

Algorithms and techniques for virtual camera control

Session 4: Viewpoint Computation

M. Christie, Univ. Rennes 1
C. Lino, Univ. Rennes 1
R. Ranon, Univ. Udine

Viewpoint Computation

- given:
- a camera model (e.g., position - orientation - FOV), and a domain $D \subset \mathbb{R}^{7}$ of allowed camera parameters
- requirements about the visual composition of targets in the computed image
- compute a value for each camera parameter to (best) satisfy the requirements

Example

requirements: houses 1 and 2 completely visible, seen from the front; houses area on screen each about 10%

Approaches to VC

- algebraic: when we can establish an algebraic relation between requirements and camera parameters
- works only in very limited situations
- in all other cases, we can use:
- constraint-based approaches: express requirements as constraints over D, find camera parameters \boldsymbol{c} that satisfy constraints, or fail
- optimisation-based approaches: express requirements as a satisfaction function $F: D \rightarrow[0,1]$, find camera parameters c that maximise F

Visual Composition Requirements

- we consider the following types of visual composition requirements:
- size (width, height, area) of targets on screen
- visibility of targets on screen
- angle of targets with camera
- we need to:
- model each type of requirement as a satisfaction function $f: D \rightarrow[0,1]$
- model the satisfaction function of a virtual camera \boldsymbol{c} as some composition of the requirement satisfaction functions, i.e. $F\left(f_{1}, f_{2}, \ldots, f_{n}\right): D \rightarrow[0,1]$

Modeling requirement functions

- a requirement has a type (size, visibility,...) and a desired value
- the "type" part computes the value v of a visual feature (size, visibility, angle) of a target t for a given camera, i.e. ftype $(\boldsymbol{c}): D \rightarrow V$ where V is the set of possible values of the visual feature
- the "desired value" part computes a satisfaction value from the value of the visual feature, i.e. fdesired: $V \rightarrow[0,1]$ and can be e.g. modelled as a

example $f_{d e s i r e d ~}$ linear spline

$$
f(\mathbf{c})=f_{\text {desired }}\left(f_{\text {type }}(\mathbf{c})\right)
$$

- optimisation approaches typically need to sample a considerable number of points in D to find a good solution: therefore, computing ftype must keep into account accuracy vs cost
- compromise might depend on specific application demands

Measuring Size (area)

- mesh vs bounding volume
- what about objects with holes
- rendering (and counting pixels)
- geometrical methods
- bounding sphere
- bounding box

rendering at 1000×750	rendering at 500×375	rendering at 80×60	rendering at 40×30	geometric evaluation
261.87	63.47	9.7	8.44	0.005

Measuring Visibility

- mesh vs bounding volume
- objects with holes
- rendering (and counting pixels)
- geometrical methods
- ray casting

rendering at $\mathbf{1 0 0 0 \times 7 5 0}$	rendering at 500×375	rendering at 80×60	rendering at 40×30	geometric evaluation
261.68	63.1	9.61	8.96	0.1

Angle

- the angle between a targetspecific vector \boldsymbol{u} and the vector from t to the camera
- typically, \boldsymbol{u} can be the forward vector of the target (horizontal angle between camera and target), or its up vector (vertical angle between camera and target)
- other choices are possible, e.g., for a character, u could be the direction of the head

Computing Satisfaction

- typical solution is a weighted sum of individual f

$$
F(c)=\sum_{i} w_{i} f_{i}(c)
$$

- corresponds to logical AND of all requirements
- weights allow one to set requirements importance, but are not easy to manage
- can use also other logical operators (e.g. OR is max)

Solving VC

- due to complexity of the objective function and non-continuity (e.g., think visibility), black-box optimisation approaches are preferable
- use of random values (stochastic optimisation) to escape local minima
- population-based approaches have the additional advantage that poor initialisation can be corrected
- Particle-Swarm Optimisation (PSO) has all these features and, moreover, it is known for fast convergence
- used by several authors, e.g. [Burelli et al. 2008, Abdullah et al. 2011, Ranon and Urli 2014]

PSO for VC

- idea: a swarm of cameras wanders through D in search of the optimum (i.e. the parameters \boldsymbol{c} that maximise F)
- at each step, we move a camera and evaluate F on it
- we always record:
- the best visited position in D for each camera (p)
- the global best visited position p_{g}
- the equations for moving a camera from its position in $D x^{n-1}$ to a new position x^{n} are:

$$
\begin{array}{rl}
\mathbf{v}_{i}^{n}=w^{n-1} \mathbf{v}_{i}^{n-1}+c_{1} r_{1}\left(\mathbf{p}_{i}^{n-1}-\mathbf{x}_{i}^{n-1}\right)+c_{2} r_{2}\left(\mathbf{p}_{g}^{n-1}-\mathbf{x}_{i}^{n-1}\right) \\
\mathbf{x}_{i}^{n}=\mathbf{x}_{i}^{n-1}+\mathbf{v}_{i}^{n} & i=1,2, \ldots, N
\end{array}
$$

w, c_{1} and c_{2} are PSO-specific parameters; r_{1} and r_{2} are random numbers in $[0,1]$

PSO for VC

```
initialize n random cameras in array CAMERAS
i=0;
while (there is still time left) {
    move CAMERAS[i];
    evaluate F(CAMERAS[i]);
    compute new local and global optima;
    i = (i+1) mod n;
}
optimum = CAMERAS[g];
```


DEMO

Improving PSO

- unlucky random initialisation coupled with little available time (e.g. few milliseconds) and/or large search space can make PSO fail
- current methods to tackle this issue are:
- "smart" initialisation
- lazy F evaluation
- PSO parameters tuning

Smart Initialisation

- size and angle requirements are very common in VC problems
- it is quite easy to initialise a camera such that it roughly satisfies a size or angle requirement (or both)
- e.g., for size, we can compute a roughly optimal distance to a target by the formula

$$
\text { distance }=\frac{\text { target size }}{\text { target's projection size }} \cdot \frac{1}{\tan (\gamma / 2)}
$$

where target size and projection size are easily computed by using a bounding sphere, assumed centered on the screen

- if a problem has k targets, we can distribute cameras among them, and initialise each camera around optimal values for the assigned target

Lazy F evaluation

- the evaluation of F can be terminated as soon as we know that we cannot improve on the camera local best value (lazy evaluation)
- the computed value would have no effect on camera movement
- we can then order the requirements by cost of evaluation (angle, size, visibility) so that we avoid computing unnecessary (and costly) requirements
- other strategies are possible, e.g. combine lazy evaluation with computing first the projection of bounding box of all targets, and then set the satisfaction of any requirement for the same target, if the projection is off-screen, to zero

PSO parameters tuning

- the values of n (the number of cameras in the swarm), c_{1}, c_{2}, and w can greatly influence the behaviour of PSO
- given a set of scenes and VC problems, and a set of possible PSO parameter values, one can run all possible combinations, and then use statistical methods to derive optimal PSO parameter values
- in our experience, derived parameters are quite good for all similar settings

PSO parameters tuning

Scene	Triangles	Objects	Scene AABB
city	474083	324	$300 \times 100 \times 300$ (vol: 9×10^{6})
house	324182	50	$120 \times 23 \times 100$ (vol: 276×10^{3})
rooms	110474	240	$13.9 \times 3.0 \times 21.8$ (vol: 909.06)

5 problems per scene

Name	Meaning	Values
N	number of particles in PSO	$[20,30,40,60,80,100,130,160,200,240,290,340,380]$
$r_{\text {_part }}$	fraction of randomly initialized particles	$[0.0,0.33,0.66,1.0]$
c_{1}	PSO cognitive parameter	$[0.0,0.5,1.0,1.5,2.0,2.5]$
c_{2}	PSO social parameter	$[0.5,1.0,1.5,2.0,2.5]$
$\omega_{\text {init }}$	PSO initial inertia weight	$[0.5,1.0,1.5,2.0]$
$\omega_{\text {end }}$	PSO final inertia weight	$[0.0,0.5,1.0]$

18720 combinations

20 runs per scene, problem, combination $=5^{\prime} 148^{\prime} 000$ runs considering 6 time budgets for PSO: 5, 10, 20, 40, 100, 200 milliseconds

PSO parameters tuning

T (ms)	How many	Best $\left(N, r_{\text {_ part }, ~}, c_{1}, c_{2}, \omega_{\text {init }}, \omega_{\text {end }}\right)$	Restriction on parameters values	Median evaluations full
5	102	$20,0,2,1.5,1.5,0$	$N \leq 30, r_{\text {part }}=0, c_{2} \geq 1, \omega_{\text {end }} \leq 0.5$	60
10	167	$30,0,2.5,1.5,0.5,0$	$N \leq 40, r_{\text {part }} \leq 0.33, c_{2} \geq 1, \omega_{\text {end }} \leq 0.5$	13
20	117	$30,0,2,2,0.5,0$	$N \leq 60, r_{\text {part }} \leq 0.33, c_{2} \geq 1, \omega_{\text {init }} \leq 1.5, \omega_{\text {end }} \leq 0.5$	176
40	144	$30,0,1.5,2,0.5,0.5$	$N \leq 60, r_{\text {part }} \leq 0.66, c_{2} \geq 1, \omega_{\text {init }} \leq 1, \omega_{\text {end }} \leq 0.5$	373
100	173	$130,0,2,2,0.5,0$	$r_{\text {part }} \leq 0.66, \omega_{\text {init }} \leq 1, \omega_{\text {end }} \leq 0.5$	707
200	218	$200,0,1.5,2.5,0.5,0.5$	$c_{2} \geq 1, \omega_{\text {init }} \leq 1, \omega_{\text {end }} \leq 0.5$	135

Conclusions

- VC cost is comparable to frame rendering; however, it can be spread among a few successive frames
- all techniques presented in this part, and more, are implemented in the C\# Unity Library available at https://github.com/robertoranon/Unity-ViewpointComputation
- quite easy to port to other engines (UE4 port is under way)
- easily implement your own properties, evaluation methods, solver

References

- [Blinn, 1988] BLINN J.: Where am I? what am I looking at? IEEE Computer Graphics and Applications (July 1988), 76-81. 11, 20, 21
- [Olivier et al. 1999] P. Olivier, N. Halper, J. H. Pickering, and P. Luna, "Visual Com- position as Optimisation," in Artificial Intelligence and Simulation of Behaviour, 1999, pp. 22-30
- [Bares et al. 2000] W. H. Bares, S. McDermott, C. Boudreaux, and S. Thainimit, "Virtual 3D camera composition from frame constraints," in Proceedings of the eighth ACM international conference on Multimedia. ACM Press, 2000, pp. 177-186
- [Christie and Normand 2005] M. Christie and J.-M. Normand, "A semantic space partitioning approach to virtual camera composition," Computer Graphics Fo- rum, vol. 24, no. 3, pp. 247-256, 2005
- [Burelli et al 2008] P. Burelli, L. Di Gaspero, A. Ermetici, and R. Ranon, "Virtual Camera Composition with Particle Swarm Optimization," in SG '08: Proceedings of the 8th International Symposium on Smart Graphics, vol. Lecture No, no. 5166. SpringerVerlag, 2008, pp. 130-141.
- [Ranon and Urli 2014] Ranon R., Urli T., Improving the Efficiency of Viewpoint Composition, IEEE Transactions on Visualization and Computer Graphics, 20(5), May 2014, pp. 795-807.
- [Abdullah et al 2011] Rafid Abdullah, Marc Christie, Guy Schofield, Christophe Lino, Patrick Olivier. Advanced Composition in Virtual Camera Control. Smart Graphics, Aug 2011, Bremen, Germany. 6815, pp.13-24, 2011, Lecture Notes in Computer Science.
- [Bares 2006] W. H. Bares, "A Photographic Composition Assistant for Intelli- gent Virtual 3D Camera Systems," in SG '06: Proceedings of the 6th International Symposium on Smart Graphics, ser. Lecture Notes in Computer Science, vol. 4073. SpringerVerlag, 2006, pp. 172-183
- [Schmalstieg and Tobler, 1999] D. Schmalstieg and R. F. Tobler, "Real-time bounding box area computation," Tech. Rep. TR-186-2-99-05, Jan. 1999.
- [Lino, 2015] Christophe Lino. Toward More Effective Viewpoint Computation Tools. Eurographics Workshop on Intelligent Cinematography and Editing, May 2015

