
Shortest paths on very large graphs

1. Definitions

A directed graph G = (N,E) is given. Let n = |N | and m = |E|. If the shortest path problem is

formulated on a non directed graph it is always possible to turn the graph into a directed one by replacing

the non directed arc (i, j) with the anitparallel pair (i, j) and (j, i).

For each arc (i, j) ∈ E a length dij ≥ 0 is defined. Two nodes are special and are called source and

destination, respectively denoted as s and t. Given a path its path length is the sum of the lengths of the arcs

in the path. The shortest path between the nodes i and j is the path (non necessarily unique) of minimum

length between the given nodes. The distance between the node i and the node j is the length of the shortest

path i→ j.

The problem consists in finding the shortest path from the source to the destination. Let δ be the

distance from s to t, δi the distance from s to i, δi the distance from i to t and δi
j the distance between two

generic nodes i and j (in the given order - in general δi
j 6= δj

i).

The properties of a shortest path imply δi
j ≤ δi

k + δk
j for each i, j, k ∈ N and in particular δ ≤ δi + δi

for each i ∈ N . In more detail

δ = δi + δi if i belongs to a shortest path,

δ < δi + δi if i does not belong to a shortest path
(1)

2. Computational complexity of Dijkstra’s algorithm

Dijkstra’s algorithm has complexity O(n2) with a simple implementation, O((n+m) log n) = O(m log n)

if we use binary heaps and O(m+n log n) if we use Fibonacci heaps. The implementation with binary heaps

is convenient for planar graphs where the number of arcs grows linearly with the number of nodes (more

exactly m ≤ 3n− 6) so that the complexity lowers to O(n log n). Yet, for very large graphs with more than

100.000 nodes, the number of computations is too large if we want the solution quickly. For instance with

100.000 nodes and 300.000 arcs, the number of operations is (100.000 + 300.000) log2 100.000 ≈ 6.643.860,

whose execution may require several seconds.

However, this is a worst-case evaluation, whereas Dijkstra’s algorithm has a much more efficient behavior

on average. The most interesting feature is that the algorithms terminates as soon as the destination node

is visited.

Let us recall the basic steps of the algorithm. At each iteration there is a subset of nodes whose distance

from the source has been computed. Let us call these nodes visited. Initially the source is the only visited

node (in the forward search, whereas it is the destination in the backward search). The nodes that have

not been visited yet and are adjacent to some visited node are said reached. For these nodes a temporary

evaluation of their distance is available. For all other nodes the distance is unknown. The temporary

distances of the reached nodes are stored in a binary heap. At each algorithm iteration the node among

1

the reached nodes with the minimum temporary distance becomes visited, its distance becomes permanent

and it is removed from the heap. The nodes adjacent to this node may be already visited and in this case

they are skipped by the algorithm, or they may be already reached and in this case their distance may be

updated, or they may be neither visited nor reached and in this case they become reached and are inserted

into the heap.

The algorithm terminates when the destination (or the source in the backward formulation) is visited.

Hence, if the destination is not very far from the source, only a few operations may be required. Clearly the

number of operations depends also on the distance δ between source and destination. Hence it is convenient

to take into account this distance in order to better evaluate the number of operations. Let n(d) be the

number of nodes at distance less than or equal to d. Then we may express the complexity as O(n(δ) log n(δ)).

Typically for a planar graph n(d) is a quadratic function of d. Roughly speaking one can imagine the set of

nodes at distance at most d as a circle of ray d centered in the source.

A measure of the efficiency of the algorithm, applied to a particular instance, is given by the ratio

between the number of nodes of the shortest path and the number of visited nodes (the nodes that have

been reached but have not been visited yet, are not included). An efficiency equal to 1 means that only the

nodes of the shortest path are visited one after the other up to the destination.

3. Bidirectional search

A first idea in order to reduce the number of operations consists in starting two simultaneous shortest

paths, one from the source to the destination and the other one from the destination to the source. The two

paths will meet at about δ/2 distance. Hence the number of nodes that each search has to visit has been

reduced to 1/4 (in the hypothesis of a quadratic n(d)). In total only half nodes need to be visited and the

efficiency has been doubled.

The algorithm terminates when there is a node visited by both searches. Let us denote with r this

particular node. Let Ss the set of nodes visited from s and St the set of nodes visited from t. By definition

Ss ∩ St = {r}. For each node i ∈ Ss the distance δi is known and for each node i ∈ St the distance δi is

known.

We claim that the shortest path s → t must be among the paths s → i → j → t where i ∈ Ss, j ∈ St

and the arc (i, j) exists, or s → r → t. The paths s → i → j → t have length δi + dij + δj whereas the

path s→ r → t has length δr + δr. Therefore the best among these paths has length at most δr + δr. Every

other path must include a node k /∈ Ss ∪ St. By the properties of Dijkstra’s algorithm one has δk ≥ δr and

δk ≥ δr so that δk + δk ≥ δr + δr. Hence the shortest path is s→ r → t or one of the paths s→ i→ j → t.

Actually the path s → r → t must have been necessarily evaluated in a previous step as one of the paths

s→ i→ j → t.

Hence the algorithm, each time an arc (i, j) is detected with i ∈ Ss and j ∈ St, computes the length of

the path s→ i→ j → t and compares it with the ones already computed.

Example. Let us consider a grid graph (50 × 50 = 2500 nodes and 4900 arcs with lengths uniformly

randomly generated on {1, . . . , 5}). The node in red is the source and the one in blue the destination. In

2

Figura 1(a) Figura 1(a)

Figura 2

Figure 1(a) we see the tree of the nodes searched starting from the source and in Figure 1(b) the tree from

the destination.

The shortest path has 54 nodes, 2107 nodes are visited in the forward search and 2100 in the backward

search with an efficiency of 0.0256289 and 0.0257143 respectively. As apparent almost all nodes need to be

visited (84%) and therefore the possibility of stopping the algorithm as soon as the destination si visited does

not produce a real improvement. By using the bidirectional search, the trees at the algorithm termination,

when they have in common exactly one node, are shown in Figure 2. In this case 1638 nodes are visited

(65.5%) with efficiency 0.032967.

3

4. Using potentials on the nodes

If we observe the nodes that are visited by the algorithm (Figure 2), even with the bidirectional search,

we may see that the algorithm ‘wastes time’ to visit nodes that are in the opposite direction with respect to

the nodes where the shortest path is expected to go. These nodes are of no use in computing the shortest

path. Clearly this observation depends on our visual knowledge of the graph, whereas the algorithm has no

prior information on the nodes still to be visited.

Hence the idea could be the one of feeding this kind of information to the algorithm. To this purpose,

if we run Dijkstra’s algorithm in a forward search let us modify the arc lengths as

d′ij := dij − πi + πj (2)

where πi are arbitrary values assigned to the nodes, called potentials. Just note that the potentials are

defined up to an additive constant. This allows to assign to a particular node an arbitrary value. Since we

need non negative distances in order to run Dijkstra algorithm the potentials must satisfy the inequalities

πi ≤ πj + dij (i, j) ∈ E (3)

Moreover, the values πi that are feasible in (3) with πt ≤ 0 are lower bounds to δi. Indeed, if we sum the

inequalities πi − πj ≤ dij along a shortest path i → t, we obtain πi − πt ≤ δi, that is, πi ≤ δi + πt ≤ δi

(from πt ≤ 0). Hence the potentials must be an underestimation (possibly also the exact estimation) of the

backward shortest path values δi from i to t. However, the converse is not necessarily true, i.e., arbitrary

lower bound values to optimal paths do not necessarily lead to non negative distance d′.

The length of a path P : s→ t with respect to the new distances is

d′(P) =
∑

(ij)∈P

d′ij =
∑

(ij)∈P

(dij − πi + πj) = d(P) + πt − πs

The lengths of all paths s→ t have therefore been changed by the constant factor πt − πs and the shortest

path s→ t is the same for any choice of the potentials, so that

δ′ = δ + πt − πs

Hence the shortest path can be computed with an arbitrary choice of the potentials provided that the new

lengths d′ are non negative, otherwise we cannot use Dijkstra’s algorithm. Similarly, with the new distances

d′, the length of a path Pk from s to a node k has value

d′(Pk) =
∑

(ij)∈Pk

d′ij =
∑

(ij)∈Pk

dij − πi + πj = d(Pk) + πk − πs (4)

and we may also say that

δ′k = δk + πk − πs (5)

This implies that the forward shortest path tree rooted in s is the same for any choice of the potentials. The

difference is related to the distances on the tree and it is indeed this fact that may speed up the algorithm

with an accurate choice of potentials. Just recall that the algorithm (in the forward search) selects the nodes

4

in order of increasing distance δ′k, i.e., from (5), according to the values δk of the shortest path s→ k with

the original lengths plus the value πk, which is an underestimation of the optimal path k to t (the constant

value πs is irrelevant because it is independent of k).

As an extreme example, if πk = δk, i.e., each potential is exactly the distance from k to t and not just

an underestimation, for all nodes on the shortest path s → t we would have δ′k = 0 (from πs = δ and from

(1)), whereas for the nodes not on the shortest path we would necessarily have δ′k > 0 (again from πs = δ

and from (1)). This implies that the algorithm will first choose all and only the nodes of the shortest path.

Symmetrically, if we run Dijkstra’s algorithm starting from the destination, we may redefine the distances

as

d′′ij := dij − πj + πi

with arbitrary potentials πi (the difference with (2) should be noted). As before the potentials must satisfy

the inequalities

πj ≤ πi + dij (i, j) ∈ E (6)

and we may see that the distances d′′ij are non negative only if the potentials πi, with πs ≤ 0, are an

underestimation of the forward shortest path values δi from s to i.

With the necessary differences the same properties of the forward formulation hold for the backward

formulation, namely: the length of any path P : s→ t with the new distances is

d′′(P) =
∑

(ij)∈P

(dij − πj + πi) = d(P) + πs − πt

In this case all path lengths s→ t are changed by the constant factor πs − πt, from which

δ′′ = δ + πs − πt

The length of a path P k from a generic node k to t is

d′′(P k) =
∑

(ij)∈P k

(dij − πj + πi) = d(P k) + πk − πt

so that

δ′′k = δk + πk − πt (7)

5. Bidirectional algorithm with potentials

The bidirectional algorithm executes two simultaneous searches, one from the source with lengths d′ and

another one from the termination with distances d′′. The potentials for the two searches are arbitrary and

in general they are different. They only have to be feasible in (3) and (6) respectively with the constraints

πt = 0 and πs = 0.

As in the previous bidirectional algorithm, as soon as an arc (i, j) is found with i ∈ Ss and j ∈ St, one

computes the true length of the path s → i → j → t and compares it with the value d(P) of the best path

found so far, possibly updating it.

5

The algorithm terminates as soon as a node k has been visited such that either δk + πk ≥ d(P) in the

forward search or δk + πk ≥ d(P) in the backward search. Note that only one of the two conditions needs to

be fulfilled to stop the algorithm. The condition δk + πk ≥ d(P) may be also expressed as δ′k + πs ≥ d(P)

(from (5)) where δ′k is directly available from the Dijkstra’s algorithm. It has to be remarked that Dijkstra’s

algorithm, working with lenghts d′, visits the nodes in order of increasing values δ′k, i.e., in order of increasing

values δk + πk. Analogously the condition δk + πk ≥ d(P) may be expressed as δ′′k + πt ≥ d(P) (from (7)).

We claim that at the termination the shortest path has been found. Let P be the best path found so

far with length d(P). Note that all paths that have been computed are necessarily made up of visited nodes

(either in the forward search or in the backward search). Hence P is the shortest path among those paths

that consist of visited nodes. Let Q be a path that includes also non visited nodes and let d(Q) be its length.

Let h ∈ Q be one of the non visited nodes (neither in the forward search nor in backward search). Let Qh be

the part of path Q from s to h and let Qh be the part of path Q from h to t so that d(Q) = d(Qh) + d(Qh).

Since the potentials πi are lower bounds to the shortest path values from i to t, i.e. πi ≤ δi, we have in

particular for the node h

δh + πh ≤ d(Qh) + πh ≤ d(Qh) + δh ≤ d(Qh) + d(Qh) = d(Q)

Analogously, we have in the other direction

δh + πh ≤ d(Qh) + πh ≤ d(Qh) + δh ≤ d(Qh) + d(Qh) = d(Q)

Let k be the node for which one of the termination conditions is fulfilled. Since h has not been visited and

the algorithm visits the nodes in Ss for increasing values δi + πi and in St for increasing values δi + πi, one

has δk + πk ≤ δh + πh if k ∈ Ss or δk + πk ≤ δh + πh if k ∈ St.

In both cases the termination condition implies d(P) ≤ d(Q).

6. Choice of potentials

Various potential choices have been proposed. One of the most effective consists in the choice of a

subset of nodes, that we may call landmarks, and in computing the potentials from the distances between

the landmarks. More exactly let L ⊂ N be a subset sufficiently small to make it possible to compute and

store all distances between any node in N and any node in L but not too small to make the potentials

useless. The triangular inequality implies

δ` ≤ δi + δi
`, i.e., δ` − δi

` ≤ δi ` ∈ L, i ∈ N

δ`
i ≤ δ`

s + δi, i.e., δ`
i − δ`

s ≤ δi ` ∈ L, i ∈ N

δ` ≤ δ`
i + δi, i.e., δ` − δ`

i ≤ δi ` ∈ L, i ∈ N

δi
` ≤ δi + δt

`, i.e., δi
` − δt

` ≤ δi ` ∈ L, i ∈ N

Therefore, from the stored values δi
` and δ`

i , a lower bound of δi is given by max
{
δ` − δi

`, δ
`
i − δ`

s

}
, and a

lower bound of δi is given by max
{
δ` − δ`

i , δ
i
` − δt

`

}
. A stronger lower bound can be obtained by taking the

maximum value, i.e.,

πi = max
`∈L

max
{
δ` − δi

`, δ
`
i − δ`

s

}
, πi = max

`∈L
max

{
δ` − δ`

i , δ
i
` − δt

`

}
(8)

6

We have to check that these values satisfy πj − πi ≤ dij and πi − πj ≤ dij . We show just a few cases. For

instance, suppose we have

πi = δ` − δ`
i , πj = δ` − δ`

j

where ` is the same landmark for both cases. Then

πi − πj = δ` − δ`
i − (δ` − δ`

j) = δ`
j − δ`

i ≤ dij

where the triangular inequality derives from the property of shortest path `→ j. As another case let

πi = δi
` − δt

`, πj = δj
` − δ

t
`

Then

πi − πj = δi
` − δt

` − (δj
` − δ

t
`) = δi

` − δ
j
` ≤ dij

where the triangular inequality derives from the property of shortest path i → `. Let us now consider the

case of maximum obtained with different landmarks

πi = δi
`1 − δ

t
`1 , πj = δj

`2
− δt

`2 > δj
`1
− δt

`1

Then

πi − πj = δi
`1 − δ

t
`1 − (δj

`2
− δt

`2) < δi
`1 − δ

t
`1 − (δj

`1
− δt

`1) = δi
`1 − δ

j
`1
≤ dij

The other cases can be proved in a similar way.

If the node i is on the shortest path between s and the landmark `, then πi is exactly the shortest path

value s → i and, analogously, πi is the shortest path value i → t if i is on the shortest path between the

landmark ` and t.

The computation of δ`
i is carried out with |L| forward executions of the Dijkstra’s algorithm, each one

of them starting from a landmark up to visiting all nodes. Analogously the computation of δi
` is carried out

with |L| backward executions of the Dijkstra’s algorithm, each one of them starting from a landmark up to

visiting all nodes. This is clearly a time consuming computation, but is done off-line only once and its data

are then retrieved in constant time by each subsequent execution.

If the graph is symmetrical, one of the two executions is enough because the forward execution produces

the same results of the backward execution. The road graphs are ‘almost’ symmetrical and both executions

need to be done. However, the values δ`
i and δi

` are very close and this fact is exploited for their storage.

Indeed most bits of the two numbers are equal and so they are stored only once, whereas the last bits are

different and are stored separately. This allows for a data compression of almost 50%. If the graph has one

million nodes and 16 landmarks (the maximum obtainable with the current technology if the node are one

million) this compression allows storing the data on a flash card and reading quickly the data.

The potentials computed according to (8) depend on s and t. Therefore they must be recomputed each

time a shortest path between two new nodes has to be computed. However, their computation can be done

within the Dijkstra’s algorithm as soon as a node is reached, thus providing a dramatic reduction of the

computing time.

7

Figura 3 – Random landmarks

We show two alternative choices of landmarks. The first one is random. First the number p of landmarks

is decided and then p nodes are uniformly randomly chosen in N .

In Figure 3 we see a random choice of 6 landmarks out of 2500 nodes together with the visited nodes

and the shortest path. It can be observed that where landmarks are ‘missing’ the algorithm has to visit

many nodes. The visited nodes are 206 with an efficiency 0.262136.

In Figure 4 the results are shown for nine random choices of the source and the destination with the

same set of landmarks. The three numbers under each figure are the number of nodes of the shortest path,

the number of visited nodes and the efficiency.

The second choice of landmarks is also random but tries to distribute them as uniformly as possible.

Initially a node is chosen randomly, then the second node is the most distant from the first, the third one is

the most distant from the generated set and so on until all landmarks are generated. One may use either the

real distances or the distances taken as the number of arcs. If the real distance are used, one may compute

in this phase also the values δi
`. In order to find the most distant node from the generated landmarks one

can use a heap structure that contains all nodes of the graph and the distances from the set of landmarks.

The heap root is the most distant node. When the root value is removed (and the heap is updated) one

computed the distances of this landmark to all other nodes, and the heap is consequently updated.

In Figure 5, six landmarks are shown that have been generated in this way (they have been generated

according to this order: first the random one on the top-left, then bottom right, then top right, bottom left,

in the center and bottom in the middle) and the visited nodes for the same source-destination pair. The

visited nodes are 168 (versus 54 of the shortest path) with an efficieny 0.321429.

In Figure 6 we show the results for the same random choices of source and destination.

By using similar techniques (16 landmarks) it is possible to compute in time less than 200 ms shortest

paths for road graphs with more than 6 millions nodes and 15 millions arcs (corresponding to part of the

United States).

8

Fig. 5 – Uniform landmarks, shortest paths

9

21, 22, 0.954545 45, 58, 0.775862 72, 318, 0.226415

32, 236, 0.135593 18, 32, 0.5625 61, 582, 0.104811

50, 436, 0.114679 35, 50, 0.7 52, 360, 0.144444

Fig. 4 – Random landmarks

10

21, 24, 0.875 45, 58, 0.775862 72, 424, 0.169811

32, 120, 0.266667 18, 32, 0.5625 61, 108, 0.564815

50, 148, 0.337838 35, 44, 0.795455 52, 566, 0.0918728

Fig. 6 – Uniform landmarks

11

