Graph Theory

Lectures 1–2

Main definitions

undirected graphs vertex degree degree sequence, graph generation from the degree sequence Isomorphism

automorphisms, orbits

Lectures 3–4

Particular graphs

complete graphs bipartite graphs stars and wheels

Graphs from other graphs

Complementary graphs Collapsed graphs Subgraphs Line graphs Graph products

Lectures 5–6

Important vertex subsets

Cliques Stable subsets of vertices Dominating subsets of vertices Vertex covers Chromatic number

Lectures 7–8

Paths and circuits

Connected graphs Shortest paths Eccentricity Radius and diameter Cuts Trees and forests Planar graphs and chromatic number of planar graphs

iar graphs and chromatic number of planar graph

$Lectures \ 9\text{--}10$

Directed graphs

In- and out-degree of a vertex Acyclic graphs
Strong connectivity
What is a matrix? (basic reminder on matrices) Linear operators between spaces

Determinant. Trace Eigenvalues and eigenvectors

Lectures 11-12

Graph matrices

Incidence matrix for undirected graphs Adjacency matrix for undirected graphs Matrix powers and paths

Lectures 13–14

Laplacian matrix Incidence matrix for directed graphs Adjacency matrix for directed graphs Graph spectrum: ordinary and Laplacian spectrum of a complete graph

Lectures 15–16

spectrum of a bipartite graph spectrum of a circuit spectrum of the complementary graph

Lectures 17–18

Diffusion equation Markov chains stationary probability

Lectures 19–20

uniform random sampling Google page rank Electrical networks

Lectures 21–22

Graphs for subset families

Hypergraphs Unimodal projections Cocitation graphs Bibliographic coupling graphs

Lectures 23–24

Minimum cuts

Max flow problem Min cut in a graph Randomized algorithm

Lectures 25–26

Spectral techniques for min and max cut

Lectures 27–28

Modularity

Introduction

Lectures 29-30

Maximum modularity with fixed number of edges

Lectures 31–32

Maximum modularity with fixed degrees Exchange heuristics Graph clustering

Lectures 33–34

Random graphs

Introduction

Lectures 35–36

G(n,p) model Degree probabilities Random graphs with fixed degree: the configuration model

Lectures 37–38

Size of the connected components Phase transition Giant component Graph analysis via generating functions Results for Poisson graphs

Game Theory

Lectures 39-40

Main definitions

Normal form Equilibrium solutions Extended form Total and partial information Analysis of the Game of Nim

Lectures 41–42

Zero sum games

pure and mixed stategies existence of a solution

Lectures 43–44

Non constant sum games. Non cooperative games

Nash equilibria the prisoners' dilemma mixed stategies conditions for the existence of the equilibrium

Lectures 45–46

Cooperative games

bargaining status quo status quo from a zero sum game Braess paradox network flows and Nash equilibria: the price of anarchy

Lectures 47-48

Multi player games

Characteristic function Imputations. Core Shapley value