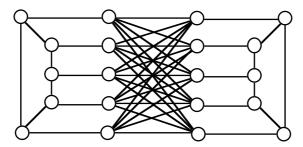
SOLUZIONE. Si consideri il seguente grafo e si indichino con N_1 , N_2 , N_3 , N_4 i nodi, rispettivamente, del circuito di 5 nodi di sinistra, dell'insieme di sinistra del sottografo bipartito completo centrale, dell'insieme di destra dello steso sottografo bipartito e del circuito di 5 nodi di destra.



Il giro è 4 e si ottiene con i cicli del sottografo bipartito. Il grafo è colorabile con 4 colori. Infatti se si assegnano i colori A e B a N_2 e N_3 rispettivamente, basta colorare N_1 con tre colori diversi da A e N_4 con tre colori diversi da B. Si tratta ora di dimostrare che non è possibile usare solo tre colori. Dato che N_1 e N_4 hanno bisogno di 3 colori, N_2 e N_3 dovrebbero essere colorati con gli stessi 3 colori. Per poter usare gli stessi colori di N_1 , N_2 ha bisogno di almeno 2 colori e altrettanto vale per N_3 . Però, per la completezza del sottografo bipartito, i colori di N_2 devono essere diversi da quelli di N_3 e quindi sono necessari 4 colori per colorare N_2 e N_3 .

In generale il teorema di Erdös-Lovász afferma che, dati due interi m e $n \geq 2$, esiste un grafo con numero cromatico n e giro maggiore di m.

- P. Erdös, 1961, "Graph Theory and Probability II", Canadian J. of Mathematics, 13, 346-352.
- L. Lovász, 1967, "On chromatic number of finite set-systems", *Acta Math. Acad. Sci. Hungar.*, **79**, 59-67.