
An Abstract Data Type for Real Numbers. ⋆

Pietro Di Gianantonio

Dipartimento di Matematica e Informatica, Università di Udine
via delle Scienze 206 I-33100 Udine Italy

E-mail: digianantonio@dimi.uniud.it

Abstract. We present a PCF-like calculus having real numbers as a
basic data type. The calculus is defined by its denotational semantics.
We prove the universality of the calculus (i.e. every computable element
is definable). We address the general problem of providing an operational
semantics to calculi for the real numbers. We present a possible solution
based on a new representation for the real numbers.

keywords: real number computability, domain theory, denotational and
operational semantics, abstract data types.

1 Introduction

The aim of this work is to relate two different approaches to computability on
real numbers: a practical approach based on programming languages, and a more
theoretical one based on domain theory. Several implementations of exact com-
putations on real numbers have been proposed so far ([BC90], [MM], [Vui88]).
In these works, real numbers are represented by programs generating sequences
of discrete elements, e.g. digits. On the other hand, different theoretical works
on computability on real numbers are based on domain theory: [Lac59,ML70],
[EE96], [DG96]. In all these works domains of approximations for the real num-
bers are considered. A point in these domains represents either a real number or
the approximation of a real number. Approximated reals are normally described
by intervals of the real line.

The relation existing between the two approaches is described in several steps.
First we present a domain of approximations which is directly derived from a
representation for the real number used in some implementations of the exact
real number computation ([BC90,MM]). From this domain of approximations we
derive a calculus for the real numbers. The calculus we present is an extension
of PCF having the real numbers as ground type. We call it Lr. We define Lr

giving its denotational semantics.
The next natural step consists in giving an operational semantics to the cal-

culus, possibly using the representation for the real numbers we start with. If
this would be possible, we will have established a close connection between the

⋆ Work partially supported by an EPSRC grant: “Techniques of Real Number Com-
putation” at Imperial College of Science, Technology and Medicine, London and by
EEC/HCM Network “Lambda Calcul Typé”.

domain of approximations for the real numbers and the implementations. We will
have a calculus that is for many aspect similar to the calculi used in the imple-
mentations and whose terms can be directly interpreted in the approximations
domain. Unfortunately we prove that it is impossible to define the operational
semantics in this way. We prove this negative result in a general manner, the im-
possibility holds not only if we consider the particular representation for the real
numbers we chose, the domain of approximations obtained from it and the cal-
culus Lr. The negative result holds for a large class of representations, domains,
and calculi.

Finally we define an operational semantics for Lr. In order to do this how-
ever we need to introduce a new representation for the real numbers. This new
representation is quite different from the classical ones, in it real numbers can
be represented also by sequences of digits undefined on some elements. In order
to compute with this new representation is absolutely necessary to use parallel
operators. The use of parallel operators is the price we need to pay to have a
faithful calculus for the real numbers.

Acknowledgements: I would like to thank Abbas Edalat, Martin Escardo,
Peter Potts and Michael Smith for several discussions on the subject.

2 Real Number Computation in PCF

We consider the following representation for real numbers:

Definition 1. A real number x is represented by a computable sequence of in-
tegers 〈s0, . . . , si, . . .〉 such that:

(i) ∀n . 2sn − 1 ≤ sn+1 ≤ 2sn + 1

(ii) x =
⋂

n∈N

[

sn − 1
2n , sn + 1

2n

]

In this representation a sequence of integers is used to describe a sequence of
rational intervals. The intervals in the sequence are contained one into the other.
For practical purposes this representation is quite convenient. It allows to reduce
exact real number computation to computation on integers. In this way it is
possible to exploit the implementation of integer arithmetic already available on
computers. In [BCRO86] and [MM] a similar representation has been used to
develop quite efficient algorithms for the arithmetic operations.

We refer to [Plo77] for a definition of PCF. In order to represent real numbers
in PCF it is sufficient to translate in PCF the representation of Definition 1. In
the following, given a type σ, Lσ

PA+∃ indicates the set of closed terms in LPA+∃

having type σ.

Definition 2. A partial representation function EvalR : Lι→ι
PA+∃ ⇀ R is defined

by: EvalR(Mι→ι) = x if there exists a sequence of integers s such that:
(i) ∀n ∈ N .Eval(Mι→ιn)) = sn;
(ii) ∀n . 2sn − 1 ≤ sn+1 ≤ 2sn + 1
(iii) x =

⋂

n∈N
[sn−1

2n , sn+1
2n].

A real number x is said L-computable, if belongs to the image of the EvalR.

We indicate with Rl the set of the L-computable real numbers. The definition
of computability can be extended to functions on real numbers.

Definition 3. The function Eval1
R

: L
(ι→ι)→(ι→ι)
PA+∃ ⇀ (Rl → Rl) is defined by:

EvalR(M) = f iff
∀x ∈ Rl.∀N ∈ Lι→ι

PA+∃ .EvalR(N) = x ⇒ EvalR(MN) = f(x).

A function f : Rl → Rl is said L-computable if belongs to the image of Eval1
R
.

It is worthwhile to observe that the sequential operators are sufficient to define
every computable function. That is every L-computable function on reals can be
defined by a term not containing the parallel test or the existential quantifier.
The form of computation presented in this section, is very similar to the one used
in implementations of exact real number computation and described in [BC90]
and in [MM].

3 A Domain of Approximations for Real Numbers

In the literature there are several approaches to computability on real numbers
which use of domain theory. Early works in this ambit are [Lac59], [ML70],
and [Sco70]. In all these approaches the real line is embedded in a space of
approximations where a notion of computability can be defined in a natural way.
Many results concerning the computability theory on real numbers are given in
these contexts. Here we are going to present a space of approximations that is
similar in many respects to the ones mentioned above but has two important
differences. First, we base our construction on the representation of Definition 1.
As result our space has less approximation points and is more closely related to
the computation describe in [BC90] and [MM]. A second important difference
is the following: our space of approximations turns out to be a Scott-domain.
The other approaches use spaces of approximations that are continuous but not
algebraic cpos. The space of approximations presented here has been extensively
studied in [DG96]. Here we resume the main results without giving the proofs.

The domain of approximations defined next is called Reals Domain (RD). We
present a construction of RD starting with the integer sequence representation
for real numbers. Let 〈si〉i∈N be a sequence of integers defining a real number x
according to Definition 1 and let 〈si〉i<n be an initial subsequence. 〈si〉i<n gives
partial information about the value x. Examining 〈si〉i<n we can deduce that
the value x is contained in an interval of real numbers.

Definition 4. Let S be the subset of sequences of integers defined by:

S = {〈si〉i<n | ∀i < n − 1 . 2si − 1 ≤ si+1 ≤ 2si + 1}.

The function φ from S to the set of rational intervals is defined by:

φ(〈s0, s1, . . . , sn〉) = [
sn − 1

2n
,
sn + 1

2n
])

The set S contains the “valid” sequences of integers. The function φ associates to
any finite sequence 〈si〉i<n the interval [a, b] containing the real numbers that can
be represented by sequences having as initial subsequence 〈si〉i<n. The interval
[a, b] represents the information contained in the sequence 〈si〉i<n.

Let (DI,⊑) denote the partial order formed by the set of rational intervals in
the image of the function φ. The order relation ⊑ on DI is the superset relation,
that is [a, b] ⊑ [a′, b′] if [a′, b′] ⊆ [a, b] (if [a′b′] is a more precise approximation
of a real number that [a, b]). The set DI forms the base of the domain RD.

Definition 5. Let RD be the cpo obtained by the ideal completion of (DI,⊑).

Proposition 1. RD is a consistently complete ω-algebraic cpo (Scott-domain).
RD is an effective Scott-domain when we consider the following enumeration of
finite elements:
er(0) = ⊥ er(〈〈n1, n2〉, n3〉 + 1) =↓ [(n1 − n2 − 1)/2n3 , (n1 − n2 + 1)/2n3].
Where 〈 〉 is an effective coding function for pairs of natural numbers.

The elements of RD can be thought as equivalence classes of (partial) sequences
of integers. Each equivalence class is composed by sequences containing identical
information about the real value they approximate. The relationship existing
between the real line and the infinite elements of RD can be clarified by means
of following functions:

Definition 6. A function qP : RD → P(R) is defined by:

qP(d) =
⋂

[a,b]∈d

[a, b]

Conversely, three functions e, e−, e+ : R → RD are defined by:
e(x) = {[a, b] ∈ DI | x ∈ (a, b)}
e−(x) = {[a, b] ∈ DI | x ∈ (a, b]} e+(x) = {[a, b] ∈ DI | x ∈ [a, b)}
where (a, b) indicates the open interval from a to b and (a, b] and [a, b) indicate
the obvious part open, part closed intervals.

Proposition 2. The following statements hold:
i) for every infinite element d ∈ RD there exists a real number x such that
qP(d) = {x}
ii) for every real number x, {x} = qP ◦ e(x) = qP ◦ e−(x) = qP ◦ e−(x),
iii) for every non-dyadic number x ∈ R/D, e(x) = e−(x) = e+(x),
iv) for every dyadic number x ∈ D, e(x) ⊏ e−(x), e(x) ⊏ e+(x) and e−(x) is
not consistent with e+(x),
v) e(R) ∪ e−(R) ∪ e+(R) is equal to the set of infinite elements of RD.

We can say that the infinite elements of RD are a close representation of the
real line, the set of infinite elements in RD looks like the real line except that
each dyadic number is triplicated.

In [DG96] it is shown how to solve the problem of multiple representations
by means of a retract construction.

↓ [−2, 0] ↓ [0, 2]

e(0) e(1)

e−(0) e+(0)

↓ [−1, 1]

Fig. 1. The diagram representing RD.

4 PCF Extended with Real Numbers

In this section we use the domain RD introduced above, to define an extension
of the language PCF having a ground type for the real numbers. We call Lr

this extension. We will prove that any computable function on RD is definable
by a suitable expression in Lr. A programming language similar to Lr has been
introduced in [DG93]. An extension of PCF based on a different domain of
approximation for the real numbers has been presented in [Esc96].

Compared with the real computation described in Section 2, the real com-
putation in Lr has several advantages. Given a closed term M ∈ L(ι→ι)→(ι→ι)

the value EvalR(M)1 can be undefined for several reasons. For example:
(i) there can be a term N representing a real number such that the sequence of
((MN)0), . . . , ((MN)n), . . . does not define a real number.
(ii) there can be two terms N1 and N2 defining the same real number and such
that (MN1) and (MN2) define different real numbers.

The language Lr is free from these inadequacies. Terms of type r in Lr can
always be interpreted as an (approximated) real and more importantly terms
of type r → r preserve the equivalence between different representations of the
same real number. We can say that Lr defines an abstract data type for real
numbers. It defines a collection of primitive functions on reals which generate
any other computable function.

The types of Lr are the PCF types extended with a new ground r. The set
T of type expressions is defined by the grammar:

σ := ι | o | r | σ → τ

The terms of Lr are the terms of LPA+∃ extended with the new constants:

(−1), (+1), (×2), (÷2), PR : r → r,
(≤ 0) : r → o pifr : o → r → r → r,

We define Lr giving its denotational semantics. To this end we use the set of
Scott-domains, UD = {Dσ | σ ∈ T}, where Dι = Z⊥, Do = {tt,ff}⊥, Dr = RD
and Dσ→τ = [Dσ → Dτ].

The denotation of the new constants is the following:
the constants (+1), (−1), (×2), (÷2) realize the corresponding functions on reals.

[[(+1)]]ρ(d) = {[a + 1, b + 1] | [a, b] ∈ d}
[[(−1)]]ρ(d) = {[a − 1, b − 1] | [a, b] ∈ d}
[[(×2)]]ρ(d) = {[a × 2, b × 2] | [a, b] ∈ d ∧ [a × 2, b × 2] ∈ RI}
[[(÷2)]]ρ(d) =

⋃

[a,b]∈d ↓ [a ÷ 2, b ÷ 2]

The constant (≤ 0) tests if a number is smaller or larger than 0.

[[(≤ 0)]]ρ(d) =

tt if it exists [a, b] ∈ d, b ≤ 0
ff if it exists [a, b] ∈ d, 0 ≤ a
⊥ otherwise

The constant PR defines a kind of projection on the interval [−1, 1].

[[PR]]ρ(d) =

d⊔ ↓ [−1, 1] if d is consistent with ↓ [−1, 1]
e+(−1) if ∃[a, b] ∈ d.b ≤ −1
e−(1) if ∃[a, b] ∈ d.a ≥ 1

The constant pifr defines a parallel test.

[[pifr]]ρ(e)(d)(d′) :=

d if e = tt

d′ if e = ff

d ⊓ d′ if e = ⊥

If the boolean argument is undefined the function [[pifr]]ρ gives as output the
most precise approximation of the second and third argument.

It is not difficult to prove that for every closed expression Mσ and environ-
ment ρ, [[Mσ]]ρ is a computable element of Dσ. Next we prove the universality
of Lr, that is, we prove that every computable functions on RD is definable
by a suitable term in Lr. In order to do this we present a generalisation of the
universality theorem for PCF [Plo77, Theorem 5.1]. The generalisation applies
to any extension of PCF where ground types are denoted by coherent domains.
The proof in [Plo77] works only for flats domains. An equivalent generalisation

has already been given in [Str94]. In that work the proof is based on categorical
arguments and uses as a lemma the original result in [Plo77]. Our proof follows
the line of the original proof and it is more direct. Some definitions and lemmata
are necessary here.

Definition 7. A subset A of a partial order P is coherent if any pair of elements
has an upper bound. A coherent domain is a Scott-domain for which any coherent
subset has an upper bound.

Coherent domains are closed for many semantics functors. In particular if D1

and D2 are coherent domains then [D1 → D2] is a coherent domain. Moreover
the domain RD is coherent.

A fundamental step in the proof of universality consists in showing that for
every type σ it is possible to define three functions, namely, cσ, pσ and #σ.
Where cσ and pσ are respectively a test and a projection function for the types
σ, while #σ(n)(d) checks if the element d is inconsistent with the finite element
eσ(n) (where eσ is the effective enumeration of the finite elements of the domain
Dσ ([Plo77, page 249])). Formally:

Definition 8. A partial function f : Dσ1
→ . . . Dσn

⇀ Dσ is definable in
Lr if there exists a closed term M such that for all d1 ∈ Dσ1

. . . dn ∈ Dσn
if

f(d1) . . . (dn) is defined then [[M]]ρ(d1) . . . (dn) = f(d1) . . . (dn).

Definition 9. Given a coherent-domain Dσ the function
cσ : B⊥ → Dσ → Dσ → Dσ, and the partial functions #σ : Z⊥ → Dσ ⇀ B⊥,
pσ : Z⊥ → Dσ ⇀ Dσ are defined by:

cσ(b)(d1)(d2) =

d1 if b = tt

d2 if b = ff

d1 ⊓ d2 if b = ⊥

#σ(n)(d) =

ff if n ∈ N, eσ(n) ⊑ d
tt if n ∈ N, eσ(n) and d are inconsistent
undefined if n is a negative number
⊥ otherwise

pσ(n)(d) =

{

d ⊔ eσ(n) if n ∈ N, d, eσ(n) are consistent
undefined otherwise

Lemma 1. If, in a language extending LPA+∃ with new ground types, for every
ground type τ the function cτ , pτ ,#τ are definable by some terms pifτ , Pτ , Tτ

then for any other type σ the functions cσ, pσ, tσ are definable by some suitable
terms pifσ, Pσ, Tσ.

Lemma 2. If in an extension of the language L for a type σ the function pσ is
definable then every computable element in Dσ is definable.

Theorem 1. For every computable element d in Dσ there exists a closed ex-
pression M in Lr such that: [[M]]ρ = d.

5 Operational Semantics, a First Attempt

In this section we discuss the problem of defining an operational semantics for
Lr In Section 3 the elements of RD are constructed as equivalence classes of
partial sequences of integers. One can use functions in [Z⊥ → Z⊥] to represent
sequences of integers and hence elements in RD. Following this approach one
can use higher order function of [Z⊥ → Z⊥] to represent functions on RD. The
construction is the following. Let S′ be the subset of [Z⊥ → Z⊥] defined by,
S′ = {s | ∀i ∈ N . (s(i+1) 6= ⊥ ⇒ (s(i) 6= ⊥ ∧ 2s(i)−1 ≤ s(i+1) ≤ 2(i)+1))}
the elements of S′ define the partial sequences of digits representing elements in
RD. Let φ′ : S′ → RD be the function,

φ′(s) =
⋂

{[s(i)−1
2i , s(i)+1

2i] | i ∈ N, s(i) 6= ⊥}.
Given a function g on RD, for example, g : RD → RD → RD, we say that g is
represented by a function f : [Z⊥ → Z⊥] → [Z⊥ → Z⊥] → [Z⊥ → Z⊥] if for all
s1, s2 ∈ S′, g(φ′(s1))(φ

′(s2)) = φ′(f(s1)(s2)).
The above representation for functions on RD suggests the following ap-

proach to operational semantics: for each new constant c in Lr one try to find a
computable function fc on [Z⊥ → Z⊥] representing the function [[c]]. If the func-
tions fc would exist then a set of closed LPA+∃-terms Mc such that E [[Mc]]ρ = fc,
would define an operational semantics for Lr. The operational semantics would
be given by the reductions rules c → Mc. In fact the operational behaviour of Mc

is in accordance with the denotational semantics of c. Unfortunately this natural
approach is doomed to failure. In fact the function [[pifr]]ρ cannot be represented
by any functional on integers. We state this negative result in a more general
setting, considering not only the real number representation of Definition 1 and
the corresponding domain RD but a large class of real number representations
and domains of approximations.

In almost all the representations considered in the literature a real number
is represented by a sequence of elements of a countable set C. For example C
can be a set of digits, the set of integers, the set of p-adic rational numbers, the
set of rational numbers, the set of rational intervals.

Definition 10. A sequence representation for the real numbers is given by a
countable set C, a subset S of N → C and a representation function v : S → R.
The set S is the subset of sequences defining real numbers.

Repeating the construction of Section 3 we map finite sequences to subsets of
reals.

Definition 11. Given a sequence representation v : S → R, its extension to
partial sequences v : [N → C⊥] → P(R), is defined by,

v(s) = {v(t) | t ∈ S, s ⊑ t}.

Given a sequence s and a natural number n we indicate with s |n the partial
sequence containing the first n elements of s: s|n (m) = s(m) if m ≤ n,
s|n (m) = ⊥ otherwise. In [Wei87, pages 479–482] it has been introduced the

notion of admissible representation for real numbers. That definition can be
reformulated as follows.

Definition 12. A sequence representation 〈S, v〉 is admissible if it satisfies the
following conditions,
(i) ∀s ∈ S .∀ǫ ∈ R .∃n ∈ N . v(s|n) is contained in an interval having width ǫ,
(ii) For each real number x there exists a sequence s such that for each n, x is
contained in the interior of v(s|n).

Condition (i) states that the function v : S → R is continuous, w.r.t. the Cantor
topology on S and the Euclidean topology on R. Almost all the representation
functions used in computable analysis are admissible.

Any sequence representation induces an information order on partial se-
quences: s is below t in the information order if v(s) ⊇ v(t). We have the following
negative result.

Theorem 2. For any admissible representation v, and there is no continuous
functional g : [N → C⊥] → [N → C⊥] → [N → C⊥] such that:
(i) g implements addition, that is: for all s, t in S, v(g(s)(t)) = v(s) + v(t))
(ii) g respects the induced order relation on partial functions that is: for all
s, s′, t, t′ in [N → C⊥], v(s) ⊇ v(s′) and v(t) ⊇ v(t′) implies v(g(s)(t)) ⊇
v(g(s)(t)).

The previous theorem implies that, if we use an admissible then the operational
semantics of Lr cannot be given in terms of computations on sequences. This
result generalises to any domain derived from an admissible representation and
to any calculus define on the derived domain. There are two possible solutions
to this problem. The first one consists in introducing non deterministic or inten-
sional operators in the language. The second one consists in using representations
that are not admissible, but that are suitable for real number computations. The
first approach has been followed in [Esc96], there the operational semantics of a
language similar to Lr is given using a non deterministic operator. Here we will
follow the second approach.

6 An Operational Semantics

The notations considered so far in the literature represent real numbers using
sequences that are completely defined. It is possible to represent real numbers
using sequences that are undefined on some elements. An example is the follow-
ing.

Definition 13. A real number x in the interval [−1, 1] is represented by a se-
quence s of digits −1, 1 such that: x =

∑

i∈N

∏

0≤j≤i sj/2

This notation is similar to the binary digit notation. The main differences con-
sist in the use of the digit −1 instead of the digit 0 and in the fact that in
this notation the value of a digit affects the weights of all the consecutive dig-
its. In this notation the real number 0 has two representations: the sequence

〈−1,−1, 1, 1, 1 . . .〉 and the sequence 〈1,−1, 1, 1, 1 . . .〉. The two representations
differ just for the first digit. Hence 0 can also be represented by the sequence
〈⊥,−1, 1, 1, 1 . . .〉 undefined on the first element. Moreover examining the finite
initial parts of the incomplete sequence it is possible to determine the number
represented by it with an arbitrary precision. Similar considerations hold for
any other dyadic rational number. Every real number that is not rational dyadic
has exactly one representation. If we allow as possible representations for the
dyadic rational numbers also the sequences undefined on one element we obtain
a representation suitable for the real number computation.

In order to represent the whole real line we consider the following notation.

Definition 14. A representation function v : (N → {−1, 1}) → R is defined by:

v(s) = s(0) × (k +
∑

i≥k

∏

k≤j≤i

s(j)/2)

where k = min{i | i > 0, s(i) = −1}

This is a sort “sign, integer part, mantissa” notation for the real numbers.
The first digit gives the sign, the next consecutive positive digits determine the
integer part, the remaining part of the sequence is the mantissa. Also in this case
every dyadic rational number is represented by two functions that differ just for
one element and every real number that is not rational dyadic has exactly one
representation.

Definition 15. The extension of v to partial functions is the function
v : (N → {−1, 1}⊥) → P(R) defined by:

v(s) = {v(t) | t : N → {−1, 1}, s ⊑ t}.

The set v(s) is an interval if and only if

∀n . (s(n)↑ ∧s(n + 1)↓)
⇒ ∀m < n . s(m)↓ ∧ s(n + 1) = −1 ∧ ∀m > n + 1 . (s(m)↑ ∨ s(m) = 1).

Let S∞ denote the set of partial functions s such that v(s) is an interval. S∞

is a complete partial order. If we repeat the construction of Section 3, with the
representation v and the set S∞ of partial elements we obtained a new domain
for real numbers. We call the new domain RD′. In this case no pair of elements
in S∞ contain the same information. It follows that S∞ and RD′ are isomorphic.
The structures of RD and RD′ are quite similar. The main difference consists
in the fact that RD′ contains for each natural number n the intervals [−∞,−n]
and [n,+∞] and, as a consequence, the infinite points −∞ and +∞.

Proposition 3. There exists an effective embedding-projection pair 〈e, p〉 from
S∞ to [N → {−1, 1}⊥], p : [N → {−1, 1}⊥] → S∞ is defined by:

p(s) =
⊔

{s′ ∈ S∞ | s′ ⊑ s}

e : S∞ → [N → {−1, 1}⊥] → S∞ is the identity functions.

It follows that there exists an effective embedding-projection pair 〈er, pr〉 from
RD′ to [Z⊥ → {tt,ff}⊥]. The embedding-projection can be extended to the
functions spaces.

eσ→τ (f) = eτ ◦ f ◦ qσ

qσ→τ (f) = qτ ◦ f ◦ eσ

Repeating the considerations presented in Section 5, it is possible to represent
elements in RD′ by theirs embeddings in [Z⊥ → {tt,ff}⊥] and functions on RD′

(S∞) by the corresponding embeddings on functions spaces of [Z⊥ → {tt,ff}⊥].
Let C be the set of the new constants in Lr, for each cσ ∈ C let Mcσ be a term in
LPA+∃ defining the function eσ([[cσ]]ρ). By the universality of LPA+∃ the terms
Mcσ exists. An operational semantics for Lr can be given adding to the set
single-step reduction rules for LPA+∃ the new set of rules {c → Mc | c ∈ C}.
For lack of space we do not present the actual set of rules.

References

[BC90] H.-J. Boehm and R. Cartwright. Exact real arithmetic: formulating real
numbers as functions. In David Turner, editor, Research topics in functional

programming, pages 43–64. Addison-Wesley, 1990.
[BCRO86] H.-J. Boehm, R. Cartwright, M. Riggle, and M.J. O’Donell. Exact real

arithmetic: a case study in higher order programming. In ACM Symposium

on lisp and functional programming, 1986.
[DG93] P. Di Gianantonio. A functional approach to real number computation. PhD

thesis, University of Pisa, 1993.
[DG96] P. Di Gianantonio. Real number computability and domain theory. Infor-

mation and Computation, 127(1):11–25, May 1996.
[EE96] A. Edalat and M. Escardo. Integration in real pcf. In IEEE Symposium on

Logic in Computer Science, 1996.
[Esc96] M. Escardo. Pcf extended with real numbers. Theoret. Comput. Sci, July

1996.
[Lac59] D. Lacombe. Quelques procédés de définitions en topologie recursif. In

Constructivity in mathematics, pages 129–158. North-Holland, 1959.
[ML70] P. Martin-Löf. Note on Constructive Mathematics. Almqvist and Wiksell,

Stockholm, 1970.
[MM] V. Ménissier-Morain. Arbitrary precission real arithmetic: design and algo-

rithms. Submitted to the Journal of Symbolic Computation. Available at
http://pauillac.inria.fr/ menissier.

[Plo77] G.D. Plotkin. Lcf considered as a programing language. Theoret. Comput.

Sci., 5:223–255, 1977.
[Sco70] Dana Scott. Outline of the mathematical theory of computation. In Proc.

4th Princeton Conference on Information Science, 1970.
[Str94] T. Streicher. A universality theorem for pcf with recursive types, parallel-or

and ∃. Mathematical Structures for Computing Science, 4(1):111–115, 1994.
[Vui88] J. Vuillemin. Exact real computer arithmetic with continued fraction. In

Proc. A.C.M. conference on Lisp and functional Programming, pages 14–27,
1988.

[Wei87] K. Weihrauch. Computability. Springer-Verlag, Berlin, Heidelberg, 1987.

