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Abstract. We study extensional models of the untyped lambda calculus
in the setting of the game semantics introduced by Abramsky, Hyland
et alii. In particular we show that, somewhat unexpectedly and contrary
to what happens in ordinary categories of domains, all reflexive objects
in a standard category of games, induce the same λ-theory. This is H∗,
the maximal theory induced already by the classical C.P.O. model D∞,
introduced by Scott in 1969. This results indicates that the current notion
of game carries a very specific bias towards head reduction.

Introduction

λ-theories are congruences over λ-terms, which extend pure β-conversion. Their
interest lies in the fact that they correspond to the possible operational (obser-
vational) semantics of λ-calculus. Although researchers have mainly focused on
only three such operational semantics, namely those given by head reduction,
lazy or call-by-value, the class of λ-theories is, in effect, unfathomly rich, see
e.g. [6, 14, 13, 9] for interesting examples of this complexity. Brute force, purely
syntactical techniques are usually extremely difficult to use in the study of λ-
theories. Therefore, since the seminal work of Dana Scott on D∞ in 1969 [18],
semantical tools have been extensively investigated.

A large number of mathematical models for λ-calculus, arising from syntax-
free constructions, have been introduced since then in various categories of do-
mains (see e.g. [19, 7, 10, 6, 12, 14, 5, 9]). And a rich host of different λ-theories
now have a “fully abstract” syntax-free model. I.e. a model which induces pre-
cisely those identities which hold in the given theory. However the denotational
semantics supported by these models do not match all the possible operational
semantics of λ-calculus.

For example, in most existing categories of domains, λ-models have too many
functions, and hence many interesting λ-theories, such as those arising from
observing termination under some natural sequential reduction strategy (see
e.g. [13]), do not have fully abstract denotational models [14, 5, 8]. An example
of such a strategy is the one which tries non-deterministically to reduce a term
to a closed term. In the case of C.P.O.’s, the sequentiality embedded in these
strategies clashes with the necessary existence of Scott continuous “parallel”
functions. On the other hand, in the case of coherent spaces, and stable functions,



the presence of so called “parasitic” functions, prevents other kinds of identities
deriving from monotonicity.

In this paper we explore the methodology for giving denotational semantics
based on games, recently introduced by Abramsky, Jagadeesan, Malacaria, and
Hyland, Ong (see [3, 16]). This methodology has been extremely successful [3,
17] in modeling sequential languages. It should be reasonable to expect, there-
fore, that one could obtain fully abstract game models, at least for those λ-
theories mentioned above, which escape domain models. Of course, the very fact
that game semantics faithfully captures sequentiality, should suggest also that
even game semantics is not rich enough to provide fully abstract models for all
λ-theories. It is possible to show, in fact, that there are λ-theories where, say,
the behavior of an unsolvable term, i.e. a term with no head normal form, is that
of a “parallel function”, which signals if at least one of its arguments evaluates
to a fixed term.

Somewhat surprisingly, however, it turns out that all reflexive objects, i.e.
extensional λ-models, in the standard category of games of [3], have the same
theory. This is the well known maximal λ-theory H∗ [6], already induced by
Scott’s D∞. We recall that, if M,N are closed λ-terms (i.e. M,N ∈ Λ0), and
HNF denotes the set of λ-terms which have a head normal form, then M =H∗

N if and only if

∀C[ ] . C[M ], C[N ] ∈ Λ0 =⇒ (C[M ] ∈ HNF ⇐⇒ C[N ] ∈ HNF)

Alternatively, this is the theory where two terms are equal if we cannot observe
that head reduction terminates when one is placed in a given context, but does
not terminate when the other is.

More specifically, in this paper we show that all reflexive objects in the
Cartesian closed category of games K!(G) [3] are isomorphic to models which
can be constructed as special non-initial colimits in a category Ge of games and
“embeddings”, which mimics the traditional Scott’s construction in C.P.O.’s
and embedding-projection pairs. By extending the methodology of approxim-
ants originally introduced in [20, 15, 14] for the continuous case, to the setting
of the game semantics, we study the fine structure of these models.

The paper [11] is a companion to the present one. Finitary logical descriptions
of game models, in the spirit of [10, 1], are introduced. The case of one of the
models introduced in this paper is discussed in detail.

One can elaborate in various ways on the main result of this paper. In any
case, we think that it provides a very clear indication that exisiting game se-
mantics is more rigid than C.P.O. semantics, which can model a very rich col-
lection of λ-theories. Since the current notion of game appears to carry a very
strong bias towards head reduction, a radically new notion of game seems to
be necessary to model λ-theories different from H∗. This appears to be rather
problematic, since we feel that “head reduction” is inherent in games for which
we can observe only interactions with the environment.

The present paper is organized as follows. In section 1, we introduce the
categories of games that we shall utilize, namely G and K!(G). In Section 2 we
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discuss initial and non-initial solutions of recursive game equations. In Section 3
we introduce the special class of extensional λ-models D∗, and we prove that all
reflexive objects in K!(G) belong to D∗. In Section 4 we study the fine structure
of the models in D∗ and prove that such models induce the theory H∗. In Section
5 we give some concrete examples of extensional game λ-models, including the
model arising from applying Scott’s trick [19] to the game setting. Final remarks
and directions for future work appear in section 6.

We assume the reader familiar with the basic notions and definitions of
λ-calculus, see e.g. [6]. For the benefit of a reader from the λ-calculus com-
munity, this paper is self-contained as far as the theory of games, however the
reader can refer to [2–4, 16] for more details on this topic.

The authors are grateful to Fabio Alessi, Samson Abramsky, and Marina
Lenisa for useful discussions.

1 Categories of games

In this section, we introduce two categories of games. The first is the one in-
troduced by Abramsky, Jadgadeesan and Malacaria in 1993, [3]. The second
category is a co-Kleisli category over the first. Notice however that for our pur-
poses the machinery of “questions and answers” i.e. the bracketing condition,
seems unnecessary, and one can safely, and more simly, focus only on the full
and faithful subcategory of this category consisting of all those games all whose
moves are labeled as questions.

We begin by giving the basic definitions.

Definition 1 (Games). A game has two participants: the Player and the Op-
ponent. A game A is a quadruple (MA, λA, PA,≈A) where

– MA is the set of moves of the game.
– λA : MA → {O,P} × {Q,A} is the labeling function: it tells us if a move is

taken by the Opponent or by the Player, and if it is a Question or an Answer.
We can decompose λA into λOP

A : MA → {O,P} and λQA
A : MA → {Q,A}

and put λA = 〈λOP
A , λQA

A 〉. We denote by − the function which exchanges

Player and Opponent, i.e. O = P and P = O. We also denote with λOP
A

the function defined by λOP
A (a) = λOP

A (a). Finally, we denote with λA the

function 〈λOP
A , λQA

A 〉.
– PA is a non-empty and prefix-closed subset of the set M⊛

A (written as PA ⊆nepref

M⊛
A ), where M⊛

A is the set of all sequences of moves which satisfy the fol-
lowing conditions:
• s = at⇒ λA(a) = OQ

• (∀i : 1 ≤ i ≤ |s|)[λOP
A (si+1) = λOP

A (si)]

• (∀ t ⊑ s)[|t ↾ MA
A | ≤ |t ↾ MQ

A |]

where MA
A and MQ

A denote the subsets of game moves labelled respectively
as Answers and as Questions, s ↾ M denotes the set of moves of M which
appear in s and ⊑ is the substring relation. PA denotes the set of positions
of the game A.
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– ≈A is an equivalence relation on PA which satisfies the following properties:

• s ≈A s′ ⇒ |s| = |s′|
• sa ≈A s′a′ ⇒ s ≈A s′

• s ≈A s′ & sa ∈ PA ⇒ (∃a′)[sa ≈A s′a′]

In the above s, s′, t and t′ range over sequences of moves, while a, a′, b and
b′ range over moves. The empty sequence is written ǫ.

Definition 2 (Strategies).
A strategy for the Player in a game A is a non-empty set σ ⊆ P even

A of posi-
tions of even length such that σ = σ ∪ dom(σ) is prefix-closed, where dom(σ) =
{t ∈ P odd

A | (∃a)[ta ∈ σ]}, and P odd
A and P even

A denote the sets of positions of
odd and even length respectively.

A strategy can be seen as a set of rules which tells the Player which move to
take after the last move by the Opponent.

In this paper we shall consider only history-free strategies, i.e. strategies
which depend only on the last move by the Opponent.

Definition 3 (History-free strategies).
A strategy σ for a game A is history-free if it satisfies the following properties:

1. sab, tac ∈ σ ⇒ b = c
2. sab, t ∈ σ, ta ∈ PA ⇒ tab ∈ σ

The equivalence relation on positions ≈A can be extended to strategies in
the following way.

Definition 4. Let σ, τ be strategies, σ ≈ τ if and only if

1. sab ∈ σ, s′a′b′ ∈ τ, sa ≈A s′a′ ⇒ sab ≈A s′a′b′

2. s ∈ σ, s′ ∈ τ, sa ≈A s′a′ ⇒ (∃b)[sab ∈ σ] iff (∃b′)[s′a′b′ ∈ τ ]

Such an extension is not in general an equivalence relation since it might lack
reflexivity. If σ is a strategy for a game A such that σ ≈ σ, we write σ : A.

Definition 5 (Tensor product).
Given games A and B the tensor product A⊗B is the game defined as follows:

– MA⊗B = MA +MB

– λA⊗B = [λA, λB]
– PA⊗B ⊆ M⊛

A⊗B is the set of positions, s, which satisfy the following condi-
tions:

1. the projections on each component (written as s ↾ A or s ↾ B) are
positions for the games A and B respectively;

2. every answer in s must be in the same component game as the corres-
ponding question.

– s ≈A⊗B s′ ⇐⇒ s ↾ A ≈A s ↾ A′, s ↾ B ≈B s ↾ B′, (∀i)[si ∈MA ⇔ s′i ∈MA]
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Here + denotes disjoint union of sets, that is A + B = {inl(a) | a ∈ A} ∪
{inr(b) | b ∈ B}, and [−,−] is the usual (unique) decomposition of a function
defined on disjoint unions.

It is easy to see that in such a game only the Opponent can switch component.

Definition 6 (Unit). The unit element for the tensor product is given by the
empty game I = (∅,∅, {ǫ}, {(ǫ, ǫ)}).

Definition 7 (Linear implication). Given games A and B the the compound
game A ⊸ B is defined as follows:

– MA⊸B = MA +MB

– λA⊸B = [λA, λB ]
– PA⊗B ⊆ M⊛

A⊗B is the set of positions, s, which satisfy the following condi-
tions:

1. the projections on each component (written as s ↾ A or s ↾ B) are
positions for the games A and B respectively;

2. every answer in s must be in the same component game as the corres-
ponding question.

– s ≈A⊸B s′ ⇐⇒ s ↾ A ≈A s ↾ A′, s ↾ B ≈B s ↾ B′, (∀i)[si ∈MA ⇔ s′i ∈MA]

It is easy to see that in such a game only the Player can switch component.

Definition 8 (Exponential). Given a game A the game !A is defined by:

– M!A = ω ×MA =
∑

i∈ω MA

– λ!A(〈i, a〉) = λA(a)
– P!A ⊆M⊛

!A is the set of positions, s, which satisfy the following conditions:

1. (∀i ∈ ω)[s ↾ Ai ∈ PAi
];

2. every answer in s is in the same index as the corresponding question.

– s ≈!A s′ ⇐⇒ ∃ a permutation of indexes α ∈ S(ω) such that:

• π∗
1(s) = α∗(π∗

1(s′))
• (∀i ∈ ω)[π∗

2(s ↾ α(i)) ≈ π∗
2(s ↾ i)]

where π1 and π2 are the projections of ω ×MA and s ↾ i is an abbreviation
of s ↾ Ai.

One can easily see that the following definition is well posed and that the
objects introduced in Definitions 5, 6 provide indeed a categorical tensor product
and its unit.

Definition 9 (The category of games G).
Throughout this paper, without loss of generality, we shall restrict ourselves

to “irredundant” games, i.e. to games such that every move appears in at least
one position. Any redundant game is be in fact categorically isomorphic to an
irredundant one.
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The category G has as objects games and as morphisms, between games A
and B, the equivalence classes, for the relation ≈A⊸B, of history-free strategies
σ : A ⊸ B. We denote the equivalence class of σ by [σ].

The identity for each game A is given by the (equivalence class) of the copy-
cat strategy idA = {s ∈ PA′⊸A′′ | s ↾ A′ = s ↾ A′′} where the superscripts are
introduced to distinguish between the two different occurrences of the game A.

Composition is given by the extension on equivalence classes of the following
composition of strategies. Given strategies σ : A ⊸ B and τ : B ⊸ C, τ ◦ σ :
A ⊸ C is defined by

τ ◦σ = {s ↾ (A,C) | s ∈ (MA +MB +MC)∗ & s ↾ (A,B) ∈ σ, s ↾ (B,C) ∈ τ}even

One can easily see that the constructions introduced in Definitions 5, 7 and
8 can be made to be functorial.

The category G is a monoidal closed category [3] but it is not Cartesian
closed. A Cartesian closed category of games can be obtained by taking the co-
Kleisli category K!(G) over the co-monad (!,der, δ) [3], where for each game A
the strategies derA : !A ⊸ A and δA : !A ⊸ !!A are defined as follows:

– derA = [{s ∈ P!A⊸A | s ↾ (!A)0 = s ↾ A}]
– δA = [{s ∈ P!A⊸ !!A | s ↾ (!A)p(i,j) = s ↾ (!(!A)i)j}] where p : N × N → N is

a pairing function

Hence one can easily see that the following definitions are well posed.

Definition 10 (A Cartesian closed category of games).
The category K!(G) has as objects games and as morphisms between games

A and B the equivalence class of history-free strategies for the game !A ⊸ B.

Definition 11 (Cartesian product).
Given games A and B the Cartesian product A & B is the game defined as

follows:

– MA & B = MA +MB

– λA & B = [λA, λB ]
– PA & B = PA + PB

– ≈A & B= ≈A + ≈B

1.1 Order-enrichment

Following [3] we can enrich each homset of G with a partial order structure, as
follows

Definition 12. Given strategies σ and τ we write σ . τ iff

(∀s, s′, a, b, a′)[sab ∈ σ ∧ s′ ∈ τ ∧ sa ≈ s′a′ =⇒ ∃b′.(s′a′b′ ∈ τ ∧ sab ≈ s′a′b′)]
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Definition 13. Given a game A and strategies σ : A and τ : A we define

[σ] ⊑A [τ ] ⇐⇒ σ . τ

Given a gameA let Â be the set of equivalence classes of history-free strategies
for A. ⊑A is a partial order over Â. The least element in this partial order is
[{ǫ}].

We now prove that this partial order is not complete. This proof can be easily
extended to the notion of game of [3]. This answers a question raised in [3] page.

Definition 14 (Game N). The game N is defined as follows:

– MN = {q, !} ∪ {n, n | n ∈ N}

– λN(q) = λN(n) = OQ
λN(!) = λN(n) = PQ

– PN = {qn(n− 1)(n− 1)(n− 2) . . . 00q!q!q! . . . | n ∈ N}nepref

– s ≈N t⇔ |s| = |t|

Theorem 1. (N̂,⊑N) is not a complete partial order.

Proof. Consider the following strategies indexed by n ≥ 1:

σn = {qn(n− 1)(n− 1)(n− 2) . . . 1}nepref

It is easy to check that σn . σm for n ≤ m. The chain [σ0], [σ1], . . . , [σn], . . .
has no lub, since there is no infinite history-free strategy in N. ⊓⊔

Since N̂ ≃ G(I,N) we have that

Corollary 1. The categories G and K!(G) are not cpo-enriched categories under
the order relation on morphisms of Definition 13.

2 Solution of recursive games equations

The categories of games G and K!(G) allow for the existence of recursive objects,
i.e. objects that are fixed points of particular functors. In this section we ana-
lyze and elaborate the method proposed by Abramsky and McCusker in [4], for
defining recursive games. In a simple-minded, well-founded setting, this method
allows to define only initial fixed points for the functor F (D) = D → D. However
in order to model non-trivially λβη-calculus, we need to define non-initial fixed
points of the functor F . Hence in order to be able to construct also non-initial
fixed point games, either To this end we have to consider non-well-founded sets
or, equivalently, we have to generalize the method of [4] and consider games
“up to” isomorphisms, or change the functor altogether and use some form of
encoding. In this section we shall explore the last two alternatives.
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2.1 Initial fixed points

We start by discussing briefly the method of Abramsky and McCusker [4] in a
well-founded setting,

This method follows the pattern used for building initial fixed points in the
context of information systems. First a complete partial order E on games is
introduced.

Definition 15. Let A,B be games, A is a sub-game of B (A E B) iff

– MA ⊆MB;
– λA = λB ↾ MA;
– PA = PB ∩M⊛

A ;
– s ≈A s′ iff s ≈B s′ and s ∈ PA.

One can easily see that the sub-game relation defines a complete partial
order on games. Hence a functor F which is continuous with respect to E has a
(minimal) fixed point D = F (D) given by

⊔

E F
n(I). Notice that we have indeed

an identity between D and F (D).
In domain theory, non-initial fixed points for a functor F are usually obtained

by carrying out the above construction starting from some object A, different
from the initial one (i.e. I in this case), such that A E F (A). However one can
prove that for functors F obtained from constant functors by composition of the
basic functors &, ⊗, ⊸, ( )⊥, and !, and for every game A, whose moves are
well-founded sets, if A E F (A) then ∃n ∈ N s.t. A E Fn(I). Hence, eventually,
only initial fixed points can be obtained using this technique in well-founded Set
Theory.

As remarked earlier, even if no non-trivial model of λβη-calculus can be
obtained applying this technique directly to the functor !D ⊸ D, nevertheless
using Scott’s trick (see [19]) we can still define models of λβη. What we need
is a non-trivial game which satisfies the equivalence D ≃ D&D. To see this
consider the initial fixed point, E, of the functor F (X) = X → D. This is
clearly non trivial. One can easily see that the following chain of equivalences
holds E = E → D = (E → D) → D ≃ (E → (D×D)) → D ≃ ((E → D)×(E →
D)) → D = ((E → D) × E) → D ≃ (E → D) → (E → D) = E → E. We shall
discuss this model in Section 5.

2.2 Non-initial fixed points

In order to obtain a non-initial fixed point of a functor, without having to
deal with the subtleties of non-well-founded sets, or with indirect encodings,
we present a generalization of the method proposed in [4], “up to isomorphism”.

The basic idea is to obtain a fixed point of a functor F as a limit of a chain
of approximations D0, D1, D2, . . . where, not necessarily Dn E Dn+1, but only
a weaker relation between Dn and Dn+1 holds. We simply ask that each Dn is
isomorphic to a sub-game B of Dn+1. In order to formalize our construction we
need to introduce a new category Ge. A similar category was introduced also in
[2] for other purposes.
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Definition 16. Given games A and B an embedding f : A  B is a total
injective function f : MA →MB such that:

– λA = λB ◦ f
– f∗(PA) = PB ∩ (f∗(MA))⊛

– s ≈A s′ iff f∗(s) ≈B f∗(s′)

In the above we have used the notation f∗ to denote the natural extension
of f both to sequences and sets of sequences.

Definition 17. The category of games Ge has as objects games and as morph-
isms embeddings.

Proposition 1. The category Ge is ω-cocomplete.

Each embedding f : A  B in Ge induces two morphisms f+ : A ⊸ B and
f− : B ⊸ A in G defined as follows.

Definition 18. Given an embedding f : A  B, put

f+ = {t ∈ PA⊸B | t ∈ sf}

f− = {t′ ∈ PB⊸A | t′ ∈ sf}

where sf is the least set satisfying:

sf = {t a f(a) | t ∈ sf , a ∈MA} ∪ {t′f(a) a | t′ ∈ sf , a ∈MA} ∪ {ǫ}.

One can easily see that (g ◦ f)+ = g+ ◦ f+ and (g ◦ f)− = f− ◦ g−
The category Ge is indeed isomorphic to a subcategory of G and to a subcat-

egory of Gop.
Now, using the well-known machinery, we can obtain fixed points of any

continuous functor F in Ge.

Theorem 2. Given a game D and an embedding f : D  F (D), let 〈D∞, µn〉n∈ω

be the colimit of the chain 〈(F )n(D), (F )n(f)〉n∈ω. Then, the game D∞ is the
fixed point of the functor F . The isomorphic embeddings ϕ : D∞  F (D∞) and
ψ : F (D∞)  D∞ are given by ϕ =

⊔

n∈ω F (µn) ◦ µ−1
n and ψ =

⊔

n∈ω µn ◦
F (µn)−1 respectively, where the lubs are taken in the category of partial embed-
dings.

The following Proposition will be useful in the sequel

Proposition 2. Given a game D and an embedding f : D  F (D) let 〈D∞, µn〉n∈ω

be the fixed point of the functor F . For each n ∈ N let pn : D∞ ⊸ D∞ =
(µn)+ ◦ (µn)−. Then we have:

1. for each game A and for each strategy σ : A ⊸ D∞ the following equality
holds: pn ◦ σ = {s | s ∈ (σ ∩ (inl(MA) ∪ inr(µn(MF n(D))))

⊛)}
2. for each n ∈ N
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(a) pn ⊑ pn+1

(b)
⊔

n∈ω pn = id
(c) pn ◦ pm = pmin{m,n}.

Using the above machinery, given an endofunctor (either variant or covariant)
F in G, one can obtain a fixed point of F provided there exists a covariant
continuous functor F e in Ge, which coincides with F on objects.

One can easily see that this is the case for constant functors, the functors &,
⊗, ⊸, !, ( )⊥ and their compositions.

3 Extensional λ-models in K!(G)

As it is well known, a model for λβη-calculus is a pair 〈D, f〉, where D is an
extensional reflexive object in a Cartesian closed category, i.e. an object D such
that D isomorphic to D → D, and f : D → [D → D] is an isomorphism. Two
models 〈D, f〉, 〈D′, f ′〉 are isomorphic if there exists an isomorphism g : D → D′

such that f ′ ◦ g = [g−1 → g] ◦ f .
In this section, using the techniques outlined in Section 2, we define a sub-

class, D∗, of extensional models in K!(G), and prove the crucial result, namely,
that each extensional model in K!(G) is isomorphic to a model in D∗. In Section
4 we will prove that all models in D∗ induce the λ-theory H∗.

The endofunctor Fun on the category Ge is defined as follows:
- Fun(D) = !D ⊸ D;
- f : A  B, then: Fun(f) = [!f, f ] where !f(〈i, a〉) = 〈i, f(a)〉.
One can easily see that Fun is continuous.

Definition 19. Let D∗ be the class of λ-models 〈D, f〉 where D is the limit of
a chain generated by iterating the functor Fun on an initial game D0, using an
initial embedding f∗ : D0  Fun(D0), such that for each m ∈ MD0

, f∗(m) =
inr(m

′) for some m′ ∈ MD0
. And where the isomorphism f : D → Fun(D)

in G is ϕ+ ◦ derD, where ϕ is the isomorphic embedding given by the colimit
construction.

Isomorphisms in K!(G) can be reduced to isomorphisms in Ge. In fact we
have:

Proposition 3. – For each isomorphism σ : A→ B in K!(G), there exists an
isomorphic strategy σ′ : A ⊸ B such that σ = σ′ ◦ derA ◦ σ.

– For each isomorphic strategy σ : A ⊸ B, there exists an isomorphic embed-
ding fσ : A  B such that σ = (fσ)+.

Proof. The proof of the first part of the lemma is straightforward.
As shown in [3], a history-free strategy σ : A ⊸ B can be described as a

map gσ from Opponent’s moves to Player’s moves in the game A ⊸ B. If σ is
an isomorphism, with inverse σ−1 then gσ maps each Player’s move of A in a
Player’s move of B, and each Opponent’s move in B to a Opponent’s move in
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A. In fact, suppose by contradiction, that an Opponent’s move b ∈ MB is such
that gσ(b) = b′ is a Player’s move in B, then gσ−1◦σ(b) = b′ and therefore σ−1◦σ
is not the copy-cat strategy. By a similar argument one can prove that gσ and
gσ−1 are one the inverse of the other.

The function fσ is then defined as

fσ(a) =

{
gσ(a) if λOP

B (a) = O
gσ−1(a) if λOP

A (a) = P

By an analysis similar to the one above, and using the bracketing condition it is
possible to prove that fσ preserves the labelling and that f∗

σ(PA) = PB.

In order to establish the main result of this section, we need a new definition,
and prove a technical lemma.

Definition 20. Given a game A and a move a ∈ MA, the rank of a, r(a), is
the smallest integer n such that there exists a sequence of moves a1, . . . , an such
that a1, . . . , an, a ∈ PA

Lemma 1. For each game A, for each embedding f : A  Fun(A) and for each
move a ∈ MA, if f(a) = inl(〈n, a

′〉) then r(a′) < r(a); if f(a) = inr(a
′) then

r(a′) ≤ r(a).

Proof. Let sa be a minimal position with end point a. The projection of f∗(sa)
on the left component must still be a position in P!A. Its length is strictly smaller
than that of sa, since the initial move of sa has to be mapped onto a move on
the right component. ⊓⊔

Theorem 3. Each extensional model in K!(G) is isomorphic to a model in D∗

Proof. Let 〈D,σ〉 be an extensional model in K!(G). Then, by Proposition 3 there
exists an isomorphic embedding f : D  Fun(D), such that σ = f+ ◦ derA. Let
MD0

be the largest subset of MD such that ∀d ∈ MD0
∃d′ ∈ MD0

such that
f(d) = inr(d

′). Alternatively, with a slight abuse of notation, we can define
MD0

= {d ∈ D | ∀n ∈ N . (inr
−1 ◦ f)n(d) is defined}.

It is immediate to verify that the quadruple D0 = (MD0
, λD ↾ MD0

, PD ∩
M⊛

D0
,≈D ∩(MD0

×MD0
) ) is indeed a sub-game of D. By the construction of

D0, it follows that f0 = f |D0
is an embedding from D0 to Fun(D0).

Let D∗ be the limit of the ω-chain 〈Funn(D0), Fun
n(f0)〉n∈N, and let f∗ :

D∗  Fun(D∗) be the isomorphic embedding induced by the limit construction.
We will prove that there exists an isomorphic embedding f ′ : D∗  D such that
f ◦ f ′ = Fun(f ′) ◦ f∗.

The isomorphism f ′ is defined as follows: given d ∈ Funn(D0) f
′([d]≡) =

f−1
0,n(d), where f0,n : D  Funn(D) is the isomorphism Funn−1(f)◦. . .◦Fun(f)◦
f . Since, for each n ∈ N, MFunn

(D0)
⊆MFunn

(D), f
′ is a well defined function

from MD∗ to MD. Moreover it is not difficult to verify that f ′ is an embedding.
We need to prove that f ′ is surjective. This can be done by induction on the

rank of the moves in D. Formally, we will prove that for each move d ∈ MD

there exists a move d′ in MD∗ such that d = f ′(d′).
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– Basic step. this follows form the fact that all initial moves (i.e. moves of
rank 0) are in MD0

.
– Induction step. Let d ∈ MD be a move of rank n + 1, two possible cases

arise. Either d ∈ D0, and therefore d = f ′([d]≡), or there exist p, i ∈ N

and d′ ∈ MD such that ∀m ≤ p, (inr
−1 ◦ f)m(d) is defined and f((inr

−1 ◦
f)p(d)) = inl(〈i, d

′〉). By Lemma 1 the rank of d′ is less than n + 1 and,
hence, by induction hypothesis, there exists k ∈ N and d′′ ∈ Funk(D0) such
that d′ = f ′([d′′]≡). Let d′′′ = inr

p ◦ inl(〈i, d
′′〉) ∈ Funk+p(D0), it is not

difficult to verify that d = f ′([d′′′]≡).

Moreover, it is straightforward to verify that f ◦ f ′ = Fun(f ′) ◦ f∗, and from the
fact that: [(f+ ◦ derD)−1, f+ ◦ derD] = Fun(f)+ ◦ derD→D, the theorem follows
straightforwardly. ⊓⊔

4 The fine structure of models in D∗

In order to analyze the equational theories induced by the models in D∗, we
establish an Approximation Theorem, in the style of [20, 14]. Using this result
we will be able to characterize the meaning of a term in the model as the lub of
the set of the meanings of the syntactical approximants of the term.

To our knowledge this is the first time such a theorem is proved for models
in “non-concrete” categories such as game models.

As usual it is convenient to consider Λ(Ω), an extension of λ-calculus with a
constant to denote divergence, and its indexed version Λ(Ω)N.

Definition 21. 1. The set of λΩ-terms, Λ(Ω)(∋ M) is defined from a set of
variables V ar(∋ x) as follows:

M ::= x |MM | λx.M | Ω.

2. The set of (possibly) indexed terms Λ(Ω)N(∋ M) is the superset of Λ(Ω)
defined as follows:

M ::= x |MM | λx.M | Ω |Mn.

3. A term is truly indexed if it is of the shape Mn. A term is completely
indexed if all its subterms of the shape constant, variable, abstraction, and
application are immediate subterms of truly indexed terms.

The intended meaning of an indexed term Mn is the n-th projection of the
interpretation of the term M . Hence the interpretation of λ-terms in K!(G) is
defined as follows.

Definition 22. Let 〈D,ϕ〉 be a model in D∗. The interpretation of a term M ∈
Λ(Ω)N (whose free variables are among the list ∆ = {x1, . . . , xn}) in the model

is the strategy [[M ]]D∆ : !(

|∆|
︷ ︸︸ ︷

D & . . .& D) ⊸ D defined inductively as follows:

12



[[xi]]
D
∆ = π∆

i ;
[[MN ]]D∆ = ev ◦ 〈(ϕ ◦ [[M ]]D∆) , [[N ]]D∆〉;
[[λx.M ]]D∆ = ψ ◦ Λ( [[M ]]D∆,x);

[[Mn]]D∆ = pn ◦ [[M ]]D∆;
[[Ω]]D∆ = σǫ;

where π∆
i are the canonical projection morphisms, ev and Λ denote “evaluation”

and “abstraction” in the Cartesian closed category K!(G), σǫ = [{ǫ}], ψ = ϕ−1

and the pn are the strategies defined in Proposition 2.
Given strategies σ, τ with codomain D, we use the abbreviation σ ·τ to denote

the strategy ev◦〈(ϕ◦σ), τ〉, and we will denote with (D)n the game

n
︷ ︸︸ ︷

D & . . .& D.

The main result of this section is Theorem 5. In order to establish it we need
several preliminary results.

Lemma 2. For each model 〈D∗, ϕ〉 in D∗, for each game A and pair of strategies
σ, τ : !A ⊸ D∗, we have:

1. (p0 ◦ σ) · τ = (p0 ◦ σ) · σǫ = p0 ◦ (σ · σǫ)
2. (pn+1 ◦ σ) · τ ⊑ pn+1 ◦ (σ · (pn ◦ τ)) ∀n ∈ N

Notice that in the statement of Lemma 2.2, we have not taken equality but
only inequality. This is done in order to be able to deal simultaneously not only
with models in D∗, but also, in Section 5, with models obtained using the trick
of Scott outlined in Section 2.

The following Lemmata and Definitions follow closely the pattern of [20, 14],
and they amount essentially to the game theoretic version of the corresponding
“continuous result”.

Definition 23. The erasing function R : Λ(Ω)N → Λ(Ω) is inductively defined
as follows:

1. R(x) = x; R(Ω) = Ω
2. R(PQ) = R(P )R(Q)
3. R(λx.P ) = λx.R(P )
4. R(Mn) = R(M)

Lemma 3. For each model 〈D∗, ϕ〉 in D∗, for each term M ∈ Λ(Ω) whose free
variables are in ∆, given a finite strategy σ : !(D∗)|∆| ⊸ D∗ s.t. σ ⊑ [[M ]]D

∗

∆

there exists a natural number n s.t. σ ⊑ [[Mn]]D
∗

∆ .

Lemma 4. For each model 〈D∗, ϕ〉 in D∗, for each term M ∈ Λ(Ω) whose free
variables are in ∆, given a finite strategy σ : !(D∗)|∆| ⊸ D∗ s.t. σ ⊑ [[M ]]D

∗

∆

there exists a completely indexed term Q ∈ Λ(Ω)N such that R(Q) = M and σ ⊑
[[Q]]D

∗

∆ .

Lemma 5. Let A be a game and σ : A a strategy. σ =
⊔
{τ : A | τ finite and

τ ⊑ σ}.

13



From the above Lemmata it follows that

Proposition 4. For each model 〈D∗, ϕ〉 in D∗, for each term M ∈ Λ, [[M ]]D
∗

∆ =
⊔
{[[Q]]D

∗

∆ | Q is a completely indexed term s.t. R(Q) = M}.

Definition 24. 1. The following reduction rules are definable on Λ(Ω):

(Ω1) λx.Ω → Ω

(Ω2) ΩM → Ω

2. The following reduction rules are definable on completely indexed terms of
Λ(Ω)N:

(Ωn
1 ) λx.Ωn → Ω0

(Ωn
2 ) ΩnM → Ω0

(βI) ((λx.Pn)m+1Qp)h → (P [x/Qa])b

where b = min{n,m+ 1, h}, a = min{m, p}

(β0) ((λx.P )0Q)h → (P [x/Ω])0

(βi,j) (M i)j →Mmin{i,j}

Notice again that the above definition of the (βI) indexed reduction rule and
the statement of the following Theorem are not formulated as in [20], but are
relaxed so as to take care of the model DN (see Section 5).

Theorem 4 (Validity of indexed reduction). For each model 〈D∗, ϕ〉 in
D∗, the rules (Ωn

1 ), (Ωn
2 ), (βI), (β0) and (βi,j) are valid in the following sense:

let P,Q ∈ Λ(Ω)N then

(P ։Ωn
1

Ωn
2

β0βIβi,j
Q) =⇒ [[P ]]D

∗

∆ ⊑ [[Q]]D
∗

∆ .

Lemma 6. Let Q ∈ Λ(Ω)N be a completely indexed term. Then Q is Ωn
1Ω

n
2 β0βIβi,j-

normalizing.

From the above lemma it is immediate to state the following.

Lemma 7. For each model D∗ in D∗, for each termM ∈ Λ, [[M ]]D
∗

∆ =
⊔
{[[N ]]D

∗

∆ | ∃Q
completely indexed term such that R(Q) = M and N is the Ωn

1Ω
n
2 β0βIβi,j-

normal form of Q}.

Definition 25. The direct approximant of a λ-term M ∈ Λ is a normal form
A ∈ Λ(Ω) obtained from M by replacing each redex in M by Ω, and performing
all the Ωn

1Ω
n
2 -reductions.
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Definition 26. The set of approximants of M is the set A(M) = {A | ∃M ′,M ։βη

M ′ and A is the direct approximant of M ′}.

Theorem 5 (Approximation theorem). For each model 〈D∗, ϕ〉 in D∗, for
each term M ∈ Λ, [[M ]]D

∗

∆ =
⊔
{[[A]]D

∗

∆ | A ∈ A(M)}.

Theorem 6. For each model 〈D∗, ϕ〉 in D∗, Th(D∗) = H∗.

Proof. Using Theorem 4 and standard techniques (see e.g. [6] Section 19.2), one
can prove that the structure of the approximants in Theorem 5 as well as the
partial order induced by the semantics over them coincide precisely with those of
the approximants of Scott’s D∞ model as in the continuous case. In particular
their corresponding Böhm trees satisfy the η∞-equivalence. Hence the argument
for the continuous case goes through even in the game setting, and we have that
the theory of D∗, just as in the continuous case, is H∗. ⊓⊔

5 Some examples of concrete game models for
λβη-calculus

In this Section, by way of examples, we introduce four extensional reflexive
objects in K!(G). The first two belong to D∗, the third does not, while the
fourth one is the model obtained by carrying the analogous of Scott’s trick as
outlined in Section 2.

We start by introducing three initial embeddings for the functor Fun:

Definition 27. 1. Let D◦
0 = ({∗}, λ(∗) = OQ, {ǫ, ∗}, id) and define f◦ : D◦

0 
(!D◦

0 ⊸ D◦
0) by f◦(∗) = inr(∗);

2. let D∗◦
0 = ({∗, ◦}, (λ(∗) = OQ, λ(◦) = PQ), {ǫ, ∗, ∗◦}, id) and define f∗◦ :

D∗◦
0  (!D∗◦

0 ⊸ D∗◦
0 ) by f∗◦(∗) = inr(∗) and f∗◦(◦) = inr(◦);

3. let D∗∗
0 = ({∗, ◦}, (λ(∗) = OQ, λ(◦) = PQ), {ǫ, ∗, ∗◦}, id) and define f∗∗ :

D∗∗
0 → (!D∗∗

0 ⊸ D∗∗
0 ) by f∗∗(∗) = inr(∗) and f∗∗(◦) = inl(〈0, ∗〉).

Finally, using Theorem 2 we give the following definition:

Definition 28. The models D◦
∞, D

∗◦
∞ , D

∗∗
∞ are the limits of the chains generated

by iterating the functor Fun on the embeddings f∗, f∗◦, f∗∗ respectively.

The last λ-model we introduce, defined using Scott’s trick, is DN.

Definition 29. Let AN = (N, λn.OQ, {ǫ}∪N, id). The model DN is the least fixed
point of the functor F (D) = !D ⊸ AN where the following chain holds for every
n ∈ N: DN

n+1 ≃ !DN
n ⊸ AN ≃ !DN

n ⊸ (AN & AN) ≃ (!DN
n ⊸ AN) & (!DN

n ⊸

AN) ≃ DN
n+1 & DN

n+1. Hence we have DN
n+1 ≃ !DN

n ⊸ AN ≃ !(DN
n & DN

n) ⊸

AN ≃ !DN
n ⊸ (!DN

n ⊸ AN) ≃ !DN
n ⊸ DN

n+1.

One can easily see that DN is a λ-model since any bijection p : N + N → N,
induces an isomorphism between AN and AN & AN.
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6 Conclusions and Final Remarks

In this paper we have shown that all extensional λ-models in the category G
of [3] induce the same λ-theory, this is the well-known theory H∗. It is natural
to conjecture, therefore, that there is only one non-extensional sensible λ-theory
which can be modeled using games. We recall that a sensible λ-theory is a theory
where all unsolvable terms are equated. This would be the theory B of Böhm
trees, and would be the theory of any reflexive object in K!(G), 〈D, f〉 for which
f is not an isomorphism and it maps the undefined strategy on !D ⊸ D on the
undefined strategy on D.

Our results clearly indicate that game models are even more rigid than con-
tinuous models. But is this really a “surprise”, or a “bad surprise”? Definitely
there must be some intrinsic feature of games, as they are currently defined, that
is intimately related to head reduction. It is difficult to imagine at this stage what
this is. Probably it is not the fact that we have considered only “history-free”
strategies, more likely it has to do with the “strict” protocol of alternation of
moves between Opponent and Player. We feel however that when the appro-
priate constraint will be relaxed, the perspicuous analytic power of games will
become applicable also to other reduction strategies, besides head reduction.

We end this paper with two more technical notes.
It is worth noticing that in our models of untyped λ-calculus it is not neces-

sary to take at the very end an extensional quotient, as done for typed calculus
[3] or the lazy λ-calculus [4].

The essential ingredient in the proof of Theorem 6 is Lemma 2. This has a
bearing also on models in the category of C.P.O.’s. Namely H∗ is the theory
of all inverse limits obtained starting from an initial injection where all points
are mapped onto constant functions as well as that of the “Scott’s trick model”
presented in [19].
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A Proofs

Proof of Proposition 1
Given an ω-chain 〈Dn, fn〉 with fn : Dn  Dn+1 its colimit is 〈D∞, µn〉

where D∞ is the game:

– MD∞
= (

⋃

n∈ω MDn
)/≡

where ≡ is the least equivalence relation such that

∀n ∈ N ∀a ∈ Dn ∀b ∈ Dn+1. fn(a) = b ⇒ a ≡ b.

– λD∞
([a]≡) = λDn

(a) if a ∈ Dn,

– PD∞
=

⋃

n∈ω{[a1]≡[a2]≡ . . . [ap]≡ | a1a2 . . . ap ∈ PDn
}

– ≈D∞
=

⋃

n∈ω {([a1]≡[a2]≡ . . . [ap]≡, [a
′
1]≡[a′2]≡ . . . [a

′
p]≡) |

(a1a2 . . . ap, a
′
1a

′
2 . . . a

′
p) ∈ ≈Dn

}
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The colimit functions µn : Dn  D∞ are defined by µn(a) = [a]≡. ⊓⊔

Proof of Lemma 2

1. From Proposition 2 we have
p0 ◦ σ = {s ∈ σ | s ∈ σ ∧ s ∈ (inl(M!A) ∪ inr(µ0(MD0

)))}. Let ϕ′ : D ⊸
(!D ⊸ D) the strategy such that ϕ = ϕ′ ◦ derD. It follows that
ϕ′ ◦ p0 ◦ σ : !A ⊸ (!D∗ ⊸ D∗)
= {s ∈ σ | s ∈ σ ∧ s ∈ (inl(M!A) ∪ inr(inr(µ0(MD0

))))}. Hence the
strategy ϕ′ ◦ (p0 ◦ σ) never interacts with its second input. We have then
(p0 ◦ σ) · τ = ev ◦ 〈(ϕ ◦ (p0 ◦ σ)), τ〉 = (p0 ◦ σ) · σǫ. In the same way we get
p0 ◦ (σ · σǫ) = (p0 ◦ σ) · σǫ.

2. From Proposition 2, and Theorem 2 we have
ϕ′ ◦ (pn+1 ◦ σ) : !A ⊸ (!D∗ ⊸ D∗)
= {s ∈ σ | s ∈ σ ∧ s ∈ (inl(M!A) ∪ inr(inl(µn(MFunn(D0))))
∪ inr(inr(µn(MFunn(D0)))))}.
Hence the strategy ϕ′ ◦ (pn+1 ◦σ) considers only the moves in µn(MFun(D0))
of its second component and returns only moves in µn(MFun(D0)) as output.
It follows that (pn+1 ◦σ) · τ = pn ◦ (σ · (pn ◦ τ)), and from this (pn+1 ◦σ) · τ ⊑
pn+1(σ · (pn ◦ τ)).

⊓⊔

Proof of Lemma 3
Since σ ⊑ [[M ]]D

∗

∆ : !(D∗)∆ ⊸ D then each position of σ has a corresponding
position in [[M ]]D

∗

∆ ; but σ is finite, hence there exist an n such that σ involves
only moves “in D∗

n”. ⊓⊔

Proof of Lemma 4
Induction on M .

1. M ≡ x. Follows from lemma 3.
2. M ≡ λx.P . Given a finite σ s.t. σ ⊑ [[λx.P ]]D

∗

∆ then Λ−1(ϕ ◦ σ) ⊑ [[P ]]D
∗

∆,x.
Since Λ preserves finiteness of strategies and since ϕ is an isomorphism, by
induction hypothesis, there exists an indexed term Pn s.t. Λ−1(ϕ ◦ σ) ⊑
[[Pn]]D

∗

∆,x. Hence we get σ ⊑ [[λx.Pn]]D
∗

∆ by definition of interpretation of

terms and hence σ ⊑ [[(λx.Pn)m]]D
∗

∆ by Lemma 3.
3. M ≡ PQ. If σ ⊑ [[PQ]]D

∗

∆ then σ = ev ◦ 〈ϕ ◦ [[P ]]D
∗

∆ , [[Q]]D
∗

∆ 〉. Since ev
is continuous there are finite strategies σ1, σ2 s.t. σ1 ⊑ ϕ ◦ [[P ]]D

∗

∆ , σ2 ⊑
[[Q]]D

∗

∆ and ψ ◦ σ1 ⊑ [[P ]]D
∗

∆ since ψ preserve fini‘teness of strategies. Hence,
by induction hypothesis, there exist completely indexed terms Pn and Qm

s.t. ψ ◦ σ1 ⊑ [[Pn]]D
∗

∆ and σ2 ⊑ [[Qm]]D
∗

∆ . By Lemma 3 we can then conclude
that there exists an h s.t. σ ⊑ [[(PnQm)h]]D

∗

∆ .
⊓⊔

Proof of Proposition 4
Since the projection functions are smaller that the identity we have: [[Q]]D

∗

∆ ⊑
[[M ]]D

∗

∆ . From Lemma 5 and 4 we have [[M ]]D
∗

∆ =
⊔
{σ | σ finite and σ ⊑
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[[M ]]D
∗

∆ } ⊑
⊔
{[[Q]]D

∗

∆ | Q is an indexed term and R(Q) = M} = [[M ]]D
∗

∆ since
σ ⊑ [[Q]]D

∗

∆ ⊑ [[M ]]D
∗

∆ . ⊓⊔

Proof of Theorem 4

1. Rules (Ωn
1 ) and (Ωn

2 ). Since the interpretation of Ωn is always σǫ, the empty
strategy, the validity of the rules follows easily.

2. Rule (βI).

[[((λx.Pn)m+1Qp)h]]∆
= ph◦ [[(λx.Pn)m+1Qp]]∆
= ph ◦ ([[(λx.Pn)m+1]]∆· [[Qp]]∆)
= ph ◦ ((pm+1◦ [[λx.Pn]]∆) · (pq◦ [[Q]]∆))
⊑ ph ◦ pm+1 ◦ ([[λx.Pn]]∆ · (pm ◦ pq◦ [[Q]]∆))

(by lemma 2)
= pmin{h,m+1} ◦ ([[λx.Pn]]∆ · (pmin{m,q}◦ [[Q]]∆))

= pmin{h,m+1} ◦ ([[λx.Pn]]∆· [[Qmin{m,q}]]∆)

= pmin{h,m+1}◦ [[Pn[x/Qmin{m,q}]]]∆
= pmin{h,m+1} ◦ pn◦ [[P [x/Qmin{m,q}]]]∆
= pb◦ [[P [x/Qa]]∆

3. Rule (β0).

[[((λx.P )0Q)h]]∆
= ph ◦ ((p0◦ [[λx.P ]]∆)· [[Q]]∆)
= ph ◦ (p0 ◦ ([[λx.P ]]∆ · σǫ))

(by lemma 2)
= ph ◦ (p0 ◦ ([[λx.P ]]∆· [[Ω]]∆))
= p0 ◦ ([[P [x/Ω]]]∆)

4. Rule (βi,j) follows immediately from Proposition 2.2.c

Proof of Theorem 5
Since [[A]]D

∗

∆ ⊑ [[M ]]D
∗

∆ for each approximant A and A(M) is a strongly dir-
ected set of strategies we get

⊔
{[[A]] | A ∈ A(M)} ⊑ [[M ]]D

∗

∆ . Since erasing the
indexes from an indexed normal term Q we get an approximant of M , see [20],
by lemma 7 we get the equality. ⊓⊔
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