Algorithms and techniques for virtual camera control

Session 5: Camera path planning

M. Christie, Univ. Rennes 1
C. Lino, Univ. Rennes 1
R. Ranon, Univ. Udine
Creating camera motion

The Witcher 3 – 2015 (CD Projekt RED)
Creating (realistic) camera paths

...is a specific challenge

- it displays the issues the **current path planning techniques** have (how to decompose the environment, how to plan paths)
- and the **issues related to camera control**:
 - ensuring visual on-screen properties along the path (visibility, framing, angle, ...)
 - enforcing smoothness of camera motions/orientations
 - respecting classical features of camera motions
Cell-and-portal decomposition

- performs partitions of the environment into sub-regions (the **cells**), and connections between sub-regions (the **portals**)

- an adjacency graph is built by connecting cells
- camera exploration/navigation tasks can then be casted as a planning process in the adjacency graph [AVF04]
Cell-and-portal decomposition

- provides a *structure* to the environment to better perform navigation/walkthrough tasks (the decomposition can be authored)
- Andujar et al. [AVF04] employ this structure to:
 - identify the individual interest of each cell (with an entropy-based metric)
 - compute the sequence of most relevant cells to visit
 - compute a path connecting the cells, portals and relevant viewpoints in the cells
Voxel-based decomposition

- a regular partitioning of the free space (voxels) can be used to generate guided tours [ETT07]:
 - visibility of (authored) landmarks is computed for each of the voxels in a pre-process
 - all voxels that view at least one landmark are connected together to form an adjacency graph
 - a solving process (Travel Salesman-like) computes the suite of voxels to visit in the graph to ensure that each landmark has been viewed at least once
 - in interactive mode, a memory of the visited landmarks is maintained to guide/constrain the users navigation, through a spring-based physical system
Roadmap constraints

- roadmap planners operate in two phases:
 - first sampling the space of possible configurations
 - second constructing a connectivity graph by linking neighbour samples (and checking for collision on the links)

- simple to construct and navigate inside the graph
- complex to determine the appropriate density of sampling (but PRM complexity is a factor of the scene complexity)
Roadmaps in camera planning

• [NO03] rely on probabilistic roadmap techniques for camera planning:
 • roadmap is consisting of collision-free camera motions (the camera is abstracted as a sphere, the motion as a cylinder)
 • planning is performed with an advanced Dijkstra process (avoids sharps turns)
 • path is smoothed and camera orientation anticipates camera motion
A local/dynamic roadmap

- Using a locally defined probabilistic roadmap [LC08]
 - a probabilistic roadmap is created around the target and moves with the target (camera positions are expressed in polar coordinates)
 - the path planning is performed in the roadmap to move the camera
 - collision/occluded nodes are removed from the graph using a lazy evaluations strategy
 - new nodes are inserted using a density parameter
 - cuts can be performed between regions (by connecting distant edges)
Toric Space interpolations

• Interpolating in the space of visual features
 • introduced by [LC15]
• given two viewpoints v1 and v2:
 • extract visual features (angle between targets, distance to targets, vantage angle of targets) for viewpoint v1 and v2
 • perform a linear interpolation of the visual features of the first framing between v1 and v2
 • perform a linear interpolation of the visual features of the last framing between v1 and v2
 • and then blend between the two trajectories
Camera-on-rails

- Back to the roots of cinematography
- Given two camera configurations:
 - Extract and smooth target trajectory
 - Compute a raw trajectory by linearly interpolating parameters of the manifold space
 - Approximate the trajectory with a virtual rail using bezier curve fitting
 - Compute the optimal positions on the rail
 - Optimize the position and orientation on the rail regarding velocity and acceleration constraints
Camera-on-rails

Tracking one character
Extract and re-target camera motions

- [SDM14] propose to extract camera targets from movies
 - eg using SIFT-based feature tracking (Voodoo software)

- Trajectories are then retargeted to the virtual environment (using the ToricSpace)

- All trajectories are then expressed in a motion graph around the targets (similar to [LC08])
 - the graph enables continuous or cut transitions between pieces of trajectories
 - characteristic noise and nature of motions in maintained
Visibility: A Fundamental Challenge

- many applications require the visibility of target objects (games, sci. visualization,...)
- importance of visibility (triggers interaction, depth cue, scene understanding, spatial relations...)
- visibility is application-dependent
 - a matter of perception (e.g. object recognition)
- visibility has multiple interpretations
 - spatial visibility (considering sparse occluders)
 - temporal visibility (with fast moving occluders)
And Complex Challenge

- two problems:
 - how visible is the target?
 - where should I move the camera to?
- cost of evaluating visibility/predicting motion
 - complexity of the target/complexity of the scene
 - maintenance of visibility data structures
- maintaining visual stability with \textit{sparse or fast-moving} occluders
- integration of visibility computation in the whole camera control process
 - how to balance its influence with other descriptors
Handling Visibility

Two classes of techniques for camera control:

• **local visibility computation:**
 • principle: *sample* or *reason* in a local area
 • with ray-casting techniques
 • with bounding volume intersection
 • with hardware rendering techniques

• **global visibility computation:**
 • pre-computation from the static geometry (offline)
 • cell-and-portal visibility structure
 • hierarchical cells, ...
 • Followed by an online estimation of visibility
A global/dynamic roadmap

- Oskam et al [OSTG10] propose a visibility aware roadmap technique:
 - uniform sphere-sampling of the free space in the environment
 - pre-computing sphere-to-sphere visibility (stochastic ray casting)
 - connecting overlapping spheres to build a roadmap
 - planning a rough path from source to target that ensure visibility of a target (focus point)
 - refining the path using rendering-based technique
A global/dynamic roadmap
Discussion over local visibility techniques

- **simple** to implement and **efficient**
- CPU/GPU-adaptive (ray-casting or frame rendering)
- adapted to **dynamic** environments

But: lacks global visibility
- leads to issues in local minima areas
- inappropriate for performing cuts between shots
Global visibility techniques

- provides a collection of techniques and structures to represent the visibility in an environment:
 - grounded on the notion of visual events
 - a visual event separates the space into visible and non-visible areas
 - two classes of problems are considered in the literature
 - from-point visibility computation
 - from-region visibility computation
Discussion

Handling visibility remains a complex topic:

• cost for precise/complete evaluation of visibility of complex/multiple targets
• strong link with planning techniques
• necessity of coupling of local and global visibility techniques
• importance of anticipating actions/motions
• importance of studying the nature of the targets and occluders
Bibliography