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Abstract. We consider graphs whose vertices are ordinals (ordinal graphs).

For those graphs, we generalize the notion of vertex degree to the notion of
splitting-type – the order-type of the set of neighbours of a vertex. We use

this to define a proper hierarchy of collections of ordinal graphs, investigate
various natural strong isomorphism relations between ordinal graphs, which

preserve splitting-types, and investigate resulting notions of graph complexity.

1. Introduction

In this note, a graph is a pair G = 〈|G|, E(G)〉, where we call |G| the domain or
vertex set of G and E(G) the edge relation of G, a binary relation on |G|. If x, y ∈
|G|, we sometimes write G(x, y) instead of 〈x, y〉 ∈ E(G). We will always assume
that E(G) is symmetric and irreflexive, i.e. our graphs are undirected simple graphs.
Moreover all our graphs will be ordinal graphs, i.e. graphs G such that |G| ⊆ On,
which also means that we can canonically consider them to be (injectively) vertex-
labeled graphs.

If x, y ∈ |G| and G(x, y), we call x and y adjancent and say that x and y are
neighbours in G. We denote the set of neighbours of x in G by NG(x), and we
let NG

∗ (x) = NG(x) ∪ {x}. For x ∈ |G|, the degree of x in G is the cardinality of
NG(x).

Graphs with bounded vertex degree are of central importance in graph theory
and combinatorial set theory. The following classic result is of particular relevance
for us here. A graph G is locally finite if every node in G has finite degree. More
generally if κ is any cardinal, a graph G is locally of size less than κ if every node
in G has degree less than κ. We say that a graph G can be weakly embedded into
a graph H if there is an injective map from |G| to |H| such that for any x, y ∈ |G|,
G(x, y) → H(x, y). We say G can be embedded into H if there is an injective map
from |G| to |H| such that for any x, y ∈ |G|, G(x, y)↔ H(x, y). If G is a family of
graphs we say that X is (weakly) universal for G if X ∈ G and every G ∈ G can be
(weakly) embedded into X.

Richard Rado has shown that there is a universal countable graph, while Nicolaas
Govert de Bruijn has shown that the class of all countable, locally finite graphs
does not contain a weakly universal element (see [Rad64] for both results). The
possible existence of universal objects has then been studied for many other classes
of countable graphs.
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Assuming the GCH, it follows from classical results in model theory on the
existence of saturated models (see [CK90]) that a universal graph of size κ exists
for every uncountable cardinal κ (for a particular κ, 2<κ = κ suffices), and its
existence can fail when the GCH fails, for example at κ+ after adding κ++-many
Cohen subsets of κ (this is due to Saharon Shelah, see [KS92] or [Dža15, Theorem
2.1] for a proof).

It seems obvious to ask whether de Bruijn’s result has some kind of analogy in
the uncountable case. However the notion of a graph G of size κ which is locally
of size less than κ is not very interesting whenever κ is regular and uncountable by
the following easy observation. A path in G is a sequence S = 〈xi | i ∈ I〉 for some
interval I ⊆ Z such that whenever i, i + 1 are both in I, G(i, i + 1) holds. If I is
finite, we say that S is a path from xmin I to xmax I in G. A graph G is connected
if for any two distinct x, y ∈ |G|, there is a path from x to y in G.

Observation 1.1. If G is a connected graph, κ is a regular uncountable cardinal
and each node in G has degree less than κ, then |G| is of size less than κ.

Proof. GivenX ⊆ |G|, letNG(X) = X∪
⋃
{NG(x) | x ∈ X}. Given any x ∈ G, G =⋃

n<ω(NG)n(x), where we let (NG)0(x) = {x} and (NG)i+1(x) = N((NG)i(x)) for
i < ω. The result follows since if X ⊆ |G| has cardinality less than κ then, using
regularity of κ, NG(X) has cardinality less than κ. �

Given two graphs G and H we say they are disjoint if |G| ∩ |H| = ∅. Given a
family of graphs 〈Gi | i ∈ I〉, we say that G is the union of 〈Gi | i ∈ I〉 if |G| =⋃
i∈I |Gi| and E(G) =

⋃
i∈I E(Gi). It follows that if κ is regular and G is a graph in

which each node has degree less than κ, then G is the union of a family of pairwise
disjoint graphs of size less than κ.

If G is a family of graphs, the (weak) universality number of G is the least size
of a family H ⊆ G such that for every G ∈ G there is H ∈ H such that G can
be (weakly) embedded into H. Hence there is a (weakly) universal object in the
collection of graphs of size κ which are locally of size less than κ iff the (weak)
universality number for graphs of size less than κ is at most κ. 1

In this paper, we introduce a notion of degree for (infinite) ordinal graphs such
that the class of graphs with bounded vertex degree possesses more interest also
for graphs which are of size a regular uncountable cardinal. The basic idea is to
consider the order-type rather than the cardinality of the set of neighbours of a
vertex.

Definition 1.2. If G is an ordinal graph, we let

split(G) = sup{ot (N(x)) + 1 | x ∈ G}

and

split∗(G) = sup{ot (N∗(x)) + 1 | x ∈ G}.
We say that G is <α-splitting iff split(G) ≤ α and say that G is <α∗-splitting iff
split∗(G) ≤ α. We say that G is α-splitting iff G is <(α+ 1)-splitting and say that
G is α∗-splitting iff G is <(α+ 1)∗-splitting.

1The latter is trivially true for the weak universality number, and is a trivial consequence of
2<κ = κ otherwise, however its negation is also known to be consistent due to a result of Shelah

(see [KS92] or [Dža15, Theorem 2.1] for a proof).
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Of course an ordinal graph is <ω-splitting iff it is locally finite and more generally
it is <κ-splitting iff the degree of each of its nodes is less than κ. In the light
of Observation 1.1, we will thus work with graphs G of some size κ (i.e. |G| of
cardinality κ) with split∗(G) ∈ (κ, κ+), where κ is an infinite cardinal. Our main
interest will be the case when κ is regular and uncountable, however most of our
results apply to all infinite cardinals, and we will explicity mention whenever we
make any extra assumptions on κ. When we consider α-splitting (or α∗-splitting)
graphs G and α ∈ [κ, κ+) in the following, we will tacitly assume that |G| has
size κ (and we will usually only consider connected graphs). In order to tackle
and make sense of our original question on universal graphs, we want to consider
isomorphisms between ordinal graphs that preserve splitting types. A very strong
demand on such maps would be to be order-preserving – this notion will be useful
to us in places, however is too strong to produce interesting structural properties.
On the other extreme, we could simply consider all isomorphisms that preserve
the splitting type of a graph – however it is easily observed that this notion is too
weak and such isomorphisms can almost completely destroy the order structure of
a given graph. We want to introduce various natural forms of strong isomorphism
relations between ordinal graphs that preserve splitting types and lie between the
two extremes outlined above. If G and H are graphs, an isomorphism f from G to
H is a bijection from |G| to |H| such that for any x, y ∈ G, G(x, y)↔ H(f(x), f(y)).

Definition 1.3. Assume G,H are (isomorphic) ordinal graphs. We introduce a
series of properties the definitions of which will follow a certain scheme. We say
that G and H are N isomorphic if there is an isomorphism f from G to H such
that P (G,H, f). We abbreviate this property of G and H by I(G,H) and call
a witnessing isomorphism f an N preserving isomorphism. We carry the above
definition out for the following triples (N,P (G,H, f), I):

• N = order, I = oi and P (G,H, f) states that f is order-preserving, i.e. for
any x, y ∈ G, x < y iff f(x) < f(y).2

• N = locally order, I = loi and P (G,H, f) states that for any x ∈ G,
f � N(x) is order-preserving, i.e. for any y, z ∈ N(x), y < z iff f(y) < f(z).

• N = locally star order, I = l∗oi and P (G,H, f) states that for any x ∈ G,
f � N∗(x) is order-preserving.

• N = locally order type, I = loti and P (G,H, f) states that for any x ∈ G,
ot
(
NG(x)

)
= ot

(
NH(f(x))

)
.

2x and y (as well as f(x) and f(y)) are ordinals, < denotes the usual ordering of ordinals.
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• N = locally star order type, I = l∗oti and P (G,H, f) states that for any
x ∈ G, ot

(
NG
∗ (x)

)
= ot

(
NH
∗ (f(x))

)
.

• N = locally order type star, I = loti∗ and P (G,H, f) states that for
any x ∈ G, ot

(
NG(x) ∩ x

)
= ot

(
NH(f(x)) ∩ f(x)

)
and ot

(
NG(x) \ x

)
=

ot
(
NH(f(x)) \ f(x)

)
.

• We let OI = {oi, loi, l∗oi, loti, l∗oti, loti∗} denote the collection of order
isomorphism relations. If I ∈ OI and I(G,H) as witnessed by the iso-
morphism f , we abbreviate this situation as f : I(G,H). Note that each
I ∈ OI canonically gives rise to an equivalence relation on ordinal graphs.

Lemma 1.4. For ordinal graphs G,H, oi(G,H) → l∗oi(G,H) → loi(G,H) →
loti(G,H), l∗oi(G,H) → loti∗(G,H) → l∗oti(G,H) and loti∗(G,H) → loti(G,H).
Moreover, no other implications between any of those properties are provable, i.e.
the following diagram is complete, in the sense that the transitive hull of the dis-
played implications contains all possible implications.

oi

l∗oi

loi loti∗

loti l∗oti

Proof. It is straightforward and very easy to see that the above implications all
hold. Witnesses for no other implications to hold are given in the picture below,
in the sense that for all relevant combinations of I, J ∈ OI, we give examples of
graphs G and H such that I(G,H) holds while J(G,H) fails. Note that the final
two examples are necessarily provided by infinite graphs.

G H

l∗oi, not oi 0 2 3 1 1 2 3 0

loi, not loti∗ 2 0 1 2 1 0

loti∗, not loi 2 0 1 1 0 2

loti, not l∗oti 0

1 2 3

. . .
ω

1 2 3

. . .

l∗oti, not loti 0

ω 1 2

. . .
ω

0 1 2

. . .

�

Lemma 1.5. If f : l∗oi(G,H) and G(x, y), then x < y iff f(x) < f(y). This is not
necessarily true for any of the weaker notions of isomorphism that we consider in
this paper, i.e. for I ∈ {loi, loti∗, loti, l∗oti}.
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Proof. The only nontrivial case is when I = loti∗. We provide an example of
f : loti∗(G,H) with 〈ω, ω · 2〉 ∈ E(G), but f(ω) = ω · 2 > ω = f(ω · 2) in the
picture below, where f maps nodes according to their position in the picture, so
for example f(0) = ω + 1.

G H

ω · 2

ω + 1

ω + 2

ω + 3

ω · 2 + 2

ω · 2 + 4

ω · 2 + 6

..
.

..
.

ω

0

1

2

ω · 2 + 1

ω · 2 + 3

ω · 2 + 5

..
.

..
.

ω · 2

ω + 1

ω + 2

ω + 3

ω · 2 + 2

ω · 2 + 4

ω · 2 + 6

..
.

..
.

ω
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2
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ω · 2 + 5

..
.

..
.

f : loti∗(G,H)

�

Observation 1.6. For any graphs G and H, f : l∗oi(G,H) holds iff f : loi(G,H)
and

∀x, y [(x, y) ∈ G ∧ x < y]→ f(x) < f(y).

Observation 1.7. If G is α-splitting and loti(G,H) then H is α-splitting. If G is
α∗-splitting and l∗oti(G,H) then H is α∗-splitting.

The following lemma will be useful in Section 3.

Lemma 1.8. Assume α ∈ [κ, κ+), G is α∗-splitting, f : loti(G,H) and whenever
ot
(
NG(x)

)
= α, there is y so that (x, y) ∈ G, ot

(
NG(y)

)
= κ and NG(x)∩NG(y)

has cardinality κ. Then f : l∗oti(G,H).

Proof. Assume for a contradiction that the assumptions of the lemma hold, how-
ever f : l∗oti(G,H) fails. This means that there is x ∈ |G| with ot

(
NG(x) = α

)
and ot

(
NH
∗ (f(x))

)
= α + 1. Since ot

(
NH(f(x))

)
= α using that f : loti(G,H), it

follows that f(x) = max(NH
∗ (f(x))). In particular thus, f(x) > z for every z ∈

NH(f(x)) ∩NH(f(y)). But since this set has cardinality κ by assumption, is con-
tained in NH(f(y)) and since (f(x), f(y)) ∈ H, it follows that ot

(
NH(f(y))

)
> κ,

contradicting that ot
(
NG(y)

)
= κ and f : loti(G,H), which imply ot

(
NH(f(y))

)
=

κ. �

G is a subgraph of H if |G| ⊆ |H| and for any x, y ∈ |G|, G(x, y) → H(x, y). G
is an induced subgraph of H if |G| ⊆ |H| and for any x, y ∈ |G|, G(x, y)↔ H(x, y).
If I ∈ OI, we say that G (strongly) I-embeds into H if there is G′ such that
I(G,G′) and G′ is a(n induced) subgraph of H. The next observation shows that
the collections of α-splitting and α∗-splitting graphs for κ < α < κ+ form a proper
hierarchy with respect to our order isomorphism relations.
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Observation 1.9. If κ < α < β < κ+, split(G) = α and split(H) = β, then H
does not loti-embed into G. If split∗(G) = α and split∗(H) = β, then H does not
l∗oti-embed into G.

Proof. If split(H) = β and α < β, there is x ∈ |H| with ot ((N(x)))
H ≥ α. If

f : loti(H,H ′), then ot (N(f(x))
H′ ≥ α and thus H ′ cannot be a subgraph of G.

The proof for ∗-splitting is similar. �

If C is a collection of graphs we say that X is (strongly) I-universal for C if
X ∈ C and every G ∈ C (strongly) I-embeds into X. Given an ordinal graph G, we
let ||G||I be min{α ∈ On | ∃H I(G,H) ∧ |H| = α}.

For any I ∈ OI and ordinal graphs G, ||G||I provides a measure of complexity
for G. Our main results will show that very restricted classes of ordinal graphs (we
will mainly consider the smallest classes in our hierarchy - these are κ∗-splitting,
κ-splitting and (κ + 1)∗-splitting graphs) often still contain objects of arbitrary
complexity.

Theorem 1.10. • For any γ < κ+, there is a (κ + 1)∗-splitting graph G
such that ||G||l∗oti > γ and ||G||loti > γ (Theorem 3.1).

• For every γ < κ+, there exists a κ∗-splitting graph G such that ||G||loi > γ
(Theorem 3.4).

• Assume κ is a regular and uncountable cardinal. There are κ∗-splitting
graphs G and G∗ such that ||G||loti = ||G∗||l∗oti = κ · 2 (Theorem 3.5).

An easy consequence is the non-existence of universal objects for these classes.

Corollary 1.11. Assume I ∈ OI and κ < α < κ+. Then there is no I-universal
α-splitting (or α∗-splitting) graph. In fact, no ordinal graph of size κ can I-embed
every α-splitting (or α∗-splitting) graph. If I ∈ {loi, l∗oi, oi}, this is true also if
α = κ.

Proof. Assume X is an I-universal α-splitting (or α∗-splitting) graph. We may
then assume that |X| = γ for some γ < κ+. Let G be α-splitting (or α∗-splitting)
with ||G||I > γ, as provided by either Theorem 3.1 or Theorem 3.4. Such G cannot
I-embed into X by Observation 1.9, contradicting supposed universality of X. �

2. Induced Order Isomorphisms

In this short section we treat the question for which I ∈ OI, the restriction of
a function f witnessing I(G,H) to a subset of |G| necessarily yields a witnessing
function for I(Ḡ, H̄) for the corresponding induced subgraphs Ḡ, H̄ of G,H. We
will obtain a positive answer for loi (and any of it’s strengthenings) and a negative
answer for loti∗ (and its weakenings). These results will be relevant in Section 3.

Lemma 2.1. Assume I ∈ {oi, l∗oi, loi}. Assume f : I(G,H) and Ḡ is an induced
subgraph of G. Let H̄ be the induced subgraph of H with vertex set f [|Ḡ|]. Then
f � |Ḡ| : I(Ḡ, H̄).

Proof. Straightforward and very easy. �

Lemma 2.2. There are graphs G and H and f : loti∗(G,H) such that for some
induced subgraph Ḡ of G, if H̄ is the induced subgraph of H with vertex set f [|Ḡ|],
then f � |Ḡ| : loti(Ḡ, H̄) and f � |Ḡ| : l∗oti(Ḡ, H̄) are both not valid.



A GENERALIZATION OF THE NOTION OF BOUNDED DEGREE FOR INFINITE GRAPHS 7

Proof. We let G, H, Ḡ and f be as shown in the picture below.

G H

ω + 1

ω

0 1 2 3

. . .
ω + 1

ω 1 2 3

0

. . .Ḡ H̄

f : loti∗(G,H)

f̄

f maps nodes according to their position in the picture, i.e. f(ω) = 0, f(0) = ω
and f is the identity map otherwise. To see for example that f̄ : loti(Ḡ, H̄) is not

valid, note that ot
(
N Ḡ(ω + 1)

)
= ω, while ot

(
N H̄(ω + 1)

)
= ω + 1. �

3. Minimal Domains

In this central section, we provide the proofs of our main results.
For any X ⊆ On, let K(X) denote the complete graph with vertex set X.

Theorem 3.1. For any γ < κ+, there is a (κ + 1)∗-splitting graph G such that
||G||l∗oti > γ and ||G||loti > γ. Moreover if f : loti(G,H), then H is (κ+1)∗-splitting
(this trivially holds if f : l∗oti(G,H)).

Proof. We will construct Gγ with ||Gγ ||l∗oti > γ and ||Gγ ||loti > γ by induction
on γ < κ+. However we will verify a stronger property during the induction: For
κ ≤ γ < κ+, there is a (κ + 1)∗-splitting graph Gγ and x = x(Gγ) = max(|Gγ |)
which is adjancent only to 0 in Gγ , such that f(x) ≥ γ whenever f : l∗oti(Gγ , H)
or f : loti(Gγ , H).

Case γ = κ: We let Gκ = K(κ) together with one additional node that is
κ, adjancent only to 0. Now ot

(
NGκ
∗ (0)

)
= ot

(
NGκ(0)

)
= κ + 1 and for every

0 < α < κ, ot
(
NGκ
∗ (α)

)
= ot

(
NGκ(α)

)
= κ. This implies that if f : l∗oti(Gκ, H)

or f : loti(Gκ, H), then f(κ) ≥ κ. Obviously, Gκ is (κ + 1)∗-splitting. We will
picture Gκ as follows.

Gκ

K(κ) κ0

We will now proceed to define Gγ for κ < γ < κ+, and will only later show that
those are as desired. In fact, we will only define Gγ for limit ordinals γ (which
clearly suffices).

Given Gγ for a limit ordinal γ, with x = x(Gγ), obtain G∗γ+ω from Gγ by
introducing ω-many additional nodes 〈x+ i | 1 ≤ i < ω〉 adjancent to each other
and all adjancent to x. Let G∗∗γ+ω be an order isomorphic copy of G∗γ+ω such that
0 6∈ |G∗∗γ+ω| and such that the corresponding order isomorphism f maps x+i to itself
for every i < ω. Now we obtain Gγ+ω from G∗∗γ+ω by introducing 2 additional nodes,
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that is 0 adjancent to x+ i for 1 ≤ i < ω and x+ω adjancent only to 0. Obviously,
Gγ+ω is (κ+1)∗-splitting. We picture Gγ+ω as follows, with K = K([x+1, x+ω)).

Gγ+ω

Gγ K
x

0 x+ ω

Now assume γ is a limit of limit ordinals and we have constructed Gδ for limit
ordinals δ < γ. By replacing each Gδ with a suitable order isomorphic copy, we
may assume that |Gδ0 | ∩ |Gδ1 | = ∅ and x(Gδ0) < x(Gδ1) whenever δ0 < δ1 are
both limit ordinals less than γ, and that 0 6∈ |Gδ| for any limit ordinal δ < γ. Let
〈γi | i < cof(γ)〉 be cofinal in γ with each γi a limit ordinal. We construct Gγ as the
graph obtained as the union of Gγi for i < cof(γ), where we additionally connect
x(Gγi) and x(Gγj ) by an edge for any i, j < cof(γ) and add two additional nodes,
that is 0 adjancent to x(Gγi) for i < cof(γ) and an ordinal δ greater than x(Gγi)
for i < cof(γ) which is adjancent only to 0. That Gγ is (κ + 1)∗-splitting follows
since ot ({x(Gγi) | i < cof(γ)}) ≤ κ. We provide a sample illustration for Gκ+ω·ω
with γi = κ+ ω · i for i < ω.

Gκ+ω·ω

Gκ
Gκ+ω

Gκ+ω·2

0

δ

. . .

ω

That the Gγ are as desired is a consequence of the following.

Claim 1. Assume Ḡ = Gγ for some limit ordinal κ ≤ γ < κ+. If G∗ is an
ordinal graph with |Ḡ| ∩ |G∗| = x(Ḡ), G = Ḡ ∪ G∗ and either f : l∗oti(G,H) or
f : loti(G,H), then f(x(Ḡ)) = x(H̄) ≥ γ, where H̄ is the induced subgraph of H
with vertex set f [Ḡ].

Proof. By induction on γ. We will argue for both cases for f simultaneously, and
use the notation NG(∗)(x) for a graph G and some x ∈ |G|, which denotes NG∗ (x) in the

case when f : l∗oti(G,H) and denotes NG(x) in the case when f : loti(G,H). As-
sume γ = κ. The claim follows in this case from what we have shown in the second
paragraph of the proof of the theorem, as this proof did not refer to ot

(
N(∗)(x(Ḡ))

)
,

and for any other y ∈ Ḡ, ot
(
N Ḡ

(∗)(y)
)

= ot
(
NG

(∗)(y)
)

.

Now assume the claim holds for some limit ordinal γ, we want to show it holds
for γ + ω. Let x = x(Gγ), where Gγ refers to the corresponding induced subgraph
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of Ḡ = Gγ+ω, which in turn is an induced subgraph of G. Then f(x) ≥ γ induc-

tively and ot
(
NH

(∗)(f(x))
)

= ω. Thus we can find a strictly increasing sequence

〈ni | i < ω〉 of natural numbers with n0 = 0 such that 〈f(x+ ni) | i < ω〉 is a
strictly increasing sequence of ordinals and for every i < ω there is j < ω such
that f(x + i) < f(x + nj). Now let 0 be as in the construction of Gγ+ω. Then

ot
(
NH

(∗)(f(0)) = ω + 1
)

and this implies that f(x+ ω) ≥ γ + ω.

Finally, assume that γ > κ is a limit of limit ordinals and the claim holds for all
γ̄ < γ. Let 〈γi | i < cof(γ)〉 be cofinal in γ with each γi a limit ordinal. If Gγ is the
disjoint union of Gγi for i < cof(γ) with the x(Gγi) connected by edges together
with an additional node 0 adjancent to all x(Gγi) and another additional sufficiently
large node δ adjancent only to 0, then it follows that f(x(Gγi)) = x(f [Gγi ]) ≥ γi

inductively. Now since ot
(
NG

(∗)(0)
)

= cof(γ) + 1 and thus ot
(
N H̄

(∗)(f(0))
)

=

cof(γ) + 1, it follows that f(δ) = max(H̄) ≥ γ. �

The main statement of the theorem now follows (for any γ) by taking G = Gγ
in the statement of the claim. It remains to verify the second statement of the
theorem for every Gγ . Using Lemma 1.8, it suffices to show that whenever x ∈ |Gγ |
is such that ot

(
NGγ (x)

)
= κ+1, then there is y with (x, y) ∈ Gγ , ot

(
NGγ (y)

)
= κ

and such that NGγ (x) ∩NGγ (y) has cardinality κ. We will do so by induction on
γ < κ+.

If γ = κ, the only node x ∈ |Gκ| with ot
(
NGκ(x)

)
= κ+1 is 0, and any y ∈ (0, κ)

is as required in this case.
At stage γ+ω, note that the only nodes x ∈ |Gγ+ω| with ot

(
NGγ+ω (x)

)
= κ+1

are elements of |Gγ |\x(Gγ), allowing us to find appropriate y within Gγ inductively.
Assume now γ is a limit of limit ordinals and x ∈ |Gγ | satisfies ot

(
NGγ (x)

)
=

κ + 1. If x ∈ |Gγi | \ {x(Gγi)} for some i < cof(γ), then we find the appropriate
y within Gγi inductively. If cof(γ) < κ, no other such x exist. Thus assume that
cof(γ) = κ. In this case, x = 0 (and no other x) also satisfies ot

(
NGγ (x)

)
= κ+ 1,

but here y = x(Gγ0) is as required. �

Now we turn our attention to the most narrow class of graphs in our hierarchy, the
κ∗-splitting graphs. We show that for such graphs G, ||G||loi can still be arbitrarily
large. For this result, the following graphs will be a basic ingredient:

Definition 3.2. Given sets of ordinals A, B and C, with injective enumerations
A = {ai | i < κ}, B = {bi | i < κ} and C = {ci | i < κ}, we denote by O(A,B,C)
the graph with vertex set A ∪ B ∪ C in which ai is connected to both bj and cj
whenever i ≤ j, and bi is connected to cj whenever i ≤ j. We picture this graph as
follows:

A

B C

≤ ≤

≤
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Lemma 3.3. If A = {ai | i < κ}, B = {bi | i < κ} is given by an increasing
enumeration and C = {ci | i < κ} is given by an increasing enumeration (thus
B and C both have order-type κ, while A may have any order-type less than κ+),
sup{ai | i < κ} < b0 and supB = supC, then G = O(A,B,C) is κ∗-splitting and
ot
(
NG
∗ (ci)

)
< κ for every i < κ.

Proof. Note that our assumptions imply that ot (B ∪ C) = κ. Thus ot
(
NG
∗ (ai)

)
=

κ for every i < κ. Similarly ot
(
NG
∗ (bi)

)
= κ for every i < κ. Finally, the cardinality

of NG
∗ (ci) is less than κ and thus we are done. �

Theorem 3.4. For every α < κ+, there exists a κ∗-splitting graph G such that
||G||loi ≥ α and such that whenever f : loi(G,H), then H is κ∗-splitting.

Remark: If some graph G is κ∗-splitting and f : loi(G,H), it is immediate that H
is κ-splitting, however H will not be κ∗-splitting in general.

Proof. Let α < κ+. We want to find a graph G which is κ∗-splitting such that
||G||loi ≥ κ · α. Let A0 := ∅ and B0 := κ. Let {bi0 | i < κ} be an increasing
enumeration of B0. For γ ∈ [1, α), let Aγ := {κ · γ + 2 · i | i < κ}, let Bγ :=
{κ · γ + 2 · i+ 1 | i < κ} and let Aγ = {aiγ | i < κ} and Bγ = {biγ | i < κ} be their
increasing enumerations. We will perform an induction and construct graphs Gγ
for γ ≤ α such that G = Gα is as desired. However note that for different α we will
construct different graphs 〈Gγ | γ ≤ α〉 along our inductive construction.

Fix a disjoint partition κ =
⋃
i≤α Si with each Si of cardinality κ. We will

construct a sequence of graphs 〈Gγ | γ ≤ α〉 such that the following hold for every
γ ≤ α:

(i) |Gγ | =
⋃
δ<γ(Aδ ∪Bδ).

(ii) If δ < γ, Gδ is an induced subgraph of Gγ .
(iii) If δ < γ, (a, b) ∈ E(Gγ) \ E(Gδ) and a ∈ |Gδ|, then

∃η < δ ∃i ∈ [δ, γ)∃j ∈ Si a = bjη.

(iv) If i ≥ γ, δ < γ and j ∈ Si, then ot
(
N
Gγ
∗ (bjδ)

)
< κ.

(v) Gγ is κ∗-splitting.

(vi) Assume f : loi(Gγ , H), i < κ and F := {bjδ | δ < γ, j ∈ Si}. Whenever F̄ is
a subset of F for which F \ F̄ has size less than κ, then sup(f [F̄ ]) ≥ κ · γ.

Let G0 be the empty graph. Let G1 = 〈B0, ∅〉. Note that G1 is not connected.
Actually, in our below construction, no Gγ is connected except for the final Gα.

Assume now we have constructed 〈Gδ | δ ≤ γ〉 for some γ ≥ 1, with the above

properties, and we want to construct Gγ+1. Let S = {bjδ | δ < γ, j ∈ Sγ}, choose
an enumeration so that S = {si | i < κ}. We let Gγ+1 = Gγ ∪O(S,Aγ , Bγ), i.e. we
let |Gγ+1| = |Gγ | ∪ Aγ ∪ Bγ and let E(Gγ+1) be obtained from E(Gγ) by adding
the following edges:

• An edge between si and both ajγ and bjγ for i ≤ j < κ.

• An edge between aiγ and bjγ for i ≤ j < κ.

We picture this as follows:
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Gγ+1

S

Aγ Bγ

≤ ≤

≤

Gγ

We want to verify (i)-(vi) for Gγ+1.

(i) Immediate.
(ii) Immediate by the construction of Gγ+1.
(iii) Assume δ < γ + 1 and E = (a, b) is in E(Gγ+1) \ E(Gδ) with a ∈ |Gδ|. If

δ < γ and E ∈ E(Gγ) \ E(Gδ), then the result follows from (iii) for the
pair (δ, γ). On the other hand if E ∈ E(Gγ+1)\E(Gγ), it follows from the
construction of Gγ+1 that a ∈ S, i.e. ∃η < δ a = bjη for some j ∈ Sγ .

(iv) Assume i ≥ γ + 1, δ < γ + 1 and j ∈ Si. If δ < γ, then by (iv) for

γ, ot
(
N
Gγ
∗ (bjδ)

)
< κ. But by (iii) for the pair (γ, γ + 1), N

Gγ
∗ (bjδ) =

N
Gγ+1
∗ (bjδ). Otherwise, if δ = γ, then bjδ ∈ Bγ . But then it is easy to see

from the construction of Gγ+1 that ot
(
N
Gγ
∗ (bjδ)

)
< κ.

(v) We have to show that ot
(
N
Gγ+1
∗ (a)

)
≤ κ for every a ∈ |Gγ+1|. If a ∈

|Gγ | \ S, this is immediate by (v) for γ and by the construction of Gγ+1.
If a ∈ S, this is immediate from (v) for γ together with (iii). If a ∈
|Gγ+1| \ |Gγ |, then this is immediate from the construction of Gγ+1.

(vi) Fix any i < κ and assume f : loi(Gγ+1, H). We will show that whenever
X ⊆ κ is of size κ, then sup{f(bjγ) | j ∈ X} ≥ κ · (γ + 1).

For any x < κ and y ≥ x, byγ is adjancent to both axγ and sy. The
above implies that f(axγ) > f(sy) for every y ≥ x. (vi) for γ implies that
sup{sy | y ≥ x} ≥ κ · γ. Thus f(axγ) ≥ κ · γ for every x < κ.

Now for any x < κ, s0 is adjancent to both axγ and bxγ , so κ ·γ ≤ f(axγ) <
f(bxγ). Since the bxγ are all distinct, it follows that sup{f(bxγ) | x ∈ X} ≥
κ · (γ + 1).

Now we assume that γ is a limit ordinal and that we have constructed 〈Gδ | δ < γ〉
with the above properties. We let Gγ =

⋃
δ<γ Gδ and want to verify (i)-(vi) hold

for Gγ .

(i) Immediate.
(ii) Immediate.
(iii) Immediate.

(iv) Let i ≥ γ, δ < γ and j ∈ Si. Note that bjδ ∈ |Gδ+1| and by (iv) for

δ+ 1, ot
(
N
Gδ+1
∗ (bjδ)

)
< κ. Now by (iii) for the pair (δ+ 1, γ), N

Gγ
∗ (bjδ) =

N
Gδ+1
∗ (bjδ), using that j ∈ Si and i ≥ γ.
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(v) We need to show that ot
(
N
Gγ
∗ (a)

)
≤ κ for every a ∈ Gγ . If a ∈ Aδ for

some δ < γ, this is immediate by (v) for δ together with (iii) for the pair
(δ, γ). Thus assume a ∈ Bδ for some δ < γ and pick j and i such that

a = bjδ and j ∈ Si.
If i < γ, let k = max(i, δ+ 1). By (v) for k, ot

(
NGk
∗ (bjδ)

)
≤ κ. By (iii)

for the pair (k, γ), NGk
∗ (bjδ) = N

Gγ
∗ (bjδ), using that k > i.

If i ≥ γ, then by (v) for the pair (δ + 1, γ), ot
(
N
Gδ+1
∗ (bjδ)

)
≤ κ and by

(iii) for (δ + 1, γ), N
Gδ+1
∗ (bjδ) = N

Gγ
∗ (bjδ).

(vi) Immediate using (vi) inductively together with Lemma 2.1.

It only remains to verify the last statement of the theorem, that is, if f : loi(G,H),
then H is κ∗-splitting. We will do this by showing that in fact f : l∗oi(G,H). By
Observation 1.6, it suffices to show that whenever (x, y) ∈ G and x < y, then
f(x) < f(y).

Thus assume that (x, y) ∈ G and x < y. x, y will be contained in an induced
subgraph ofG that is of the form O(A,B,C), with A = {ai | i < κ}, B = {bi | i < κ}
and C = {ci | i < κ}. Using that f : loi(G,H), it suffices to find z that is connected
to both x and y in O(A,B,C).

• If x = ai and y = bj , then i ≤ j and we let z = cj .
• If x = ai and y = cj , then i ≤ j and we let z = bj .
• If x = bi and y = cj , then i ≤ j and we let z = ai.

�

It seems natural to ask whether a similar construction can be performed with
loti∗ in place of loi. We do not know the answer to this question, our best result in
this direction is the following.

Theorem 3.5. Assume κ is a regular and uncountable cardinal. There are κ∗-
splitting graphs G and G∗ such that ||G||loti = ||G∗||l∗oti = κ · 2.

Proof. The proof will be based on the following easy standard claim, which we will
provide the short proof of for the sake of completeness.

Claim 2. Assume f is an injective function from κ to the ordinals and ot (f [κ]) =
κ. Then there is a club of α < κ such that ot (f [α]) = α.

Proof. Let C0 = {α < κ | f [κ] ∩ sup({f(β) + 1 | β < α}) = f [α]}. We claim that
C0 is a club subset of κ. Obviously, C0 is closed. To see that C is unbounded, let
α0 < κ. Given αi, let αi+1 < κ be such that f [κ] ∩ sup({f(β) + 1 | β < αi}) ⊆
f [αi+1]. Using the regularity of κ and the fact that ot (f [κ]) = κ, it is easy to see
that such αi+1 always exists. Let α =

⋃
i<ω αi. Then f [κ]∩ sup({f(β) | β < α}) =

f [α], i.e. α ∈ C0.
Now let C = {α ∈ C0 | ot (f [α]) = α}. We claim that C is club. Obviously, C

is closed. To see that C is unbounded, let α0 < κ, α0 ∈ C0. Given αi and using
the regularity of κ, let αi+1 ≥ αi be such that αi+1 ∈ C0, αi+1 ≥ ot (f [αi]) and
ot (f [αi+1]) ≥ αi. Let α =

⋃
i<ω αi. Then ot (f [α]) =

⋃
i<ω ot (f [αi]) = α, using

that the αi are in C0. �

We will now define the graphs G and G∗. Let A = [1, κ) and let B = [κ+2, κ ·2).
Let A = {ai | i < κ} and B = {bi | i < κ} be increasing enumerations of A and
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B respectively. G∗ will have vertex set A ∪ B ∪ {κ} where ai is adjancent to bj
whenever i < j, and κ is adjancent to all nodes in B. G will have vertex set κ · 2,
where ai is adjancent to bj whenever i < j, κ is adjancent to all nodes in B and 0
is adjancent to all nodes in B and to κ+ 1. We picture these graphs as follows:

G∗ G

A

B

κ<

A

B

0

κ+ 1

κ

<

We will provide the argument that G∗ is as desired. The argument for G is similar.

• If x ∈ A, ot
(
NG∗
∗ (x)

)
= κ.

• If x ∈ B, ot
(
NG∗
∗ (x)

)
is a double successor ordinal less than κ.

• ot
(
NG∗
∗ (κ)

)
= κ.

Assume now f : l∗oti(G∗, H∗). If i < κ, bi is adjancent to aj for j < i and
to κ. So ot

(
NG∗
∗ (bi)

)
= i + 2, hence ot

(
NH∗
∗ (f(bi)

)
= i + 2 and therefore

ot (f [{aj | j < i} ∪ {κ}]) ≥ i+ 1. Using the claim, it follows that ot (f [A ∪ {κ}]) ≥
κ + 1. Let x be the κth element in the increasing enumeration of f [A ∪ {κ}]. It
follows that x ≥ κ, and moreover f [B] \ x must have cardinality κ, for otherwise
ot
(
NH∗
∗ (x)

)
> κ. But this implies that |H∗| has order-type at least κ · 2. �

Note: If G is the graph from Theorem 3.5 and f : loti(G,H), then H need not
be κ∗-splitting.

4. Open Questions

The most obvious question left open seems to be whether we can improve the
construction of Theorem 3.5 to get a positive answer to the following question:

Question 4.1. Is there a κ-splitting graph G with ||G||loti∗ > κ · 2? Is there, for
every γ < κ+, a κ-splitting graph G with ||G||loti∗ > γ?

Our second question concerns the existence of small universal families for our
classes of graphs: Assume I ∈ OI. If we define the (strong) I-universality number
for a given family G of graphs to be the least cardinality of some X ⊆ G such that
every element of G can be (strongly) I-embedded into some element of X (we call
such X an I-universal family), then our results show that the I-universality number
for α-splitting (or α∗-splitting) graphs is at least κ+, for any κ < α < κ+, or also
for α = κ in case I ∈ {loi, l∗oi, oi}. Since the number of ordinal graphs of size κ
modulo order-isomorphism is 2κ, this number is largest possible if 2κ = κ+. The
following seems to be an obvious question.

Question 4.2. Assume 2κ > κ+, α ∈ [κ, κ+) and I ∈ OI. What is the (strong)
I-universality number for α-splitting (or α∗-splitting) graphs?

A question that was raised in the introduction of this paper is the following:

Question 4.3. Assume κ is a singular cardinal. Is there (consistently) a universal
object in the class of graphs of size κ that are locally of size less than κ?
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