the global best visited position pg

— the equations for moving a camera from its position in D x™ to a new
position x" are:

n __ n—1_n—1 n—1 n—1 n—1 n—1
vV, =W \'s + C17T1 (pz- — X,) -+ CoT9 (pg — X,)
n ___ .n—1 n -
X, =X, = +V, 1 =1,2,...,N

w, ¢, and ¢, are PSO-specific parameters; r, and r, are random numbers in [0,1]

550 for VC

initialize n random cameras 1in array CAMERAS
1=0;
while (there is still time left) {
move CAMERASI[i];
evaluate F(CAMERASI[il);
compute new local and global optima;
i = (i+1) mod n;
}
optimum = CAMERASI[g];

B¢ —

DEMO

Improving PSO

* unlucky random initialisation coupled with little
available time (e.g. few milliseconds) and/or large
search space can make PSO fall

 current methods to tackle this issue are:
— ‘“smart’ initialisation
— lazy F evaluation

— PSSO parameters tuning

B¢ —

Smart Initialisation

* size and angle requirements are very common in VC problems

 itis quite easy to initialise a camera such that it roughly satisfies a
size or angle requirement (or both)

e e.g., for size, we can compute a roughly optimal distance to a target
by the formula

target size 1

distance = - — — -
target’s projection size tan(vy/2)

where target size and projection size are easily computed by using a
bounding sphere, assumed centered on the screen

 if a problem has k targets, we can distribute cameras among them,
and initialise each camera around optimal values for the assigned

target
Br —

Lazy F evaluation

* the evaluation of F can be terminated as soon as we know that
we cannot improve on the camera local best value (lazy
evaluation)

— the computed value would have no effect on camera movement

* we can then order the requirements by cost of evaluation
(angle, size, visibility) so that we avoid computing unnecessary
(and costly) requirements

» other strategies are possible, e.g. combine lazy evaluation with
computing first the projection of bounding box of all targets, and
then set the satisfaction of any requirement for the same target,
iIf the projection is off-screen, to zero

B¢ —

PSO parameters tuning

* the values of n (the number of cameras in the
swarm), c1, ¢z, and w can greatly influence the
behaviour of PSO

* given a set of scenes and VC problems, and a set
of possible PSO parameter values, one can run all
possible combinations, and then use statistical
methods to derive optimal PSO parameter values

* In our experience, derived parameters are quite
good for all similar settings

B¢ —

PSO parameters tuning

Scene AABB S problems per scene

Scene Triangles Objects
city 474083 324
house 324182 50

300 x 100 x 300 (vol: 9 x 10°)
120 x 23 x 100 (vol: 276 x 103)

rooms 110474 240 13.9 x 3.0 x 21.8 (vol: 909.06)

Name Meaning Values

N number of particles in PSO [20, 30, 40, 60, 80, 100, 130, 160, 200, 240, 290, 340, 380] 1 1

r_part fraction of randomly initialized particles 0.0,0.33,0.66, 1.0] 1 8720 com bl natlons
c1 PSO cognitive parameter 0.0,0.5,1.0,1.5,2.0,2.5]

c2 PSO social parameter

Winit PSO initial inertia weight
Wend PSO final inertia weight

0.5,1.0,1.5,2.0]

[
[
[0.5,1.0,1.5,2.0, 2.5]
[
[0.0,0.5,1.0]

B¢

20 runs per scene, problem, combination = 5148000 runs

considering 6 time budgets for PSO: 5, 10, 20, 40, 100, 200 milliseconds

PSO parameters tuning

T (ms) How Best Restriction on parameters values Median evaluations
many (N, r_part, c1,ca, Winit, Wend) full partial
5 102 20,0,2,15,15,0 N <30, rpart =0, c2 > 1, weng < 0.5 60 13
10 167 30,0,25,15,05,0 N <40, rpart <0.33, c2 > 1, weng < 0.5 108 43
20 117 30,0,2,2,05,0 N <60, rpart < 0.33, c2 > 1, winit < 1.5, Weng < 0.5 176 135
40 144 30,0, 1.5, 2,05, 05 N <60, rpart < 0.66, c2 > 1, winit < 1, weng < 0.5 373 294
100 173 130, 0,2,2,0.5,0 Tpart < 0.66, Winit <1, Weng < 0.5 707 625
200 218 200, 0, 1.5, 2.5, 0.5, 0.5 c2 > 1, winit <1, Weng < 0.5 1204 1206
0.005 0.01 0.02 0.04 0.1 0.2
1.0- 1 [] [] - I | L [] [|
| - e e T
| 57T \ i
e | T I | |
L
50.7 -
®
@
505+
©
N04-
@
£03- ‘
S
“02-
0.1-
0.0 - == —

Variant
Variant EI Burelli et al. 2008, tuned EI Random init, tuned El All improvements, untuned E Euler, tuned E Non-smart evaluation, tuned EI All improvements, tuned

-
Q

Conclusions

* VC cost is comparable to frame rendering; however,
it can be spread among a few successive frames

 all techniques presented in this part, and more, are
implemented in the C# Unity Library available at

https://github.com/robertoranon/Unity-ViewpointComputation
— quite easy to port to other engines (UE4 port is under way)

— easily implement your own properties, evaluation methods,
solver

B¢ —

References

[Blinn, 1988] BLINN J.: Where am |I? what am I looking at? IEEE Computer Graphics and Applications (July 1988), 76—81. 11, 20,
21

[Olivier et al. 1999] P. Olivier, N. Halper, J. H. Pickering, and P. Luna, “Visual Com- position as Optimisation,” in Artificial
Intelligence and Simulation of Behaviour, 1999, pp. 22—-30

[Bares et al. 2000] W. H. Bares, S. McDermott, C. Boudreaux, and S. Thainimit, “Virtual 3D camera composition from frame
constraints,” in Proceedings of the eighth ACM international conference on Multimedia. ACM Press, 2000, pp. 177-186

[Christie and Normand 2005] M. Christie and J.-M. Normand, “A semantic space partitioning approach to virtual camera
composition,” Computer Graphics Fo- rum, vol. 24, no. 3, pp. 247-256, 2005

[Burelli et al 2008] P. Burelli, L. Di Gaspero, A. Ermetici, and R. Ranon, “Virtual Camera Composition with Particle Swarm
Optimization,” in SG '08: Proceedings of the 8th International Symposium on Smart Graphics, vol. Lecture No, no. 5166. Springer-
Verlag, 2008, pp. 130-141.

[Ranon and Urli 2014] Ranon R., Urli T., Improving the Efficiency of Viewpoint Composition, IEEE Transactions on Visualization and
Computer Graphics, 20(5), May 2014, pp. 795-807.

[Abdullah et al 2011] Rafid Abdullah, Marc Christie, Guy Schofield, Christophe Lino, Patrick Olivier. Advanced Composition in
Virtual Camera Control. Smart Graphics, Aug 2011, Bremen, Germany. 6815, pp.13-24,2011, Lecture Notes in Computer Science.

[Bares 2006] W. H. Bares, “A Photographic Composition Assistant for Intelli- gent Virtual 3D Camera Systems,” in SG '06:
Proceedings of the 6th International Symposium on Smart Graphics, ser. Lecture Notes in Computer Science, vol. 4073. Springer-
Verlag, 2006, pp. 172-183

[Schmalstieg and Tobler, 1999] D. Schmalstieg and R. F. Tobler, “Real-time bounding box area computation,” Tech. Rep. TR-186-
2-99-05, Jan. 1999.

[Lino, 2015] Christophe Lino. Toward More Effective Viewpoint Computation Tools. Eurographics Workshop on Intelligent
Cinematography and Editing, May 2015

