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Abstract. We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly
known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose
weight differs from the expected one. For this problem, we provide a dynamic programming algorithm and present
techniques aimed at reducing its space and time complexities. Finally, we computationally compare the performances
of the proposed algorithm with those of different exact algorithms presented so far in the literature for robust
optimization problems.

keywords: knapsack problem, robust optimization, dynamic programming.

1 Introduction

The classical Knapsack Problem (KP) can be described as follows. We are given a set N = {1, . . . , n} of
items, each of them with positive profit pj and positive weight wj , and a knapsack capacity c. The problem
asks for a subset of items whose total weight does not exceed the knapsack capacity, and whose profit is a
maximum. It can be formulated as the following Integer Linear Program (ILP):

(KP ) max
∑
j∈N

pj xj (1)

∑
j∈N

wj xj ≤ c (2)

xj ∈ {0, 1}, j ∈ N. (3)

Each variable xj takes value 1 if and only if item j is inserted in the knapsack.
This problem is NP-hard, although in practice fairly large instances can be solved to optimality within

reasonable running time. Furthermore, dynamic programming algorithms with pseudopolynomial running
time are available. A comprehensive survey on all aspects of (KP) was given by Kellerer, Pferschy and
Pisinger [11].

In this paper we consider the following variant of (KP), aimed at modeling uncertainties in the data,
in particular in the weights: for each item j the weight may deviate from its given nominal value wj and
attain an arbitrary value in some known interval [wj − wj , wj + wj ]. A feasible solution must obey the
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capacity constraint (2) no matter what the actual weight of each item turns out to be. However, uncertainty
is bounded by an integer parameter Γ indicating that at most Γ items in the solution can change from their
nominal value wj to an arbitrary value in the interval. Clearly a diminution of a weight below the nominal
value does not affect feasibility and in the worst case all changed weights reach their upper limit. Hence a
feasible solution consists of a subset of items J ⊆ N such that∑

j∈J
wj +

∑
j∈Ĵ

wj ≤ c ∀ Ĵ ⊆ J, |Ĵ | ≤ Γ. (4)

We call this problem the Robust Knapsack Problem (RKP). It was recently considered by Monaci and
Pferschy [16] who studied the worst-case ratio between the optimal solution value of (KP) and that of (RKP),
as well as the ratio between the associated fractional relaxations. A similar setting with the restriction that
wj = δ wj for all j for some given constant δ > 0 was introduced by Bertsimas and Sim [4]. Clearly this is a
particular case of the model considered in this paper.

In the following we assume, without loss of generality, that all input data are integer and items are
sorted according to non-increasing wj values. For notational simplicity we define the increased weights by
ŵj = wj + wj for all j. In addition, for any given set S of items, we will denote by p(S) =

∑
j∈S pj and

w(S) =
∑
j∈S wj the total profit and weight, respectively, of the items in S.

In this paper we review exact solution algorithms for (RKP). Although it is an NP-hard problem, exact
solutions can be found in reasonable time even for large instances (see in Section 6 the computing times
for instances up to 5,000 items). Hence it is adequate to look for exact methods in solving (RKP) and it
is interesting to compare the behavior of different algorithms. The algorithms proposed in the literature
up-to-date present quite distinct features, although two of them can be shown to be very tightly intertwined.

In Section 2 we present a dynamic programming algorithm. The algorithm mimics the well known algo-
rithm for the standard knapsack problem, but is able to take care of the upper weights once the items are
sorted according to non-increasing wj values. This algorithm, developed by the authors, is investigated in
detail. In Section 2 we show its correctness, and, as in the usual knapsack algorithm, we show that a similar
version obtained by exchanging the roles of weights and values can be also formulated thus paving the way
to approximation schemes.

In Section 3 we address the delicate issue of implementing the algorithm with a reduced amount of
memory, since, with a large number of items and large data coefficients, space requirements can constitute
a problem.

Other exact approaches are presented in Section 4. In particular we review the integer programming
model by Bertsimas and Sim [4] (Section 4.1), an improvement on the iterative approach by Bertsimas and
Sim [3] which requires solving O(n) knapsack instances (Section 4.2) and the Branch-and-Cut algorithm by
Fischetti and Monaci [8] in which the robustness requirements is modeled by cutting inequalities (Section
4.3).

The problem we investigate is a special combinatorial optimization problem that has been motivated
by a particular modeling of the problem uncertainties. By and large this is the model which has received
most attention in the literature, although a lot of research has been done to face problems with uncertain
data (see, e.g., the recent survey by Bertsimas, Brown and Caramanis [2]). As to uncertainty in knapsack
problems, few contributions were proposed. (RKP) was first introduced by Bertsimas and Sim [3], while
Klopfenstein and Nace [12] defined a robust chance-constrained variant of the knapsack problem and studied
the relation between feasible solutions of this problem and those of (RKP). A polyhedral study of (RKP)
was conducted by the same authors in [13], where some computational experiments with small instances
(up to 20 items) were given. Recently, Büsing, Koster and Kutschka [5, ?] addressed the robust knapsack
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problem within the so-called recoverable robustness context in which one is required to produce a solution
that is not necessarily feasible under uncertainty, but whose feasibility can be recovered by means of some
legal moves. In [5, ?], legal moves correspond to the removal of at most K items from the solution, so as to
model a telecommunication network problem. For this problem, the authors gave different ILP formulations,
cut separation procedures and computational experiments.

2 A dynamic programming algorithm

In this section we present an exact dynamic programming algorithm for (RKP). Note that the same problem
was considered by Klopfenstein and Nace [12] who sketched a related dynamic programming recursion in
their Theorem 3. While the brief description of the algorithm in [12] relies on a modification of a dynamic
program for the nominal knapsack problem, we present a detailed algorithm explicitly designed for (RKP)
which allows for an improvement of the complexities. In Section 3 we will analyze time and space complexities
of our algorithm, and propose possible methods for reducing both of them; finally, the algorithm will be used
in Section 5 to derive a fully polynomial approximation scheme for (RKP).

Our approach is based on the following two dynamic programming arrays: Let z(d, s, j) be the highest
profit for a feasible solution with total weight d in which only items in {1, . . . , j} ⊆ N are considered and
exactly s of them are included, all with their upper weight bound ŵj . Let z(d, j) be the highest profit
for a feasible solution with total weight d in which only items in {1, . . . , j} ⊆ N are considered and Γ of
them change from their nominal weight to their upper bound. Clearly, d = 0, 1, . . . , c, s = 0, 1, . . . , Γ , and
j = 0, 1, . . . , n.

A crucial property for the correctness of our approach is the assumption that items are sorted by non-
increasing weight increases wj . This implies the following lemma. For a subset of items J ⊆ N denote by jΓ
the index of the Γ -th item in J if |J | ≥ Γ , otherwise jΓ is the index of the last item in J .

Lemma 1 A subset J ⊆ N is feasible if and only if∑
j∈J,j≤jΓ

ŵj +
∑

j∈J,j>jΓ

wj ≤ c

Proof. The largest increase of w(J) caused by items attaining their upper weight is due to the subset of Γ
items for which the increase wj is largest. If J is feasible with respect to this subset, it is feasible for any

other subset of J .

Now we can compute all array entries by the following dynamic programming recursions:

z(d, s, j) = max{z(d, s, j − 1), z(d− ŵj , s− 1, j − 1) + pj}
for d = 0, . . . , c, s = 1, . . . , Γ, j = 1, . . . , n,

z(d, j) = max{z(d, j − 1), z(d− wj , j − 1) + pj}
for d = 0, . . . , c, j = Γ + 1, . . . , n

(5)

The initialization values are z(d, s, 0) = −∞ for d = 0, . . . , c and s = 0, . . . , Γ . Then we set z(0, 0, 0) = 0.
The two arrays are linked together by initializing z(d, Γ ) = z(d, Γ, Γ ) for all d. Obviously, all entries with
d < ŵj (resp. d < wj) are not used in definition of z (resp. z) in recursion (5). The optimal solution value
of the robust knapsack problem can be found as

z∗ = max
{

max{z(d, n) | d = 1, . . . , c}
max{z(d, s, n) | d = 1, . . . , c, s = 1, . . . , Γ − 1}
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Fig. 1. Directed graph model for the dynamic programming recursion.

and consumes a total capacity c∗ ≤ c.
Intuitively, the dynamic programming algorithm operates in two phases: first, it determines the best

solution consisting of (at most) Γ items with increased weight. Then, this solution is possibly extended with
additional items at their nominal weight. This separation into two phases is possible because the sorting by
non-increasing wj guarantees that in any solution the items with smallest indices, i.e. those that were packed
into the knapsack earlier, are those that will attain their increased weight (see Lemma 1).

Theorem 2 The dynamic programming recursion (5) yields an optimal solution of (RKP).

Proof. We build an acyclic directed graph and show that the recursion corresponds to a longest path in the
graph. The nodes are labeled as (d, s, j), with d = 0, . . . , c, j = 0, . . . , n, s = 0, . . . , Γ . The node (0, 0, 0) is
the source and an additional node, labeled t, is the destination.

The arcs are defined as follows: within each group of nodes with the same label s (let us denote them as
a “stage”) there are arcs (d, s, j − 1) → (d, s, j) with value 0. Let us denote these arcs as “empty”. Using
an empty arc corresponds to never inserting item j. Moreover, there are other empty arcs with value 0 from
each node (d, s, n) to the destination t to model situations in which the solution includes less than Γ items.

From stage s− 1 to stage s there are arcs (d− ŵj , s− 1, j − 1)→ (d, s, j), if d ≥ ŵj , with value pj . Let
us denote these arcs as “heavy”. Using a heavy arc corresponds to inserting item j and assuming it will take
the upper weight ŵj .

Finally, within stage s = Γ there are arcs (d − wj , Γ, j − 1) → (d, Γ, j), if d ≥ wj , with value pj . Let us
denote these arcs as “light”. Using a light arc corresponds to inserting item j and assuming it will take its
nominal weight.

Figure 1 shows an example of the graph associated with an instance with n = 4, w = (1, 1, 3, 1), ŵ =
(5, 3, 4, 2), c = 8 and Γ = 2. The source and the destination are the larger white nodes. The nodes in gray
are non reachable and their arcs are not shown.

We claim that there is a one-to-one correspondence between paths from source to destination and feasible
solutions.

Consider any path from node (0, 0, 0) to node t. Note that this path moves from a stage to the next one
only by heavy arcs. In particular, it will reach the final stage only after using exactly Γ heavy arcs. Note also
that each path visits the nodes in increasing order of indices j. By construction, the indices of the light arcs
(if any) are greater than the indices of the heavy arcs. Hence, by Lemma 1, the solution given by the path
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Solve RKP(N,Γ, c)
begin
initialization
1. for d := 0 to c do
2. for s = 1 to Γ do
3. z(d, s) = −∞
4. z(0, 0) = 0;
5. for j := 1 to |N | do

possibly pack item j with nominal weight (if Γ items have already been inserted)
6. for d := c down to wj do
7. if z(d− wj , Γ ) + pj > z(d, Γ ) then
8. z(d, Γ ) = z(d− wj , Γ ) + pj ;

possibly pack item j with robust weight
9. for s := Γ down to 1 do
10. for d := c down to ŵj do
11. if z(d− ŵj , s− 1) + pj > z(d, s) then
12. z(d, s) = z(d− ŵj , s− 1) + pj ;
13. z∗ = max{z(d, s) | d = 1, . . . , c; s = 1, . . . , Γ}
end

Fig. 2. Dynamic programming algorithm for (RKP).

is feasible. Of course, this is true also in case a light arc is used to go from a node (d, s, n) to the destination
t; indeed, in this case, only s ≤ Γ are inserted in the solution, all of them with increased weight ŵj .

As to the reverse, take any feasible solution J , and let Ĵ be its first Γ items if |J | > Γ , otherwise Ĵ = J .
As before jΓ is the last index in Ĵ . We build the path as follows: for each index j ≤ jΓ we choose an empty
arc if j /∈ J and a heavy arc if j ∈ J , until we reach the node (

∑
j∈Ĵ ŵj , |Ĵ |, jΓ ). If |J | ≤ Γ we use an

empty arc from this node till the destination node t. If |J | > Γ , then the node (
∑
j∈Ĵ ŵj , |Ĵ |, jΓ ) is actually

(
∑
j∈Ĵ ŵj , Γ, jΓ ), i.e., from this node we use arcs within stage Γ for all j > jΓ , in particular empty arcs if

j /∈ J and light arcs if j ∈ J , until we reach the node (
∑
j∈Ĵ ŵj +

∑
j∈J\Ĵ wj , Γ, n) and from this node we

go to the destination.
Now the recursions (5) are exactly the optimality conditions for a longest path in the graph.

3 Time and space complexity

In this section we analyze the time and space complexity of the dynamic programming algorithm resulting
from (5). In many practical applications the space requirements are the main obstacle for using a dynamic
programming algorithm. Hence, we will pay special attention to this issue.

A straightforward evaluation of the recursion (5) starts with array z. In principle, we go through all items
j from 1 to n in an outer loop. For each j, all cardinalities s ≤ Γ of a solution are considered, and in the
inner-most loop all capacity values d from 0 to c are evaluated. Then array z is initialized with the outcome
of z for s = Γ . Again, an outer loop goes over all items and an inner loop over all capacities. This would
yield a pseudopolynomial running time of O(Γ n c) for computing the optimal solution value.
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For the above recursion, at each iteration j only values from the previous iteration j − 1 are required.
Thus we can construct a more refined implementation for computing z∗ as given by procedure Solve RKP
in Figure 2. The above procedure applies a better utilization of the dynamic programming array and avoids
copying array entries from one iteration to the next, yielding a space requirement O(n + Γ c) and a time
complexity O(Γ n c). However, in this case it would not be possible to reconstruct the optimal solution set,
but only the optimal solution value.

To obtain also the optimal solution set there are two straightforward possibilities. On one hand, one could
store the dynamic programming arrays for all values of j, which allows a reconstruction of the solution set by
backtracking; however, this procedure increases the space requirement by a factor n. On the other hand, one
could store the current solution set for each entry of the dynamic programming array. An efficient approach
would use a bit representation of the at most n items of each solution which yields a total space requirement
of O(n+ Γ c log n). But in this case it should be noted that the computation of a new entry of the dynamic
programming array requires copying a solution set from a previous entry. Such a transfer of n bits cannot
be done in constant time but induces an increased running time of O(Γ n c log n).

We will now present a more involved approach based on a recursive partitioning scheme. It is related
to the general framework given in Pferschy [17] (see also Kellerer, Pferschy and Pisinger [11, Sec. 3.3]) but
requires special considerations since the conditions for directly applying the framework of [17] are not met
by (RKP).

The main idea is a bipartitioning of the item set N = N1 ∪ N2 with N1 = {1, . . . , n/2} and N2 =
{n/2 + 1, . . . , n} (assuming n to be even). After computing the optimal solution value for the whole set N
we reconstruct the optimal solution set recursively for each set Ni.

We use the above recursion in a dynamic programming procedure Solve RKP(c, Γ,N) which returns the
optimal solution value of the robust knapsack problem for every capacity value d = 1, . . . , c. In addition
we also store for each array entry a counter k(d, Γ ) which indicates how many items in the corresponding
solution set were taken from the first half of items, i.e. from N1. It is trivial to update this counter whenever
an item from N1 is inserted during the dynamic programming recursion. Note that items are never removed
from a solution set. The counter value associated to the optimal solution value z∗ will be denoted by k∗.

In the recursion we will also use two non-robust variants of the knapsack problem. On one hand we will
use the standard knapsack problem (KP) introduced above. It is well known that the optimal solution set
of (KP) can be computed in O(n c) time and O(n + c) space by dynamic programming (see e.g. Kellerer,
Pferschy and Pisinger [11]). On the other hand we will use a cardinality constrained knapsack problem
(E-kKP), where a strict cardinality bound k is added to (KP) such that∑

j∈N
xj = k. (6)

It was shown by Caprara et al. [7] that the optimal solution set of (E-kKP) can be computed in O(k n c)
time and O(n+ k c) space by dynamic programming. Note that both of these algorithms also makes use of
the recursive partitioning scheme from Pferschy [17]. Moreover, they both compute the respective optimal
solution values for all capacity values d = 1, . . . , c.

Our partitioning argument is based on the following observation.

Lemma 3 If k∗ ≥ Γ , then the optimal solution consists of the solutions of a robust knapsack problem with
parameter Γ for N1 and of an instance of (KP) for N2 with nominal weights.

Otherwise, if k∗ < Γ , then the optimal solution consists of the solutions of an instance of (E-kKP) with
parameter k∗ and increased weights ŵj for N1 and a robust knapsack problem with parameter Γ −k∗ for N2.
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Proof. It was pointed out in Lemma 1 that in any feasible solution, and thus also in an optimal solution,
the Γ items with lowest index, i.e. indices up to jΓ , are those which contribute an increased weight to the
capacity; all remaining items with higher indices contribute their nominal weight.

If k∗ ≥ Γ , then jΓ ∈ N1 and all items in the optimal solution belonging to N2 (if any) contribute only
their nominal weight. If k∗ < Γ , then jΓ ∈ N2 and all k∗ items in the optimal solution belonging to N1

contribute their increased weight. The remaining at most Γ −k∗ weight increases are contributed by items in
N2. Note that this second case includes the possibility that the optimal solution contains less than Γ items.

Based on Lemma 3 an algorithm for the robust knapsack problem is presented in Figure 3.

begin
1. call Solve RKP(c, Γ,N) and determine z∗, c∗ and k∗;
2. call recursion(z∗, k∗, c∗, Γ,N);
end

recursion(z∗, k∗, c∗, Γ,N)
begin
0. if |N | = 1 then output trivial solution.
1. partition N into N1 = {1, . . . , d|N |/2e} and N2 = {d|N |/2e+ 1, . . . , |N |};
2. if k∗ ≥ Γ then
3. call Solve RKP(c∗, Γ,N1) returning z1(c∗);
4. solve (KP) with N2, c∗ and weights wj returning z2(c∗);
5. find a combination c1 + c2 = c∗ such that z1(c1) + z2(c2) = z∗;
6. output the solution set of (KP) for z2(c2);
7. let k∗1 be the counter associated to z1(c1);
8. recursion(z1(c1), k∗1 , c1, Γ,N1)
9. else
10. solve (E-kKP) with parameter k∗, N1, c∗ and

weights ŵj returning z1(c∗);
11. call Solve RKP(c∗, Γ − k∗, N2) returning z2(c∗);
12. find a combination c1 + c2 = c∗ such that z1(c1) + z2(c2) = z∗;
13. output the solution set of (E-kKP) for z1(c1);
14. let k∗2 be the counter associated to z2(c2);
15. recursion(z2(c2), k∗2 , c2, Γ − k∗, N2)
16. endif
end.

Fig. 3. Recursive partitioning algorithm to find the optimal solution set of (RKP).

Theorem 4 The recursive partitioning algorithm of Figure 3 to compute an optimal solution of (RKP) can
be performed in O(Γ n c) time and O(n+ Γc) space.

Proof. Using the dynamic programming scheme described above each call to Solve RKP(c, Γ,N) requires
O(Γ n c) time and O(n+ Γ c) space. Moreover, summarizing the above discussion we can also perform each
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call to recursion(z∗, k∗, c∗, Γ,N) in O(Γ |N | c∗) time: Indeed, the main effort in the recursion for k∗ ≥ Γ

is the execution of Solve RKP(c∗, Γ,N1) requiring O(Γ |N |2 c∗) time and the solution of an instance of (KP)
with item set N2 which requires only O( |N |2 c∗) time. For k∗ < Γ we have to solve an instance of (E-kKP)
in O(Γ |N |2 c∗) time and execute Solve RKP(c∗, Γ − k∗, N2) also in O(Γ |N |2 c∗) time. To report the solutions
sets for (KP) resp. (E-kKP) we have to rerun the respective algorithms with capacity c1 resp. c2 since they
compute the optimal solution sets only for the given capacity value c∗ but not for all capacity values. For both
cases finding the combination c1 + c2 = c∗ can be done by a simple pass through the dynamic programming
arrays.

Summing up the running time over all recursion levels we get a total running time of

Γ n c+
logn∑
i=0

Γ n/2i c ≤ 3Γ n c

which proves the claimed time complexity.
The space requirements are trivially bounded by O(|N |+Γ c). Note that before each call to recursion all

previously used space can be set free and thus reused in the next recursion level.

Note that the results by Bertsimas and Sim [3] ensure that (RKP) can also be solved to optimality by
solving n+1 nominal knapsack problems (KP), see also Section 4.2. Since (KP) can be solved in O(n c) time
and O(n+c) space this approach would require only O(n+c) space, but O(n2 c) time. An improvement over
[3] has recently been proved by Lee et al. [14]; according to this result, the number of executions of nominal
(KP) can be reduced to n−Γ + 1, although this does not change the worst-case complexity of the approach.

4 Other exact approaches to (RKP)

In this section we review some other algorithms for the optimal solution of (RKP).

4.1 A compact MILP-formulation

The robust counterpart of an uncertain ILP was formulated by Bertsimas and Sim [4] as a Mixed ILP (MILP)
by adding a polynomial number of variables and constraints. For the special case of (KP), the associated
robust counterpart looks as follows:

max
∑
j∈N

pj xj∑
j∈N

wj xj +
∑
j∈N

πj + Γρ ≤ 1

− wj xj + πj + ρ ≥ 0 j ∈ N
xj ∈ {0, 1}, πj ≥ 0, ρ ≥ 0 j ∈ N.

(7)

The resulting model, referred to as BSMILP in the following, involves n binary and n + 1 continuous
variables, and n + 1 constraints. Hence, from a theoretical point of view, enforcing robustness does not
increase the computational complexity of the problem.
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4.2 Iterative solution of the nominal problem

A different approach for a special class of ILPs was presented again by Bertsimas and Sim [3] who considered
optimization problems problems in which all variables are binary and only the coefficients in the objective
function are subject to uncertainty. In this case, it is enough to observe that an optimal solution exists in
which variable ρ takes a value from a set of at most n+ 1 candidates; once ρ is fixed, the resulting problem
is a nominal problem in which some coefficients are changed. Hence, one can guess the “correct” value of ρ,
solve n + 1 nominal problems and take the best of the associated solutions as the optimal robust solution.
It is easy to see that, if one swaps the role of the objective function with that of the uncertain constraint,
(RKP) immediately fits within these settings, which allows to adopt the scheme above. By solving n + 1
nominal (KP) instances, obtained by suitably changing the items’ weights, one yields the optimal solution
of a given (RKP) instance. The algorithm above requires O(nT ) time, where O(T ) denotes the computing
time for solving the nominal (KP).

As already mentioned, this approach has been recently improved by Lee et al. [14], who proved that
the optimal solution of (RKP) can be obtained by solving n − Γ + 1 nominal (KP) instances. In addition,
this latter result was generalized by Álvarez-Miranda, Ljubic and Toth [1] for binary problems in which
uncertainty affects Γ coefficients of a linear objective function to be optimized on a polyhedral region.

4.3 Branch-and-cut algorithm

Fischetti and Monaci [8] noted that robustness, defined according to the definition of Bertsimas and Sim [3],
can be enforced with no need of introducing additional variables, by working on the space of the original xj
variables. To do this, one has to separate some robustness cuts, that, for the knapsack problem, have the
following structure ∑

j∈N
wj xj +

∑
j∈S

wj xj ≤ c, ∀S ⊆ N : |S| ≤ Γ. (8)

For a general MILP, given the current solution x∗, the separation of robustness cuts associated with a given
row requires O(n) if the x∗ is integer; otherwise separation can be carried out in O(n log n) time.

Note that the formulation of Section 4.1 and this Branch-and-Cut model have the same lower bounds
given by the LP relaxations as can be seen from [4].

5 FPTAS and Robust Knapsack

Approximation algorithms are an obvious alternative to the computation of exact solutions. In particular,
the construction of a fully polynomial approximation scheme (FPTAS) for (RKP) is an interesting issue.

Note that the recursion (5) could be alternatively stated by exchanging the roles of profit and weights.
Without lengthy explanations we briefly state the resulting recursion. Let y(p, s, j) be the smallest weight
for a feasible solution with total profit p in which only items in {1, . . . , j} ⊆ N are considered and exactly s
of them are included, all with their upper weight bound ŵj . Let y(p, j) be the smallest weight for a feasible
solution with total profit p in which only items in {1, . . . , j} ⊆ N are considered and Γ of them change from
their nominal weight to their upper bound.

The entries of the dynamic programming array can be computed in analogy to (5).

y(p, s, j) = min{y(p, s, j − 1), y(p− pj , s− 1, j − 1) + ŵj}
for p = 0, . . . , p(N), s = 1, . . . , Γ, j = 1, . . . , n,

y(p, j) = min{y(p, j − 1), y(p− pj , j − 1) + wj}
for p = 0, . . . , p(N), j = Γ + 1, . . . , n

(9)
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with the obvious initializations. Then the optimal solution value is given by max{p | y(p, n) ≤ c}. The
straightforward running time of this approach would be O(Γ n

∑
j∈N pj).

Since the running time is now pseudopolynomial in the sum of profits, one can apply a standard scaling
argument (cf. [11, Sec. 2.6]) to obtain an FPTAS from our dynamic programming scheme. Indeed, using
scaled profits p̃j := b pj n/ (ε pmax)c, where pmax is the largest profit of an item, one obtains an FPTAS
for (RKP) with running time O(Γ n3/ε) (neglecting the details of retrieving the corresponding solution set,
cf. Section 3).

However, one could also use the iterative method from Section 4.2 to reach an FPTAS. Indeed, the
iterative method can be applied also with any approximation algorithm for (KP). Again, n + 1 iterations
yield a feasible solution for (RKP) and preserve the approximation ratio of the algorithm for the nominal
problem. Therefore, one can take advantage of the highly tuned FPTAS for (KP) (see Kellerer and Pferschy [9,
10]) with a running time complexity of O(n log n + 1/ε3 log2(1/ε)) and obtain an FPTAS for (RKP) with
O(n2 log n + n · 1/ε3 log2(1/ε)) running time. This will dominate the above approach for most reasonable
parameter settings.

Of course, it would be possible to apply some of the technical features of [9, 10] to speed up the FPTAS
arising directly from the dynamic program for (RKP). However, it seems that this is a futile exercise with
little hope for an overall improved running time complexity.

6 Computational experiments

In this section we computationally evaluate, on a large set of instances, the dynamic programming algorithm
of Section 2 and the other exact algorithms for (RKP) described in Section 4. To the best of our knowledge,
no (RKP) instances were proposed so far in the literature, but those used by Klopfenstein and Nace [13]; as
already mentioned, these are however quite small instances (up to 20 items) that cannot be used to compare
dynamic programming with the algorithms of Section 4. Thus, we randomly generated the problems in our
testbed in the following way.

Test instances
In order to produce hard (RKP) instances, we first generated hard (KP) instances and then defined the

robust weight of each item accordingly. According to Pisinger [18], hard (KP) instances were obtained by
taking profits and weights as independent uniformly distributed values in a given interval; in particular, the
following 5 classes of (KP) instances were generated:

– UN, uncorrelated instances: pj and wj are integer values randomly chosen in [1, c];
– WC, weakly correlated instances: wj values are integer values randomly generated in [1, c], and each pj

is chosen among the integers in [max{1, wj − c/10}, wj + c/10];
– SC, strongly correlated instances: each weight wj is an integer value randomly chosen in [1, c] and the

associated profit is pj = wj + c/10;
– IC, inverse strongly correlated instances: each profit pj is an integer value randomly chosen in [1, c] and

the associated weight is wj = min{c, pj + c/10};
– SS, subset sum instances: weights wj are integer values randomly generated in [1, c] and pj = wj .

To test the performances of the algorithms with problems of different sizes, we generated instances with
c = 100 and n ∈ {100, 500, 1000, 5000}, and instances with n = 5000 and c ∈ {1000, 5000}. For each
combination of the parameters, 10 instances were generated; thus our testbed includes 300 (KP) instances.

As to uncertainty, in all the instances the robust weight wj of each item j was randomly generated in
[wj , c]. Finally, we considered different values of Γ , namely Γ ∈ {1, 10, 50}.
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All instances (and the corresponding solutions) are available at
http://www.or.deis.unibo.it/research.html.

Algorithms
We compared the following exact approaches for (RKP):

– BSMILP , i.e., the compact formulation (7) for (RKP) as proposed by Bertsimas and Sim [4].
– LLPP , i.e., the approach proposed by Lee et al. [14] as an improvement on Bertsimas and Sim [3],

consisting in the iterative solution of nominal (KP) instances. To solve nominal (KP) instances, we run
as a black box the publicly available routine combo by Martello, Pisinger and Toth [15], which is actually
considered the state-of-the-art for the exact solution of (KP) problems.

– BC, i.e., the branch-and-cut algorithm to robust optimization recently proposed by Fischetti and
Monaci [8]; in our implementation, separation is carried out at each node of the enumerative tree.

– DP , i.e., the dynamic programming algorithm Solve RKP presented in Section 3, but without the recur-
sive scheme for space reduction.

All algorithms were coded in C language and run on an Intel i5-750 @ 2.67GHz in single-thread mode.
For solving both MILP (7) and all LPs during enumerative algorithm BC, the commercial solver IBM-ILOG
Cplex 11.2 was used. For each instance, a time limit of 300 CPU seconds was given to each algorithm. For
some classes of instances the CPU times are very small; thus, in order to obtain a reliable estimate, it was
necessary to compute, for each instance, the CPU time spent while solving it 100 times and correspondingly
divide the total time.

Results
Table 1 reports the outcome of our experiments on the 300 instances of our testbed for the 3 different

values of Γ . In particular, each line in the table refers to a set of 10 instances, characterized by number
of items n, capacity c and type t ∈ {UN,WC, SC, IC, SS}, and reports, for each value of Γ , the average
computing time (arithmetic mean, in seconds) required by each algorithm (for unsolved instances, we counted
a computing time equal to the time limit).

Computational results show that our dynamic programming algorithm is very effective in solving (RKP)
instances where a small number of coefficients change, as its complexity grows linearly with Γ . For larger
values of Γ the iterative solution of (KP) instances, as proposed by Bertsimas and Sim [3], turns out to
be the best algorithmic approach. However, the computing time of LLPP may vary in a substantial way
when solving instances of different type – although of the same size – which is not the case for algorithm
DP , whose computing time is more stable. This is particularly evident when instances with c = 5000 are
considered.

The two algorithms above outperform the remaining two algorithms, BSMILP and BC. This is not
surprising, as the latter are based on the use of a general purpose ILP solver, which is usually less efficient
than ad hoc algorithms for knapsack problems. In addition, cutting planes are not the best suitable way to
enforce robustness when problems with integer variables are considered, as noted by Fischetti and Monaci [8],
which leads to a number of unsolved instances in our testbed.

7 Conclusions

In this paper we considered the robust knapsack problem, i.e., the uncertain variant of the well-known
knapsack problem in which robustness is enforced according to the Bertsimas-Sim definition (see, [4]). For
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this problem we presented a dynamic programming algorithm and studied its time and space complexities,
as well as techniques aimed at reducing the space complexity. We then computationally tested this algorithm
on a large set of randomly generated instances, and compared the performances of the algorithm with those
of other exact approaches proposed in the literature for (RKP). Computational results showed that dynamic
programming is a viable way for solving (RKP) even for large-sized instances.
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