Ideal Topologies

Peter Holy

University of Udine

presenting joint work with

Marlene Koelbing (Vienna),
Philipp Schlicht (Bristol),
and Wolfgang Wohofsky (Vienna).

10.06.2020
Ideals

Let κ be a cardinal (most of the time: regular and uncountable). An ideal on κ is a collection of small subsets of κ.

Definition 1

A collection $\mathcal{I} \subseteq \mathcal{P}(\kappa)$ is an ideal (on κ) if:

- $\emptyset \in \mathcal{I}$, $\kappa \notin \mathcal{I}$,
- $\forall A, B \ A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$, and
- $\forall A, B \ A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

We will also demand our ideals to be non-principal, that is $\{\alpha\} \in \mathcal{I}$ for every $\alpha < \kappa$, and we demand them to be closed under $<\kappa$-unions.

Examples: the bounded ideal, the nonstationary ideal NS_κ, ...

Note that our additional demands imply that any ideal contains the bounded ideal.
Cantor spaces

Let $\mathcal{P}(\kappa) \approx \kappa^2 = \{g \mid g: \kappa \to 2\}$. This collection is usually given a topology based on bounded ideal: The κ-Cantor space is the set κ^2 with the topology given by the basic open sets (which are also easily seen to be closed)

$$[f] = \{g \in \kappa^2 \mid f \subseteq g\}$$

for $f \in <\kappa^2 = \bigcup_{\alpha < \kappa} \alpha^2$.

However, we would obtain the same topology if we took as basic open sets all sets of the form $[f]$ where f is a partial function from κ to 2 of size less than κ, i.e. a function with domain in the bounded ideal.

If $\kappa = \omega$, this is certainly the most natural topology on the space ω^2. However, in particular if $\kappa > \omega$, we can equally consider topologies based on ideals other than bd_κ.
Let \mathcal{I} be an ideal on κ.

Definition 2

The \mathcal{I}-topology is the topology with the basic open sets of the form $[f]$ where $\text{dom}(f) \in \mathcal{I}$ (as before, each $[f]$ is also closed).

- Open sets are (as always) arbitrary unions of basic open sets, and we call open sets in the \mathcal{I}-topology \mathcal{I}-open sets, and similarly use \mathcal{I}-closed, ...
- Note that the \mathcal{I}-topology refines the bounded topology: it has more open sets (and thus also more closed sets, ...).
- In case $\mathcal{I} = \text{NS}_\kappa$, the basic open sets are thus induced by functions with non-stationary domain. We call the resulting topology the *nonstationary topology* (on κ).
Basic cardinality observations

In the bounded topology on κ^2, one usually assumes $2^{<\kappa} = \kappa$, and then there are κ-many basic open sets, and 2^κ-many open sets (while there are 2^{2^κ}-many subsets of κ^2). If \mathcal{I} contains an unbounded subset of κ however, we get the maximal possible number of open sets:

Observation 3
Assume that \mathcal{I} contains an unbounded subset A of κ. Then,

1. there are 2^κ-many disjoint \mathcal{I}-basic open sets with union κ^2, and
2. there are 2^{2^κ}-many \mathcal{I}-open sets.
Tall ideals

Many natural properties of ideals correspond to prominent examples of subsets of our spaces to be topologically simple.

Tallness is a very natural property of ideals:

Definition 4
An ideal \mathcal{I} is *tall* if every unbounded set has an unbounded subset in \mathcal{I}.

Observation 5
NS_κ is tall.
On the collection of unbounded sets

Let \(\text{ub}_\kappa \subseteq \kappa^2 \) denote the collection of unbounded subsets of \(\kappa \).

Observation 6

\(\mathcal{I} \) is tall if and only if \(\text{ub}_\kappa \) is \(\mathcal{I} \)-open.

Proof: First, assume that \(\mathcal{I} \) is a tall ideal. Let \(c_i^A \) denote the constant function with domain \(A \) and value \(i \). Then,

\[
\text{ub}_\kappa = \bigcup \{ [c_1^A] \mid A \in \mathcal{I} \cap \text{ub}_\kappa \} \text{ is } \mathcal{I} \text{-open.}
\]

Assume \(\text{ub}_\kappa \) is \(\mathcal{I} \)-open. Given \(A \in \text{ub}_\kappa \), there is an \(\mathcal{I} \)-basic open set \([f] \subseteq \text{ub}_\kappa \) with \(A \in [f] \). Since \([f] \subseteq \text{ub}_\kappa \), \(f \) takes value 1 on some \(B \in \text{ub}_\kappa \) with \(B \subseteq \text{dom}(f) \in \mathcal{I} \). Hence, \(B \subseteq A \) is unbounded, as desired. \(\square \)

A more intricate argument shows that for no \(\mathcal{I} \) is \(\text{ub}_\kappa \) an \(\mathcal{I}-F_\sigma \) set (a \(\kappa \)-union of \(\mathcal{I} \)-closed sets). Hence, if \(\mathcal{I} \) is tall, then there is an \(\mathcal{I} \)-open set that is not \(\mathcal{I}-F_\sigma \).
The Club subsets of κ

Let Club_κ denote the collection of club subsets of κ.

A similar argument as for ub_κ shows: If $\mathcal{I} = \text{NS}_\kappa$, then Club_κ is not \mathcal{I}-F_σ.

However, as soon as \mathcal{I} contains a stationary subset of κ, we have the following contrasting result:

Observation 7

\mathcal{I} contains a stationary subset of κ if and only if Club_κ is \mathcal{I}-closed.

Observation 8

Club_κ is \mathcal{I}-open if and only if \mathcal{I} contains the set of all limit ordinals, and for every nonstationary set N of limit ordinals, there is a regressive function $f : N \rightarrow \kappa$ such that

$$\bigcup_{\alpha \in N} [f(\alpha), \alpha) \in \mathcal{I}.$$
Stationary tallness

Stationary tallness relates to NS_κ as does tallness to bd_κ:

Definition 9

I is stationary tall if every stationary set S has a stationary subset in I.

Observation 10

If I contains a club subset C of κ, then I is stationary tall.

Proof: If S is stationary, $S \cap C \subseteq C \in I$ is stationary. □

An ideal I is *maximal* if whenever A and B are disjoint subsets of κ, at least one of them is in I.

Observation 11

Every maximal ideal is stationary tall.

Proof: Assume that S is a stationary subset of κ. Write S as disjoint union of two stationary sets $S_0 \cup S_1$, using Solovay’s theorem. One of them has to be in I by maximality. □
\mathcal{C}_κ denotes the collection of subsets of κ that contain a club. Usually, the club filter is the standard example of a complicated set – in the bounded topology, it is not Borel (Halko-Shelah).

Observation 12

\mathcal{I} is stationary tall if and only if \mathcal{C}_κ is \mathcal{I}-closed.

Observation 13

\mathcal{I} contains a club subset of κ if and only if \mathcal{C}_κ is \mathcal{I}-open.
Non-\mathcal{I}-Borel sets

However, the Halko-Shelah result generalizes to the nonstationary topology. \mathcal{I}-Borel sets are (iteratively) generated from the \mathcal{I}-open sets by taking κ-unions and complements.

Proposition 14

If $\mathcal{I} = \text{NS}_\kappa$, then C_κ is not \mathcal{I}-Borel.

Assuming that $2^{<\kappa} = \kappa$, we can construct a Bernstein set, and such a set can easily be shown to not be \mathcal{I}-Borel.

Proposition 15

If $2^{<\kappa} = \kappa$, then there is a non-\mathcal{I}-Borel set (for any \mathcal{I}).
Ideal topologies are in fact particular instances of tree forcing topologies.

Definition 16

- A \(\kappa \)-tree is a subset of \(2^{<\kappa} \) closed under initial segments.
- A *branch* through a \(\kappa \)-tree \(T \) is some \(x \in 2^{\kappa} \) such that \(x \upharpoonright \alpha \in T \) for every \(\alpha < \kappa \). \([T] \subseteq 2^{\kappa} \) denotes the set of all branches through \(T \).
- A *tree forcing* notion \(P \) on \(\kappa \) is a notion of forcing in which conditions are \(\kappa \)-trees, including the full tree \(2^{<\kappa} \), ordered by inclusion.
- Such a forcing notion \(P \) is *topological* if for any two \(R, S \in P \) and any \(x \in [R] \cap [S] \), there is \(T \in P \) such that \(x \in [T] \subseteq [R] \cap [S] \).
- If \(P \) is a topological notion of tree forcing on \(\kappa \), we let the \(P \)-*topology* be the topology on \(2^{\kappa} \) generated by the basic open sets of the form \([T] \), for conditions \(T \in P \).
Example: κ-Cohen forcing

The conditions in κ-Cohen forcing are the elements of $2^{<\kappa}$, ordered by reverse inclusion. But we can also identify κ-Cohen forcing with a tree forcing notion: Given $s \in 2^{<\kappa}$, let

$$T_s = \{ t \in 2^{<\kappa} \mid t \subseteq s \lor s \subseteq t \}.$$

It is easy to see that κ-Cohen forcing corresponds to the tree forcing notion consisting of conditions T_s for $s \in 2^{<\kappa}$, and that the topology generated by κ-Cohen forcing (when viewed as a tree forcing notion on κ) is the standard bounded topology on 2^κ.
Grigorieff forcing

Definition 17

Let \(\kappa \) be an infinite cardinal and let \(\mathcal{I} \) be an ideal on \(\kappa \). \(G_\mathcal{I} \), Grigorieff forcing with the ideal \(\mathcal{I} \) is the notion of forcing consisting of conditions which are partial functions \(p \) from \(\kappa \) to 2 such that \(\text{dom}(p) \in \mathcal{I} \), ordered by inclusion.

We can view \(G_\mathcal{I} \) as a tree forcing by identifying a condition \(p \in G_\mathcal{I} \) with the tree \(T \) on \(2^{<\kappa} \) which we inductively construct as follows:

\(\emptyset \in T \). Given \(t \in T \) of order-type \(\alpha \), let \(t \hat{\sim} 0 \in T \) if \(p(\alpha) \neq 1 \), and let \(t \hat{\sim} 1 \in T \) if \(p(\alpha) \neq 0 \) (these are both supposed to include the cases when \(\alpha \) is not in the domain of \(p \)). At limit levels \(\alpha \), we extend every branch through the tree constructed so far.

It is easy to see that these two forcings are isomorphic. Then, if \(T \) is the tree on \(2^{<\kappa} \) corresponding to the condition \(p \in G_\mathcal{I} \), we have \([T] = [p]\). Hence, the \(G_\mathcal{I} \)-topology is exactly the \(\mathcal{I} \)-topology, and \(G_\mathcal{I} \) is topological.
Definition 18

Let κ be a regular uncountable cardinal. κ-Silver forcing (or κ-club Silver forcing) ∇_κ is the notion of forcing consisting of conditions p which are partial functions from κ to 2 such that the complement of the domain of p is a club subset of κ.

Note that ∇_κ is a dense subset of Grigorieff forcing with NS_κ. This yields that ∇_κ can be viewed as a κ-tree forcing notion. In fact, whenever p is a condition in $\mathcal{G}_{\text{NS}_\kappa}$ and $x \in 2^\kappa$ is such that $p \subseteq x$, then p can be extended to a condition $q \subseteq x$ in ∇_κ. This easily yields that those two notions of forcing generate the same topology, and hence that the ∇_κ-topology is exactly the nonstationary topology.
Unsurprisingly, combinatorial properties of tree forcing notions P yield properties of their corresponding topologies. For example, if P is $<\kappa$-distributive, then the P-topology yields a κ-Baire space (i.e., the intersection of κ-many open dense sets of that space is nonempty).

Friedman, Khomskii and Kulikov (Regularity Properties of the generalized Reals, Annals of Pure and Applied Logic, 2016) investigated such consequences of a slight strengthening of Axiom A for κ-tree forcing notions. If κ is inaccessible, the classical proof that Silver forcing satisfies Axiom A also shows that \mathbb{V}_κ satisfies this strong form of Axiom A. We are going to show that a more intricate argument yields the same result under the assumption of \diamondsuit_κ – note that by results of Shelah, \diamondsuit_κ holds whenever $\kappa > \omega_1$ is a successor cardinal for which $2^{<\kappa} = \kappa$. This will allow us to infer results on the nonstationary topology on 2^κ for many cardinals κ (namely, all regular cardinals $\kappa > \omega_1$ that satisfy $2^{<\kappa} = \kappa$, and also for $\kappa = \omega_1$ in case \diamondsuit_{ω_1} holds).
Axiom A^*

The following slight strengthening of Axiom A for κ-tree forcing notions was introduced by Friedman, Khomskii and Kulikov:

Definition 19

A notion $\langle P, \leq \rangle$ of tree forcing on κ satisfies Axiom A^* if there are orderings $\{\leq_\alpha \mid \alpha < \kappa\}$ with $\leq_0 = \leq$, satisfying:

1. $q \leq_\beta p$ implies $q \leq_\alpha p$ (i.e., $\leq_\beta \subseteq \leq_\alpha$) for all $\alpha \leq \beta$.

2. If $\langle p_\alpha \mid \alpha < \lambda \rangle$ is a sequence of conditions in P and $\lambda \leq \kappa$, satisfying that $p_\beta \leq_\alpha p_\alpha$ for all $\alpha < \beta < \lambda$, then there is $q \in P$ such that $q \leq_\alpha p_\alpha$ for all $\alpha < \lambda$.

3. For all $p \in P$, all D that are dense below p in P, and all $\alpha < \kappa$, there exists $E \subseteq D$ of size at most κ, and $q \leq_\alpha p$ such that E is predense below q, and such that additionally $[q] \subseteq \bigcup \{[r] \mid r \in E\}$.

Peter Holy (Udine)
Ideal Topologies
10.06.2020 17 / 1
Theorem 20 [Friedman-Khomskii-Kulikov]
If a tree forcing notion P satisfies Axiom A^*, then the nowhere dense sets in the P-topology are closed under κ-unions, i.e., all P-meager sets are P-nowhere dense.

Corollary 21
If κ is inaccessible and $I = NS_\kappa$, then I-meager $\equiv I$-nowhere dense.

Definition 22
$X \subseteq 2^\kappa$ satisfies the property of Baire in the P-topology in case X can be written in the form $X = O \Delta M$, where O is P-open, and M is P-meager.

Theorem 23 [Friedman-Khomskii-Kulikov]
If κ is inaccessible and every Δ^1_1-subset of 2^κ satisfies the property of Baire (in the bounded topology) – which is consistent relative to ZFC – then it does so also in the ∇_κ-topology, i.e., the nonstationary topology on 2^κ.
Axiom A^*, once again

Let me remind you once again about Axiom A^*:

Definition 24

A notion $\langle P, \leq \rangle$ of tree forcing on κ satisfies Axiom A^* if there are orderings $\{\leq_\alpha \mid \alpha < \kappa\}$ with $\leq_0 = \leq$, satisfying:

1. $q \leq_\beta p$ implies $q \leq_\alpha p$ (i.e., $\leq_\beta \subseteq \leq_\alpha$) for all $\alpha \leq \beta$.

2. If $\langle p_\alpha \mid \alpha < \lambda \rangle$ is a sequence of conditions in P and $\lambda \leq \kappa$, satisfying that $p_\beta \leq_\alpha p_\alpha$ for all $\alpha < \beta < \lambda$, then there is $q \in P$ such that $q \leq_\alpha p_\alpha$ for all $\alpha < \lambda$.

3. For all $p \in P$, all D that are dense below p in P, and all $\alpha < \kappa$, there exists $E \subseteq D$ of size at most κ, and $q \leq_\alpha p$ such that E is predense below q, and such that additionally $[q] \subseteq \bigcup \{[r] \mid r \in E\}$.

Peter Holy (Udine)

Ideal Topologies
Theorem 10

If \Diamond_κ holds, then $\forall = \forall_\kappa$ satisfies Axiom A^*.

Proof: For any $\alpha < \kappa$ and $p, q \in \forall$, let $q \leq_\alpha p$ if $q \leq p$ and the first α-many elements of the complements of the domains of p and of q are the same. It is clear (or at least easy to check) that Items (1) and (2) in Definition 5 are thus satisfied, and we only have to verify Item (3).

Let $p \in \forall$, let $\alpha < \kappa$, and let $D \subseteq \forall$ be dense below p. We need to find $q \leq_\alpha p$ and $E \subseteq D$ of size at most κ such that E is predense below q. Fix a \Diamond_κ-sequence $\langle A_i \mid i < \kappa \rangle$: $\forall A \subseteq \kappa \{i < \kappa \mid A \cap i = A_i\}$ is a stationary subset of κ.

We inductively construct a decreasing sequence $\langle p_i \mid i \leq \kappa \rangle$ of conditions in \forall with $p_i = p$ for $i \leq \alpha$, and a sequence $\langle \alpha_i \mid i < \kappa \rangle$ of ordinals with the property that $\langle \alpha_j \mid j \leq i \rangle$ enumerates the first $(i + 1)$-many elements of $\kappa \setminus \text{dom}(p_i)$ for every $i \leq \kappa$, as follows. Let $\langle \alpha_i \mid i \leq \alpha \rangle$ enumerate the first $\alpha + 1$-many elements of the complement of the domain of p.

Assume that we have constructed p_i for some $i \geq \alpha$, and also α_j for $j \leq i$.

Using that D is dense below p, let $q_i^0 \leq p_i$ be such that

- $q_i^0(\alpha_j) = A_i(j)$ for all $j < i$,
- $q_i^0(\alpha_i) = 0$, and
- $q_i^0 \in D$,

and let $q_i^1 \leq q_i^0 \upharpoonright (\text{dom}(q_i^0) \setminus \{\alpha_i\})$ be such that

- $q_i^1(\alpha_i) = 1$, and
- $q_i^1 \in D$.

Let $p_{i+1} = q_i^1 \upharpoonright (\text{dom}(q_i^1) \setminus \{\alpha_j \mid j \leq i\})$, and note that $p_{i+1} \leq_i p_i$.

Let α_{i+1} be the least element of $\kappa \setminus \text{dom}(p_{i+1})$ above α_i.
For limit ordinals $i \leq \kappa$, let $p_i = \bigcup_{j<i} p_j$, and if $i < \kappa$, let $\alpha_i = \bigcup_{j<i} \alpha_j$ be the least element of $\kappa \setminus \text{dom}(p_i)$. Let $q = p_\kappa$, and let $E = \{q_i^0 \mid i < \kappa\} \cup \{q_i^1 \mid i < \kappa\}$. To verify Axiom A, we want to show that E is predense below q.

Thus, let $r \leq q$ be given. Using the properties of our diamond sequence, pick $i < \kappa$ such that $i \geq \alpha$, and such that for all $j < i$ with $\alpha_j \in \text{dom}(r)$, $A_i(j) = r(\alpha_j)$. Pick $\delta \in \{0, 1\}$ such that $r(\alpha_i) = \delta$ in case $\alpha_i \in \text{dom}(r)$. Then, q_i^δ is compatible to r, as desired.

In order to check the additional property for Axiom A^*, note that any extension s of q to a total function from κ to 2 can be treated in the same way as r above, yielding some $i < \kappa$ and $\delta \in \{0, 1\}$ such that $s \in [q_i^\delta]$. □
So what does Axiom A^* have to do with meager sets?

In order to properly connect topics, let me present the following result:

Lemma 26 [Friedman-Khomskii-Kulikov]

If a κ-tree forcing notion P satisfies Axiom A^* (the proof uses quite a bit less), then every P-meager set is P-nowhere dense.

Proof: Let $\{A_i \mid i < \kappa\}$ be a collection of P-nowhere dense sets. We need to show that $\bigcup_{i<\kappa} A_i$ is P-nowhere dense. For every $i < \kappa$, let D_i be the dense subset $D_i = \{p \mid [p] \cap A_i = \emptyset\}$ of P, using that A_i is P-nowhere dense. Using Axiom A^*, construct $\langle p_i \mid i \leq \kappa \rangle$ and $\langle E_i \subseteq D_i \mid i < \kappa \rangle$, such that for all $i < j \leq \kappa$,

- $p_j \leq_i p_i$, and
- $[p_i] \subseteq \bigcup \{[p] \mid p \in E_i\}$.

Hence, for every $i < \kappa$, $[p_\kappa] \subseteq \bigcup \{[p] \mid p \in D_i\}$. In particular, $[p_\kappa] \cap A_i = \emptyset$ for all $i < \kappa$, hence $\bigcup_{i<\kappa} A_i$ is P-nowhere dense. □
We will need the following, the forward direction of which is immediate:

Lemma 27 [Friedman-Khomskii-Kulikov]

If P is a topological notion of forcing that satisfies Axiom A^*, then $X \subseteq 2^\kappa$ satisfies the Baire property in the P-topology if and only if

$$\forall T \in P \ \exists S \leq T \ ([S] \subseteq X \ \lor \ [S] \cap X = \emptyset).$$

In particular, for $\mathcal{I} = \text{NS}_{\kappa}$, $X \subseteq \kappa$ satisfies the \mathcal{I}-Baire property if every \mathcal{I}-basic open set $[f]$ contains an \mathcal{I}-basic open set $[g]$ such that either $[g] \subseteq X$ or $[g] \cap X = \emptyset$.
On the Baire property

Quite similar arguments as for P-meager $\equiv P$-nowhere dense (without the intermediate principle of Axiom A^*) show the following, where the case of inaccessible κ is implicit in Friedman-Khomskii-Kulikov:

Theorem 28

If κ is inaccessible or \diamondsuit_κ holds, then every comeager set, i.e., every κ-intersection of open dense subsets of 2^κ in the bounded topology, contains a dense set that is open in the nonstationary topology.

This allows us to show the following, again due to Friedman et al. in the case of inaccessible κ (and the proof below is essentially theirs):

Theorem 29

If κ is inaccessible or \diamondsuit_κ holds, and every Δ^1_1-subset of 2^κ has the Baire property (both of the latter can be forced by adding κ^+-many Cohen subsets of κ), then it does so also in the nonstationary topology.
Proof of Theorem 29:

Let P denote κ-Silver forcing, let $\mathcal{I} = \text{NS}_\kappa$. Let $A \in \Delta^1_1$, and let $f \in P$. We need to find an \mathcal{I}-open subset of $[f]$ that is either contained in or disjoint from A. Let C denote the club subset of κ that is the complement of the domain of f, and enumerate C in increasing order as $\langle c_\gamma \mid \gamma < \kappa \rangle$. Let φ denote the natural order-preserving bijection between $2^{<\kappa}$ and extensions of f by bounded functions: Given $s \in 2^\alpha$ with $\alpha < \kappa$, let $\varphi(s)$ be the \subseteq-minimal $g \in P$ such that g extends f and $g(c_\gamma) = s(\gamma)$ for every $\gamma < \alpha$. Let φ^* be the induced homeomorphism between 2^κ and $[f]$. Let $A' = \varphi^*[A]$, which is again a Δ^1_1-subset of 2^κ, using that Δ^1_1 is closed under continuous preimages. Hence, A' has the Baire property, by our assumption. This means that either A' is meager, or it is comeager in some basic open set $[s]$ of the bounded topology on 2^κ. If A' is meager, Theorem 28 yields an \mathcal{I}-open set $[t]$ that is disjoint from A'. If A' is comeager in $[s]$, applying Theorem 28 relativized to $[s]$, we find an \mathcal{I}-open set $[t] \subseteq A' \cap [s]$. But then, in either case, $(\varphi^*)^{-1}[[t]] \subseteq [f]$ is an \mathcal{I}-open set that is either disjoint from or contained in A, as desired. □
A further result – Comparing notions of meagerness

Let $\mathcal{I} = \text{NS}_\kappa$.

Observation 30
If $[f]$ is an \mathcal{I}-basic open set, with $\text{dom}(f)$ of size κ, then $[f]$ is meager (in fact, nowhere dense) in the bounded topology. Thus, there is always a meager set that is not \mathcal{I}-meager.

Observation 31
Every set of size less than 2^κ is \mathcal{I}-meager. Hence, if $\text{non}(\mathcal{M}_\kappa) < 2^\kappa$, then there is an \mathcal{I}-meager set that is not meager.

Theorem 32
If κ is inaccessible or \diamondsuit_κ holds, and the reaping number $r(\kappa) = 2^\kappa$, then there is an \mathcal{I}-meager set which does not have the Baire property (and thus in particular is not meager) in the bounded topology.
Open Questions

Question 33
Is there a proper \mathcal{I}-Borel hierarchy? If so, what is its length and structure?

We have answered the following positively whenever κ is inaccessible or \Diamond_κ holds.

Question 34
- Does κ-Silver forcing satisfy Axiom A^* whenever κ is regular and uncountable?
- If κ is regular and uncountable, and $\mathcal{I} = \text{NS}_\kappa$, are \mathcal{I}-meager sets always \mathcal{I}-nowhere dense?

We know the following holds for many κ, at least under certain assumptions on generalized cardinal invariants.

Question 35
Let $\mathcal{I} = \text{NS}_\kappa$. Is there always an \mathcal{I}-meager set that is not meager?