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Abstract. The minimal ordinal-connection axiom MOC was introduced by

the first author in [2]. We observe that MOC is equivalent to a number of
statements on the existence of certain hierarchies on the universe, and that

under global choice, MOC is in fact equivalent to the GCH. Our main results

then show that MOC corresponds to a weak version of global choice in models
of the GCH: it can fail in models of the GCH without global choice, but also

global choice can fail in models of MOC.

1. Introduction

Only some basic assignments of ordinals to sets, such as the cardinality and the
rank, are granted by the axioms of ZFC, and the lack of a stronger connection
between sets and ordinals can be seen to explain the deficiency of ZFC with respect
to cardinal arithmetic. Ordinal-connection axioms were introduced by the first au-
thor in [2] with the purpose of expressing a strong connection between the universe
of sets and ordinal numbers in simple terms. However, they can also be seen to
isolate an important fragment of L-likeness, that is essentially the existence of a
reasonably well-behaved slow rank function. 1 We will observe that the minimal
ordinal-connection axiom MOC from [2], the definition of which we will recall in
Section 2 below, is a weak form of global choice under the GCH, and that a local
version of MOC, that was shown to imply the GCH in [2], is in fact equivalent to
the GCH, thus in particular showing that the GCH can be seen as the assertion of
the existence of well-behaved slow rank functions.

We will also observe that MOC is in fact equivalent to certain hierarchy princi-
ples. As an example, MOC is equivalent to the assertion that the universe can be
written as a continuous increasing union

⋃
α∈OrdKα with the following properties:

• Each Kα is transitive and has size |α| in case α ≥ ω.
• Kα = H(α) whenever α is an infinite cardinal.

The central results of our paper investigate the role of MOC as a weak version of
global choice under the GCH. Starting from a model of ZFC, we will provide models
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with the following properties, letting GBc denote the axioms of Gödel-Bernays set
theory without global choice, however with the axiom of choice included.

• GBc and the GCH hold while MOC fails.
• GBc and MOC hold, while global choice fails.

This contributes to the problem of having certain orderings on the universe of sets
while not having a global wellorder. For example (see [3]), it seems to be open
whether it is possible that there is a linear ordering of the universe of sets while
there is no well-ordering of it.

2. Basic Definitions

We start by recalling the basic definitions from [2]. We will quite freely talk
about classes as objects in the following. This should either be understood as
referring to definable classes in the context of first order models, or as referring to
the classes of models of the form 〈M, C〉 of GBc, where M denotes the first order
objects (i.e., sets) and C denotes the second order objects (i.e., classes) of such a
model. Note that in each of these cases, every set is a class as well, that is, when
we make statements about classes in the following, this is always meant to include
the possibility that these classes in fact aren’t proper classes, that is they are just
sets. When we quantify over the variable α in the following, this is always to be
understood as quantification over ordinals.

Definition 2.1. Let K be a transitive class, and let ρ : K → Ord∩K be a class
function. Then, ρ is an ordinal-connection for K if

(C1) ∀α ∈ K ρ(α) = α,
(C2) ∀x, y ∈ K [x ∈ y → ρ(x) < ρ(y)], and
(C3) ∀α ∈ K\ω ∃f : α→ {x | ρ(x) < α} surjective.

Definition 2.2. If ρ is an ordinal-connection for K, we say that ρ is minimal if

(C4) for every x ∈ K, if T is transitive such that x ∈ T , and r is an ordinal-
connection for T , then ρ(x) < r(x)+. 2

We say that ρ is a (minimal) ordinal-connection in case it is a (minimal) ordinal-
connection for V . MOC(ρ) is the statement (with second order parameter ρ) that
ρ is a minimal ordinal-connection. The minimal ordinal-connection axiom MOC
is the (second order) statement that there exists a class that is a minimal ordinal-
connection.

Note that the combination of (C2) and (C4) implies that if x ∈ Vω, then ρ(x)
agrees with the von Neumann rank of x. It is sometimes easier to think of an
ordinal-connection in terms of a hierarchy. Whenever we talk about hierarchies,
we will tacitly make the innocuous extra assumption that Ord∩K is either a limit
ordinal or equal to Ord itself. 3

Definition 2.3. A hierarchy for K is a continuous ⊆-increasing class sequence
~K = 〈Kα | α ∈ Ord∩K〉 such that K =

⋃
α∈Ord∩K Kα.

We say that ~K is an ordinal-connection hierarchy for K if it is a hierarchy for
K that satisfies the following additional properties:

2If r(x) happens to be finite, we let r(x)+ = r(x) + 1.
3This will avoid having to notationally deal with an additional top level of our hierarchy in

the case when Ord∩K is a successor ordinal.
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(H1) ∀α ∈ K Kα ∩Ord = α,
(H2) ∀x, y ∈ K [x ∈ y → ∃α (x ∈ Kα ∧ y 6∈ Kα)], and
(H3) ∀α ∈ K [α ≥ ω → |Kα| ≤ |α|]. 4

Note that property (H2) in particular implies that each Kα is transitive. If ρ is an
ordinal-connection for K, we denote {x | ρ(x) < α} as ρ<α. Clearly, 〈ρ<α | α ∈ K〉
is an ordinal-connection hierarchy for K. On the other hand, given a hierarchy
~K = 〈Kα | α ∈ K〉, we can define ρ(x) to be the least α such that x ∈ Kα+1.
We say that ρ is the rank function associated to the hierarchy of Kα’s in this

case. If ~K is an ordinal-connection hierarchy, then clearly, this ρ is an ordinal-
connection for K. Note in particular that corresponding ordinal-connections and
ordinal-connection hierarchies are interdefinable, and also that the axioms (C1),
(C2) and (C3) directly correspond to the axioms (H1), (H2) and (H3) respectively.
In Section 3 below, we will also introduce an analogue of the axiom (C4) in terms
of hierarchies.

3. Some basic observations

In this section, we will make a number of simple observations, which we will
make use of in the later sections of our paper.

We introduce an additional principle:

(C=) • For every n ∈ ω, ρ<n = Vn, and
• for every infinite cardinal κ, ρ<κ = H(κ).

The following strengthens [2, Proposition 4.1].

Proposition 3.1. If ρ : V → Ord satisfies (C2), (C3) and (C4) with respect to
K = V , then it satisfies (C=). In particular thus, this is the case if ρ is a minimal
ordinal-connection.

Proof. Assume that (C2), (C3) and (C4) hold. It is easy to check that for every
n ∈ ω, ρ<n = Vn, and that ρ<ω = H(ω). Making use of continuity at limit
cardinals, it thus suffices to verify (C=) for regular and uncountable cardinals κ. If
ρ(x) < κ, then there is α < κ such that ρ(x) < α, and by (C3), there is a surjective
f : α→ ρ<α. Making use of (C2), this clearly implies that x ∈ H(κ).

If on the other hand, x ∈ H(κ) is rank-minimal such that ρ(x) ≥ κ, we know
that trcl(x) ⊆ ρ<κ. Since | trcl(x)| < κ, it follows that there is some α < κ such
that trcl(x) ⊆ ρ<α. Let T be the transitive set trcl({x})∪(α+1), and let r : T → T
be defined by letting

• r(x) = r(α) = α,
• r(β) = β for every β < α, and
• r(z) = ρ(z) for every z ∈ trcl(x).

r is easily seen to be an ordinal-connection for T . (C4) thus yields that ρ(x) <
r(x)+ = α+ ≤ κ, contradicting our assumption. �

The above proposition can also be reversed, altogether showing that over V ,
given (C2) and (C3), the axiom (C4) could equivalently be replaced by (C=).

Observation 3.2. If ρ : V → Ord satisfies (C2), (C3) and (C=) with respect to
K = V , then it satisfies (C4).

4Clearly, from (H1) we obtain |Kα| ≥ |α|, so that together with (H3), we obtain |Kα| = |α|
for any infinite α.
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Proof. Assume that x ∈ K, T is transitive such that x ∈ T , and r is an ordinal-
connection for T . The case when x ∈ Vω is easily checked, so let us assume that
x 6∈ Vω. Let κ+ be least such that x ∈ H(κ+). This implies that r(x) ≥ κ: If
r(x) < κ, then the first part of the argument from the proof of Proposition 3.1,
which uses (C2) and (C3), shows that x ∈ H(κ), contradicting our minimality
assumption. But since ρ<κ+ = H(κ+) by (C=), it follows that ρ(x) < κ+ ≤ r(x)+,
yielding (C4) to hold. �

The axiom (C=), and thus also (C4), clearly has a counterpart for ordinal-
connection hierarchies.

Definition 3.3. If ~K = 〈Kα | α ∈ Ord〉 is an ordinal-connection hierarchy (for V ),

we say that ~K is minimal if it satisfies the following.

(H4) • For every n ∈ ω, Kn = Vn, and
• For every infinite cardinal κ, Kκ = H(κ).

Note that under the axioms (H2) and (H3), the axiom (H4) directly corresponds
to the axiom (C4) as a consequence of Proposition 3.1 and Observation 3.2.

Proposition 3.4. Assume that there is a hierarchy ~K = 〈Kα | α ∈ Ord〉 (for
V ) that satisfies (H3) and (H4) with respect to K = V . Then, there is a minimal

ordinal-connection that is definable from ~K (over V ).

Proof. Consider the hierarchy ~K∗ = 〈K∗α | α ∈ Ord〉 obtained by letting K∗α be the
transitive closure of Kα for each ordinal α. This yields a hierarchy of transitive
levels K∗α which still has properties (H3) and (H4): Regarding (H3), note that by

(H4) for ~K, we have Kα ⊆ H(α+) for every ordinal α, hence if Kα has size at most
|α| by (H3), then this is also the case for its transitive closure.

Now, we refine ~K∗ in a continuous way, replacing each successor level K∗α by less
than α+-many levels, corresponding to the ranks (in the von Neumann hierarchy)
of elements of K∗α: That is, instead of K∗α, we first have a level consisting of the
union of the earlier K∗β ’s in order to ensure continuity, then the next level will

additionally have the rank-minimal new elements of K∗α (if there are any), then the
next level will additionally have the new elements of K∗α of the next-largest rank
(if there are any) etc. Note that by (H3), we will this way have exhausted K∗α after
less than α+-many steps. Let 〈K∗∗α | α ∈ Ord〉 be the hierarchy thus obtained,
which satisfies (H2) by construction, which clearly still satisfies (H3), and which
still satisfies (H4) by the above. Now we let K∗∗∗α = K∗∗α ∪α for every ordinal α. It
is straightforward to check that 〈K∗∗∗α | α ∈ Ord〉 is a minimal ordinal-connection
hierarchy for K that is definable from σ (over V ), and thus so is its corresponding
ordinal-connection. �

Remark: In the above, we isolated a weak hierarchy principle that implies MOC.
Going in the other direction, one could also try to find strong hierarchy principles
that follow from MOC. In addition to the axioms (H1), (H2), (H3) and (H4), one
could for example require that Kα+1 contains all subsets of Kα that can be obtained
by application of the Gödel operations (see [5, Definiton 13.6]) to elements of Kα,
thus obtaining a very structured hierarchy witnessing MOC, and supporting the
idea of MOC expressing an important fragment of L-likeness.
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We close this section with two more remarks regarding [2]. First, note that
Proposition 3.1 immediately yields the result from [2, Section 3] that GCH is a
consequence of MOC.

Corollary 3.5. MOC implies the GCH.

Proof. For any infinite cardinal κ, by Proposition 3.1 and by (C3), we have

κ+ = |ρ<κ+ | = |H(κ+)| = 2κ.

�

Our above results also yield a strengthening of [2, Proposition 5.1]. 5

Proposition 3.6. If L[A] is such that for every regular uncountable cardinal κ we
have L[A]κ = H(κ)L[A], then the L[A]-rank λA is a minimal ordinal-connection in
L[A].

Proof. All the required properties of λA other than (C4) are very easy to verify.
But note that (H4) for the hierarchy corresponding to λA is immediate from our
assumption, and thus so is (C4) for λA by Observation 3.2. �

4. Provability from GCH

The following local version of MOC was also introduced in [2].

Definition 4.1. The local minimal ordinal-connection axiom LMOC is the state-
ment that for every α there is an ordinal β > α such that there is a minimal
ordinal-connection ρ : Vβ → β.

It is shown in [2, Proposition 6.4] that LMOC implies the GCH. We show that
this implication can also be reversed, that is LMOC is a theorem of ZFC plus
GCH.

Theorem 4.2. ZFC plus GCH implies LMOC.

Proof. Given an ordinal α, let β > α be an uncountable limit cardinal such that

β = iβ , and thus also Vβ = H(β). Now, let ~K = 〈Kγ | γ < β〉 be a hierarchy with

union H(β) that satisfies (H3) and (H4). Such ~K can easily be chosen using the
GCH. Now we proceed exactly as in the argument for the proof of Proposition 3.4
to construct a minimal ordinal-connection hierarchy, however not for V as we did
there, but for H(β). �

This can now easily be used to show that MOC is equivalent to GCH over
GBC (where the latter notably includes the assertion of the existence of a global
wellorder, or equivalently, the axiom of global choice).

Theorem 4.3. GBC plus GCH implies MOC, in fact, given a global wellorder,
we can definably construct a minimal ordinal-connection over any model of ZFC
plus GCH.

Proof. Simply use the global wellorder to glue together (pieces of) witnesses for
Theorem 4.2. �

5Note that Acceptability for L[A], which was used as assumption in [2, Proposition 5.1], implies

that for every regular uncountable cardinal κ, we have L[A]κ = H(κ)L[A].
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5. A failure of MOC

By Theorem 4.3, MOC is a consequence of global choice for models of GBc that
satisfy the GCH. In [1], William Easton has shown that there are models of GBc
in which global choice fails. We strengthen this to show that there are models of
GBc plus GCH in which MOC fails.

Theorem 5.1. Any model of ZFC has an extension, that is obtained as the first
order part of a class forcing extension, which satisfies GBc plus GCH, and in which
MOC fails.

Proof. Since we may first obtain the GCH by class forcing, we may as well assume
it to already hold in the ground model V . Now let P be the Easton support class
forcing product

∏
γ regular Add(γ, γ+), adding γ+ new Cohen subsets of γ for every

infinite regular cardinal γ. Let G be P-generic. P is a tame notion of class forcing
that preserves all cardinals, all cofinalities and the GCH, and in particular, the first
order part V [G] of its generic extension is a model of ZFC. If we thus consider the
second order model V [G] with only its definable classes as second order objects, we
clearly obtain a model of GBc plus GCH, and we are thus left with showing that
no class function ρ witnessing MOC for V [G] is definable (using parameters, that
is) over V [G].

Assume for a contradiction that such ρ exists, definably over V [G]. Suppose
ψ(x, y, z) is a formula defining the property that ρ(x) < ρ(y) when using the pa-
rameter z, i.e.,

V [G] |= ∀x, y [ψ(x, y, z) ⇐⇒ ρ(x) < ρ(y)],

and let ż be a P-name for z. Suppose that p ∈ G forces this property of ż. Let γ
be a regular cardinal above the supports of all conditions appearing in the name
ż, and let gα for α < γ+ denote the Cohen subsets of γ added at stage γ of our
product P. By MOC(γ) and by Proposition 3.1, ρ(gα) < γ+ for every α < γ+.
Since ρ<(ρ(g0)+1) only has cardinality γ by Property (C3), there must be some

δ < γ+ such that ρ(g0) < ρ(gα) whenever α ≥ δ. For every α < γ+, let ġα be a
canonical P-name for gα. Pick q ≤ p in G such that

q
 ∀α ≥ δ̌ ψ(ġ0, ġα, ż).

For any α < γ+, Let πα denote the automorphism of P that swaps the information
on g0 with the information on gα of any condition in P and is the identity otherwise,
that is it only swaps the coordinates 0 and α in the Cohen product at stage γ of
our product. We also use πα to denote its natural extension to P-names. 6 Note
that for any α, πα(ġ0) = ġα, πα(ġα) = ġ0, and πα(ż) = ż, where the latter follows
from our choice of γ.

Claim 5.2. There is some δ ≤ α < γ+ so that πα(q) ∈ G.

Applying πα to the above forcing statement about q, we obtain that

πα(q)
ψ(ġα, ġ0, ż).

If πα(q) ∈ G, this means that V [G] |= ψ(gα, g0, z), and hence that ρ(gα) < ρ(g0),
contradicting that α ≥ δ. It remains to verify the above claim.

6Recall that for any name σ and automorphism π, the name π(σ) is obtained by recursively
applying π to all conditions appearing in (the transitive closure of) the name σ.
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Proof of the Claim. It suffices to show that there is a dense set of conditions s
below q for which there exists an α ≥ δ such that s ≤ πα(q). Having done so, we
simply pick some such condition s ∈ G, which we can do for G meets any set that is
dense below any of its elements. Then clearly, for the corresponding α, πα(q) ∈ G,
as desired.

Thus, let r ≤ q, and pick α ∈ [δ, γ+) so that r has no information about the αth

Cohen subset of γ to be added at stage γ of the product P. It follows that πα(q) is
compatible to r, and we may thus pick some s below both πα(q) and r, which thus
will be as desired. �

�

With a little extra care, the above argument also shows the following, yielding
second order models in which MOC fails, and for which the classes are not just the
definable classes.

Theorem 5.3. For any second order model M = 〈M, C〉 of GBc, there is a
class forcing notion P such that whenever G is P-generic over M, then the model
〈M [G],D〉 satisfies GBc plus GCH, however fails to satisfy MOC, where D denotes
the classes that are definable over M [G] using class parameters from C.

Proof. Proceeding almost exactly as in the proof of Theorem 5.1, the only thing to
note is that we may pick a canonical name Č for some class parameter C from our
ground model, so that only the trivial condition of our notion of forcing P appears
within the name Č, and that this clearly implies that for any automorphism π of
P, we have π(Č) = Č, allowing the argument by contradiction to proceed as in the
proof of Theorem 5.1. �

6. MOC without global choice

In this section, we show that it is consistent to have models of GBc plus MOC
in which global choice fails. Parts of the argument here are to some extent inspired
by a (somewhat unnecessarily complicated) argument that Joel Hamkins gave on
Math Overflow ([4]) to argue for the consistency of a failure of a weak form of global
choice over models of GBc.

Theorem 6.1. Any model V of ZFC has a class forcing extension 〈V [G], C〉 with
an inner model of the form 〈V [G],D〉 for some D ⊆ C, which satisfies GBc plus
MOC, and in which global choice fails.

Proof. Since we may first obtain the GCH together with the existence of a global
well-order by class forcing, we may as well assume these to already hold in the
ground model, which would now be a second order model of the form 〈V,B〉. We
may moreover assume that this global wellorder ≺ has the property that for every
infinite cardinal κ, the set of the first κ-many elements in the ordering corresponds
exactly to H(κ). Let 〈xα | α ∈ Ord〉 be the enumeration of V corresponding to ≺.
Let P be the ordinal length iteration with Easton support which at every regular
infinite γ adds γ · 2 new Cohen subsets of γ by applying the forcing Add(γ, γ · 2)
over the relevant intermediate model, and which is trivial otherwise. By standard
arguments, this notion of class forcing is tame, preserves all cardinals and cofinali-
ties, and also preserves the GCH. Moreover, it has the property that whenever γ is
an infinite regular cardinal, then every element of H(γ) in a P-generic extension has
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a P-name in H(γ). Let G be P-generic. In particular then, 〈V [G],B[G]〉 satisfies
GBC. Our aim is to find some D ⊆ B[G] so that 〈V [G],D〉 satisfies GBc plus
MOC, however so that global choice fails in that model.

Working in the ground model V , let ∆γ be a collection of cardinality γ of per-
mutations of γ · 2 such that for every ordinal γ̄ < γ, there is some µ = µγγ̄ ∈ ∆γ

with the following properties:

• µ[γ] = [γ, γ · 2) and µ[[γ, γ · 2)] = γ.
• µ[γ̄] ⊆ [γ + γ̄, γ · 2).

For any µ ∈ ∆γ , let πµ be the automorphism of Pγ+1 which permutes the factors

of the product ˙Add(γ, γ · 2) at stage γ of our iteration, that is it permutes the
indices of the Cohen subsets of γ to be added by that forcing, according to the
permutation µ. We will also use πµ to denote its natural extension to P, and to
arbitrary P-names.

We now inductively construct a sequence of names 〈K̇α | α ∈ Ord〉, the evalua-
tion 〈Kα | α ∈ Ord〉 with any generic filter of which will be a hierarchy satisfying
(H3) and (H4), and thus by Proposition 3.4 witnessing MOC for our P-generic

extension. For α ≤ ω, we let K̇α be (the name in the trivial forcing for) Vα. If α

is a regular uncountable cardinal, we let K̇α ⊆ H(α) be a canonical Pα-name for

H(α) of size α. For singular limit ordinals α, we let K̇α =
⋃
β<α K̇β . Having picked

K̇α, let K̇α+1 ⊇ K̇α be the ≺-least P|α|+1-name with the following properties: 7

• |K̇α+1| = |α| and K̇α+1 ⊆ H(α+). 8

• If xα happens to be a P|α|+1-name for an element of H(α+), then

〈xα, 1P|α|+1
〉 ∈ K̇α+1.

9

• For any regular δ ≤ |α| and any µ ∈ ∆δ, the name K̇α+1 is closed under

both π = πµ and π = π−1
µ , in the sense that whenever 〈σ, p〉 ∈ K̇α+1, then

also 〈π(σ), π(p)〉 ∈ K̇α+1.

Claim 6.2. Such names K̇α+1 exist.

Proof. In fact, there is not much to prove here – the second property is clearly easy
to achieve, and the third property is so as well, for it is only at most |α|-many

automorphisms π under which we need to close off K̇α+1. Now if we let K̇α+1 be
⊆-smallest possible with these properties, it will clearly satisfy the first property
above, using that this property holds for K̇α inductively. �

Let ~K = 〈Kγ | γ ∈ Ord〉 denote the sequence 〈K̇G
γ | γ ∈ Ord〉 obtained from

G. This sequence is clearly a hierarchy for V [G], satisfying (H3) and (H4) over
V [G]. We consider the second order model 〈V [G],D〉 where D is the collection

of all second order objects that are definable over V [G] using the sequence ~K as
(class) parameter. We clearly obtain a model of GBc, and we obtain MOC by
Proposition 3.4. We are thus left with showing that global choice fails in this

model, that is, that there is no global wellorder of V [G] that is definable using ~K.
The crucial property that we obtained is provided by the following claim.

7Note that none of the below properties refers to forcing statements, but to properties of the
actual name K̇α+1 in the ground model V .

8This will imply that Kα+1 is an α-size subset of H(α+) in P-generic extensions.
9This will imply that

⋃
β<α+ Kβ = H(α+) in P-generic extensions.
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Claim 6.3. For any regular infinite cardinal γ and any µ ∈ ∆γ , ~K is invariant
under πµ, that is if G is P-generic and G∗ = πµ[G], then both generics give rise to

the same sequence ~K in their P-generic extensions.

Proof. Let γ and µ ∈ ∆γ be as in the statement of the claim. It clearly suffices

to show that for any ordinal α, K̇α+1 is invariant under πµ and its inverse, that

is πµ[K̇α+1] = K̇α+1 = π−1
µ [K̇α+1]. Now K̇α+1 is a P|α|+1-name, and is thus

unaffected by πµ in case γ > α. If γ ≤ α however, then this is immediate from the

closure under πµ and under π−1
µ that we required back when we picked K̇α+1 in

the above. �

Assume for a contradiction that a global wellorder ≺∗ of V [G] exists defin-

ably over V [G] using ~K as class parameter, and some set parameter z. Suppose

ψ(x, y, z, ~K) is a formula defining the property that x ≺∗ y, i.e.,

V [G] |= ∀x, y [ψ(x, y, z, ~K) ⇐⇒ x ≺∗ y],

and let ż be a P-name for z. Suppose that p ∈ G forces this property of ż. Let γ
be a regular cardinal above the supports of all conditions appearing in the name ż.
Working in V [G], let A = {gα | α < γ} denote the set of the first γ-many Cohen
subsets of γ that were added by our forcing, and let B = {gγ+α | α < γ} be the
second bunch. Let us assume without loss of generality that A ≺∗ B. Note that we
can choose canonical P-names Ȧ and Ḃ for both A and B. Pick q ≤ p in G such
that

q
ψ(Ȧ, Ḃ, ż, ~̇K).

Claim 6.4. There is an automorphism π ∈ ∆γ such that

• π(Ȧ) = Ḃ, π(Ḃ) = Ȧ, π(ż) = ż, π( ~̇K) = ~̇K, and
• π(q) ∈ G.

Given such an automorphism, and applying it to the above forcing statement
about q, we obtain that

π(q)
ψ(Ḃ, Ȧ, ż, ~̇K).

But since π(q) ∈ G, this means that V [G] |= ψ(B,A, z, ~K), and hence that B ≺∗ A,
which is a contradiction. It remains to verify the above claim.

Proof of the Claim. We show that there is a dense set of conditions s below q for
which there is an automorphism π ∈ ∆γ with the first of the desired properties,
and such that s ≤ π(q). Having done so, we simply pick some such condition s ∈ G.
Then clearly, π(q) ∈ G, and thus the automorphism π corresponding to s will be
as desired.

Thus, let r ≤ q. We find γ̄ < γ such that the information that r (and hence also
q) has about the Cohen subsets of γ is bounded by γ̄, that is r specifies at most
the first γ̄-many bits of each of the Cohen subsets of γ with indices below γ̄ and of
those with indices in the interval [γ, γ + γ̄), and doesn’t specify any other bits of
the Cohen subsets of γ. We have to find an automorphism π with the properties
specified in the first item above, and such that π(q) is compatible to r, for we may
then pick some s below both π(q) and r, which thus will be as desired. But π = πµ
has all the desired properties when we pick µ = µγγ̄ : Clearly π(Ȧ) = Ḃ, π(Ḃ) = Ȧ,

and we have already argued that π( ~K) = ~K in Claim 6.3. Since π is nontrivial only
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at stage γ of our product, and by the choice of γ, it follows that π(ż) = ż. Finally,
by the choice of γ̄, we have π(q) compatible to r. �

�

7. Preservation of MOC

In this final section, we want to provide an easy sample result showing that
MOC is a reasonably robust set theoretic principle, for it is preserved by certain
well-behaved set forcing notions. Note that MOC cannot be preserved by set
forcing in general, for it implies the GCH (see Corollary 3.5).

Theorem 7.1. For any infinite regular cardinal κ, MOC is preserved under <κ-
closed, κ+-cc forcing of size κ+.

Proof. Assume that MOC holds, as witnessed by ~K = 〈Kα | α ∈ Ord〉, and that P
is a <κ-closed, κ+-cc forcing notion of size κ+. By passing to an isomorphic copy
of P, we may as well assume that P ⊆ H(κ+). Let G be P-generic. We want to

find a minimal ordinal-connection hierarchy ~M = 〈Mα | α ∈ Ord〉 for V [G]. Using
that P is <κ-closed, we may simply let Mα = Kα for α < κ. For α ≥ κ, we let

Mα = {ẋG | ẋ ∈ Kα}. Using Proposition 3.4, it suffices to show that ~M satisfies

(H3) and (H4) with respect to V [G]. Property (H3) for ~M is immediate from

Property (H3) for ~K. Property (H4) for ~M follows easily as well, noting that by
our assumptions on P, forcing with P preserves all cardinals, and whenever λ ≥ κ,
every element of H(λ+)V [G] has a P-name in H(λ+). �
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