Set Theory pt. 4

More details on exercise 8 from one before last time.

Exercise 1 Show that the Axiom of Choice follows from Zorn’s Lemma.

Hint: Let \(x \) be a collection of non-empty sets and consider a maximal partial choice function.

Definition 1 If \(A \) is a set of ordinals, we let \(\sup A \) denote the supremum of \(A \), i.e. the least ordinal \(\alpha \) so that for all \(\gamma \in A \), \(\gamma \leq \alpha \). We define addition, multiplication and exponentiation of ordinals as follows (\(\gamma \) always denotes a limit ordinal):

\[
\begin{align*}
\alpha + 0 &= \alpha \\
\alpha + (\beta + 1) &= (\alpha + \beta) + 1 \\
\alpha + \gamma &= \sup\{\alpha + \beta : \beta < \gamma\} \\
\alpha \cdot 0 &= 0 \\
\alpha \cdot (\beta + 1) &= (\alpha \cdot \beta) + \alpha \\
\alpha \cdot \gamma &= \sup\{\alpha \cdot \beta : \beta < \gamma\} \\
\alpha^0 &= 1 \\
\alpha^{\beta+1} &= \alpha^\beta \cdot \alpha \\
\alpha^\gamma &= \sup_{\beta < \gamma} \alpha^\beta
\end{align*}
\]

Exercise 2 Show that

\[1\]

1. If \(A \) is a set of ordinals, \(\sup A = \bigcup A \); therefore \(\sup A \) always exists,
2. \(1 + \omega = \omega \),
3. \(\omega + \omega \cdot \omega = \omega \cdot \omega \),
4. \(\omega \cdot \omega^\omega = \omega^\omega \).

Note: In the following, \(\alpha, \beta, \gamma, \delta \) always denote ordinals without further mention.

Exercise 3 (transfinite induction) Show that the principle of transfinite induction, which will be necessary for some of the subsequent exercises, is a theorem of ZFC:

For any formula \(\varphi \) (which may also use parameters),

\[
(\forall \gamma ((\forall \beta < \gamma \varphi(\beta)) \to \varphi(\gamma))) \to \forall \gamma \varphi(\gamma).
\]

\[1\] like usually in mathematics, exponentiation binds stronger than multiplication, which in turn binds stronger than addition, i.e. if we write \(8 + 2^5 \cdot 7 \), this is supposed to mean \(8 + ((2^5) \cdot 7) \)
Hint: Assume for a contradiction that the left-hand side of the implication holds but \(\gamma \) is least such that \(\lnot \varphi(\gamma) \).

Exercise 4 If \(\alpha < \beta \), then \(\gamma + \alpha < \gamma + \beta \) and \(\alpha + \gamma \leq \beta + \gamma \). Give an example why \(\leq \) cannot be replaced by \(<\).

Exercise 5 Assume \(\alpha < \beta \) and show that there is a unique \(\delta \leq \beta \) such that \(\alpha + \delta = \beta \).

Exercise 6 If \(\beta \) is a limit ordinal, then \(\alpha + \beta \), \(\alpha \cdot \beta \) and \(\beta \cdot \alpha \) are limit ordinals, for any \(\alpha \). If \(\beta \) is a successor ordinal, then \(\alpha + \beta \) is a successor ordinal for any \(\alpha \). If \(\alpha \) and \(\beta \) are both successor ordinals, then \(\alpha \cdot \beta \) is a successor ordinal. What about ordinal exponentiation?

Exercise 7 Does \(\alpha^{\beta+\gamma} = \alpha^\beta \cdot \alpha^\gamma \) hold?

Exercise 8

- Let \(\alpha \) be any ordinal and show that there exists a largest \(\delta \) such that \(\omega^\delta \leq \alpha \).
- Let \(\alpha \) be any ordinal and let \(\delta \) be maximal such that \(\omega^\delta \leq \alpha \). Then there exists a largest \(n < \omega \) such that \(\omega^\delta \cdot n \leq \alpha \).

Exercise 9 (Cantor’s Normal Form Theorem) Each ordinal \(\alpha \neq 0 \) can be written in the following form

\[
\alpha = \omega^{\beta_1} \cdot k_1 + \ldots + \omega^{\beta_n} \cdot k_n,
\]

where \(1 \leq n < \omega \), \(\alpha \geq \beta_1 > \ldots > \beta_n \geq 0 \) and \(1 \leq k_i < \omega \) for each \(i = 1, \ldots, n \).

Exercise 10 Show that there is a least ordinal number \(\varepsilon_0 \) so that \(\omega^{\varepsilon_0} = \varepsilon_0 \). Show (using induction and Cantor’s Normal Form Theorem) that every ordinal number below \(\varepsilon_0 \) can be written in a form which only uses the constant 0 and the functions \(x + y \), \(x \cdot y \) and \(\omega^x \).