
Efficient Bisimilarities from Second-order
Reaction Semantics for π-calculus?

Pietro Di Gianantonio1 Svetlana Jakšić2 Marina Lenisa1

1 Dipartimento di Matematica e Informatica, Università di Udine, Italy.
{digianantonio,lenisa}@dimi.uniud.it

2 Faculty of Engineering, University of Novi Sad, Serbia. sjaksic@uns.ac.rs

Abstract. We investigate Leifer and Milner RPO approach for deriv-
ing efficient (finitely branching) LTS’s and bisimilarities for π-calculus.
To this aim, we work in a category of second-order term contexts and
we apply a general pruning technique, which allows to simplify the set
of transitions in the LTS obtained from the original RPO approach.
The resulting LTS and bisimilarity provide an alternative presentation
of symbolic LTS and Sangiorgi’s open bisimilarity.

Introduction

Recently, much attention has been devoted to deriving labelled transition systems
and bisimilarity congruences from reactive systems, in the context of process lan-
guages and graph rewriting. Through the notion of contextual equivalence, re-
active systems naturally induce behavioural equivalences which are congruences
w.r.t. contexts, while LTS’s naturally induce bisimilarity equivalences with coin-
ductive characterizations. However, such equivalences are not congruences in
general, and it can be a difficult task to derive LTS’s inducing bisimilarities
which are congruences.

Leifer and Milner [1] presented a general categorical method, based on the
notion of Relative Pushout (RPO), for deriving a transition system from a re-
active system, in such a way that the induced bisimilarity is a congruence. The
labels in Leifer-Milner’s transition system are those contexts which are minimal
for a given reaction to fire. In the literature, some case studies have been carried
out in the setting of process calculi, for testing the expressivity of Leifer-Milner’s
approach [2,3,4,5,6,7,8]. Moreover, to deal with structural rules, an elaboration
of the RPO theory in the G-category setting (GRPO) has been introduced by
Sassone and Sobocinski in [2].

In general, in applying the RPO construction one needs to deal with the
following problems:
– To encode all the characteristics of the language, mainly: structural rules, name
abstraction, name hiding.

? Work partially supported by PRIN Project SISTER 20088HXMYN and FIRB
Project RBIN04M8S8, both funded by MIUR.

– To obtain a label transition system which is usable, where proofs of bisimi-
larities require to consider only a finite set of transitions at each step. Almost
always, the RPO approach generates LTS’s that are quite large and often redun-
dant, in the sense that most of the transitions can be eliminated from the LTS
without affecting the induced bisimilarity.
– When the RPO construction is performed, by embedding the category of terms
in a larger category, the resulting LTS can contain states that do not correspond
to any term of the language, and whose intuitive meaning is quite difficult to
grasp.

In order to solve the above problems, the RPO construction needs to be
tuned-up, that is we have to find a convenient category in which to perform the
construction, and general methods for pruning the LTS.

In a previous work [7], we solve the above problems for the prototypical ex-
ample of CCS. In [7], we use a category of term contexts, i.e. a Lawvere category.
We encode names, and name binding using de Bruijn indexes; this allows a rela-
tively simple and formally correct treatment of names, which, when represented
natively, can be quite subtle to treat. Moreover, in [7] we introduce a general
technique, which allows to prune an LTS obtained from a RPO-construction,
without modifying the induced bisimilarity. This is achieved by eliminating de-
finable sets of transitions, i.e transitions whose effect can be obtained by other
transitions. In [7], by using the above ideas in applying the (G)RPO construction
to CCS, we obtain the standard LTS from the standard reaction semantics. This
is an indication that the (G)RPO technique in combination with our general
pruning technique can generate useful LTS’s.

In the present work, we treat in detail the π-calculus. The techniques devel-
oped for CCS turn out to be useful also for the π-calculus, but for the latter,
in order to get an efficient LTS, a further ingredient is necessary, i.e. second-
order contexts. Categories of second-order term contexts have been introduced
in [9] as generalizations of the Lawvere category of terms, where parametric rules
can be readily represented. Intuitively, if we apply Leifer-Milner technique to π-
calculus by working in a standard Lawvere category of term contexts, in the
resulting LTS, for any process P exposing an output prefix, we need to consider

transitions P
[]|a(x).Q−→ P ′, for all Q. All these label contexts are “minimal” for

the reduction to fire; we cannot avoid Q, since, in the resulting process P ′, a
substitution is applied to Q. This makes the LTS inefficient. To overcome this
problem, we use second-order contexts. In this way, all the above transitions can

be parametrically captured by a single transition P
[]|a(x).X−→ P ′′, where X is a

variable representing a generic term, which will be possibly instantiated in the
future.

The final result of our construction produces a bisimilarity which is a mild
variation of Sangiorgi’s open bisimilarity. In order to get the final efficient char-
acterization of our bisimilarity, we need a further ad-hoc pruning. However, even
if the GRPO construction does not directly give the final result, once applied, it
produces an LTS which is a superset of the final usable one. Identifying redun-

2

dant transitions is then not so difficult; the only difficult part is to prove that
these are redundant.

Interestingly enough, our analysis provides new insights on the theory of
π-calculus, namely we obtain an alternative presentation of symbolic LTS and
open bisimilarity, where distinctions do not appear.

Remarkably, the Leifer-Milner technique has lead us to a bisimilarity con-
gruence substantially in a direct way, just using general tools, without the need
of new concepts. Whereas, in the standard treatment, in moving from CCS to
π-calculus, various new notions are required, such as bound output transitions,
distinctions, etc. In conclusion, the results for CCS of [7] and the above results
for π-calculus are rather satisfactory, and they are an indication that the general
techniques used in this paper could also give new insights on more recent calculi,
whose theory is still evolving.
Related Work. The RPO construction has been applied to π-calculus in [3,10].
In [3], History Dependent Automata are used to present a reactive system for the
fragment of π-calculus without the ν-operator. The reactive system is obtained
by starting from an LTS and then incorporating the labels in the initial state of
the transition. The reactive system considered in [10] is based on the theory of
bigraphs and models the asynchronous π-calculus.

The present work is also related to [11]. Both works use categories that
are suitable generalizations of the Lawvere category of contexts. However, in
our work we strictly apply the RPO construction to derive an LTS for the π-
calculus, while [11] uses the RPO construction as a sort of inspiration for defining
directly an LTS for the π-calculus. The two works use a quite different notion of
generalized context, and thus also the obtained LTS’s are quite different.
Summary. In Section 1, a presentation of π-calculus syntax with de Bruijn
indexes and parametric reaction semantics is given. In Section 2, the GRPO
technique is applied to π-calculus, and efficient characterizations of the GIPO
bisimilarity are investigated. In Section 3, GIPO bisimilarity is compared with
open bisimilarity. Final remarks appear in Section 4. In the extended version of
the present paper [12], the theory of RPO’s in the G-category setting and the
general pruning technique of [7] are recalled, and some proofs are presented.

1 Second-order π-calculus Processes

In this section, we present a version of π-calculus with de Bruijn indexes to-
gether with reaction semantics. Such presentation allows us to deal smoothly
with binding operators, and it is needed for extending to contexts the structural
congruence on processes. In our presentation, π-calculus names a0, a1, . . . are
replaced by de Bruijn indexes r0, r1, . . ., which are name references.

Intuitively, a name reference can be viewed as a link (or a pointer). So a
bound name is replaced by a link to the corresponding binding operator, while
a free name is replaced by a link to its occurrence in a list of names. Concretely,
links are represented by natural numbers, and:
- binding operators ν and input prefix do not contain any name;

3

- the index ri refers to the free name aj if j = i − n ≥ 0 and ri appears under
the scope of n binding operators;
- otherwise, if i < n, then ri is bound by the i+1-th binding operator on its left.
E.g. in νr1().r2r0.0, r0 is bound by the input prefix r1(), while r1 and r2 both
refer to the free name a0. In standard syntax, the above process will be written
as (νa)a0(a′).a0a

′.0.

Definition 1 (π-calculus Processes). Let r0, r1, . . . ∈ R be name references;
we will use r, s as metavariables for name references. We define

(Act 3) α ::= τ | r() | rs actions
(G 3) M ::= 0 | M1 +M2 | α.P | Y guarded processes

(P 3) P ::= M | X | νP | P1|P2 | rec X.P | σP processes

where
- X,X0, X1, . . . ∈ X are process variables, and Y, Y0, Y1, . . . ∈ Y are guarded
process variables; we will use Z to range over X ∪ Y;
- the process variable X appears guarded in rec X.P ;
- σ is a name substitution obtained as a finite composition of the transforma-
tions {δi}i≥0 ∪ {si}i≥0 ∪ {tij}i,j≥0, where δi, si represent the i-th shifting and
the i-th swapping, respectively, and ti,j are the singleton substitutions, defined by:

δi(rj) =

{
rj+1 if j ≥ i
rj if j < i

si(rj) =

rj if j 6= i, i+ 1

ri+1 if j = i

ri if j = i+ 1

ti,j(rk) =

{
rk if k 6= i

rj if k = i

A closed process is a process in which each occurrence of a variable is in the
scope of a rec operator.

In the following definition, we introduce the notion of second-order context,
consisting of a variable substitution θ and a first-order context :

Definition 2 (Second-order Contexts). We define the second-order 1-hole
process contexts (contexts) by:

C ::= []θ | νC | P + C | C + P | P |C | C|P | rec X.C | σC

where θ = θX + θY : X + Y → P + G is a substitution of processes for process
variables, mapping (guarded) process variables into (guarded) processes.

Notation. We will often denote substitutions by the list of variables which are
actually substituted, i.e. as {P1/X1, . . . , Pm/Xm,M1/Y1, . . . ,Mn/Yn}, omitting
the variables which are left unchanged. Moreover, for denoting second-order con-
texts, we will also use the notation C[]θ, when we need to make explicit the
variable substitution θ.

4

Notice that in the above definition of contexts we do not distinguish between
guarded and general contexts, thus also “ill-formed” contexts, such as ([]θ|P)+P ′

are included at this stage. In Section 2, where we will apply the GIPO technique,
we will give a precise definition of guarded and general contexts.

In what follows, we will refer to π-calculus processes with de Bruijn indexes
and second-order contexts as terms, denoted by T . Intuitively, when a second-
order context C[]θ is applied to a term T , the variable substitution θ is applied
to T and the resulting term is put in the hole. In order to formalize this no-
tion of context application, we first need to introduce the notion of applying a
substitution to a term:

Definition 3 (Context Application).
(i) Let T be a term, and let θ be a variable substitution. We define the extension

θ̂ to terms, by induction on T as:

θ̂(Z) = θ(Z) θ̂([]θ′) = []θ̂◦θ′

θ̂(T1 + T2) = θ̂(T1) + θ̂(T2) θ̂(T1 | T2) = θ̂(T1) | θ̂(T2)

θ̂(σT) = σθ̂(T) θ̂(νT) = ν(θ̂(T))

θ̂(rec X.T) = rec X.θ̂′(T) , where θ′(Z) =

{
θ(Z) if Z 6= X

X if Z = X

In what follows, by abuse of notation, we will often denote θ̂(T) simply by θ(T).
(ii) Let C be a context and let T be a term, the application of C to T , denoted
by C · T , is defined by induction on C by:

[]θ · T = θ̂(T) νC · T = ν(C · T)
(P + C) · T = P + (C · T) (C + P) · T = (C · T) + P
(P | C) · T = P | (C · T) (C | P) · T = (C · T) | P
(rec X.C · T) = rec X.(C · T) (σC) · T = σ(C · T)

In order to apply the GRPO technique to π-calculus, it is convenient to
extend the structural congruence, which is usually defined only on processes,
to all contexts. Here is where the syntax presentation à la de Bruijn plays an
important rôle. Namely the π-calculus rule

(νaP) | Q ≡ νa(P | Q) , if a not free in Q

is problematic to extend to contexts with the usual syntax, since, if Q is a
context, we have to avoid captures by the ν-operator of the free variables of the
processes that will appear in the holes of Q. Using de Bruijn indexes (and index
transformations), the above rule can be naturally extended to contexts as:

(νP) | C ≡ ν(P | δ0C)

where the shifting operator δ0 avoids the capture of free name references. In the
standard syntax there is no way of defining a general name substitution playing
the role of δ0.

The complete definition of the structural congruence is as follows:

5

Definition 4 (Structural Congruence). Let T be a term. Structural congru-
ence is the equivalence relation ≡, closed under process constructors, inductively
generated by the usual axioms on |, +, and by:

(nu) ν0 ≡ 0 T |(νT ′) ≡ ν((δ0T)|T ′) ννT ≡ ννs0T
τ.νP ≡ ντ.P rs.νP ≡ νδ0(rs).P r().νP ≡ νδ0(r()).s0P

(sigma) σ0 ≡ 0 σ(rs.T) ≡ σ(r)σ(s).σ(T)
σ(τ.T) ≡ τ.σ(T) σ(r().T) ≡ σ(r)().σ+1T
σ(T |T ′) ≡ σ(T)|σ(T ′) σ(rec X.T) ≡ rec X.(σT)
σ(T + T ′) ≡ σ(T) + σ(T ′) σ(νT) ≡ ν(σ+1T)
σ1 . . . σmT ≡ σ′1 . . . σ′nT , if σ1 ◦ . . . ◦ σm = σ′1 ◦ . . . ◦ σ′n

(subs) []θ ≡ []θ1 if ∀X θ(X) ≡ θ1(X) (rec) rec X.P ≡ P [rec X.P/X]

where σ+1(ri) =

{
r0 if i = 0

(σ(ri−1))+1 otherwise
σ(α) =

σ(r) if α = r

σ(r) if α = r

τ if α = τ

The last three (nu)-rules are not standard in π-calculus presentations, since
they are not strictly necessary for proving the basic syntactic properties of the
calculus. However, they are safe because they allow to move, inside/outside the
ν operator, prefixes which are not captured by ν, see e.g. [13]. The assumption
of such extra rules is not essential in our presentation, however it simplifies the
GIPO construction. As far as the (sigma)-rule, notice that there is an effective
procedure to determine whether σ1 ◦ . . . ◦ σm = σ′1 ◦ . . . ◦ σ′n. Namely, the two
compositions are equal if and only if they contain the same number of transfor-
mations in the forms δi and their behaviour coincides on an initial segment of
indexes (whose length can be calculated from the δi’s and the si’s involved). Fi-
nally, the unfolding rule (rec) is given only for processes P . It cannot be directly
extended to contexts, since their unfolding can produce multiple-hole contexts.
However, the above (rec)-rule is sufficient for our purposes, since we will only
need it in reducing processes.

As in the standard presentation, one can easily show that each π-calculus
process P is structurally congruent to a process in normal form, i.e. a process of
the shape νk(Σm1

j=1S1,j | . . . | Σmn
j=1Sn,j), where all unguarded restrictions are at

the top level, and name substitutions do not appear at the top level. We use S
to range over processes of the shape α.P or σY . If mi = 1 for some i ∈ {1, . . . n}
then S can also be of the form σX.

Definition 5 (Reaction Semantics). The reaction relation → is the least re-
lation closed under the following reaction rules and reaction contexts:

Reaction rules. (r().X1 + Y1) | (rrj .X2 + Y2)→ (ν(t0,j+1X1)) | X2

τ.X + Y → X

Reaction contexts. D ::= []θ | νD | P |D | D|P | σD
where σ is a permutation of name references (a one to one reference substitu-
tion).

6

Notice that the permutation σ in the definition of reaction contexts is not strictly
necessary for defining the reaction semantics. It could be omitted, without chang-
ing the reaction semantics, since, using the congruence rules, name substitutions
distribute over the actions. However, in view of the GIPO construction of Sec-
tion 2 it is useful to include it.

A mapping T from standard π-calculus syntax into our de Bruijn presenta-
tion can be defined by structural induction, using an extra set of names with
negative indexes (a−1, a−2, . . .). The most meaningful cases are: T (P) = T0(P),
Tn(ai(aj).P) = ri+n().Tn+1(P{a−n−1/aj}), Tn(aiaj .P) = ri+nrj+n.Tn(P).

For any pair of π-calculus processes P,Q on the standard syntax, it turns out
that P → Q in the ordinary reaction system iff T (P) → T (Q) in our reaction
system. We omit the details.

2 Applying the GIPO Technique to Second-order
π-calculus

For lack of space, we do not present in detail the (G)RPO construction, we refer
to [1] for a general introduction to the RPO technique, to [2] for the presentation
of the GRPO technique and to [7] or to [12], for a compact presentation of all
the theory on which the results presented here are based.

However, in order to grasp most of the material presented in the paper, the
following informal and intuitive explanations of the GRPO construction may
suffice. The main idea in the RPO construction is to define an LTS, starting
from a reaction system. The states of the derived LTS are terms, while the
labels are the minimal contexts necessary for a given reaction to fire. In more

detail, the LTS contains the transition t
C−→Iv, if the reaction system contains

the reaction C ◦ t → v, and for no subcontext C′ of C and no subterm v′ of v,
there is a reaction C′ ◦ t → v′. This idea is formalized using a category where
arrows represent terms or contexts. The notion of minimal context is defined in
terms of a (relative) pushout construction. The main theoretical result is that
the LTS, obtained by the RPO construction, induces a bisimilarity that is a
congruence. The GRPO technique is a further elaboration of the RPO technique
necessary to deal with the structural rules of the syntax; here the main idea is
to perform the RPO construction in a 2-category. A 2-category is a category
having an extra notion of morphism between arrows. When such morphisms are
isomorphisms, as in the GRPO construction, the 2-category is called G-category.
In our setting, morphisms between two arrows represent a structural congruence
between two terms (the two arrows), together with an induced mapping between
occurrences of name references in the two terms. G-categories always allow to
distinguish between two different name references denoting the same name, also
when structural rules are used. In some cases, the RPO construction in the
standard categories having as arrows equivalence classes of terms fails to produce
the correct transitions, an example being r0().0 | r0r1.0, see [2] for more details.

We define here the G-category formed by the finite (i.e. without the rec
operator) second-order π-calculus terms equipped with structural congruence.

7

We restrict the G-category to contain only finite processes, because we need the
2-cell morphisms to be isomorphisms. When π-calculus processes contain the rec
operator, two congruent processes can contain different numbers of actions, so,
in general, there does not exist a one-to-one map between occurrences of name
references. It is possible to recover an LTS for the whole set of π-processes by
extending the rules obtained for the finite calculus, namely allowing parametric
rules to be applied also to terms containing the rec operator (and by considering
the unfolding rule for rec). Quite general arguments, based on the notion of
finite approximation, show that, in the extended LTS, the bisimilarity is still a
congruence.

Moreover, once restricted to finite processes, in the definition of π-calculus
term category, it is sufficient to consider linear terms, that is terms where each
variable appears at most once. This restriction is justified by the fact that, in the
GIPO transition system, closed terms generate only linear open terms; moreover,
it simplifies the GIPO construction below.

Since the π-calculus grammar needs to distinguish between guarded and
generic terms, the category needs to contain two corresponding distinct objects.
Formally:

Definition 6 (Category of Second-order π-calculus Terms). Let Cπ be
the category defined by:
- Objects are ε, G, P.
- Arrows from ε to G (P) are linear (un)guarded processes, i.e. processes where
each variable appears at most once. Arrows A → B are the contexts CBA generated
by the grammar:

CGG ::= []θ | α.CPG | CGG +M | M + CGG
CGP ::= α.CPP | C

G
P +M | M + CGP

CPG ::= CGG | νC
P
G | C

P
G |P | P |C

P
G | σC

P
G

CPP ::= []θ | CGP | νC
P
P | C

P
P |P | P |C

P
P | σC

P
P

where any context CBA = C[]θ is linear, i.e. any variable appears at most once
in C[] and in the codomain of θ.
The identity arrow on G and P is []id. The only arrow with codomain ε is the
identity. The composition between morphisms T : A → A′, T ′ : A′ → A′′ is the
context application T ′ · T .

In what follows, when not necessary, we will omit tags from contexts. One can
easily prove that the above definition is well-posed. In particular, associativity of
composition follows from associativity of composition of variable substitutions.

By induction on a proof of structural congruence, it is possible to show that
two structurally congruent finite terms have the same number of occurrences for
each action, and each proof of congruence induces a one to one map between
instances of name references in an obvious way. Thus we can define:

Definition 7 (2-cell isomorphisms). 2-cell isomorphisms between T and T ′

in Cπ are the one-to-one maps between occurrences of name references in T and
T ′, induced by the proof of structural congruence.

8

The above maps induce a structure of G-category on Cπ. Horizontal composi-
tion corresponds to the union of the one-to-one maps , while vertical composition
amounts to standard function composition. One can easily check that horizon-
tal and vertical compositions are well-behaved, in particular the “middle-four
interchange law” holds. Thus we have:

Proposition 1. The structural congruence on terms induces a structure of G-
category on Cπ.

Now we can define the G-reaction system of finite (second order) π-calculus
processes:

Definition 8 (G-reaction system). The G-reaction system Cπ consists of
- the G-category of π-calculus terms Cπ;
- the distinguished object ε;
- the subset of linear reaction contexts of Definition 5;
- the reaction rules of Definition 5.

One can easily check that the set of reaction contexts as defined above are
composition-reflecting and closed under 2-cells. In particular, in proving that
contexts are composition-reflecting, it turns out to be essential to have included
also reaction contexts of the shape σD, for σ a permutation.

Proposition 2. The G-reaction system Cπ has redex GRPOs.

Table 1 summarizes the GIPO contexts (i.e. the labels in the derived LTS) for
every possible term (up-to structural congruence). For simplicity, we denote a
term equivalence class simply by a special representative. For each process P , on
the basis of its form (specified in the first column of the table), the correspond-
ing GIPO contexts are listed, i.e. the “minimal” contexts which make possible
a certain reaction. Redex squares can be classified according to the following
“parameters”:
- type of the reaction rule (τ -reaction or communication);
- how elements of the redex are obtained: (1) already present in P , (2) by in-
stantiating variables in P , (3) appearing in the context;
- in case of variable instantiation by an output action, the name sent can be
either private or public. A detailed description of the GIPO contexts of Table 1
and a proof of the above proposition appear in [12].

The GIPO LTS described in Table 1 is quite redundant. Namely, there are
many GIPO contexts which are intuitively redundant; e.g. all contexts in rows
3 and 13, which are “not engaged”. Moreover, in various other cases the effect
of some GIPO contexts can be simulated by a restricted set of simpler contexts.
Many redundant contexts can be eliminated by applying the general pruning
technique presented in [7]. The result is the LTS of reduced GIPO contexts, R,
formed by the contexts marked by ∗ in the column R of Table 1, in which the
name substitution β is restricted to be the identity. Namely, the GIPO LTS of
Table 1 is definable from the set R of reduced GIPO contexts. A proof of this

9

can be found in [12]. As a consequence, our general pruning technique ensures
that the bisimilarity ∼R induced by the LTS defined in column R coincides with
the original GIPO bisimilarity ∼G, and hence it is a congruence.

A further simplified LTS can be obtained by an ad-hoc analysis. We define an
LTS, F , composed by the GIPO contexts marked by ? in column F of Table 1.
The proof that the bisimilarity induced by the LTS F coincides with the original
GIPO bisimilarity is based on the technique of the “bisimulation up-to”, and it
appears in [12].

Proposition 3. The bisimilarity ∼F induced by the LTS F coincides with the
original GIPO bisimilarity ∼G, and hence it is a congruence.

Apparently, the LTS F obtained is still infinitely branching. This is due to
the fact that we consider transitions where the context contains an output action
rs.X, and s can be any reference. But, when comparing two processes P,Q in
the bisimilarity relation, it is sufficient to consider s to be a reference to a name
in P or Q, or a reference to just a new name not appearing in P or Q. In this
way, we get a finitely branching LTS.

Now, if our aim is to define a bisimilarity relation on π-calculus processes
which do not contain process variables, then it is possible to consider a much
simpler LTS, namely the LTS presented in Table 2. This LTS is intended for
processes in the form νk(P ′ | σX), with P ′ a closed process. The above set of
processes is closed by all transitions, but 5, which is then meant to be applied
just once.

Here we present a detailed description of transitions in Table 2. Rows 1
corresponds to a τ -reaction. Row 2 corresponds to the case where the process P
exposes two complementary actions. In this rule ι is the identity, if the channel
references r and r′ in the complementary actions already matches, or a singleton
substitution fusing the two channel references, otherwise. Here we use a function
[[,]] to express the fact that the two occurrences of name references in the
complementary actions refer to the same name. This function, given a process
and an occurrence of a name reference ri in it, provides the “absolute” index of
the name referred by the the occurrence ri, if ri is free in P , that is [[P, ri]] = j
means that ri refers to the free name aj ; otherwise, if ri is bound, [[P, ri]] provides
the negative index corresponding to the nesting level of the occurrence ri inside
the binding operators (ν or input prefix) in P (we omit the formal definition).
Rows 3 and 4 take into account the case where the process P exposes either an
input or an output action and the GIPO context provides the complementary
action for the communication. In these rules the variable substitution δ sends all
variables into variables with even index (see the note at the bottom of Table 1),
and it is used to preserve linearity in the term C ·P . Namely, δ ensures that the
variables with odd indexes will not appear in the process, and hence they can
be used in the context. In row 5 the GIPO context instantiates the variable X
by the whole communication redex.

In order to compare two closed processes P,Q, we proceed by comparing the
processes P |X and Q|X, using the LTS of Table 2. Namely, if ∼C denotes the
induced bisimilarity, we have:

10

Table 1. π-calculus GIPO contexts.

Process GIPO context R F

P ≡ νk(Σm1
j=1S1,j | . . . | Σmn

j=1Sn,j) C

1 ∃i, j. Si,j = τ.Pi,j β[]δ ∗ ?

2 ∃i, j. Si,j = σZ β[]{(τ.X1+Y1)/δZ}◦δ ∗

3 C′[]θ + τ.X1

C′[]θ | (τ.X1 + Y1)
τ.C′[]θ + Y1

4 ∃i, j, i′, j′. i 6= i′ ∧ βι[]δ ∗ ?

Si,j = r().Pi,j ∧ Si′,j′ = r′s.Pi′,j′

5 ∃i, j. Si,j = r().Pi,j (r′s.X1 + Y1) | (σ[]δ + Y3) ∗ ?

6 ∃i, j. Si,j = rs.Pi,j (r′().X1 + Y1) | (σ[]δ + Y3) ∗ ?

7 ∃i, j, i′, j′. i 6= i′ ∧ βι[]{(r().X1+Y1)/δZ,(r′s.X3+Y3)/δZ′}◦δ ∗ ?

Si,j = σ1Z ∧ Si′,j′ = σ2Z
′

7’ ∃i, j, i′, j′. i 6= i′ ∧ βι[]{(r().X1+Y1)/δZ,ν(r′r0.X3+Y3)/δZ′}◦δ ∗
Si,j = σ1Z ∧ Si′,j′ = σ2Z

′

8 ∃i, j. Si,j = σ′Z (r′s.X1 + Y1) | σ[]{(r().X3+Y3)/δZ}◦δ ∗ ?

9 ∃i, j. Si,j = σ′Z (r′().X1 + Y1) | σ[]{(rs.X3+Y3)/δZ}◦δ ∗ ?

9’ ∃i, j. Si,j = σ′Z (r′().X1 + Y1) | σ[]{ν(rr0.X3+Y3)/δZ}◦δ ∗

10 ∃i mi = 1 ∧ Si,1 = σX β[]{((r().X1+Y1) | (r′s.X3+Y3))/δX}◦δ ∗ ?

r 6= r′ r 6= r′

10’ ∃i mi = 1 ∧ Si,1 = σX β[]{((r().X1+Y1) | ν(r′r0.X3+Y3))/δX}◦δ

11 ∃i, j, i′, j′. i 6= i′ ∧ βι[]{(r′s.X1+Y1)/δZ}◦δ ∗ ?

Si,j = σZ ∧ Si′,j′ = r().Pi′,j′

11’ ∃i, j, i′, j′. i 6= i′ ∧ βι[]{ν(r′r0.X1+Y1)/δZ}◦δ ∗
Si,j = σZ ∧ Si′,j′ = r().Pi′,j′

12 ∃i, j, i′, j′. i 6= i′ ∧ βι[]{(r′().X1+Y1)/δZ}◦δ ∗ ?

Si,j = σZ ∧ Si′,j′ = rs.Pi′,j′

13 C′[]θ | (r().X1 + Y1) | (rs.X3 + Y3)
(rs.X1 + Y1) | (C′[]θ + r().X3)
(rs.X1 + Y1) | (r().C′[]θ + Y3)

where:
- the substitution δ = [X2h/Xh, Y2h/Yh]h≥0 sends all variables into variables with even index;
- C′[]θ in rows 3 and 13 is any second-order context s.t. the variables in the GIPO context

are not in the codomain of θ;
- r, r′ are such that [[C · P, r]] = [[C · P, r′]];
- if C is of the form βιC′, then ι is the identity if [[C′ · P, r]] = [[C′ · P, r′]], and a singleton

substitution otherwise.

∗ where β, if it appears, is the identity.
? where β and σ, if they appear, are the identity.

11

Table 2. π-calculus final GIPO contexts for closed processes.

Process GIPO Context

P ≡ νk(Σm1
j=1S1,j | . . . | Σmn

j=1Sn,j | σX) C

1 ∃i, j. Si,j = τ.Pi,j []id

2 ∃i, j, i′, j′. i 6= i′ ∧ Si,j = r().Pi,j ∧ Si′,j′ = r′s.Pi′,j′ ι[]id

3 ∃i, j. Si,j = r().Pi,j []{r′s.X1+Y1/δX}◦δ

4 ∃i, j. Si,j = rs.Pi,j []{r′().X1+Y1/δX}◦δ

5 []{(r().X1+Y1 | r′s.X3+Y3)/δX}◦δ

r 6= r′

where:
- r, r′ are such that [[C · P, r]] = [[C · P, r′]];
- if C is of the form ι[]id, then ι is the identity if [[P, r]] = [[P, r′]], and

a singleton substitution otherwise.

Proposition 4. For any pair of closed processes P,Q, we have that P ∼F Q iff
P | X ∼C Q | X.

3 GIPO Bisimilarity on Standard Syntax vs Open
Bisimilarity

In this section, first we provide a presentation of GIPO LTS and bisimilarity
for closed processes in the standard π-calculus syntax. Then, we compare this
bisimilarity with Sangiorgi’s open bisimilarity, [14]. GIPO bisimilarity turns out
to be finer than open bisimilarity; however a small variant of it gives exactly
the open bisimilarity. Thus, interestingly enough, we obtain an efficient char-
acterization of open bisimilarity, alternative to Sangiorgi’s characterization on
the symbolic LTS, [14]. An advantage of our presentation lies in the fact that
our bisimilarity has a direct definition of the LTS, without requiring the extra
machinery of distinctions.

3.1 A Presentation of GIPO Bisimilarity on Standard Syntax

In order to compare our GIPO LTS and bisimilarity with standard LTS’s and
bisimilarities of π-calculus, it is useful to provide a presentation of GIPO LTS
and bisimilarity for closed processes in the standard π-calculus syntax.

The intuitive idea is the following. The LTS in Table 2 uses terms having
form νk(P | σX). In the standard syntax, there is an immediate correspondent
for the part νk(P), that is the corresponding nameful π-calculus term. Less
obvious is how to define a correspondent for the σX part. The permutation σ
essentially depends on output actions that have been performed in the previous
transitions (history), and there are three important aspects: (i) the permutation
σ is determined by the list of names that have been communicated by the process

12

P to X (the observer); (ii) σ determines which private names in νk(P) can be
used for future communications; (iii) through transitions of kind 5 in Table 2,
we can check which public name has been communicated to X, and whether
the same private name has been used in two different communications. Given
the above observations, we represent the information captured by σX via the
list L of private names communicated to X by the process. We omit public
names, since they can be represented directly on the labels of the LTS, and their
presence in the list is not strictly necessary. Thus in the LTS we consider pairs
〈νaQ,L〉 such that the elements of L are names in a. Possible applications of
the α-rule to the process apply also to the list of names L.

Labels α in the LTS range over α ::= τ | {a′/a} | xy | xy, where we assume
the set of names ordered, and we denote by {a′/a} a singleton substitution, with
a < a′ in such ordering.

Transitions 〈P,L〉 α−→ 〈P ′, L′〉 are described in Table 3.

Table 3. Transitions in the standard LTS.

Process List Label Process List
P ≡ νa(Σm1

j=1S1,j | . . . | Σmn
j=1Sn,j) L α P ′ L′

1 ∃i, j. Si,j = τ.Pi,j τ P ′ ≡ νa(. . . | Pij | . . .)
L′ ≡ L

2 ∃i, j, i′, j′. (i 6= i′ ∧ Si,j = a(b).Pi,j ∧ τ P ′ ≡ νa(. . . | Pij{c/b} | . . .
Si′,j′ = ac.Pi′,j′) . . . | Pi′j′ | . . .)

L′ ≡ L
3 ∃i, j, i′, j′. (i 6= i′ ∧ Si,j = a(b).Pi,j ∧ {a′/a} P ′ ≡ (νa(. . . | Pij{c/b} | . . .

Si′,j′ = a′c.Pi′,j′) . . . | Pi′j′ | . . .)){a′/a}
a, a′ ∈ free(P), a < a′ L′ ≡ L

4 ∃i, j. Si,j = a(b).Pi,j ∧ a ∈ free(P) ∪ L xy P ′ ≡ νa(. . . | Pij{c/b} | . . .)
(c 6∈ bn(P) ∨ c ∈ L) ∧ L ≡ L′

5 ∃i, j. Si,j = ac.Pi,j ∧ a ∈ free(P) ∪ L xy P ′ ≡ νa(. . . | Pij | . . .)

L′ ≡
{
L if c ∈ free(P)
L : c otherwise

where substitution is capture-avoiding, i.e. α-conversion is possibly applied before

applying substitution; x ≡
{
a if a ∈ free(P)
νa otherwise

and y ≡
{
c if c 6∈ bn(P)
νc otherwise

Remark. Traditional LTS’s use as labels part of the term, dually (G)RPO LTS’s
use as labels contexts that can interact with the term, and in particular with
the part of the term that is “put in evidence” by the traditional LTS; in the
presentation above we use a traditional approach.

In order to define the bisimilarity induced by the above LTS, we first need
to define a relation on possibly bound names w.r.t. lists of names:

Definition 9. Let L,M be name lists. We define
x =LM y iff x = a = y or x = νa ∧ y = νa′ ∧ ∀i. (a = L(i) ⇐⇒ a′ = M(i)) .

13

The above relation on names can be naturally extended to labels. Then, the
GIPO bisimilarity can be recovered on standard π-calculus as the canonical
bisimilarity induced by the LTS above, up-to the use of the relation =LM on
labels instead of equality. That is, for P,Q processes on the standard syntax, ∅
the empty list, and T (P), T (Q) the translations of P ,Q in the syntax with de
Brujin indexes, we have:

Theorem 1. (P, ∅) ∼ (Q, ∅) iff T (P) ∼C T (Q) .

3.2 GIPO Bisimilarity vs Syntactical and Open Bisimilarity

One can check that the GIPO bisimilarity coincides with the syntactical bisimi-
larity introduced in [3] for the π-calculus fragment without the ν-operator. Syn-
tactical bisimilarity is a variant of the open bisimilarity, obtained by requiring
that a transition with a fusion label is simulated by a transition with the same
fusion (and not by a possibly τ -transition). A stronger result holds, that is a
small variation of our bisimilarity ∼ coincides with the open bisimilarity ∼O
on the full calculus. Namely, let ≈ denote the bisimilarity obtained from ∼ by
allowing a fusion transition with label {a′/a} to be simulated either by the same
fusion or by a τ -transition. The asymmetric definition of ≈ is reminiscent of the
semi-saturated bisimilarity introduced in [6]. We have:

Theorem 2. ≈=∼O.

The above theorem (whose proof is sketched in [12]) gives us a new efficient
characterization of the open bisimilarity. The most evident difference between
our presentation and the standard symbolic presentation is that in the latter
distinctions are needed, while we do not use them. An explanation for this is
that, when comparing two terms that can perform an input transition, the open
bisimilarity considers just one transition on a free name, while we need to con-
sider also all the transitions, where a previously communicated bound name
(contained in the list L) is received.

4 Conclusions and Future Work

We have applied the GRPO construction to the full π-calculus, using two extra
important ingredients. Firstly, we have worked in a category of second-order
contexts, based on a presentation of π-calculus with de Bruijn indexes. Secondly,
a general pruning technique has been applied, in order to simplify the LTS
obtained by the standard (G)RPO construction. Finally, the application of a
more ad-hoc simplification technique has allowed us to get an efficient LTS and
bisimilarity, and a new characterization of Sangiorgi’s open bisimilarity. As it
often happens, also in the present case Leifer-Milner technique by itself does not
directly give an efficient LTS and bisimilarity. However, this technique, applied
in the setting of second-order contexts and in combination with our general
pruning technique, gives us substantially less redundant LTS’s and bisimilarities,

14

and leads us to the final efficient presentation. Moreover, new insights on the
calculus are obtained by applying this machinery. The construction presented in
this paper is solid under variations of π-calculus syntax, e.g. including replication
or match/mismatch operators. In conclusion, the results obtained for π-calculus
in this paper and for CCS in [7] are quite promising; in particular, they show
that the Leifer-Milner technique is valuable in suggesting interesting notions of
LTS’s and bisimilarities. Therefore, it would be worth to experiment the above
machinery on more recent calculi, for which the notions of LTS and bisimilarity
are still evolving.

References

1. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: CONCUR. Volume 1877 of LNCS., Springer (2000) 243–258

2. Sassone, V., Sobocinski, P.: Deriving bisimulation congruences using 2-categories.
Nord. J. Comput. 10 (2003) 163–190

3. Ferrari, G.L., Montanari, U., Tuosto, E.: Model checking for nominal calculi. In
Sassone, V., ed.: FoSSaCS. Volume 3441 of LNCS., Springer (2005) 1–24

4. Gadducci, F., Montanari, U.: Observing reductions in nominal calculi via a graphi-
cal encoding of processes. In: Processes, Terms and Cycles. Volume 3838 of LNCS.,
Springer (2005) 106–126

5. Bonchi, F., Gadducci, F., König, B.: Process bisimulation via a graphical encoding.
In: ICGT. Volume 4178 of LNCS., Springer (2006) 168–183

6. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems.
In: LICS, IEEE Computer Society (2006) 69–80

7. Di Gianantonio, P., Honsell, F., Lenisa, M.: Finitely branching labelled transition
systems from reaction semantics for process calculi. In: WADT. Volume 5486 of
LNCS., Springer (2009) 119–134

8. Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics,
and the mobile ambients. In de Alfaro, L., ed.: FOSSACS. Volume 5504 of Lecture
Notes in Computer Science., Springer (2009) 272–287

9. Di Gianantonio, P., Honsell, F., Lenisa, M.: RPO, second-order contexts, and
lambda-calculus. Logical Methods in Computer Science 5 (2009)

10. Jensen, O.H., Milner, R.: Bigraphs and transitions. In: POPL. (2003) 38–49
11. Sobocinski, P.: A well-behaved lts for the pi-calculus: (abstract). Electr. Notes

Theor. Comput. Sci. 192 (2007) 5–11
12. Di Gianantonio, P., Jaksic, S., Lenisa, M.: Efficient bisimilarities from second-order

reaction semantics for pi-calculus. Technical report, Università di Udine, available
at http://sole.dimi.uniud.it/ marina.lenisa/Papers/Soft-copy-pdf/tr10.pdf (2010)

13. Parrow, J.: An introduction to the pi-calculus. In Bergstra, Ponse, Smolka, eds.:
Handbook of Process Algebra, Elsevier (2001) 479–543

14. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Inf. 33 (1996)
69–97

15

	Efficient Bisimilarities from Second-order Reaction Semantics for -calculus
	Pietro Di Gianantonio Svetlana Jakšic Marina Lenisa

