Cardinals

Exercise 1 (Schroeder-Bernstein Theorem) $A \preceq B$ and $B \preceq A$ implies $A \approx B$, i.e. if there is a 1-1 function from A to B and a 1-1 function from B to A then in fact there is a bijection from A to B.

Hint: Let f be an injection from A to B, let g be an injection from B to A. Let $S_0 = B \setminus \text{range } f$. If $S_0 = \emptyset$, we are of course finished. Assume otherwise and define (inductively) $S_{n+1} = f''(g''S_n)$ for all natural numbers $n \ge 0$. Define h as follows:

$$h(x) = \begin{cases} g(x) & \text{if } x \in \bigcup_{n \in \omega} S_n \\ f^{-1}(x) & \text{if } x \in B \setminus (\bigcup_{n \in \omega} S_n) \end{cases}$$

Try to illustrate how h operates by drawing an appropriate picture and show that h is a bijection from B to A. Note that the proof does not use the Axiom of Choice.

Exercise 2 $A \preceq B$ iff $|A| \leq |B|$.

Exercise 3 X is infinite iff $\exists Y \subsetneq X$ and $\exists f \colon Y \to X$ which is a bijection.

Exercise 4 If $\kappa < |X|$ then there exists $Y \subseteq X$ with $|Y| = \kappa$.¹

Exercise 5 If $A \subseteq \alpha$, then type $(A, \in) \leq \alpha$.

Exercise 6 If $A \subseteq \kappa$, then $|A| = \kappa$ iff type $(A, \in) = \kappa$.

Exercise 7

- For all ordinals α , $\aleph_{\alpha} \geq \alpha$.
- For every γ , there exists $\kappa \geq \gamma$ with $\kappa = \aleph_{\kappa}$.

Definition 1 We say that X is T-finite (T stands for Tarski here) iff every nonempty $S \subseteq \mathcal{P}(X)$ has a \subset -maximal element, i.e. an $u \in S$ such that there is no $v \supseteq u$ in S. We say that X is T-infinite iff X is not T-finite.

Exercise 8 Every finite set is T-finite.

Exercise 9 Every infinite set is T-infinite.

 $^{{}^{1}\}alpha, \beta, \gamma, \delta$ usually denote ordinals, while κ and λ usually denote cardinals.