

Algorithms and techniques for virtual camera control

Session 3: Interactive Camera Control

M. Christie, Univ. Rennes 1 C. Lino, Univ. Rennes 1 R. Ranon, Univ. Udine

When a camera becomes interactive...

...we need to understand:

- the nature of the mapping between the user inputs and the camera parameters (internal constraints)
- the effect of other constraints on the camera parameters (i.e. external constraints such as visibility or surface of objects)

Interactive camera control

4 properties broadly characterize the space of interactive camera control techniques:

- degrees of freedom of the input device
 - low degree of freedom input devices (e.g. virtual arcball [Sho92], [CMS88])
 - 6 degree of freedom input devices (direct metaphors)
- directness of the mappings
 - control camera parameters, velocity, acceleration,...
- nature of the constraint on motion:
 - physical metaphors
 - geometrical
 - task
- world space vs. screen space based control

Enforcing usability

How? by reducing the dimensionality of the problem

- Fixing camera parameters (e.g. roll parameter)
- Automatically computing camera parameters
 Lookat of the camera fixed to a target
 - Adding physical constraints to the camera
- Constraining camera parameters to a sub-space of possible motions
- Exploiting alternative camera models

Constraints in proximal navigation

Khan et al [KKS*05] developed a "hovercam" metaphor for individual **object inspection**:

•apply user input to the eye point E0 (current camera position) and look-at point L0, to create E1 and L1;

•search for the closest point C on the object from the new eye position EI;

•turn the camera to look at C, and

•correct the distance $\delta\,I$ to the object to match the original distance to the object δ to generate the final eye position E2

•clip the distance travelled

Constraints: Shellcam [Bbk14]

- Boubakeur extended the approach using a smooth motion subspace on arbritrary objects
- A scale-dependent offset shell is computed around the geometry
 - it provides tangent directions for pan/tilt camera motions
 - the zoom changes the offset shell
- The shell is a low frequency offset of the geometry

Environment-based control

- methods to assist navigation/exploration are mostly based on motion planning techniques from the field of robotics:
 - e.g., potential fields and vector fields
- methods require significant pre-computations

example: application to virtual colonoscopy [HMK97]

Towards indirect interaction

- multiple approaches implement more elaborate interactions with the camera (*i.e.* from parameters manipulation to properties manipulation)
 - through-the-lens techniques: interaction is performed on the content of the screen (for specifying camera motions, or screen composition)
 - reactive techniques:
 - control is operated over targets which indirectly control the camera motions

φ

LΨ

[LC08]

(typically following avatars [LC08,HHS01])

"Through the lens" control

- indicate desired positions of objects on the screen: Through-the-lens camera control (Gleicher & Witkin [GW92])
- difference between the actual screen locations and the desired locations indicated by the user is treated as a velocity
- relationship between
 - the velocity (\dot{h}) of m displaced points on the screen
 - and the velocity $(\dot{\boldsymbol{q}})$ of camera parameters

 $\dot{\mathbf{h}} = J\dot{\mathbf{q}}$

• **expressed with the Jacobian** *J* that represents the perspective transformation:

"Through the lens" control

"Through the lens" control

- The Jacobian is generally non-square (m x n)
 - m: dofs of the camera
 - n: parameters of the visual features in 2D
- Invert of the Jacobian?
 - compute its pseudo inverse with a Singular Value Decomposition (SVD)
 O(mn²) complexity
 - or use some optimization process (e.g. [GW92])
- Visibility needs to be handled separately...
 - by excluding some areas from the camera *dofs*

Though the lens control with The Toric Space

- Introducing a novel 3DOF representation of a camera [LC15]
 - dedicated to viewpoint manipulation of two targets
- Three parameters to control the position:
 - α : angle between targets A and B
 - θ : horizontal angle
 - φ : vertical angle
 - the framing of the two targets is implicitly defined in the model

(Unity and C++ code available: ToricCam)

Composition : intuition (2D environment)

Any configuration $c(\theta)$ satisfies the 1D composition

Composition: 3D environment

Any configuration $c(\theta, \phi)$ satisfies the 2D composition

Extension : 3D Toric space

- More evolved problems:
- \Rightarrow relax the positioning constraint
- Generalized model of camera:
 - 3-parametric space (α, θ, ϕ)
- Defines the range of all possible manifolds around two targets

(Algebraically) casts 7D camera problems to 3D

Video : <u>https://www.youtube.com/watch?v=N-hEPkvGSf4</u>

Manipulations in the Toric Space

Principle:

- Manipulation of one target:
 - while the other is constrained in the screen-space
 - and roll is constrained to 0 (or a fixed value)
- Interactions:
 - change on-screen positions, distances, and vantage angles
 - example for on-screen positions:
 - we search for a position on the manifold surface where roll is null and minimizes the change in on-screen position

$$\min_{(\theta,\varphi)} \left(p_A - p'_A \right)^2 + \left(p_B - p'_B \right)^2$$

Control-drag up/down or left/right changes the view angle of the selected subject

The positions of subjects are not maintained but the on-screen error is minimized

Demonstration

Video : https://www.youtube.com/watch?v=3kFAlaihlX8

Bibliography

- [XH98] D. Xiao and R. Hubbold, *Navigation Guided by Artificial Force Fields*, Proceedings of ACM CHI 98, 1998
- [YCL08] Y. Tao, M. Christie, and X. Li, Through-the-lens Scene Design, Proc. of 8th International Conference on Smartgraphics, 2008
- [MC02] E. Marchand and N. Courty, *Controlling a camera in a virtual environment*. The Visual Computer Journal, 18(1):1-19, February 2002
- [Sho92] Shoemake K.: Arcball: a user interface for specifying three-dimensional orientation using a mouse. In Proc. of Graphics Interface, 1992.
- [KKS 05] Khan A., Komalo B., Stam J., Fitzmaurice G., Kurtenback G.: *Hovercam: interactive 3d navigation for proximal object inspection.* In Proc. of the 2005 symposium on Interactive 3D graphics, 2005.
- [BKF* 02] Burtnyk N., Khan A., Fitzmaurice G., Balakrishnan R., Kurtenbach G.: Stylecam: interactive stylized 3d navigation using integrated spatial & temporal controls. In Proc. of the ACM symposium on User interface software and technology, 2002.
- [HW97] Hanson A., Wernert E.: Constrained 3d navigation with 2d controllers. In Proc. of the IEEE Visualization Conference, 1997.
- [HMK* 97] Hong L., Muraki S., Kaufman A., Bartz D., He T.: *Virtual voyage: interactive navigation in the human colon*. In Proceedings of the Siggraph Conference, 1997.
- [Bbk15] Boubekeur, T. ShellCam: Interactive Geometry-Aware Virtual Camera Control IEEE International Conference on Image Processing 2014
- [LC15] Lino C. and Christie, M. "Intuitive and Efficient Camera Control with the Toric Space" Proceedings of SIGGRAPH 2015.

