
A certified, corecursive implementation

of exact Real Numbers

Alberto Ciaffaglione a, Pietro Di Gianantonio b

aDepartment of Informatics, University of Sussex, UK
bDipartimento di Matematica e Informatica, Università di Udine, Italy

Abstract

We implement exact real numbers in the logical framework Coq using streams, i.e.,
infinite sequences, of digits, and characterize constructive real numbers through
a minimal axiomatization. We prove that our construction inhabits the axiomati-
zation, working formally with coinductive types and corecursive proofs. Thus we
obtain reliable, corecursive algorithms for computing on real numbers.

Key words: Exact computation, Streams of digits, Lazy functional algorithms,
Coinductive type theories, Interactive theorem proving, Program and system
verification, Logical Frameworks, Coq.

1 Introduction

Computer programs for scientific, numerical applications are largely used in
practice, as e.g. in numerical analysis, computational geometry and hybrid sys-
tems, but seldom their reliability is addressed formally. A rigorous approach
to this kind of software is nowadays crucial in many disciplines, such as math-
ematics, physics, informatics, engineering, aeronautics, because these employ
widely computer systems for performing high-precision numerical data elabo-
ration. Therefore, a first step towards the development of trusted information
technology is the availability of dependable implementations of the real num-
bers. Programming languages typically provide floating-point real numbers
(i.e., approximations of the reals through rational numbers), but these “ma-
chine” numbers fail to form a field, already by failing to be closed under the
field operations. Computer algebra systems (as Maple, or Mathematica) repre-
sent the reals again via floating-point techniques, or by means of high-precision
formal calculi, i.e., formalisms carrying out symbolic calculations. Anyway, it
is possible to exhibit counterexamples enlightening the unreliability of such
an approach w.r.t. the computational practice.

Preprint submitted to Elsevier Science 19 April 2007

The crucial point is that both in programming languages and computer alge-
bra systems it is not possible to address formally the verification of software.
A different technology, providing with the possibility of carrying out mathe-
matical proofs, is supplied by Logical Frameworks; we are interested in this
work in Logical Frameworks based on Type Theory (LFs) and their implemen-
tations. Typically, LFs supply only discrete primitive numerical datatypes, as
naturals, integers and eventually rational numbers. The goal of the present
work is to construct the real numbers in LFs. This construction will be done in
an intuitionistic, i.e., constructive, logic, which is quite well-suited w.r.t. the
computational perspective. We intend to adhere to the constructive setting à
la Brouwer and Bishop: constructive mathematics is algorithmic mathematics.

In order to settle our work we should choose a suitable representation for the
reals. Several solutions have been proposed in order to overcome the unrelia-
bility of the floating-point practice: interval arithmetic, stochastic arithmetic,
multiple-precision arithmetic, exact arithmetic, which we are interested about
in the present paper. Exact representation and computation, which originates
from seminal ideas of Brouwer and Turing, is gaining continuously growing
interest in recent years [PEE97, Wei00]: roughly speaking, it allows to avoid
completely the round-off practice, thus permitting to obtain correct results of
desired precision from computations, without having to carry out any inde-
pendent error analysis. Among the “exact” alternatives for representing the
reals, we prefer digit expansions, i.e., infinite sequences of positional digits.
Hence, our goal is to provide the LFs with an exact implementation of the real
numbers, using streams (i.e., infinite sequences) of digits, and such that the
reals supply a concrete structure suitable both for reasoning and for calcu-
lating. To approach streams and exact computation formally in LFs, we need
tools for defining and reasoning about infinite objects. The modern, canonical
way for dealing with circular, non well-founded entities, is to adopt coinduc-
tion, which is partially supported by the current generation of LFs. Among the
several frameworks, the Calculus of Inductive and Coinductive Constructions
(CC(Co)Ind) [CH88, Coq93, Gim94] is a type theory providing the user with
coinductive definition and proof principles. CC(Co)Ind is implemented in the
system Coq [INR04], the unique proof assistant, up-to our knowledge, provid-
ing the user with native tools for building infinitary derivations. These are
carried out via the proof tactic Cofix, which permits to develop infinitely re-
gressive proofs using the thesis as an extra hypothesis, provided its application
is guarded by introduction rules [Gim94].

Synopsis. We pick out the proof assistant Coq for experimenting an exact,
corecursive implementation of the real numbers via streams of digits. In Sec-
tion 2 we fix the representation and implement some fundamental functions.
Then, in the core Sections 3 and 4, we introduce and justify a constructive
axiomatization of the reals, and we use it for addressing the adequacy of the
implementation internally in Coq, respectively. Conclusions, related work and

2

directions for future research are in Section 5, while the full Coq development
is available at [CDG04]. The present document reports the full picture of our
research, whose early steps were documented in [CDG00] and [CDG01].

2 Real Numbers as streams of signed digits

In this work we represent real numbers using streams of digits, interpreted as
infinite positional expansions, and we work with constructive logic, which is
well-suited w.r.t. the computational perspective. It is well known that the
standard positional notations are not computationally adequate w.r.t. the
arithmetic operations. An usual solution for this problem is to adopt redun-
dant digit notations, where a real number enjoys more than one representation
(typically, infinitely many ones). The following are equivalent possibilities: any
integral base with negative digits (Leslie 1817, Cauchy 1840); base 2/3 with
binary digits (Brouwer 1920, Turing 1937); digit notations with an irrational
base; infinitely iterated Möbius transformations (Edalat and Potts 1997). We
decide to adopt the first approach, i.e., a signed-digit notation. Starting from
the standard binary notation, we add the negative digit −1 to the digits 0 and
1, and maintain 2 as the value for the base.

Definition 2.1 (Ternary streams) Let str be the set of the infinite se-
quences built of ternary digits:

str = {a1 : a2 : a3 : . . . | ∀i ∈ IN+. ai ∈ {0, 1,−1}}

The elements of str represent the real numbers in the interval [−1, 1] via the
interpretation function [[]] : str → IR, defined by:

[[a1 : a2 : a3 : . . .]] =
∑

i∈IN+

ai · 2−i

To give an example, the number 1/2 can be represented by the ternary stream
1:0:0: . . ., or by the stream 0:1:1: . . ., as well as by the stream 1:1:− 1:− 1: . . .
With the above representation we can treat just numbers in the interval [−1, 1].
To dispose of arbitrarily large reals, it is necessary to use an exponent-mantissa
notation: namely, it is possible to encode real numbers by pairs formed by
a natural number and a stream. With this approach, 〈n, x〉 represents the
number 2n · [[x]]. For lack of space, we treat in this paper only the stream
representation of the numbers [−1, 1]. This is the most interesting part of
the work: in fact, all notions and properties can be then straightforwardly
extended to the exponent-mantissa representation, see [Cia03] for details.

In order to complete our construction it is necessary to provide an order rela-
tion and a field structure: actually, the real line is completely determined by

3

the binary strict order relation (<) and the arithmetic operations of addition
and multiplication. We considered several different possible characterizations
for order, addition and multiplication along our research: at the end, we choose
to describe not only the order, but also the operations using relations and not
functions. This choice is due to the fact that relations are simpler to specify
and work with. An intuitive motivation is that functions are requested to be
“productive” —i.e., they must supply a method to effectively produce the re-
sult, given the input; on the contrary, a relation just specifies the constraints
that the output has to satisfy w.r.t. the input. Thus it is a simpler task to prove
the formal properties of the relations. Anyway, we will introduce the functions
as well and we will prove they are coherent w.r.t. the relations. One can inter-
pret this fact saying that the implementation (described by algorithms, i.e.,
functions) satisfies the specification (described by relations).
We have devised that the length and the complexity of the formal proofs about
the relations are greatly affected by the pattern of their specifications: very
often the proofs are carried out by structural (co)induction on the derivations,
thus the number of the cases to consider grows together with the number of
constructors of the relation involved. In order to simplify the proofs, we have
formalized the (co)inductive relations using at most two constructors, thus
reducing the cases to address.

Relations. The strict order relation (<) is defined by induction: this is pos-
sible because, given two R-pairs, we can semi-decide whether the first is
smaller than the second just by examining a finite number of digits. The
binary strict order relation on streams is defined in terms of an auxiliary
ternary relation less aux ⊆ (str × str × Z), whose intended meaning is:
less aux(x, y, i) ⇔ ([[x]] < [[y]] + i).
This auxiliary relation permits to simplify the management of the order: the
use of the integer parameter i allows to obtain simpler proofs, because the
extensive case analysis on the ternary digits is replaced by automated proofs
over integers. The main binary relation on streams less ⊆ (str×str) is defined
fixing the value of the integer parameter to 0.

Definition 2.2 (Order)
The relation less aux ⊆ (str × str × Z) is defined by induction:

(less-base)
big ≤ i

less aux(x, y, i)
where big > 2

(less-ind)
less aux(x, y, (2i + b− a))

less aux(a : x, b : y, i)

The strict order relation on streams, less ⊆ (str × str), is defined by:
less(x, y) , less aux(x, y, 0)

This definition, parametric on the value big, requires some additional explana-
tions. It is easy to see, referring to the intended meaning, that less aux(x, y, i)

4

is valid for any value of the parameter i greater than 2: a natural choice for
the constant big would be the integer 3, but it turns out that any greater value
gives rise to an equivalent definition. Moreover, we have found that greater
values simplify several proofs built by structural induction on the judgement
less aux: in fact, the (less−base) rule has a stronger premise as the value of
big grows, and so it provides a stronger inductive hypothesis. By our experi-
ence there is no canonical choice for big; however we found out that the value
32 is sufficiently large to simplify all the proofs we need to construct and that
larger values do not give rise to any extra simplification. So we propose 32 as
convenient choice for the constant big. It is immediate to see that the base
rule is sound. The induction rule can be informally justified by means of a
simple calculation: [[a : x]] < ([[b : y]]+ i) ⇔ a/2+([[x]]/2) < b/2+([[y]]/2)+ i
⇔ [[x]] < [[y]] + 2i + b− a.

Differently from the order, the arithmetic relations can be naturally defined
by coinduction, because the process of adding and multiplying two real num-
bers is in general not terminating. Coinductive relations give rise to assertions
that have to be proved by an infinite application of the corresponding con-
structors [Coq93, Gim94]. The relations of addition and multiplication share
the following pattern: relation(operand1, operand2, result). We start from
addition: as done for the order relation, we define first an auxiliary relation on
streams. The relation add aux ⊆ (str× str× str×Z) has intended meaning:
add aux(x, y, z, i) ⇔ ([[x]] + [[y]]) = ([[z]] + i).

Definition 2.3 (Addition)
The relation add aux ⊆ (str × str × str × Z) is defined by coinduction:

(add-coind)
add aux(x, y, z, (2i + c− a− b)) (−big < i < big)

add aux(a : x, b : y, c : z, i)

The addition relations on streams, add ⊆ (str × str × str), is defined by:
add(x, y, z) , add aux(x, y, z, 0)

Note that there is no base rule proving in one step a statement in the form
add aux(x, y, z, i). A proof of add aux(x, y, z, i) has to be an infinite object
obtained by applying infinitely the constructor (add-coind). Coinductive pred-
icates are, for many aspects, similar to lazy data types (such as streams them-
selves), whose elements are obtained by applying infinitely the concatena-
tion constructor. The side-condition (−big < i < big) has been introduced
in order to make the relation add aux not total —otherwise, given any 4-
tuple x, y, z, i, there would exists an instance of the add-coind rule deriving
add aux(x, y, z, i), and therefore it would be possible to construct an infini-
tary proof of add aux(x, y, z, i) for any x, y, z, i. Similarly to the order, val-
ues of big greater than 3 give rise to equivalent definitions, but larger val-
ues lead to simpler proofs. The coinductive rule (add−coind) can be infor-

5

mally justified by the calculation: ([[a : x]] + [[b : y]]) = ([[c : z]] + i) ⇔
a/2+([[x]]/2)+b/2+([[y]]/2) = c/2+([[z]]/2)+i ⇔ [[x]]+[[y]] = [[z]]+2i+c−a−b.

As far as the multiplication is concerned, we define a preliminary multiplica-
tion function between signed digits and streams timesd,str : {0,−1, 1}×str →
str, with the obvious behaviour: [[timesd,str(a, x)]] = a · [[x]] . As usual, the
multiplication is reduced to a series of additions; in this way, we can define
directly a ternary multiplication relation on streams (mult).

Definition 2.4 (Multiplication)
The function timesd,str : {−1, 0, 1} × str → str is defined by corecursion:

timesd,str(a, (b : x)) , (a · b) : (timesd,str(a, x))

The multiplication relation on streams mult ⊆ (str × str × str) is defined by
coinduction:

(mult-coind)
mult(x, y, w) add(0 : timesd,str(a, y), 0 : w, z)

mult(a : x, y, z)

The coinductive rule (mult−coind) can be informally justified by: ([[a : x]] ·
[[y]]) = [[z]] ⇔ (a/2 + [[x]]/2) · [[y]] = [[z]] ⇔ (a · [[y]])/2 + ([[x]] · [[y]])/2 = [[z]].

Exact arithmetic algorithms. In the following we define the main functions
on reals; then, in section 4, we will prove that they are coherent with respect
to the specifications defined by relations above.

Addition. The addition of streams is defined via an auxiliary function +aux :
(str × str × [−2, 2]Z) → str, where we denote with [−2, 2]Z the set of in-
tegers {−2,−1, 0, 1, 2}. Using +aux, one can easily define the function on
streams (+str). The behaviours are: [[+aux(x, y, i)]] = ([[x]] + [[y]] + i)/4 and
[[+str(x, y)]] = ([[x]] + [[y]])/2. Notice that, since a single stream can represent
only the real numbers in the interval [−1, 1], the result of the addition be-
tween streams has to be normalized (divided) by a factor 2. We remark that
our algorithm has linear complexity, as just examines one digit of the (stream)
arguments to generate a digit of output.

Definition 2.5 (Addition function)
The function +aux : (str × str × Z) → str is defined by corecursion:

+aux(a : x0, b : y0, i) , let j := (2i + a + b) in

Cases j of

j ≥ 2 ⇒ (1 : +aux(x0, y0, j − 4))

j ∈ [−1, 1] ⇒ (0 : +aux(x0, y0, j))

j ≤ −2 ⇒ (−1 : +aux(x0, y0, j + 4))

6

The addition function on streams, +str : (str × str) → str, is defined by:
+str(a : x0, b : y0) , +aux(x0, y0, a + b)

Multiplication. The multiplication algorithm is defined in terms of the addition
one. Also for multiplication it is convenient to use the auxiliary functions
×aux : (str × str × str × [−2, 2]Z) → str and ×4 : str → str, with behaviour:
[[×aux(x, y, z, i)]] = (([[x]] · [[y]]) + [[z]] + i)/4, and [[×4(x)]] = [[x]] · 4, in the
case that [[x]] is contained in the interval [−1/4, 1/4]. For lack of space we
do not specify the (trivially definable) ×4 function, whose formal definition
can be found in [Cia03]. Note that our multiplication algorithm has quadratic
complexity on the number of generated digits.

Definition 2.6 (Multiplication function)
The function ×aux : (str× str× str× [−2, 2]) → str is defined by corecursion:

×aux(a : x0, y, c : z0, i) , let (d : e : w) := +aux(×d,str(a, y), z0, i) in

let j := (2d + e + c + i) in

Cases j of

j ≥ 3 ⇒ (1 : ×aux(x0, y, w, j − 4))

j ∈ [−2, 2] ⇒ (0 : ×aux(x0, y, w, j))

j ≤ −3 ⇒ (−1 : ×aux(x0, y, w, j + 4))

The multiplication function on streams, ×str : (str× str) → str, is defined by:
×str(x, y) , ×4(×aux(x, y, 0, 0)).

An informal proof of correctness for ×aux must consider all the possible cases
for the test on j. The first case is justified by the following chain of equalities:

([[a : x0]] · [[y]] + [[c : z0]] + i)/4

= ((a + [[x0]]) · [[y]] + c + [[z0]] + 2i)/8

= ([[x0]] · [[y]] + ([[z0]] + a · [[y]] + i) + i + c)/8

= ([[x0]] · [[y]] + ([[d : e : w]] · 4) + i + c)/8

= [[x0]] · [[y]] + [[w]] + (2d + e + i + c))/8

= 1/2 + 1/2 · ([[x0]] · [[y]] + [[w]] + j − 4)/4

The other cases can be treated similarly. To complete the proof of correctness,
one should also prove that in each recursive call the integer argument i is
always contained in the interval [−2, 2], which is carried out by case analysis.

Negation and Reciprocal. The negation of a stream can be trivially defined
by negating, one by one, the single digits of the stream. More complex is the
definition of the reciprocal. For evaluating the reciprocal, we have to introduce
the division function on streams div, and, in turn, an auxiliary function test :
(str × str) → Z. The expression test(x, y) returns an integer approximant of
the value (25 · [[x]]− 23 · [[y]]), the expression div(x, y) returns the value [[x]]/[[y]]

7

on the hypotheses that [[x]]/[[y]] is representable (i.e., it belongs to the interval
[−1, 1]) and [[y]] belongs to the interval [1/4, 1].

Definition 2.7 (Division function)
The test function on streams test : (str × str) → Z is defined by:
test(a : b : c : d : e : x4, f : g : h : y2) , 16a+8b+4(c−f)+2(d−g)+(e−h).
The division function on streams div : str → str is defined by corecursion:

div(x, y) , let x := (a : b : c : x2), j := (4a + 2b + c), i := test(x, y) in

if (j ≥ 0) (∗ [[x]] ≥ −1/8 ∗)
then if (i ≥ 0) (∗ 4[[x]]− [[y]] ≥ −1/4 ∗)

then 1 : div(×4(+str(x,−(0 : y))), y)

else 0 : div(×4(+str(0 : x, 0 : x)), y)

else if (i ≥ 0) (∗ 4[[x]]− [[y]] ≥ −1/4 ∗)
then 0 : div(×4(+str(0 : x, 0 : x)), y)

else − 1 : div(×4(+str(x, 0 : y)), y)

Limit. To complete our construction we need to define a limit function that,
taken as input a Cauchy sequence with an exponential convergency rate,
returns its limit. To this end, we employ a normalization function norm :
(digit × str) → str. The expression norm(a, x) returns a stream such that,
whenever possible, the following equality holds: [[x]] = [[a : norm(a, x)]] (its
actual definition can be found in [Cia03]). Given a sequence 〈xn〉n∈IN having
an exponential convergency rate: ∀n. |[[xn]]− [[xn+1]]| ≤ 2−(n+4), its limit is con-
structed by generating the first digit looking at the first three digits of x0, and
applying corecursively the method to the subsequence 〈xi+1〉i∈IN , point-wise
modified by the function norm.

Definition 2.8 (Limit function) The limit function on stream sequences
lim : (IN → str) → str is defined by corecursion:

lim(〈xn〉n∈IN) , let x0 := (a : b : c : y), j := (4a + 2b + c) in

Cases j of

j ∈ [3, 7] ⇒ 1 : (lim(λn. (norm(1, xn+1))))

j ∈ [−2, 2] ⇒ 0 : (lim(λn. (norm(0, xn+1))))

j ∈ [−7,−3] ⇒ −1 : (lim(λn. (norm(−1, xn+1))))

Equivalence. In constructive analysis, it is possible to describe the equiva-
lence relation on real numbers by means of the order relation: equalind(x, y)
, ¬less(r, s) ∧ ¬less(s, r). It is interesting to notice that the equivalence can
also be defined directly via a coinductive predicate. In this case, it is con-
venient to introduce first an auxiliary relation equal aux ⊆ (str × str × Z),

8

which has intended meaning: equal aux(x, y, i) ⇔ ([[x]] = [[y]] + i)

(equal-coind)
equal aux(x, y, (2i + b− a)) (−big < i < big)

equal aux(a : x, b : y, i)

Then, the equivalence relation on streams equal ⊆ (str × str) is defined by:
equal(x, y) , equal aux(x, y, 0). In our formalization of the real numbers we
have used both definitions, and the proof that they coincide is in [Cia03].

Adequacy. There are two main approaches that can be used for justifying
the construction presented above: the first one can be called external-semantic,
while a second one is internal-axiomatic. According to the semantic approach,
we justify the predicates of order, addition and multiplication by proving that
their specification is sound and complete with respect to an external model of
the reals IR. A proof of correctness along these lines can be found in [CDG00].
Following the second approach, we first present an axiomatization of the con-
structive real numbers, then we prove that our implementation provides a
model for these axioms. These are the subjects of Sections 3 and 4.

3 A Constructive Axiomatization

We fix here a characterization of the constructive real numbers through a
novel, minimal axiomatization. In the literature there are two alternative,
equivalent axiomatizations. One is proposed by Bridges [Bri99], and a second
one by the FTA group [GPWZ00, GN01]. A comparison between our axiom-
atization and the latter can be found in [CDG01]; here we just remark that
the main objective of our approach is to have a minimal set of axioms to be
formalized in the logical framework we use.

In order to state our axioms we should dispose of a logical system that accom-
modates the second-order quantification —to axiomatize the completeness—
and the Axiom of Choice —for defining the “reciprocal” function on reals
different from zero. The proof assistant Coq provides such a logical system.

Sets, functions, predicates and axioms. We postulate the constructive
real numbers as the mathematical objects satisfying four groups of axioms.
The basic notions are the following:

• a representation set R, with two elements 0R (zero) and 1R (one);
• a binary relation < (strict order) over R;
• two binary operations + (addition) and × (multiplication) over R.

It is then convenient to introduce two relations and two functions:

9

• a binary relation ∼ (equivalence) over R tells that two different elements
represent the same number, thus capturing the redundancy of the represen-
tation;

• two functions inj : IN → R (inj(n) = n) and exp : IN → IN (exp(n) = 2n)
are used in the archimedeanity and completeness axioms;

• a ternary relation near ⊆ R × R × IN (near(x, y, n) ⇔ |x − y| ≤ 2−n)
describes the Euclidean metric.

Axioms. As standard in constructive approaches to analysis [TvD88], the
set of real numbers is defined as the quotient of a set of representations. Our
axiomatization is parametric with respect to the set IN of the natural numbers,
that we suppose to be given. In our formalization in Coq, IN is taken as the
set of the inductive natural numbers. Finally, we claim that constructive real
numbers are captured by the following axiomatization.

Definition 3.1 (Axioms for constructive real numbers)

Constants : R, {0R, 1R} ∈ R, < ⊆ R×R, + : R×R → R, × : R×R → R

Defs : ∼ ⊆ R×R (x ∼ y) , ¬(x < y) ∧ ¬(y < x)

inj : IN → R inj(0) , 0R, inj(n + 1) , inj(n) + 1R

exp : IN → IN exp(0) , 1, exp(n + 1) , exp(n) · 2
near ⊆ R×R× IN near(x, y, n) , ∀ε ∈ R. (1R < ε× inj(exp(n))) ⇒

(x < y + ε) ∧ (y < x + ε)

Axioms : +-associativity ∀x, y, z ∈ R. (x + (y + z)) ∼ ((x + y) + z)

+-unit ∀x ∈ R. (x + 0R) ∼ x

negation ∀x ∈ R. ∃y ∈ R. (x + y) ∼ 0R

+-commutativity ∀x, y ∈ R. (x + y) ∼ (y + x)

×-associativity ∀x, y, z ∈ R. (x× (y × z)) ∼ ((x× y)× z)

×-unit ∀x ∈ R. (x× 1R) ∼ x

reciprocal ∀x ∈ R. (0R < x) ⇒ ∃y ∈ R. (x× y) ∼ 1R

×-commutativity ∀x, y ∈ R. (x× y) ∼ (y × x)

distribuitivity ∀x, y, z ∈ R. (x× (y + z)) ∼ (x× y) + (x× z)

non triviality 0R < 1R

< -asymmetry ∀x, y ∈ R. (x < y) ⇒ ¬(y < x)

< -co-transitivity ∀x, y, z ∈ R. (x < y) ⇒ (x < z) ∨ (z < y)

+-reflects- < ∀x, y, z ∈ R. (x + z < y + z) ⇒ (x < y)

×-reflects- < ∀x, y ∈ R. (x× z < y × z) ⇒
(x < y) ∨ ((y < x) ∧ (z < 0R))

10

archimedeanity ∀x ∈ R. ∃n ∈ IN. x < inj(n)

completeness ∀f : IN ⇒ R. ∃x ∈ R.

(∀n ∈ IN. near(f(n), f(n + 1), n + 1)) ⇒
(∀m ∈ IN. near(f(m), x, m))

Arithmetic operations. As the reader can see, the properties required for the
arithmetic operations are just those characterizing a classical abelian field:
in [Bri99], this set of properties is named “Heyting field”. Notice, however, a
slight simplification: it is sufficient to assume the existence of the reciprocal
only for positive reals. We do not assume the existence of the “negation” (−)
and “reciprocal” (−1) functions. The main reason for this choice is that the
reciprocal function cannot be defined in Coq, where functions have to be totally
specified. Moreover, in a constructive setting, functions have to be continuous
w.r.t. the Euclidean topology; however, it is not possible to make continuous
by extension the reciprocal function. Thus we assume the existence, for each
real x, of its negation, and, if 0 < x, its reciprocal elements. In this way we
must postulate the Axiom of Choice for extracting effectively the negation and
the reciprocal of a number x. The necessity of the Axiom of Choice can be seen
as a weakness of the axiomatization; however, there is no simple way to avoid
it: in fact, without Choice, the reciprocal function could not be defined in Coq

(whereas the negation function and the limit functional can be defined).

Order relation. First notice that the classical Law of Trichotomy (x < y)∨(x =
y) ∨ (y < x) fails to be a constructive property [Bri99]: its substitute, in the
constructive setting, is the property (x < y) ⇒ (x < z) ∨ (z < y), named
<-co-transitivity.
We remark that it is sufficient to define only the relation of order, because in
constructive mathematics the order is universally considered the most funda-
mental relation for the real numbers. In our approach, in fact, the equivalence
is a derived notion. We are able to derive all the basic properties relating
the equivalence to the operations from the two reflection axioms: +-reflects-
< and ×-reflects-<. The fact that the equivalence is preserved by the basic
notions (order, addition and multiplication), is an immediate corollary of the
two reflection axioms and the <-co-transitivity one.

Archimedeanity and Completeness. The Archimedean axiom links the real
numbers to the natural numbers, stating that reals are standard with respect
to naturals. The completeness property is postulated asking for the existence
of the limit for any Cauchy sequence 〈sn〉n∈IN with an exponential convergency
rate (∀n ∈ IN. |sn − sn+1| ≤ 2−(n+1)). Many alternative choices for capturing
the completeness might be stated, and our axiom could appear weak at a first
glance. Indeed, it is necessary to know the convergency rate of a Cauchy se-
quence S in order to evaluate constructively its limit: from such a convergency

11

rate, it is then possible to extract (constructively) a subsequence of S having
an exponential convergency rate. Therefore, starting from our axiom, we are
able to derive the alternative completeness properties found in the literature
[Bri99, GN01]. Our choice is motivated by simplicity reasons.

Axioms at work. Most of the elementary mathematical theory can be easily
derived from our axiomatization. Namely, it is possible to prove that the order
is transitive, that the operations of addition and multiplication preserve, and
reflect, the relations of order and equivalence. Such a development of the basic
arithmetic theory for the constructive reals has been formally carried out using
the proof assistant Coq [CDG04], and has been presented in [CDG01].

4 Consistency

In this section we document the certification of the implementation presented
in section 2, using the axiomatization 3.1: first we discuss the formalization
in Coq, then we present the development of the formal proofs. For lack of
space, we address only the axioms at the level of streams; this is the most
interesting part of the work, as all proofs can be straightforwardly extended
to the exponent-mantissa representation, see [Cia03] for details.

Formalization in Coq. We represent signed-digits and streams in the spec-
ification language of CC(Co)Ind through concrete sets:

Inductive digit: Set := mino: digit | zero: digit | one: digit.

CoInductive str: Set := cons: digit -> str -> str.

The specification of order, addition and multiplication predicates requires to
introduce the function code, which maps the constructors of digits into cor-
responding built-in integer values, thus allowing to automate integer calcula-
tions. The encoding of the main predicates less, add and mult is carried out
formalizing the specifications of section 2. We report below just the “auxiliary”
level code for addition:

CoInductive add_aux: str -> str -> str -> Z -> Prop :=

add_coind: (x,y,z:str) (a,b,c:treat) (i:Z)

(‘-big < i‘) -> (‘i < big‘) ->

(add_aux x y z ‘2*i-(code a)-(code b)+(code c)‘) ->

(add_aux (cons a x) (cons b y) (cons c z) i).

Then we encode the exact algorithms. The construction of streams is car-
ried out through corecursive functions, which allow to build terms inhabiting
coinductive sets (streams, in the case) and can have arbitrary domains. A core-

12

cursive function is checked by Coq and accepted if and only if the recursive call
is guarded by constructors [Coq93, Gim94]: the guardedness condition guar-
antees the strong normalization property in the logical framework. Circular,
non well-founded terms, such as streams, must be constructed lazily, i.e., they
can be expanded just when occur as arguments of a case-analysis construct.
We formalize the addition of streams as follows (the remaining definitions are
similar and not problematic: see [CDG04] for the code):

CoFixpoint r_plus_aux: str -> str -> Z -> str := [x,y:str; i:Z]

Cases x of (cons a x0) => Cases y of (cons b y0) =>

let j = ‘2*i + (code a) + (code b)‘ in Cases ‘j + 1‘

of (NEG _) => (cons mino (r_plus_aux x0 y0 ‘j + 4‘))

| (ZERO) => (cons zero (r_plus_aux x0 y0 j))

| (POS _) => Cases ‘j - 1‘

of (POS _) => (cons one (r_plus_aux x0 y0 ‘j - 4‘))

| _ => (cons zero (r_plus_aux x0 y0 j)) end end end end.

We detail a full example about a corecursive proof in Coq. We assume the
corecursive functions odd, even (taken an input stream, they return, respec-
tively, streams built by the elements in odd and even positions), merge (given
two streams, it renders the stream built taking elements alternatively in the
arguments), and the coinductive point-wise equality on streams:

CoInductive Eq_str: str->str->Prop := eq_c: (x,y:str) (a:digit)

(Eq_str x y) -> (Eq_str (cons a x) (cons a y)).

The system Coq mechanizes the guarded induction principle of Coquand and
Giménez [Coq93, Gim94], which is associated to coinductive predicates. This
is a proof schema for carrying out infinitely regressive proofs: it permits to use
the thesis as an auxiliary hypothesis, provided it is applied within introduction
rules; this principle is implemented by means of the tactic Cofix. We prove,
by guarded induction, through Cofix, that every stream is point-wise equal
to its transformation through the combination of the above functions, namely
that ∀x ∈ str. Eq_str(merge(odd(x), even(x)), x). First we assume the thesis
among the hypotheses, then we destruct the argument-stream x, expand the
definitions, consume input digits through the constructor eq_c, and conclude
applying the coinduction hypothesis, as follows (∼= stands for Eq_str):

merge(odd(x), even(x)) ∼= (x)

merge(odd(a : b : z), even(a : b : z)) ∼= (a : b : z)

merge(a : odd(z), b : even(z)) ∼= (a : b : z)

(a : merge(b : even(z), odd(z))) ∼= (a : b : z)

(a : b : merge(odd(z), even(z))) ∼= (a : b : z)

merge(odd(z), even(z)) ∼= (z)

Q.E.D.

13

Certification of the exact algorithms. We prove in Coq that the imple-
mentation of the real numbers through streams, introduced in section 2, is a
model for the axiomatization given in definition 3.1. The importance of this
result is twofold: we address the internal adequacy of our construction of the
reals, and we show that the axioms are consistent. As previously explained,
it is convenient to prove first the coherence between the exact, corecursive
algorithms and the arithmetic predicates, and then to show that the axioms
are inhabited by carrying out proofs about the predicates.
From now on we will denote with the symbol “∼” the equivalence between
streams introduced in section 2 (remember that the coinductive equivalence
equal and the inductive one equalind coincide). Hence we state and prove that
the results computed by the arithmetic functions are admissible for the pred-
icates, and predicates are well-defined with respect to the equivalence. These
are key properties for proving, in turn, that the axiomatization 3.1 is inhab-
ited by our coinductive model of the reals. All the properties we list below are
proved formally in the Coq system [CDG04].

Proposition 4.1 (Addition functions and predicates)

(i). ∀x, y ∈ str, ∀a, b, c, d ∈ {0, 1,−1}, ∀i, j ∈ Z.

(2a + b + 2c + d = 4i + j) ∧ (−2 ≤ j ≤ 2) ⇒
add aux(a : b : x, c : d : y, +aux(x, y, j), i)

(ii). ∀x, y ∈ str. add(0 : x, 0 : y, +str(x, y))

(iii). ∀x, y, z, w ∈ str. add(x, y, z) ∧ add(x, y, w) ⇒ (z ∼ w)

Proof. (i). By coinduction. (ii). Corollary of the point (i): it suffices to consider
x = a : x0 and y = b : y0, so add(0 : x, 0 : y, +str(x, y)) = add aux(0 : a :
x0, 0 : b : y0, +aux(x0, y0, a + b), 0). (iii). By coinduction. ut

Proposition 4.2 (Multiplication functions and predicates)

(i). ∀x ∈ str, ∀i ∈ Z. less aux(norm(i, x), x, i) ⇒ less aux(1, x, i)

(ii). ∀x ∈ str, ∀i ∈ Z. less aux(x, norm(−i, x), i) ⇒ less aux(x, −1, i)

(iii). ∀x ∈ str. ¬less(x, 0 : 0 : −1) ∧ ¬less(0 : 0 : 1, x) ⇒
¬less(x, 0 : 0 : ×4(x)) ∧ ¬less(0 : 0 : ×4(x), x)

(iv). ∀x, y, z, w ∈ str. add(x, y, z) ∧ ¬less(z, w) ∧ ¬less(w, z) ⇒
add(x, y, w)

(v). ∀x, y, v, w, z ∈ str, ∀d, e ∈ {0, 1,−1}, ∀i, j, k, l ∈ Z.

(−2 ≤ i, j ≤ 2) ∧ (k + i + 2d + e = 4l + j) ∧ add aux(v, w, z, k) ⇒
add aux(×aux(x, y, v, i), d : e : w, ×aux(x, y, z, j), l)

(vi). ∀x, y ∈ str. mult(x, y, ×str(x, y))

(vii). ∀x, y, z, w ∈ str. mult(x, y, z) ∧mult(x, y, w) ⇒ (z ∼ w)

14

Proof. (i). By structural induction on less aux(norm(i, x), x, i). (ii). By
structural induction on less aux (x, norm(−i, x), i). (iii). By points (i) and
(ii). (iv). Exploiting the equivalence between equiv and equivind, and by coin-
duction. (v). By lemmas 4.1.(i), 4.3.(v) and 4.3.(vi). (vi). By points (iii), (iv),
(v) and lemma 4.3.(vi). (vii). By coinduction. ut

The two propositions can also be seen as the formal proof about the reliability
of algorithms performing exact real number computation. Thus, Coq code
implementing addition and multiplication is certified, and Haskell running
code can be immediately obtained from the system.

Certification of the implementation. Most of the proofs of the Axioma-
tization 3.1 follow a similar pattern: first we prove the basic facts about the
auxiliary predicates (less aux, add aux), then we deduce the corresponding
results about streams (less, add, mult). The main difficulty is to address the
“auxiliary” level: the two tactics we have mainly used are Cofix and Omega.
The tactic Cofix, as discussed above in the section, is a built-in tool for prov-
ing coinductive assertions, The tactic Omega proves automatically assertions
in Presburger’s arithmetic, and is very useful to avoid repeated case analysis
on the values of the ternary digits. The use of this tactic and the introduction
of the auxiliary predicates allow for a great simplification of the proofs: al-
most all the propositions are proved invoking at most 50 strategies. We detail
below the proofs for the different families of axioms; it is worth noticing that
the presentation is quite technical.

Order and addition. A preparatory lemma about the predicate less aux is
used, in turn, for deducing those properties that play the role of the axioms
at the level of streams. The treatment of addition is similar to the order.

Lemma 4.1 (Order-auxiliary) Let be x, y ∈ str, i, j, k ∈ Z, big = 32:

(i). less aux(x, y, i) ⇒ (−1 ≤ i)
(ii). less aux(x, y, i) ∧ (i ≤ j) ⇒ less aux(x, y, j)
(iii). (2 < big − i) ⇒ less aux(x, y, big − i)
(iv). (2 < i) ⇒ less aux(x, y, i)
(v). less aux(x, y, i) ∧ less aux(y, x, j) ⇒ (0 < i + j)
(vi). less aux(x, y, k) ∧ (k ≤ i + j) ⇒ less aux(x, z, i) ∨ less aux(z, y, j)

Proof. (i). By structural induction on less aux(x, y, i). (ii). By structural in-
duction on less aux(x, y, i). (iii). By the above induction principle and point
(ii). (iv). Directly by point (iii). (v). By structural induction on less aux(x, y, i)
and point (i). The intended meaning is the following: ([[x]]str < [[y]]str +
i) ∧ ([[y]]str < [[x]]str + j) ⇒ (0 < i + j). (vi). By structural induction on
less aux(x, y, k) and point (iv). The intended meaning is: ([[x]]str < [[y]]str +
k) ∧ (k ≤ i + j) ⇒ ([[x]]str < [[z]]str + i) ∨ ([[z]]str < [[y]]str + j). ut

15

Lemma 4.2 (Order: streams) Let be x, y, z ∈ str:

(i). less(x, y) ⇒ ¬less(y, x)
(ii). less(x, y) ⇒ less(x, z) ∨ less(z, y)

Proof. (i). By lemma 4.1.(v). (ii). By lemma 4.1.(vi). ut

Lemma 4.3 (Addition-auxiliary) Let be x, y, z, w1, w2, v ∈ str, i, j, k ∈ Z:

(i). add aux(x, y, z, i) ∧ (j − big ≤ −3) ⇒ (j − big ≤ i)
(ii). add aux(x, y, z, i) ⇒ (−3 ≤ i)
(iii). add aux(x, y, z, i) ∧ (3 ≤ big + j) ⇒ (i ≤ big + j)
(iv). add aux(x, y, z, i) ⇒ (i ≤ 3)
(v). add aux(x, y, w1, i)∧ add aux(w1, z, v, j)∧ add aux(y, z, w2, i+ j− k) ⇒
add aux(x, w2, v, k)
(vi). add aux(x, y, z, i) ⇒ add aux(y, x, z, i)
(vii). add aux(x, z, w1, i)∧add aux(y, z, w2, i+j−k)∧ less aux(w1, w2, j) ⇒
less aux(x, y, k).

Proof. (i). By integer induction on j. (ii). Directly by point (i). (iii). By
integer induction on j. (iv). Directly by point (iii). (v). By coinduction and
points (ii), (iv). The intended meaning is:

([[x]]str + [[y]]str = [[w1]]str + i) ∧
([[w1]]str + [[z]]str = [[v]]str + j) ∧
([[y]]str + [[z]]str = [[w2]]str + (i + j − k)) ⇒
([[x]]str + [[w2]]str = [[v]]str + k)

(vi). By coinduction. (vii). By structural induction on less aux(w1, w2, j),
lemma 4.1.(iv) and points (ii), (iv). ut

Lemma 4.4 (Addition: streams) Let be x, y, z, w1, w2, v ∈ str:

(i). add(x, y, w1) ∧ add(w1, z, v) ∧ add(y, z, w2) ⇒ add(x, w2, v)
(ii). add(0, x, x)
(iii). add(x,−str(x), 0)
(iv). add(x, y, z) ⇒ add(y, x, z)
(v). add(x, z, w1) ∧ add(y, z, w2) ∧ less(w1, w2) ⇒ less(x, y)

Proof. (i). By lemma 4.3.(v). (ii). By coinduction. (iii). By coinduction. (iv).
By lemma 4.3.(vi). (v). By lemma 4.3.(vii). ut

Multiplication. Since the multiplication predicate is defined in terms of the
addition one, we get rid of the “auxiliary” level (see definition 2.4): therefore,
we cannot use the Omega tactic for carrying out formal proofs about the mul-
tiplication. A suitable proof technique is to derive first a suite of auxiliary

16

properties for the addition, then to reduce to such properties via the following
preparatory lemma, relating the multiplication to the addition.

Lemma 4.5 (Multiplication-auxiliary) Let be x, y, z, w1, w2, v ∈ str, a, b,
c ∈ {0, 1,−1}, i, j, k ∈ Z, m ∈ IN , and big = 32:

(i). add aux(timesd,str(a, 1), x, x, a)
(ii). mult(x, b : y, c : z) ∧mult(x, y, w) ⇒ add(0 : timesd,str(b, x), 0 : w, c : z)
(iii). add(x, y, z) ⇒ add(timesd,str(a, x), timesd,str(a, y), timesd,str(a, z))

Proof. (i). By coinduction. (ii). By coinduction. (iii). By coinduction. ut

Lemma 4.6 (Multiplication: streams) Let be x, y, z, w1, w2, u, v ∈ str:

(i). mult(x, y, w1) ∧mult(w1, z, v) ∧mult(y, z, w2) ⇒ mult(x, w2, v)
(ii). mult(x, 1, x)
(iii). ¬less(y, x) ∧ ¬less(x,−y) ∧ ¬less(y, 0 : 1 : 0) ⇒ (×str(y, div(x, y)) ∼ x)
(iv). mult(x, y, z) ⇒ mult(y, x, z)
(v). add(y, z, u) ∧ mult(x, y, w1) ∧ mult(x, z, w2) ∧ add(0 : w1, 0 : w2, v) ⇒
mult(x, 0 : u, v)
(vi). mult(x, z, w1)∧mult(y, z, w2)∧ less(w1, w2) ⇒ less(x, y)∨ (less(y, x)∧
less(z, 0))

Proof. (i). By coinduction and Proposition 4.2.(vi). (ii). By coinduction and
lemma 4.5(i). (iii). By coinduction. (iv). By coinduction, Proposition 4.2.(vi)
and lemma 4.5(ii). (v). By coinduction, lemma 4.1.(ii) and lemma 4.5(iii). (vi).
By lemma 4.1.(ii), Proposition 4.2.(vi) and lemma 4.4(v). ut

Archimedeanity and Completeness. It is quite simple to show that the Archi-
medean axiom is inhabited, while the consistency of the completeness axiom
can be established addressing the limit function introduced in section 2.

5 Conclusion, related and future work

We have built the real numbers in Coq using corecursive streams and con-
structive logic. Then we have proved that our model inhabits a second order
axiomatization, which we have proposed and motivated. Hence, streams of
signed-digits can be used as a concrete implementation and for addressing for-
mally the reliability of exact algorithms on reals. This fact is very important
from the point of view of the software engineering, because it allows for the
development of certified programs working on the reals.

The first full-scale attempt to formalize the analysis is due to Jutting [Jut77],
who used the Automath system. Since then, several efforts about formaliza-

17

tions of the real numbers in logical frameworks have been carried out. These
works differ depending on the fact that reals are axiomatized or constructed,
and on the logical setting used.
The main contribution based on classical logic is probably by Harrison [Har96],
who constructs the real numbers in HOL by a technique closely related to
Cantor’s method, and then develops a significant part of the mathematical
analysis, up to integration of functions of a single real variable.
Constructive real numbers, in the Bishop style [Bis67], have been formalized
by various authors: Chirimar and Howe [CH92] introduce the reals in the
Nuprl system and perform a proof of their completeness; Jones [Jon91] uses
Lego for studying the completion of general metric spaces; Cederquist [Ced97]
uses Half for proving the Hahn-Banach theorem.
Other systems used to develop significant part of the analysis (typically start-
ing from a suitable axiomatization of the real numbers) are Mizar, IMPS,
PVS and Isabelle. Focusing specifically to Coq, the system is equipped with a
library Reals [May01], which is a classical axiomatization: real numbers are
assumed to be a commutative, ordered, Archimedean and complete field. As
far as we know, besides the one presented in this paper, just another construc-
tion of the reals in Coq do exist, developed in the context of the FTA project
[GPWZ00] and documented in [GN01]. In that contribution, one model for the
FTA axiomatization is constructed in Coq using Cauchy sequences of rational
numbers. Since that model is not computationally efficient, another attempt of
the same authors is in progress at time of writing, through continued fractions.

In the present investigation, we have largely used coinductive tools. Our formal
development points out the importance of coinductive principles in theoretical
computer science, and shows that they are the more natural and powerful ones
for dealing with circular, non well-founded entities. We see a lacking of these
technologies in the current generation of proof assistants and theorem provers.
Coq is, up-to our knowledge, the only proof assistant embarking a proof tactic
specific for dealing with coinductive assertions: this pragmatic is extremely
successful in the present case, but, more generally, it is still hard working with
coinductive definitions and judgments in Coq in a “guarded” way.

We are interested to achieve in the future the following goals:

• to design and implement more advanced exact algorithms working on core-
cursive streams, starting from the standard analytic functions sin, cos, exp
and log;

• to extract, test and run exact algorithms in lazy functional programming
languages (e.g. Haskell);

• to construct alternative, eventually more efficient, models of the constructive
real numbers (e.g. through the implementation of integers in Coq).

We are also looking for scientific exchange and cooperation with research pro-

18

grams close to ours. Many non-commercial packages for exact real number
computation have been implemented in a variety of programming languages:
exact arithmetic is reliable and often effective, but less efficient than floating-
point practice. Along this direction, probably, the best solution would be the
integration of logical frameworks and computer algebra systems with engines
for exact numerical evaluation of symbolic expressions.

Finally, our effort has been fruitful also in order to devise a suitable charac-
terization of the constructive reals: we have synthesized an original, minimal
axiomatization, equivalent to the alternative ones in the literature by Bridges
[Bri99] and FTA [GN01]. A possible direction for future work is to consider an
axiomatization for the constructive reals not requiring the Axiom of Choice.
In this perspective, it would be interesting to consider also a constructive
axiomatization obtained by Dedekind cuts: Cauchy sequences and Dedekind
cuts provide actually equivalent constructions for the reals only in the case
the Axiom of Choice is available [TvD88]. Results in this sense would help to
characterize the fundamental differences between the two constructions.

References

[Bis67] E. Bishop. Foundations of constructive analysis. McGraw-Hill,
New York, 1967.

[Bri99] D. Bridges. Constructive mathematics: a foundation for com-
putable analysis. TCS 219, 1999.

[CDG00] A. Ciaffaglione and P. Di Gianantonio. A co-inductive approach
to real numbers. In Proceedings of Types, LNCS 1956, 2000.

[CDG01] A. Ciaffaglione and P. Di Gianantonio. A tour with constructive
real numbers. In Proceedings of Types, LNCS 2277, 2001.

[CDG04] A. Ciaffaglione and P. Di Gianantonio. The Web Appendix of this
paper. Dipartimento di Matematica e Informatica, Udine (Italy),
http://www.dimi.uniud.it/∼ciaffagl/reals.html, 2004.

[Ced97] J. Cederquist. A pointfree approach to Constructive Analysis in
Type Theory. PhD thesis, Göteborg University, 1997.

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Infor-
mation and Control 76, 1988.

[CH92] J. Chirimar and D.J. Howe. Implementing constructive real analy-
sis: preliminar report. Proceedings of Constructivity in Computer
Science, LNCS 613, 1992.

[Cia03] A. Ciaffaglione. Certified reasoning on Real Numbers and Ob-
jects in Co-inductive Type Theory. PhD thesis, Dipartimento di
Matematica e Informatica, Università di Udine (Italy) and INPL-
ENSMNS, Nancy (France), 2003.

19

[Coq93] T. Coquand. Infinite objects in Type Theory. Proceeding of
TYPES, LNCS 806, 1993.

[Gim94] E. Giménez. Codifying guarded definitions with recursion schemes.
Proceeding of TYPES, LNCS 996, 1994.

[GN01] H. Geuvers and M. Niqui. Constructive reals in Coq: axioms and
categoricity. In Proceedings of TYPES, LNCS 2277, 2001.

[GPWZ00] H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg.
“The Fundamental Theorem of Algebra” Project. Com-
puting Science Institute, Nijmegen (The Netherlands),
http://www.cs.kun.nl/∼freek/fta/index.html, 2000.

[Har96] J.R. Harrison. Theorem proving with real numbers. PhD thesis,
Universitiy of Cambridge, 1996.

[INR04] INRIA. The Coq Proof Assistant.
http://coq.inria.fr/doc/main.html.

[Jon91] C. Jones. Completing the rationals and metric spaces in Lego. In
Logical Frameworks, 1991.

[Jut77] L.S. Jutting. Checking Landau’s Grundlagen in the Automath sys-
tem. PhD thesis, Eindhoven University of Technology, 1977.

[May01] M. Mayero. Formalisation et automatisation de preuves en anal-
yses réelle et numérique. PhD thesis, Univ. Paris VI, 2001.

[PEE97] P.J. Potts, A. Edalat, and M.H. Escardo. Semantics of exact real
arithmetic. In Proceedings of LICS, 1997.

[TvD88] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics.
North-Holland, 1988.

[Wei00] K. Weihrauch. Computable Analysis, An Introduction. Springer-
Verlag, 2000.

20

