

Università degli Studi di Udine

Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis

On the Complexity of Optimal
Reduction of Functional Programming

Languages

Candidate: Supervisor:

Paolo Coppola Simone Martini

February 8, 2002

c©2002, by Paolo Coppola

Author’s address:

Paolo Coppola
Dipartimento di Matematica e Informatica
Università degli Studi di Udine
via delle Scienze, 206 (loc. Rizzi)
I-33100 Udine, Italy

Tel: +39-0432-558457
Fax: +39-0432-558499

E-mail: coppola@dimi.uniud.it

Contents

Introduction v

I The Complexity of Reduction 1

1 Optimality and Complexity 3
1.1 Harbingers . 4

1.1.1 The typed λ-calculus is not elementary recursive 4
1.1.2 Counting beta reductions in the pure typed lambda-calculus 6
1.1.3 Optimality by Lévy . 7

1.2 Looking for efficient implementations of functional languages 13
1.3 Lamping’s Algorithm . 15

1.3.1 Sharing Graphs . 16
1.3.2 The Full Algorithm . 21
1.3.3 Initial Encoding . 26
1.3.4 Read-back . 28

1.4 The complexity of Lamping’s algorithm . 30
1.5 Inherent complexity of implementing optimal reduction 33

1.5.1 The general case . 33
1.5.2 The polynomial case . 34

1.6 Conclusions . 36

2 Complexity of optimal sharing 37
2.1 Linear Logic . 37

2.1.1 Elementary Affine Logic [Gir98, Asp98] 41
2.1.2 Light Affine Logic [Gir98, Asp98] . 43
2.1.3 Soft Linear Logic [Laf01] . 43

2.2 Decorating terms . 44
2.3 Coding type theory into EAL proofs . 46
2.4 Conclusions . 70

3 EAL-typing 73
3.1 Type inference in EAL . 73

3.1.1 NEAL . 75
3.1.2 Example of type inference . 79
3.1.3 Type Inference . 90
3.1.4 The full algorithm . 91
3.1.5 Properties of the Type Syntesis Algorithm 98

ii CONTENTS

3.2 Principal type . 105
3.2.1 Abstract EAL-terms . 105
3.2.2 Principal Typing for `abs . 109
3.2.3 Canonical Forms . 111
3.2.4 Canonical Forms Algorithm C . 116
3.2.5 Conclusions . 121

II The Implementation of Functional Languages 123

4 Optimal Reducers 125
4.1 A tool for reducers comparison . 125
4.2 Implementation details . 138

4.2.1 Sharing graphs . 139
4.2.2 Graph nodes . 142
4.2.3 Graphical User Interface . 144

Conclusions 145

Bibliography 147

“... at the time through self-study
I found out about the λ-calculus of
Curry and Church which, literally,

gave me nightmares at first.”
Dana Scott

Acknowledgments

If you want to blame someone for this thesis, there are at least three persons to charge
besides me. The first is my supervisor Simone Martini. It was him that made me fall in love
first with formal methods, then with lambda calculus and finally with optimal reduction. I
want really to thank him for the patience and time spent advising me, teaching to me and
discussing with me. You have to complain mainly with him about my willing to become
a researcher. Secondly I thank Andrea Asperti. The few days spent with him in Marseille
were my first tasting of what Research in Computer Science could be (yes, capital letters!)
and I am still bewitched about it. I am grateful with Andrea for the possibility he gave me
to work with him. The third person having a responsibility in the completion of my PhD
and hence in the realization of this thesis is my wife Anna. She has been the irreplaceable
source of backing in these years.

Naturally my thanks go to many other people. I mention them hereafter in no particular
order. I want to thank my referees Harry Mairson and Vincent van Oostrom for their
willingness and their useful comments. I am obliged to Simona Ronchi della Rocca for the
collaboration on EAL-principal typing. I also thank my colleagues and friends Gianluca
Franco and Ivan Scagnetto for their contribution to my knowledge on types and lambda
calculus. Roberto Ranon, Luca Di Gaspero and Stefano Mizzaro have been precious in their
suggestions about Java and programming in general. A special thank goes to the local TEX
guru and to Marino Miculan for their priceless help. Last but not least I express my deepest
gratitude to my parents.

I hope to have learned at least something from the above persons and from all the others
I met during my PhD. If this is the case, I consider myself lucky and satisfied.

iv

Introduction

Why functional languages did not meet with success in real world applications? Probably
there are two motivations: first actual programmers are used to imperative languages and
the new comer is not so easy to learn and master. However, functional programs are often
easier to check with respect to correctness and algebraic properties and this is an added value
in the development of large software projects. Second, and more important, the available im-
plementations of functional languages are not more efficient than the preexisting imperative
ones. The problem is that functional languages did not play on home turf. All actual imple-
mentations run on computer with an architecture that is the one for imperative programming
languages. The fetch-decode-execute cycle—the von Neumann bottleneck in [Bac78]—has
nothing to do with functional languages!

So the question is: what is an efficient implementation of functional languages? Does
it exist? In spite of some efforts, such implementations does not still exists or are unsat-
isfactory for the lack of a theory dealing with unit cost operations and independent from
Turing machines. Thus, dealing the matter from another prospective: what is the inherent
complexity of the evaluation of a functional programs?

This thesis is a contribution to give an answer to the last question. We can restrict the
efforts in the study of functional languages to a particularly simple rewriting system that is
widely accepted as the core of every language belonging to this paradigm. Such simple and
powerful rewriting system is the lambda-calculus. The syntax we will adopt is the following:

M ::= x | λx.M | (M M).

Optimal reduction of Lévy is the first ingredient used in this thesis. The intuitive idea behind
optimal reduction is the following: if we consider the usual beta-reduction (λx.M N) →β

M{N/x} there is no recursive one step strategy that is optimal. Fixed a reduction strategy
there always exists a lambda term for which during the normalization a redex will be du-
plicated forcing to do at least one beta-step more than the minimal possible amount. Lévy
showed that we can define an equivalence relation between the different copies of a redex
produced during a reduction and that, given a redex, it is possible to calculate its equivalent
class, i.e. the set of its copies. If we have a mechanism allowing us to share all the copies
of a single redex, following a call-by-need strategy we will perform the minimal number of
(parallel) beta-steps in the normalization of a lambda terms. In this sense Lévy’s parallel
reduction is optimal: minimal number of parallel beta-steps.

The existence of a minimal number of optimal reduction steps makes them a more feasible
candidate to complexity measure than the usual beta reduction steps. However, we will see
that they can not be implemented as a unit cost operation.

The implementation of optimal reduction came ten years later thanks to the work of
Lamping and, independently, Kathail. The beautiful graph reduction algorithm of the former
is the second ingredient of the thesis. Lamping’s graphs are essentially the syntax trees of

vi INTRODUCTION

lambda terms with two differences: variables are explicitly binded to the lambda abstraction
and it is introduced a particular node for the sharing management. A lambda term is
translated into a Lamping’s graph, then the graph is reduced following a set of local rewriting
rules and finally the graph in normal form is read back in order to obtain the normal form
of the lambda term.

The rewriting rules are divided in two sets. The first set defines the abstract algorithm.
It performs the optimal beta rule and duplication. In the study of optimal reduction, there
are no attempts to improve the efficiency of this part of the algorithm that is on the contrary
accepted to be the core of the implementation. In Chapter 2 we show that the complexity
of this part of the algorithm is already non elementary. This is the first contribution of the
thesis.

The result of Chapter 2 is obtained showing how it is possible to encode in Elementary
Affine Logic the problem of deciding truth value of higher order formulas. This problem was
shown to be non-elementary by Meyer in 1974. It is used by Statman in 1979 to show that the
complexity of reduction in the simple typed lambda calculus is not elementary recursive, and
by Asperti and Mairson in 1998 to state the same lower bound to the complexity of optimal
beta reduction. We use it again with the addition of a particular fragment of Liner Logic of
Girard to prove the non elementary bound for the complexity of the sharing implementation
in the Lamping’s graph reduction. In fact it is possible to normalize Elementary Affine Logic
proofs with the Lamping’s abstract algorithm.

From the last observation we continued our study looking for a type synthesis algorithm
of lambda terms in Elementary Affine Logic. Reducing terms inside the abstract Lamping’s
algorithm dramatically improves the performances, then if we can prove that a lambda term
has a type in EAL, we can reduce it in a more efficient way. Moreover, it is possible to define
for EAL terms a notion of depth such that, fixing that, EAL terms of that depth normalize
in an elementary number of steps and the type inference algorithm implicitly identifies such
classes of terms. We give the positive solution to the problem of decidability of type inference
in EAL in Chapter 3.

Finally, Chapter 4 introduces a java tool for the study and comparison of various imple-
mentations of optimal reducers for the lambda calculus. The application allows to analyze
the traces of the execution of the optimal reducers in terms of unit cost operations. The tool
comes with three different optimal reducers and others can be added.

Acknowledgments. Results on the complexity of optimal sharing exposed in Chapter 2 are
due to the collaboration with Andrea Asperti and Simone Martini and have been published
in [ACM00]. Results on type inference of lambda terms in EAL of Section 3.1 have been
published in [CM01]. Results on the principal type for lambda terms in EAL of Section 3.2
are due to the collaboration with Simonetta Ronchi della Rocca.

I
The Complexity of Reduction

1
Optimality and Complexity

“Currently, it is not known how to analyze the complexity of a functional program
in an implementation independent way. Indeed, it is not clear that the complexity
of a functional program is in any sense implementation independent. This is in
marked contrast to programs written in common imperative languages. Here it is
informally understood that all good implementations endow any given program
with essentially the same complexity (in O-notation).

Clearly, there are bad implementations of imperative languages in which the
complexities of some programs are degraded below their true complexities. Thus
the reason that the complexity of programs in imperative languages is well defined
is that we have identified the good implementations (i.e. optimal implementations
in O-terms), and we regard these implementations as defining the complexity of
a program. Consequently, the complexity of an imperative program is implicitly
implementation independent in this sense.

If we wish to arrive at a similar situation in regard to the complexity of functional
programs, then we need to know what an optimal implementation of functional
language is.”

[FS91]

In the study of efficient implementations of functional languages researchers have followed
various directions. In the first one the goal is to increase the efficiency considering the un-
derlying architecture of computers in our days. One example is the G-machine [Pey87], that
avoids building graphs when an expression is purely arithmetical. Another one is to consider
eager languages [McC62, Lan64, Mil78, Ste84, CR91] which evaluates an expression like
(F A) by first evaluating F and A (in no particular order) to, say, F ′ = λa. · · · a · · · a · · · and
A′ and then contracting (F ′ A′) to · · ·A′ · · ·A′ · · · . This evaluation strategy has advantages
for the efficiency of the implementation when A is large, but its normal form A′ is small,
both in time and space.

A common goal is to reduce the number of function calls (beta-reduction) and in oder to
attain this result researchers have developed techniques concerning reduction strategies (as
in the above case) and sharing mechanism. But eager languages, although computationally
complete (every computable function is lambda definable in the λI-calculus [Bar84] and the
λI-calculus, the fragment of lambda calculus where all redexes are needed to reach the normal

4 CHAPTER 1. OPTIMALITY AND COMPLEXITY

form, could be thought as the “core” of eager functional languages) have some disadvantages,
as the impossibility of working with infinite objects and a minor elegance of the programming
style in comparison with lazy languages [Tur76, Joh84, Tur85, vEP93, PW93]. Even more
there exists lambda terms for which any order of classical reduction duplicates redexes. One
example discussed by Lamping [Lam90] is

(λg.(g(g λx.x)) λh.(λf.(f(f λz.z)) λw.(h(w λy.y))))

which has two redexes. Reducing the outer redex (λg. . . .), one duplicates the inner one
(λf. . . .). Hence, if we do not want to duplicate redexes, the unique choice seems to contract
the inner redex. But in this case we duplicate (h(w λy.y)) that will be a redex as soon as a
value for h is determined!

1.1 Harbingers

The first problem in the study of the complexity of reduction of functional programming
languages is the choice of what to measure. Lacking a univocal answer in the literature, the
first works in this field chose either to determine the intrinsic complexity for a given class
of programs, following an a priori reasoning (Statman), or to count the most obvious thing,
simply obtaining an upper bound (Schwichtenberg).

1.1.1 The typed λ-calculus is not elementary recursive

In the early attempts to study the complexity of the reduction in lambda calculus the princi-
pal result comes from Statman [Sta79] that showed that the “intrinsic” cost of normalization
in the typed lambda calculus is not bounded by any elementary function.

Note
Mairson [Mai92] gave a simpler proof of the theorem of Statman using a different encoding
essentially based on list iteration as quantifier elimination. We will see the encoding proposed
by Mairson in Section 2.3.

Statman starts from a non elementary problem—the problem of determining the truth
value of formulas in higher-order type theory. Such a problem was shown to be non elemen-
tary by Meyer in [Mey74] and Statman gives a reduction to the problem of β-conversion
between simple typed lambda terms. We give Statman’s encoding in the next sections.

Type theory

Consider the language of type theory, Ω, i.e. the language of set-theory where each variable
has a natural number type and there are two constants 0, 1 of type o. Let the prime
formulae be “stratified”, i.e. they are of the form 0 ∈ x1,1 ∈ x1 and yn ∈ zn+1. Arbitrary
formulae are built-up from prime ones by means of the following connectives: ¬,∧ and ∀.
The intended interpretation of Ω has 0 denoting 0, 1 denoting 1 and xn ranging over Dn

where D0 = {0, 1} and Dn+1 = powerset(Dn).
The problem of deciding whether an arbitrary Ω-sentence is true is recursive. In fact

there is a quantifier-elimination procedure for Ω-sentences (see [Hen63]).
In Ω we can define equality in the following way:

xk =k yk ⇔ ∀zk−1(zk−1 ∈ xk ↔ zk−1 ∈ yk).

1.1. HARBINGERS 5

Then, every element D ∈ Dn can be identified with the set of its elements, i.e. if D =
{d1, . . . , dm}, it can be expressed in Ω as {xn−1 | xn−1 =n−1 d1 ∨ · · · ∨ xn−1 =n−1 dm}.
Theorem 1 (Fischer and Meyer, Statman) The problem of determining if an arbitrary
Ω-sentence is true cannot be solved in elementary time.

Proof: See [Mey74]. ¤

Statman’s Encoding

Consider the Church numerals n of type N0 ≡ (o → o) → (o → o) where o is the base
type, the simple typed lambda terms sum, mul, sg, sg that lambda define the homonimous
arithmetic functions, and consider the type scheme Nn+1 ≡ Nn → N0.

In order to encode Ω-formulas we need the following simple typed terms:

a1 = 2 : N0

an+1 = (an{o → o/o} a1) : N0

where {o → o/o} indicates the type substitution. Notice that an lambda-defines the function
s(0) = 1 and s(n + 1) = 2s(n).

e0 = λx.λy.(sum(mul(sgx)(sgy))(mul(sgy)(sgx))) : N0 → (N0 → N0)
∀0 = λh.(sum(h0)(h1)) : N1 → N0

C = λg.(sum(g(λx.1))(g(λx.x))) : N2 → N0

pn+1(x, y) = (C λf.(∀n λw.(z λy.(mul(f(enwy)(xy)))))) : N0

en+1 = λx.λy.(∀n λz.(e0(xz)(yz))) : Nn+1 → (Nn+1 → N0)
∀n+1 = λy.((an+1{Nn+2/o} λz.λx.pn+1(x, z) y)λw.1) : Nn+2 → N0

The encoding ()∗ function from Ω-formulas to simply-typed lambda terms is the following:

(0)∗ = 0

(1)∗ = 1

(xn)∗ = x : Nn

(t1 ∈ t2)∗ = (sg((t1)∗(t2)∗))
(A ∧B)∗ = (sg(sum(A)∗(B)∗))

(¬A)∗ = (sg(A)∗)

(∀xnA)∗ = (sg(∀n λxNn .(A)∗))

Consider now the definition of an object of type n as

def0(0) = {0}
def0(1) = {1}

defn+1(α) = {λyNn .(mul r1(· · · (mul rs(n+1)(λwNn .1 y)) · · ·) |
ri = 1 or ri = (en t y) for t ∈ defn(β)
for each β ∈ α for some t ∈ defn(β) there is some i s.t. ri = (en t y)}

We can state the following proposition:

6 CHAPTER 1. OPTIMALITY AND COMPLEXITY

Proposition 2 Suppose α, β ∈ Dn, γ ∈ Dn+1, t1 ∈ defn(β), t2 ∈ defn(α), and t3 ∈
defn+1(γ), then

1. β = α iff (en t1 t2) → 0

2. β ∈ γ iff (t3 t1) → 0.

From these definitions we have the main theorem of Statman, proving that the β-reduction
of simply typed terms is not elementary:

Theorem 3 Let A(xn1
1 , . . . , xnm

m) be an Ω-formula with free variables {xn1
1 , . . . , xnm

m }, and
let αi ∈ Dni and ti ∈ defni(αi) for 1 ≤ i ≤ m, then A{α1/xn1

1 , · · · , αm/xnm
m } is true if and

only if the simple typed lambda term (λx
Nn1
1 . · · ·λx

Nnm
m .(A)∗ t1 · · · tm) reduces to 0.

1.1.2 Counting beta reductions in the pure typed lambda-calculus

Other works in the field of complexity of lambda reduction concern only the aspect of the
number of standard beta reductions needed to reach the normal form [Sch82]. In his work,
Schwichtenberg proves a lower and an upper bound to the number of standard beta reduction
steps for simply typed terms.

Consider the length of a term M as the number of occurrences of variables in M except
those immediately following a λ-symbol, i.e. length(λx.x) = length(λx.λy.y) = 1. Let an

and s(n) as in the previous section.

Theorem 4 Consider any sequence of reduction steps transforming an into its normal form,
and let `n denote the total number of reduction steps in this sequence.

`n ≥ s(n− 2)− n.

Proof: (By [Sch82]) The length of an is 3n. Note that any reduction step can
at most square the length of the original term. Hence we have

s(n) ≤ length of the normal form of an

≤ (length of an)2
`n

= (3n)2
`n

≤ 22n+`n (since 3n ≤ 22n
)

¤

In order to state the second result of Schwichtenberg, we first need to recall the following
definitions:

Definition 1 Define the following operations on functions from INm to IN:

1. composition: given f and g, define (f ◦ g)(x) = f(g(x)).

2. Primitive recursion: given f and g of the appropriate arity, define h such that h(x, 0) =
f(x) and h(x, y + 1) = g(x, y, h(x, y)).

3. Iteration: given f , define h such that h(x, y) = f [y](x), where f [0](x) = x and f [y+1](x) =
f(f [y](x)).

1.1. HARBINGERS 7

4. Limited recursion: given f , g and b, define h as in primitive recursion but only on
the condition that h(x, y) ≤ b(x, y). Thus h is only allowed to grow as fast as another
function already in the class.

Definition 2 (The Grzegorczyk hierarchy [Grz53]) Let E0 denote the smallest class
containing zero, the successor function, and the projections, and which is closed under com-
position and limited recursion. Let En+1 be defined similarly, except with the function En

added to the list of initial functions, where En is defined as follows:

E0(x, y) = x + y

E1(x) = x2 + 2

En+1(x) = E[x]
n (2)

The third level of Grzegorczyk hierarchy is the class of elementary functions, i.e. E = E3,
moreover the union of all the levels of the Grzegorczyk hierarchy is the class PR of primitive
recursive functions.

Consider the type level l(τ) of a type τ be defined inductively by l(o) = 0, l(σ → τ) =
max{l(σ) + 1, l(τ)} and let l(M) denotes the inner type level of M , i.e. the maximum type
level of a subterm of M . Schwichtenberg shows that if during the reduction of a simply typed
lambda term one searches for redexes of maximal type level, and among those one takes the
rightmost one and fires it, the number of standard beta reduction steps is E4 upper bounded.

Theorem 5 1. There is an E4 function f such that for all closed simply typed terms M
the above mentioned normalization procedure terminates in a number of standard beta
reduction steps ≤ f(max{length(M), l(M)}).

2. For all m there is an elementary recursive function gm such that for all closed simply
typed terms M with l(M) ≤ m the above mentioned normalization procedure terminates
in a number of standard beta reduction steps ≤ gm(length(M)).

Finally Schwichtenberg shows that combining his result with those of Gandy in [Gan80],
one can obtain a universal E4 upper bound for the number of standard beta reduction steps
with respect to any normalization procedure. This can be seen as follows: for any lambda
term M of type τ , by Gandy’s method one can define a close simply typed term M with
the property that its numerical value is a bound on the number of standard beta reduction
steps, where it does not matter in which way the reduction steps are choosen. Now to obtain
a bound for the numerical value of M , we first note that by the previous theorem we have
an E4 bound on the number of standard beta reduction steps the specific normalization
procedure given there will carry out to produce the normal form of M ; this bound is in term
of max{length(M), l(M)}. Since by Gandy’s construction of M , length(M) depends only
linearly on length(M) and l(M) = l(m), we also have an E4 upper bound on the number
of standard beta reduction steps in terms of max{length(M), l(M)}. Next note that any
standard beta reduction step at most squares the length of the original term. So we have an
E4 upper bound on the length (and hence on the numerical value) of the normal form of M ,
again in terms of max{length(M), l(M)}. This gives the desired result.

1.1.3 Optimality by Lévy

Consider the length of the reduction as the number of redexes contracted. By a classical
result of Barendregt [Bar84], there is no recursive reduction strategy contracting at each

8 CHAPTER 1. OPTIMALITY AND COMPLEXITY

step a single redex that is optimal, i.e. giving minimal length reductions for any lambda
term M . However, if we allow a sharing mechanism able to give the possibility of performing
parallel reductions and if we are willing to consider as a cost measure, the number of parallel
reduction needed to reach the normal form, an optimal recursive strategy exists as proved
by Lévy in his Ph.D. thesis [Lév78, Lév80]. In the next section we recall the concepts of
residual redexes, redex families, parallel reductions and optimality leading to the definition
of optimal reduction strategy in the sense of Lévy. We stress that at the time Lévy proposed
his notion of optimality, he just gave the proof that the strategy is recursive, but he did
not give any implementation of the optimal reduction. The problem of finding a feasible
implementation has been solved ten years later by Lamping [Lam90] and independently by
Kathail [Kat90]. We will see Lamping’s solution in Section 1.3.

Preliminary definitions [Lév80]

In the following we introduce the basic concepts of set of residuals and parallel reduction.
Consider a redex in a lambda term. During a reduction, the redex can be contracted and
disappear, but also can be modified by substitution or duplicated. The set of residuals
put in relation the initial redex with all its modified and duplicated “descendant” during a
reduction. A parallel reduction contracts at each step a set of redexes. Thus a standard,
usual, reduction is just a particular case o parallel reduction contracting singletons.

Definition 3 (Residuals) Let R be a redex in a lambda term M and let ρ : M → N be a
reduction (a sequence of redexes) from M to N .
The set of residuals of R by ρ is defined by induction on the length of ρ:

R/0 = {R} where 0 is the empty reduction
R/ρσ = {T | ∀S ∈ R/ρ(T ∈ S/σ)}.

If ρ consists of a sigle redex S then R/S is defined by cases:

R/S =

{R′} if R is not contained in S. R′ is the redex of N
which is at the same place as R in M .

∅ if R coincides with S.

{R[B/x]} if S = (λx.A B) and R is contained in A.

{R1, . . . , Rn}
if S = (λx.A B), R is contained in B, n is the
number of free occurrences of x in A and for any
i Ri corresponds to R in the i-th instance of B
in the contractum A[B/x] of S in N .

In Figure 1.1, showing the set of reductions of the lambda term M = (∆ (λx.(x y) I)), it is
possible to see the set of residuals of the redex S = (λx.(x y) I) by the reduction consisting
of firing R:

S/R = {S1, S2}.
Let F be a set of (possibly nested) redexes in M . The notion of residuals is extended to F in
the natural way.

1.1. HARBINGERS 9

M= ∆ (FI)

S 1 S 2

T 1 S 3 S 4 T 2

S 5 T 3 T 4 S 6

T 5 T 6

(Iy)∆

y∆

R 1

R 2

(FI)(FI)

(Iy)(FI)

R

(FI)(Iy)

y(FI) (Iy)(Iy) (FI)y

y(Iy) (Iy)y

yy

S

T

x.(x x)λ=∆

x.(x y)λ=F

λ x.x=I

Figure 1.1: Reductions and residuals.

10 CHAPTER 1. OPTIMALITY AND COMPLEXITY

F C

C / F F / C

H / (F C)=H / (C F)

F C

F / CC / F

H / F

H

H / C

Figure 1.2: Lemma of parallel moves.

Definition 4 A reduction ρ = R1 . . . Rn . . . is relative to F iff

∀n ≥ 1 Rn ∈ F/(R1 . . . Rn−1).

Moreover ρ is a development of F iff ρ is relative to F and F/ρ = ∅.

Theorem 6 (Finite developments theorem) Let F be a set of redexes in a lambda term
M . Then

1. there is no infinite reduction relative to F,

2. all developments end at the same expression,

3. for all redex R in M , if ρ and σ are two developments of F, then R/ρ = R/σ.

By the above theorem the order in which redexes in F are contracted is not relevant, hence
we can define a parallel reduction as a reduction M

F1−→ M1
F2−→ · · · Fn−→ Mn contracting some

set of redexes at each step.
Notice that non parallel reductions can be seen as a particular case of parallel ones where
all the sets of redexes are singleton sets.

If F and C are two sets of redexes in M , let F
⊔

C = F(C/F).

Lemma 7 (Lemma of parallel moves) Let F and C be two sets of redexes in M . Then

1. F
⊔

C and C
⊔

F end at the same expression,

2. H/(F
⊔

C) = H/(C
⊔

F) for any set H of redexes in M .

Definition 5 The equivalence of parallel reductions by permutations is the least congruence
with respect to composition satisfying the lemma of parallel moves and elimination of empty
steps.

More explicitly, this relation ≡ is the least equivalence relation satisfying:

1. F
⊔

C ≡ C
⊔

F when F and C are two sets of redexes in a same expression,

2. ∅ ≡ 0, i.e. one immediate contraction of an empty set of redexes is equivalent to an
empty parallel reduction,

3. ρστ ≡ ρσ′τ if σ ≡ σ′.

1.1. HARBINGERS 11

The embedding relation v is defined as follows:

ρ v σ iff ∃τ. ρτ ≡ σ.

Definition 6 Let ρ and σ be two reductions which start at a same lambda term. Then the
reduction residual σ/ρ of σ by ρ is a reduction starting at the end of ρ which is defined
inductively on the sum of length of ρ and σ by:

0/ρ = 0
(σF)/ρ = (σ/ρ)(F/(ρ/σ))

From this definition, some easy algebraic properties of residuals of reduction can be shown.
For example:

(στ)/ρ = (σ/ρ)(τ/(ρ/σ))
ρ/(στ) = (ρ/σ)/τ

ρ/0 = ρ

Redex families

Two redexes are in the same family if one is a residual of the other. We will see that the
family equivalence relation is computable and we can define complete parallel reductions as
those reducing at each step a whole family of redexes. Moreover the number of parallel steps
of any complete reduction is equal to the number of family classes of the redexes contracted
during the reduction.

In order to distinguish various occurrences of the same redex R during a reduction, we
refer to the reduction ρR as the redex occurrence R with history ρ.

Definition 7 (Copy relation ≤) A redex S with history σ is a copy of redex R with history
ρ, written ρR ≤ σS, iff there is a reduction τ such that ρτ ≡ σ and S ∈ R/τ .

Definition 8 (Family equivalence ') Two redexes R and S with histories ρ and σ are
in a same family, written ρR ' σS, iff ρR ≤ σS or σS ≤ ρR or there is some τT such that
ρR ' τT ' σS.

Lemma 8 R ' ρS iff S ∈ R/ρ.

Theorem 9 The family relation is computable.

Proof: See [Lév80]. ¤

Let [ρR] be the equivalence class of ρR with respect to ' and let ρ = F1F2 . . .Fn The
set of family classes of the redexes contracted in ρ is defined in the following way:

FAM(ρ) = {[F1F2 . . .Fi−1Ri] | Ri ∈ Fi, i ≥ 1}

By Lemma 8 we can extend the definitions of relative reduction and development :

Definition 9 ρ is relative to X if FAM(ρ) ⊆ X.
A reduction ρ relative to X is a development of X if there is no redex R such that [ρR] ∈ X.

The finite developments theorem can be easy generalized to the definition above.

12 CHAPTER 1. OPTIMALITY AND COMPLEXITY

Definition 10 (Complete reduction) A parallel reduction F1F2 . . . Fn . . . is complete iff
for every n ≥ 1, Fn 6= ∅ is a maximum set of redexes such that, for all R ∈ Fn and S ∈ Fn,
F1F2 . . .Fn−1R ' F1F2 . . .Fn−1S.

Thus, at each step of a complete parallel reduction, one non-empty family class is contracted.

Lemma 10 Any complete reduction ρ is a development of FAM(ρ).

Lemma 11 Let ρ be a complete reduction. Then |ρ| is equal to the number of elements in
FAM(ρ).

Optimal reductions

A redex is needed if it is contracted in every normalizing reduction. A complete parallel
reduction is optimal if it reduces at each step a whole family of a needed redex. A partic-
ular optimal strategy is the leftmost-outermost one. Notice that Lévy’s optimality concept
assumes the parallel beta reduction to be a unit cost operation. Unfortunately this is not
the case as we will see in Section 1.5.

Definition 11 • A parallel reduction ρ is terminating iff its final expression is in normal
forms.

Let ρ = F1F2 . . . Fn . . . and let R(ρ) be the set of redexes one of whose residuals is con-
tracted in ρ:

R(ρ) = {R | R/F1F2 . . . Fi−1 ∩ Fi 6= ∅, i ≥ 1}.

• A redex R in a lambda term M is needed iff, for all terminating parallel reductions ρ
starting at M , one has R ∈ R(ρ).

• A parallel reduction ρ = F1F2 . . .Fn . . . is a call-by-need parallel reduction iff there is
at least one needed redex in every Fn for n ≥ 1.

Theorem 12 Let M have a normal form, then any call-by-need parallel reduction starting
at M is eventually terminating.

Definition 12 (c-complete reductions) F with history ρ is a set of copies of a single
redex iff there is one redex S with history σ such that σS ≤ ρR for every R ∈ F.

The reduction ρ = F1F2 . . .Fn . . . is c-complete iff, for all n ≥ 1, the non-empty set Fn is
a maximum set of copies of a single redex.

We assume that the cost of a c-complete reduction satisfies the following equation:

cost(ρ) = |ρ| (1.1)

Lemma 13 A reduction is c-complete iff it is a complete reduction.

Theorem 14 Any complete and call-by-need parallel reduction reaches the normal form in
an optimal cost.

Corollary 15 The leftmost-outermost complete parallel reduction reaches the normal form
in an optimal cost.

1.2. LOOKING FOR EFFICIENT IMPLEMENTATIONS OF FUNCTIONAL LANGUAGES 13

1.2 Looking for efficient implementations of functional lan-
guages

In the study of the complexity of functional languages, we focus our attention on the lambda
calculus, adopting the following thesis:

The Implementation Thesis

Any functional programming language may be efficiently compiled into the pure
λ-calculus in such a way as to retain the possibility of equally efficient implemen-
tation.

Starting from the implementation thesis above, Frandsen and Sturtivant [FS91], proposed
to consider the problem of finding an efficient implementation of pure λ-calculus in order to
understand how to analyze the complexity of functional programs (see the quotation at the
beginning of the chapter).

Let M be a lambda term. µπ(M) is the minimum number of parallel beta reduction
steps required to reduce M to its normal form (if M has no normal form µπ(M) is ∞).
We define also µβ(M) as the minimum number of standard beta reduction steps required to
reduce M (as for µπ, if M is not reducible then µβ(M) = ∞), and lnormal(M) as the number
of standard beta reduction steps required to reduce M via a normal order reduction (the
leftmost outermost one).

Consider the problem of finding a minimal length reduction sequence to normal form
for a given lambda term M . Frandsen and Sturtivant noticed that this problem has an
algorithmic solution: simply explore all reduction sequences that use up to the number of
reductions which the leftmost strategy takes to reach normal form, and choose a minimal one.
Clearly they did not claim that this procedure is efficient, however, its runtime is bounded
by some recursive function of lnormal(M). Notice that this is true also if M has no normal
form since in that case lnormal is simply ∞.

Such a consideration suggests that a change of the definition of “input size” to include
some measure of the length of reduction chains, may make it possible to bound the runtime
of an implementation of lambda expression normal form computation by some recursive
function of the new input size. Frandsen and Sturtivant proposed to consider µπ as a
component of the input size parameter. Other candidates could be µβ and lnormal, but
lnormal is not even remotely optimal for some lambda terms as the following proposition
shows:

Proposition 16 There is an infinite family {Ak} of lambda terms such that lnormal(Ak) =
2Ω(µβ(Ak)).

Proof: Let

A0 = λx.x

Ak = (λx.(x x) Ak−1)

Let S(k) and T (k) denote the number of standard beta reduction steps needed
to transform Ak to normal form using normal and applicative order respectively.

14 CHAPTER 1. OPTIMALITY AND COMPLEXITY

It is easy to obtain the following equations:

S(0) = 0
S(k) = 2S(k − 1) + 2
T (0) = 0
T (k) = T (k − 1) + 2

that have solutions

S(k) = 2k+1 − 2
T (k) = 2k

from which the proposition follows. ¤

Thus measuring the complexity of an implementation using lnormal can give unrealistically
optimistic assessments in the sense that the predicted cost is much less than the actual cost.

µπ is better than µβ for a number of reasons. First, it is known that µπ is always less
then µβ. Second, we have seen in Section 1.1.3 that an optimal strategy is known for parallel
reductions. Furthermore µπ and µβ may be significantly different. Frandsen and Sturtivant
conjectured that the ratio of standard to parallel beta reductions could be exponential1.
Such a conjecture has been proven by Mairson and Lawall in [LM96].

Theorem 17 There exists a family of lambda terms that normalizes in 2Ω(2n) standard beta
reductions, but only Θ(n) parallel beta reductions.

Proof: Consider the term Mn = (λx. (2 (· · · (2︸ ︷︷ ︸
ntimes

x) · · ·)) λx.λy.(x(x y))). ¤

Definition 13 (The complexity of an implementation of the λ-calculus)

• A procedure I is an implementation of the lambda calculus if I on input a lambda term
M outputs N , the normal form of M (if M has no normal form then I needs not halt).

• The input-size parameter ν : Λ → IN ∪ {∞} is given by

ν(M) = |M |+ µπ(M) + |N |
for all M ∈ Λ where N is the normal form of M , and the norm denotes term size. (If
M has no normal form then ν(M) = ∞).

• An implementation I of the lambda calculus has (worst-case) complexity T (ν) if T :
IN → IN satisfies

T (ν) = max{run time of I on input M | M ∈ Sν}
when Sν 6= ∅ and where Sν = {M ∈ Λ | ν(M) = ν}.

• An implementation J of the lambda calculus of worst case complexity TJ (ν), is an
optimal implementation if for any implementation I of the lambda calculus of worst
case complexity TI(ν), we have TJ (ν) = O(TI(ν)).

1This bound is very weak. We will see a much stronger one in Section 1.5.

1.3. LAMPING’S ALGORITHM 15

The complexity of an implementation is well defined, since the sets Sν are always finite, and
there is a number ν0 such that for ν > ν0, Sν is always non empty.

The size of M must appear in ν because if the input is already in normal form, then this
must be verified by any implementation. In general, this must take time proportional to the
size of M . The length of the normal form N should be present since there are many family
of lambda terms with the property that the size of the normal form is exponential in the
number of reduction steps to normal form. Thus the absence of the size of N would imply
an exponential lower bound on all implementations.

Strangely Frandsen and Sturtivant did not take into account the size of intermediate
terms during the reduction (such a criticism was also made by Lawall and Mairson in [LM96]).
Consider for example the family of terms Mn of the proof of Theorem 17. In the calculation
of ν(Mn), the main factor is the size of the normal form of Mn that is exponential in the
number of standard beta reductions. Consider now the lambda term Ln = (Mn λx.x). The
normal form of Ln is λx.x, hence in the calculation of ν(Ln) the main factor is the number
of standard beta reduction. This may look strange according to the fact that we use Mn as a
sub-program of Ln and we could expect that the input size of Ln is at least that of Mn. Thus
from the Frandsen and Sturtivant definition of input size it seems they implicitly impose that
an efficient implementation of the lambda calculus must have a succinct representation of
intermediate terms during the reduction.

Proposition 18 Any implementation of the lambda calculus has complexity Ω(ν).

Proof: Frandsen and Sturtivant [FS91] give an encoding of arbitrary (imper-
ative) computation as a lambda expression with the property that µπ = µβ =
lnormal, and each step of the computation is simulated by a constant number of
reductions which in turn can be implemented in such a way as to take only a
bounded amount of work. Thus the existence of an implementation with com-
plexity o(ν) would immediately give rise to a method of speeding up an arbitrary
computation. ¤

Proposition 19 Implementations of the lambda calculus based on Turner combinators [Tur79]
or Hughes super combinators [Hug82] are exponentially inefficient.

The complexity measure proposed by Frandsen and Sturtivant is the first attempt to
consider the number of optimal beta reduction instead of the standard ones. Unfortunately,
it will turn out (Section 1.5) that even this measure is not adequate.

1.3 Lamping’s Algorithm

At the time Lévy introduced the concepts of redex families and optimal reduction, no imple-
mentation was known. The first solution came ten years by Lamping [Lam90] and indepen-
dently by Kathail [Kat90]. In this section we will see Lamping’s algorithm. We claim that it
is the starting point from which building efficient implementations of the lambda calculus.

The graph rewriting algorithm proposed by Lamping in [Lam90] is generally thought
of as composed of two parts. The first part is responsible for the implementation of the
(optimal) beta reduction and of the (partial) duplication. It is called the abstract algorithm.
The second part, known as the oracle, consists of a complex machinery needed in order to
maintain enough information distributed in the graph for the correct management of the
shared parts.

16 CHAPTER 1. OPTIMALITY AND COMPLEXITY

λ

*
@

Figure 1.3: Nodes for sharing graphs.

The best way to get in confidence with Lamping’s algorithm is to start with the simplified
abstract version (Section 1.3.1) in order to understand the main ideas this graph rewriting
technique is based on, and then to observe the cases in which the abstract algorithm fails to
discriminate between different shared subgraphs. At this point we will be in the position to
appreciate the full solution proposed by Lamping (Section 1.3.2).

1.3.1 Sharing Graphs

Given a lambda term M , the corresponding sharing graph G is essentially the syntax tree of
M with two differences:

1. a specific node, the fan, manages the sharing;

2. variables are explicitly binded to their lambda abstraction node.

Nodes of sharing graphs are shown in Figure 1.3. The rightmost node is the fan. Every
node has three ports. The one with an arrow is the principal port and it is the port through
which the node interact. The other are the auxiliary ports. The right auxiliary port of the
lambda node is the body port, i.e. it will be connected to the body of the function, whilst
the left one is the variable port, and it will be connected to the variable abstracted by the
lambda. The right port of the application node @ is the argument port and the upper port
is the result port. Finally the two auxiliary port of the fan are distinguished just by a tag, a
circle and a star in the figure.

We will introduce the algorithm, following [AG98], step by step using (∆ λh.(∆ (h I))),
where ∆ = λx.(x x) and I = λx.x, as an example. Figure 1.4 shows the sharing graph of
the term. Notice that there is no need of specifying the name of the variable binded by the
λ nodes thank to the explicit bind of variables (this is analogous to the mechanism of de
Brujin’s indices [Bru72]).

The shortest standard beta reduction for (∆ λh.(∆ (h I))) first fires the two outermost
redexes and then continues with the innermost strategy:

(∆ (λh.(∆ (h I))) → (λh.(∆ (h I)) λh.(∆ (h I)))
→ (∆ (λh.(∆ (h I)) I))
→ (∆ (∆ (I I)))
→ (∆ (∆ I))
→ (∆ (I I))
→ (∆ I)
→ (I I)
→ I.

It takes 8 beta steps to reach the normal form, but the length of the parallel reduction
by families for (∆ λh.(∆ (h I))) is only 7. In fact the standard beta reduction, also in the

1.3. LAMPING’S ALGORITHM 17

*

λ

@

*

λ

@

@

λ

@

@

λ

Figure 1.4: Sharing graph of (∆ λh.(∆ (h I)))

@

λ

a

b

c

d

a

b

c

d

Figure 1.5: Optimal beta rule.

best case, can not avoid to duplicate one redex ((∆ (h I)) in the first step). We will see how
Lamping’s algorithm reaches the normal form in just 7 optimal beta steps.

The algorithm consists of a set of local graph rewriting rules. Figure 1.5 shows the
optimal beta rule. The body port of the lambda node is connected with the result port of
the @ node and becomes the new root of the subgraph involved in the redex firing. On the
other part, the substitution does not occur explicitly, but the variable port of the lambda
is connected to the argument port of the @. Notice that the argument of the function may
remain shared at this stage of the reduction (the variable binded by the lambda node could
be shared by means of a fan node, as in Figure 1.6).

There are two beta redexes in the initial graph of (∆ λh.(∆ (h I))). The first two steps
of graph reduction are shown in Figure 1.7, where graph are re-displayed after each step just
for aesthetic reasons.

18 CHAPTER 1. OPTIMALITY AND COMPLEXITY

*

@

λ

M
N

*

M
N

Figure 1.6: Example of optimal beta reduction.

*

λ

@

λ

@

@

λ

*

@

*

λ

@

λ

@

@

λ

*

@

*

@

*

@

λ

λ

@

@

λ

(1) (2) (3)

Figure 1.7: First beta steps of (∆ λh.(∆ (h I))).

1.3. LAMPING’S ALGORITHM 19

*

M

λ

M

*

*

λ λ

Figure 1.8: Partial duplication of a function.

*

λ **

λ λ

a b

c
d

a b

c d

Figure 1.9: Fan-lambda interaction.

As soon as the reduction starts, the sharing graph is no more in trivial correspondence
with the syntax tree of the lambda term as in the case of the initial translation. In other
words, the graph in Figure 1.7(2) represents the lambda term (λh.(∆ (h I)) λh.(∆ (h I))),
but is pretty different from the graph that one can expect applying the intial translation to
that lambda term. The same happens for the graph in Figure 1.7(3) representing the lambda
term (λh.((h I)(h I)) λh.((h I)(h I))) where the subterm λh. . . . is shared two times and
(h I) four times. Moreover notice that the second beta step in Figure 1.7 corresponds to two
standard beta reduction—the two copies of (∆ (h I)) are fired simultaneously, being shared
by the upper fan.

There is a redex left in (λh.((h I)(h I)) λh.((h I)(h I))), but at this stage of the graph
reduction it is not possible to perform a beta rule. Actually the two copies of λh. . . . are
shared and one first needs to duplicate some parts of the graph. Lamping’s technique, differ-
ently from previous implementations of shared reduction as Wadsworth’s Graphs [Wad71],
does not proceed to duplicate the entire subterm, but performs a partial duplication. Only
the lambda node is duplicated in order to allow the beta reduction step, while the rest of
the subgraph—the body of the function—remains shared—Figure 1.8—between two fans,
the upper, called fan-in, denoting the start of the shared part, the lower, called fan-out,
denoting the end of the sharing. The local rewriting rule of duplication of the lambda node
is shown in Figure 1.9.

20 CHAPTER 1. OPTIMALITY AND COMPLEXITY

*

@

*

@

λ

λ

@

(3)

λ

*

@

@

@

λλ

(4)

λ

*

@

@

λ

(5)

Figure 1.10: Reduction of (∆ λh.(∆(h I))).

Let us go on with our example. After the application of the fan-λ rule—Figure 1.10(4)—a
new β-redex is ready to be contracted and after this rule has been performed we get the
graph of Figure 1.10(5) representing the lambda term

((λh.((h I) (h I)) I) (λh.((h I) (h I)) I)).

There are no more β-redexes or fan-λ-redexes left in the graph and we need to duplicate
some application node. Notice that if we duplicate the outermost application—the upper
one in the figure—we could loose sharing. Actually the redex (λh.((h I) (h I)) I) would be
duplicated. Thus, in general, the rule of Figure 1.11, although semantically correct, it is not
permitted.

However we can duplicate the lower application node by means of the fan-out. The rule is
shown in Figure 1.12. Notice that this rule preserves optimality. In fact the lower application

*

**@

@@

Figure 1.11: Non optimal duplication.

1.3. LAMPING’S ALGORITHM 21

@
a

b

c

d

@ @

a
b

c

d

Figure 1.12: Fan-@ rule.

node corresponds to six applications in the associated lambda term: two applications for the
subterms (λh.((h I) (h I)) I) and four for subterms (h I). In this case the graph shares the
argument of the application—and the “meta” operation of application itself represented by
the shared application node—but not the entire redex. Actually it is not possible to treat in
the same way the six redexes above because we do not know anything about the variable h,
then we can safely duplicate the application node. In general it is always correct to apply
the rule of Figure 1.12, because such configuration of the graph implies the existence of two
classes of non shareable redexes.

The reduction of our example proceeds according to Figure 1.13. After the fan-@ rule it
is possible to perform a new fan-λ rule obtaining the graph in Figure 1.13(7) where there are
two pairs of matching fans labeled with “a” and “b”. This is a crucial point of the optimal
reduction technique. As we will see, these two cases must be managed in two different way.

The pair of fans labeled with the “a” comes from the fan that shared the identity. Both
copies refer to the same shared portion of the graph—the body of the identity—and then we
can continue the duplication process annihilating the fans and connecting the corresponding
links: ◦ with ◦ and ∗ with ∗, as in Figure 1.14(1).

On the other hand, in case the pair of fans labeled with “b”, the fan-out refers to the
shared part of the graph that starts from the upper fan-in—it was created during the duplica-
tion of the uppermost λ node. Then the fans must duplicate each other as in Figure 1.14(2).

Applying the fan-fan interaction rules of Figure 1.14, the computation proceeds as de-
scribed in Figure 1.15.

The rules seen so far are enough to complete the reduction. In particular, we can start fir-
ing two β-redexes, we can then duplicate the only application left in the graph and annihilate
a couple of paired fans.

The final graph in Figure 1.16 has been redrawn for the sake of clarity in Figure 1.17.
Now, the identity is duplicated, its application is reduced. The resulting identity is duplicated
again and by a final β-redex we obtain the expected normal form.

The normalization of this term required only seven applications of the β-rule, against
eight β-reductions needed by the best strategy of standard reduction.

1.3.2 The Full Algorithm

The set of local graph rewriting rules we have seen so far is the so called abstract Lamping’s
algorithm. We have pointed out in the previous section that the crucial operation in the
Lamping’s graphs rewriting technique is the correct matching of fans. In other words, we

22 CHAPTER 1. OPTIMALITY AND COMPLEXITY

λ

*

@

@

λ

(5)

*

λ

@

λ

@ @

(6)

*

@

λ

@ @

λ λ

a

b

(7)

Figure 1.13: Reduction of (∆ λh.(∆(h I))).

a

dc

b a b

c d

a

dc

b
a b

c d

(1) (2)

Figure 1.14: Fan-fan iterations.

1.3. LAMPING’S ALGORITHM 23

* *

@

λ

@ @

λ λ

*

@

λ

@ @

λ λ

@

λ

@ @

λ λ

(7) (8) (9)

Figure 1.15: Reduction of (∆ λh.(∆(h I))).

*

λ

@

@

λ

*

λ

@

*

λ

@ @

λ

@ @

(10) (11) (12) (13-14)

Figure 1.16: Reduction of (∆ λh.(∆(h I))).

24 CHAPTER 1. OPTIMALITY AND COMPLEXITY

λ

@

@

λ

λλ

@

λλ

@
λ@@

(14) (15-16) (17) (18-19) (20)

Figure 1.17: Reduction of (∆ λh.(∆(h I))).

can separate the set of rules in two classes: the first class consists of the abstract algorithm
and it is responsible for the operations of parallel beta reduction and partial duplication of
lambda terms. This part of the algorithm introduce the novelty, with respect to the existent
graph rewriting techniques, of fan-out nodes and hence the possibility of partially duplicate
subterms. The second class—known as the oracle—consists of the set of rules that manage
the information needed to solve the problem of pairing fans. This is the hard part of the
algorithm.

Actually, the trivial solution of labeling fans is not sufficient and the graph reduction of
∆∆ = (λx.(x x) λx.(x x)) is a good counterexample.

Figure 1.18 shows some steps of the (infinite) graph reduction of ∆∆. Initially the two
fans have different labels. After the first beta step and a successive λ-fan interaction, the
lower fan-in labeled with “B” and the fan-out labeled with “A” correctly duplicate each
other—the graph transformation is depicted in the passage from (3) to (4) in the figure. The
duplication is correct because the two fans refer to distinct shared part of the graph and in
particular the “B”-labeled one was shared by the pair of the “A”-labeled.

After the duplication of the application node by means of the lower-left fan-out labeled
with “A”, we have two pairs of facing fans in Figure 1.18(5). Both have the same label, then
they annihilate yielding the graph of Figure 1.18(6).

The shape of the graph is identical to the starting one, as we expected, but now both fans
are labeled with a “B”. Going on with the reduction—we can start again from the picture
of Figure 1.18(1)—after one beta step and one fan-λ interaction, we get a pair of facing
fans as in Figure 1.18(3), but with the same label (“B” in this case). Then the two fan will
(erroneously) annihilate leading to a wrong graph that has no read-back in Λ.

Hence the simple mechanism of labeling fans is not adequate to maintain sufficient infor-
mation for the correct matching of fans and we need to resort to a more complicated struc-
ture. Lamping’s solution is to use a level structure and a pair of new nodes—the bracket
and croissant (Figures 1.20 and 1.19)—that manage such structure, respectively increasing
and decreasing levels.

1.3. LAMPING’S ALGORITHM 25

@

λ

@

λ

@

A B @

λ

B

A

@

A

λ

A

B

@

@

λ

λ

*

@

@

λ

A

AA

BB

λ

*

@ @

@

λ

A
A

A

A

B B

@

λ

@

λ

@

BB

(4) (5) (6)

(1) (2) (3)

Figure 1.18: Labeling fans fails.

i

Figure 1.19: The croissant node.

26 CHAPTER 1. OPTIMALITY AND COMPLEXITY

i

Figure 1.20: The bracket node.

λ

*
@ i

i

i
i i

abstraction application fan croissant bracket

Figure 1.21: Sharing graph nodes.

In the following we present the oracle solution adopted by Asperti in [Asp94] that is quite
different from Lamping’s original one, but simpler to understand.

Summarizing, sharing graphs are undirected graphs built from the indexed nodes shown
in Figure 1.21. Each node has a principal port—the arrow in Figure 1.21—through which it
interacts with the other nodes. Figure 1.22 and 1.23 show the whole set of graph rewriting
rules. In the set of rules in Figure 1.22 the facing nodes have the same level i. The first
rule is the beta-rule. The other three are the annihilation of, respectively, croissants, fans
and brackets. In Figure 1.23 f stands for any node and i < j. The node at lower level acts
on the one at higher level and then, looking at the figure from left to right, a fan at level i
duplicates any node at level greater then i, a croissant decreases and a bracket increases the
level of any node at higher level it faces.

In the following we will consider (and count as)

• fan-interactions: all the interactions between fan nodes and application node, lambda
node or fan nodes, i.e. the rule in the bottommost-leftmost picture of Figure 1.22 and
the rule in the leftmost picture of Figure 1.23 where f is not a bracket or a croissant;

• oracle-interactions: all the interactions between brackets, croissants and other nodes,
i.e. the central and rightmost rule depicted in Figure 1.23.

1.3.3 Initial Encoding

Given a lambda term M , the corresponding initial sharing graph at level 0 is inductively
obtained as follows:

• if M is a variable, then the graph at level n consists of a single croissant of level n.
The root of the graph is the auxiliary port of the croissant.

• If M is a lambda abstraction λx.M ′, the graph at level n is obtained from the initial
graph of M ′ at level n whose root is connected to the body port of a new lambda
node of level n. The root of the graph is the principal port of the lambda node. If x
occurs free in M ′ then the corresponding wire is connected to the variable port of the
lambda node, otherwise a new node—the garbage node—is created and its principal,

1.3. LAMPING’S ALGORITHM 27

@

d

cλ
a

b

d

c

a
b

a

dc

b a b

c d

i

i

a

b

a

b

i

i

a

b

a

b

i

i

i

i

Figure 1.22: Interaction rules.

*

f

a b

c d

**

f f

a b

c d

j

i

i i

jj i

f j

a

cb

ii

a

b c

f j+1i

f j

a

cb

i i

a

b c

f j-1

Figure 1.23: Duplication and level management.

28 CHAPTER 1. OPTIMALITY AND COMPLEXITY

@
@@

λ
λ

Figure 1.24: The “garbage collector”.

and unique, port is connected to the variable port of the lambda node. The garbage
node acts as an eraser; the set of the interaction rules is shown in Figure 1.24.

• If M is an application (P Q), the graph at level n is obtained from the graph of P at
level i and the graph of Q at level n+1 where the root of the graph of P is connected to
the principal port of a new application node, the root of the graph of Q is connected to
the argument port of the application node and the root of the graph is the result port
of the application node. All output wire of the graph of Q are connected to brackets
of level n and finally all wire of the graph of P and Q that correspond to common
variables are connected to fan of level n.

The initial translation function [M]n is summarized in Figure 1.25.

1.3.4 Read-back

The initial translation of a lambda term has an obvious correspondence with the syntax
tree of the term, but as far as the reduction starts, as we have seen, the correspondence is
lost. In order to recover the lambda term from the sharing graph we need to visit the graph
recording the auxiliary port through which we enter in a fan-in to be able to choose the
correct auxiliary port of the corresponding fan-out.

The level structure of the sharing graphs lead us to the use of a leveled data structure to
record the auxiliary ports passed through. A context C is a list 〈〈· · · 〈C ′, an−1〉, · · · , a1〉, a0〉
whose elements could be lists again. With Cn[·] we indicate the context whose first n elements
are the ones of C and the tail is not specified, i.e.:

Cn[·] = 〈〈· · · 〈·, an−1〉, · · · , a1〉, a0〉.
Putting a context C ′′ in [·] we obtain:

Cn[C ′′] = 〈〈· · · 〈C ′′, an−1〉, · · · , a1〉, a0〉.

1.3. LAMPING’S ALGORITHM 29

n[x]n=

[M]n n+1[N]
[MN]n =

n

n

. . .

n

. . .

@ n

[λ x.M]n =
[M]n

nλ

. . .

[M]n

nλ

. . .

or

Figure 1.25: Initial translation.

When, during the read-back we pass through a fan-in of level n, we have to modify the
context Cn[〈b, a〉] into Cn[〈b, ◦a〉] if entering from the ◦ auxiliary port, Cn[〈b, ∗a〉] otherwise.
Conversely, passing through a fan out, we will exit from the ◦ port if the context is Cn[〈b, ◦a〉],
from the ∗ port if the context is Cn[〈b, ∗a〉]. Figure below summarizes all cases exposed so
far.

n n

Cn[<b,a>] Cn[<b,a>]

CnCn
[<b,* a>][<b,o a>]

Passing through a croissant of level n from the auxiliary port to the principal port the
context at level n is shifted at level n + 1 and an empty context ¤ is added at level n. The
process is reversible and then passing from the principal to the auxiliary port the (empty)
context at level n is discarded and all context above decreased.

Cn
[a]

Cn
[<a, >]

n

Regarding context transformations operated by bracket, traversing such node from aux-
iliary to principal port, we have to “save” the context at level n + 1, i.e. the context

30 CHAPTER 1. OPTIMALITY AND COMPLEXITY

Cn[〈〈b, a〉, c〉] becomes Cn[〈b, 〈a, c〉〉]. Traversing in the opposite direction, we have to oper-
ate the inverse transformation.

Cn
[<<b,a>,c>]

Cn
[<b,<a,c>>]

n

Finally the lambda and application nodes does not transform contexts. Let us see
an example: in Figure 1.26 is drawn a sharing graph obtained during the reduction of
((λx.λy.(x(x y)) lamx.(x x))λx.x).

Starting the read-back from the root of the graph we encounter first a croissant of level 0
and we add an empty context. Then we enter from the ◦ auxiliary port of a fan node of level
0 and we record this port in the context 〈·, ◦〉. After the fan we encounter an application
node, then we understand that the lambda term corresponding to the graph we are reading-
back is an application (M1 M2). We start to read-back M1 continuing the visit of the graph
along the principal port of the application node. We traverse a croissant of level 1 adding
an empty context, then we traverse a fan-in of level 1 from its ◦ auxiliary port obtaining the
context 〈〈·, ◦〉, ◦〉. At this point we enter from the principal port of a fan-out of level 0 and
we have to choose from which auxiliary port to exit. The context at level 0 is ◦ then we exit
from that auxiliary port with the remaining context 〈〈·, ◦〉,¤〉. Then we meet a croissant of
level 0 from its principal port, then we discard the empty context of level 0 and shift the
higher contexts. After we traverse the upper fan-in in the figure from the ∗ auxiliary port
obtaining the context 〈·, ∗◦〉 and coming to an application node. Hence the M1 sub-term is
again an application (M11 M12) and we can go on with the read-back of the functional part
M11 and continue the visit passing through the principal port of the application node. We
traverse the croissant of level 1 adding an empty context and the fan-in of level 1 from the ◦
port, then we have to decide again from which auxiliary port of the fan-out of level 0 to exit.
Now the context at level 0 is ∗◦ and then we exit from the ∗ port with context 〈〈·, ◦〉, ◦〉. At
this stage we meet a lambda node, thus the sub-term M11 has the form λx.M ′

11
. We continue

with the read-back of the body of the function and we encounter a bracket of level 0 form its
auxiliary port. Then we traverse it saving the context at level 1, obtaining 〈·, 〈◦, ◦〉〉. After
we add an empty context for the traversed croissant of level 1 and we restore context of level
1 traversing a bracket of level 0 from its principal port. Finally we get to a lambda node
from it variable port, then the sub-term M ′

11
is a variable x.

The lambda term we have read-back so far is ((λx.x M12)M2) where M12 and M2 are
still unknown. In order continue the read-back we have to restart the process from the
application node with the context 〈·, ∗◦〉 and exit from the argument port for reading-back
M12 . In the same way, in order to read-back M2 we have to exit from the argument port of
the application node with the context 〈·, ◦〉 and continue the visit. The final read-back of
the graph in Figure 1.26 is ((λx.x λx.x)(λx.x λx.x)).

1.4 The complexity of Lamping’s algorithm

We have seen that Lamping’s algorithm correctly implements the optimal beta reduction
in the sense of Lévy. However, we do not know if the implementation proposed is efficient.
In [LM96] we find a first attempt to study the efficiency of optimal reducers.

1.4. THE COMPLEXITY OF LAMPING’S ALGORITHM 31

0

1

0

<<.,o> >

<., >

<<<., >,o>,o>

<<., >,o>

<<., >,<o,o>>

<<., >,*o>

<.,o>

<.,*o>

<<.,o>,o>

<<.,o>,o>

<.<o,o>>

<.,o>

<.,o>

<<.,o>,o>

<.,o>

<.,*o>

<<.,o>,*o>

0

1@

1

0 2λ

0

0

1

Figure 1.26: Read-back of ((λx.x

Consider the term

Cn = λx.

n times︷ ︸︸ ︷
(2 (2 (· · · (2 x) · · ·))

Since (2 1) reduces to 1 in four standard β-steps, the term E = (Cn 1) normalizes in Θ(n)
standard β-steps. Looking at the sharing graph corresponding to E it is possible to prove
that it normalizes in Θ(n) parallel β-steps and fan-interactions, but Ω(2n) oracle interactions.

Theorem 20 Lamping’s algorithm take Ω(2n) oracle interactions to effect n parallel β-steps.

Moreover, if we slightly change the term E in (Cn λx.λy.(y x)) and we start the graph
reduction, we obtain an intermediate sharing graph whose read-back is a lambda term in
normal form, but the graph requires and exponential number of (useful) fan interactions to
normalize.

Lawall and Mairson proved that Lamping’s algorithm is inefficient in the cost model
proposed by Frandsen and Sturtivant.

Theorem 21 If ν(M) is the Frandsen-Sturtivant cost metric for evaluating a lambda term
M , then the number of fan interactions required by Lamping’s optimal evaluator grows as
Ω(2ν(M)).

Proof: Consider the term M = ((Cn λx.λy.(x (x y))) λw.w). M has length
Θ(N), reduces to λw.w of length Θ(1) and can be reduced in 5n + 1 parallel
beta steps, then its cost ν(M) is Θ(n). However, looking at the graph reduction,
the fan connecting the two occurrences of x in λx.λy.(x (x y)) is duplicated
exponentially. ¤

32 CHAPTER 1. OPTIMALITY AND COMPLEXITY

An analogous result was obtained by Asperti in [Asp96] with the following constructions:

two′ = λx.λy.(λz.(z (z y)) λw.(x w))
δ = λx.(x x)
g = λn.((((n δ) two′) λx.x) q)
h = λn.((((n two′) two′) λw.w) q)

For any Church integer n the number of fan interactions in the reduction of (g n) and (h n)
is exponential in the number of family reductions.

Asperti [Asp96] proposed as new complexity measure the number of optimal beta reduc-
tion steps plus the number of annihilation rules between fans. The measure proposed seems
to be polynomially related to the effective cost of the calculation, but, as observed by Lawall
and Mairson, it seems undesirable to base the inherent difficulty of reducing a term on an
implementation.

On the other hand Lawall and Mairson proposed two cost models based on labelled
lambda-calculus. Such a variant of the lambda-calculus is obtained annotating each subterm
of the initial lambda-term with a unique label. As reduction occurs, labels are concatenated
according to certain rules, so that the labels encode the history of the computation. When
(λx.M N) is reduced, the label on each free x in M is (reverse) concatenated with a unique
new label, associated one to one with the label of the function, and the label of the argument;
the label of N is concatenated with the new label and the label of the redex:

((λx.M)` N) → M `[N `/x]

For example

((λx.(x1 x2)3)4 (λy.((λz.(y5 z6)7)8 (λw.w9)10)11)12)13→
((λy.((λz.(y5 z6)7)8 (λw.w9)10)11)12 4 1 (λy.((λz.(y5 z6)7)8 (λw.w9)10)11)12 41)3 4 13→
((λz.((λy.((λz.(y5 z6)7)8 (λw.w9)10)11)12 4 2 12 4 1 5 z6)7)8 (λw.w9)10)11 12 4 1 34 13

Lévy’s original idea of optimality is that all redexes in the entire computation having identical
labels on the functional part are reduced in one parallel beta step (notice that in the example
the two copies of (λz. . . .) have the same label and hence should be reduced at the same
time although they are nested, as discussed above).

The first cost model proposed by Lawall and Mairson in [LM96] relates the cost of
reducing a term to the number of unique labels generated in the reduction. The second,
more liberal, considers the sum of the length of the labels generated. They conjectured that
the total number of interactions, including the oracle, is polynomial in the sum of the lengths
of the labels. In [LM97] they proved that Lamping’s abstract algorithm satisfies the first
cost model proposed.

Theorem 22 The total number of fan interactions needed to reach the normal form is
O(n10), where n is the sum of the number of labels generated during reduction, and the
number of lambda and application nodes in the final graph.

Results in [Asp96, LM96], even though they are related to a particular implementation
of the optimal reduction—the Lamping’s one—, gave a first indication that the number of
optimal beta reduction steps is not an adequate measure of the complexity of the reduction.
In the next section we will see that this is indeed the case. The measure proposed by
Frandsen and Sturtivant should be discarded and the one indicated in [LM97] seems to be
more promising. Unfortunately the conjecture of Mairson and Lawall is still unproved and
the weight of the bookkeeping interactions in the reduction is an open question.

1.5. INHERENT COMPLEXITY OF IMPLEMENTING OPTIMAL REDUCTION 33

1.5 Inherent complexity of implementing optimal reduction

Is the number of redex families of a lambda term M (equivalent to the number of optimal
beta reduction steps needed to reach the normal form of M) a good measure of the complexity
of the reduction of M? In 1998 Asperti and Mairson [AM98] gave the definitive negative
answer to this question.

1.5.1 The general case

Define the Kalmár elementary functions K`(n) as K0(n) = n and K`+1(n) = 2K`(n). We
have already seen in Section 1.1.1 that the problem of determining the truth value of formulas
in higher-order type theory is Ω(K`(n)). Moreover Statman [Sta79] proved that it is possible
to encode such non elementary problem in the simply typed lambda calculus.

The eta-expansion technique in [AM98] allows to reduce any simple typed term M in a
polynomial number of optimal beta steps.

Definition 14 Let σ be a simple type generated by the grammar

σ ::= o | σ → σ.

Let x be a variable of type σ. the η-expansion ησ(x) of x is the typed lambda term inductively
defined on σ as follows:

ηo(x) = x

ηα1→···→αn→o(x)=λy1 : α1. . . . λyn : αn.(x ηα1(y1) . . . ηαn(yn))

If we label sharing graphs, we can notice a nice property: when a fan interacts with a lambda
or an application node the residual fans have type labels on their wires strictly simpler than
before the interaction occurred. All other interactions of fans do not affect the type labels.
This means that when a fan has the base type labeling its wires it will never interact with—
i.e. it will never duplicate—a lambda or an application node.

Definition 15 Let M be a simply typed lambda term. The optimal root or(M) of M is
derived by replacing every subterm of the form λx : σ.E with λx′ : σ.(λx.E ησ(x′)), where
σ 6= o and x occurs more than once in E. We refer to the new beta redexes introduced by
this transformation as preliminary redexes.

If we connect a fan to the root of an eta expansion ησ(x), after a linear number in the size of
ησ(x) of fan-lambda and fan-application interactions, all residual fans in the sharing graph
have base type labels on their wires.

Definition 16 We define ∆(M) to be the sharing graph obtained from the graph of or(M)
by reducing all of the preliminary redexes, and propagating all fan nodes to the base type.

Notice that the number of optimal beta reductions needed to transform or(M) in ∆(M)—
the number of preliminary redexes—is bounded by the number of lambda in M . Define the
size ‖σ‖ of the simple type σ as the size of its tree representation and the size |M | of the
simply typed lambda term M as the number of its lambda and application plus the size of
the type of its variables.

Theorem 23 Let M be a simply typed lambda term. Then all sharing nodes in ∆(M) have
atomic types and the number of nodes of ∆(M) is ≤ |M |.

34 CHAPTER 1. OPTIMALITY AND COMPLEXITY

Hence in the normalization of ∆(M) there will never be a lambda or an application dupli-
cation.

Theorem 24 The total number of optimal beta reductions in the normalization of ∆(M)
cannot exceed its initial size.

The eta expansion technique allows to reduce every simply typed lambda term M in
a polynomial number of optimal beta reductions with respect to the size |M |. Asperti
and Mairson [AM98] gave an encoding of higher-order formulas over the finite base type
D1 = {true, false} in the simply typed lambda calculus such that any formula F is true if
and only if its encoding F reduces to λx.λy.x. Moreover if F quantifies over universes Di

for i ≤ k, the size of its encoding is |F | = O(|F |(2k)!).
Finally they state the following theorem:

Theorem 25 Let TM be a fixed Turing Machine that accepts of rejects an input x in K`(|x|)
steps. Then there exists a formula Fx in higher-order logic such that TM accepts x if and
only if Fx is true. Moreover Fx only quantifies over universes Di for i ≤ (log∗ |x|) + ` + 6
and has length O(|x| log∗ |x|).2

Hence for any elementary Turing Machine TM we can build a simply typed lambda term
of size O(|x| logc |x|) for any integer c > 0 such that TM accepts its input if and only if its
encoding in the simply typed lambda calculus reduces to λx.λy.x. Combining this result
with the eta expansion technique we have the main theorem of [AM98]:

Theorem 26 There exists a set of λ-terms Mn where |M | = O(|n| logc |n|) for any integer
c > 0, such that Mn normalizes in O(|Mn|) parallel beta steps, and the time needed to
implement the parallel beta steps, on any first-class machine model, grows as Ω(K`(n)) for
any fixed integer ` ≥ 0.

1.5.2 The polynomial case

The result of Asperti and Mairson can not be considered negatively with respect to optimal
evaluators and in particular Lamping’s algorithm. The non elementary bound is due to the
specific complexity of the problem taken into account. The sharing mechanism is simply so
powerful to dramatically reduce the number of redex families, but it can not do the “miracle”
of reducing the complexity of the problem of deciding truth of higher-order formulas.

As far as we know there are no results proving the inefficiency of optimal evaluators.
On the contrary it is possible to prove that Lamping’s algorithm is polynomial for PTime-
complete problems, as we proved in [Cop97] (essentially the same result was shown, among
others, in [Sch01]).

Definition 17 A boolean circuit is a graph C = (V, E) such that:

• V = {1, . . . , n} is the set of gates;

• C is direct, acyclic and connected;

• if (i, j) is an edge in E then i < j;

• any gate i ∈ V has a label lab(i) ∈ {true, false, and, or};
2The log∗ factor can be removed as it is shown in the journal version of the paper of Asperti and Mairson

appearing in Volume 170, Number 1 of Information and Computation.

1.5. INHERENT COMPLEXITY OF IMPLEMENTING OPTIMAL REDUCTION 35

• the number of incoming edges of the gate i is defined as follows:

indegree(i) =
{

0 if lab(i) ∈ {true, false}
2 if lab(i) = and or lab(i) = or;

• the gates with indegree(i) = 0 are called input gates;

• gate n has no outgoing edges and is called output gate.

The circuit consisting of a single gate labeled with true (false) has boolean value true (false).
The value of the circuit with output gate labeled with and (or) is calculated from the value
of the sub-circuits connected to its two incoming edges.

The Circuit-Value problem is P-Complete with respect to the log n-space reduc-
tions [Pap94]. Given a boolean circuit C = (V,E) it is possible to encode it in the lambda
calculus. The encoding [lab(i)] of labels is the following:

[true] = λx.λy.x

[false] = λx.λy.y

[and] = λb1.λb2.((b1 b2) [false])
[or] = λb1.λb2.((b1 [true]) b2).

The encoding algorithm first build the set V ′ = {(i, lab(i), outdegree(i))|i ∈ V }. Then it
performs a depth first visit of the graph following the decreasing order of gates writing in
the output buffer:

(([lab(i)] the first time it encounters i with lab(i) ∈ {and, or}
[lab(i)] if lab(i) ∈ {true, false}
) the second and third time it encounters i with lab(i) ∈ {and, or}

If the algorithm reaches a gate j with outdegree(j) > 1—an output gate for a shared sub-
graph—it defers the visit in depth of the sub-graph and writes in the output buffer the
corresponding variable xj . When the firs visit ends the algorithm scans the set V ′ looking
for a gate i with outdegree(i) > 1. When it reaches such a gate, it writes on the top of the
buffer “(λxi.”, recursively encode the shared sub-graph writing the encoding at the end of
the buffer and finally writes “)”. The procedure ends when all V ′ has been scanned.

The complexity in space of the encoding algorithm is O(log n), being necessary just the
space for the encoding of labels, a pointer to the processing gate, a pointer to the next
gate, the number of gates and the number of edges. Moreover looking at the sharing graphs
generated by the encoding algorithm it is easy to prove the following lemma:

Lemma 27 Given a lambda term Ĉ encoding a boolean circuit C, in the graph normalization
of the sharing graph corresponding to Ĉ there are only fan-lambda interactions between the
lambda nodes of terms true and false and only fan-fan annihilations in the body of them. No
other fan-interactions occur (in particular there are no duplications of fans or applications).

Theorem 28 Every instance C of Circuit Value can be reduced in log n space to a sharing
graph GC normalizing in a polynomial number of interactions.

36 CHAPTER 1. OPTIMALITY AND COMPLEXITY

1.6 Conclusions

Neither the number of standard beta reduction steps nor the number of optimal beta reduc-
tions could be considered as a good measure of the complexity of the reduction of lambda
terms. On the other hand, the optimal reduction of Lévy and its implementation given by
Lamping seem to be useful tools for investigating complexity questions inherent to the re-
duction. In particular we know that Lamping’s algorithm is polynomial for PTime-complete
problems and we can not blame the algorithm for the non exponential complexity obtained
in the reduction of the terms of Asperti and Mairson because the problem encoded has that
very inherent complexity as proved by Statman.

Results seen so far do not explain if, in the case of Lamping’s algorithm, the non ele-
mentary overhead for the terms of Asperti and Mairson is due to the sharing management
or to the oracle. We will answer to this question in the next chapter. We will see that under
certain conditions it is possible to reduce lambda terms by using only the abstract Lamping’s
algorithm, i.e. with oracle of complexity O(1).

We agree with Frandsen and Sturtivant when they say that we should include some
measure of the length of reduction chains. However we have to forsake the number of beta
reduction steps and we think that the sum of the length of the labels generated during the
reduction (the proposal of [LM97]) is a good candidate in this direction.

2
Complexity of optimal sharing

Deciding truth value of higher-order formulas is a non elementary problem that can be
encoded in the simple typed lambda calculus in such a way that the number of parallel beta
reductions performed by any optimal reducers are just polynomial. The non elementary
computation, in the case of Lamping’s reducer, should be performed either by the oracle or
by the sharing management.

We will see that already the sharing is non elementary. We will use Elementary Affine
Logic as a tool. The proofs of this logic identify a subset of the simple typed lambda calculus
for which the abstract Lamping’s algorithm is correct, i.e. the naive solution of using labels
for the correct matching of fans is sufficient. We will show that the non elementary problem
taken into account can be encoded into this logic and thus we will obtain a non elementary
lower bound to the complexity of sharing in the optimal reduction.

An alternative way to get the same result is to analyze optimal sharing reductions for
the full MELL calculus, and prove that the number of interactions involving croissants and
brackets is at most exponential in the number of other graph operations. Harry Mairson
acquaint me in a personal communication in January 2000 with this analysis performed by
him and Julia Lawall. The fan normal form and canonical beta reduction introduced by
Mairson and Lawall in [LM97] allow to prove the exponential bound for oracle interactions.
The analysis is a confirmation to the result of this Chapter. However, our encoding also
show that there exists a large class of programs that can be implemented with the abstract
Lamping’s algorithm, i.e. the elementary Turing Machines. For an intuition on the improve-
ment that can be achieved reducing terms with the abstract algorithm instead of the full
version we refer the reader to the end of Section 4.1.

2.1 Linear Logic

Intuitionistic Linear Logic is the logical system defined by the following rules1:

Γ, x : A, y : B, ∆ `LL M : C

Γ, y : B, x : A,∆ `LL M : C
Ex

1M{N/x} denotes the usual substitution.

38 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

x : A `LL x : A
Ax

Γ `LL M : A ∆, x : A `LL N : B

Γ, ∆ `LL N{M/x} : B
Cut

Γ `LL M : A x : B, ∆ `LL N : C

Γ, y : A (B, ∆ `LL N{(y M)/x} : C
((, l) Γ, x : A `LL M : B

Γ `LL λx.M : A (B
((, r)

Clearly, this fragment of Linear Logic corresponds to the linear lambda calculus via the
Curry-Howard isomorphism. In order to exit from the linear framework and to recover the
full whole power of intuitionistic logical systems, Linear Logic is equipped by a suitable
modality ‘!’ (read of course or bang). The modality applies to formulas, expressing their
non linear nature. So, a formula of the kind !A can be freely duplicated and erased. From the
logical point of view, this means that we allow contraction and weakening on these formulas:

x :!A, y :!A, Γ `LL M : B

z :!A,Γ `LL M{z/x, z/y} : B
Contr

Γ `LL M : B

Γ, x :!A `LL M : B
Weak

The other logical rules dealing with the modality are those allowing left and right introduc-
tion:

x : A, Γ `LL M : B

x :!A, Γ `LL M : B
ε

!Γ `LL M : B

!Γ `LL M :!B
(!, r)

where if Γ = x1 : A1, . . . , xk : Ak then !Γ = x1 :!A1, . . . , xk :!Ak. It is possible to split the
(!, r) rule into two more elementary rules, obtaining an equivalent system:

Γ `LL M : B

!Γ `LL M :!B !
x :!!A, Γ `LL M : B

x :!A, Γ `LL M : B
δ

Intuitionistic logic can be embedded into Linear Logic. Take for example the translation
function (A → B)∗ =!(A)∗ ((B)∗.

Definition 18 (Erasure) Given the LL-formula A, A is the intuitionistic formula obtained
from A erasing every ! and converting (into →.

Linear Logic proofs can be represented in a graphical way by means of Proof Nets [Gir87] that
abstract from the syntactical bureaucracy due to the arbitrary sequentialization of inference
rules. Proof Net links are depicted in Figure 2.1. A proof of a sequent A1, . . . , An `LL B is
represented as a net with n+1 distinguished nodes, called conclusions: n negative conclusions
for A1, . . . , An and one positive conclusion for B. Positive and negative signs in Figures 2.1–
2.9 respect such a convention.

Definition 19 (Proof Nets) Proof nets are inductively defined as follows:

• an axiom link is a proof net. The left (right) node is the negative (positive) conclusion
of the net;

• if N is a proof net with negative conclusion A and positive conclusion B, then the
net in Figure 2.2 is a proof net with positive conclusion A (B and with all negative
conclusions of N but A;

2.1. LINEAR LOGIC 39

Ax

A− A+

Cut

A+ A−

(+

(A (B)+

A− B+

(−

(A (B)−

B−A+

δ

!!A−

!A−

ε

A−

!A−

Contr

!A− !A−

!A−

Weak

!A−

Figure 2.1: Proof Net links.

(+

(A (B)+

A− B+

· · ·

N

Figure 2.2: Positive linear implication.

· · ·

N ′

(−

(A (B)−

B−A+

N ′′

· · ·

Figure 2.3: Negative linear implication.

· · ·

N ′ N ′′

· · ·Cut

A+ A−

Figure 2.4: Cut.

• if N ′ is a proof net with positive conclusion A and N ′′ is a proof net with negative
conclusion B, then the net in Figure 2.3 is a proof net. The positive conclusion of N ′′

is the positive conclusion of the new net. A (B and all the negative conclusions of
N ′ and N ′′ but B are negative conclusions of the new proof net;

• if N ′ is a proof net with positive conclusion A and N ′′ is a proof net with negative
conclusion A, then the net in Figure 2.4 is a proof net. The positive conclusion of
N ′′ is the new positive conclusion. All negative conclusions of N ′ and N ′′ but A are
negative conclusions of the new proof net;

40 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

Contr

!A− !A−

!A−

· · ·

N

Figure 2.5: Contraction.

• if N is a proof net with two negative conclusions !A, then the net in Figure 2.5 is a
proof net with the same conclusions of N but one !A;

Weak

!A−

N

· · ·

Figure 2.6: Weakening.

• if N is a proof net, then the net in Figure 2.6 is a proof net with the same conclusions
of N plus the negative conclusion !A;

· · ·
ε

A−

!A−

N

Figure 2.7: Left introduction of !.

• if N is a proof net with negative conclusion A then the net in Figure 2.7 is a proof net
with the same conclusions of N but A that is changed in !A;

· · ·
δ

!!A−

!A−

N

Figure 2.8: Delta rule.

2.1. LINEAR LOGIC 41

• if N is a proof net with negative conclusion !!A then the net in Figure 2.8 is a proof
net with the same conclusions of N but !!A that is changed in !A;

· · ·

N

A1 An B

!B!An!A1

Figure 2.9: Box.

• finally, if N is a proof net with negative conclusions A1, . . . , An and positive conclusion
B, then the net in Figure 2.9 is a proof net with negative conclusions !A1, . . . , !An and
positive conclusion !B.

The cut elimination process can be performed in the proof net framework following the
rewriting rules of Figure 2.10.

In 1992 Gonthier, Abadi and Lévy [GAL92] put in evidence a strong connection between
proof nets and sharing graphs for optimal reduction. In fact it is possible to perform all
rewriting of boxes in Figure 2.10 in a local way using the rewriting rules of Section 1.3.2,
where Contr behaves like a fan, ε like a croissant, δ like a bracket and Weak like an eraser,
and where boxes are substituted by levels. Moreover the initial translation of Section 1.3.3 of
lambda terms in sharing graphs, corresponds to the use of the recursive type D =!D (D.

In the next sections we briefly recall some fragment of Linear Logic with particular
complexity property. We use these logics as tools in the study of the complexity of optimal
reduction.

2.1.1 Elementary Affine Logic [Gir98, Asp98]

Removing ε and δ from the set of rules of Linear Logic and adding full weakening, we obtain
a restricted system for which the cut elimination process, once the box-nesting depth of the
proof is fixed, has elementary complexity in the size of the proof itself:

A `EAL A
Ax

Γ `EAL A A,∆ `EAL B

Γ,∆ `EAL B
Cut

Γ, A, B,∆ `EAL C

Γ, B, A,∆ `EAL C
Ex

Γ `EAL A B, ∆ `EAL C

Γ, A (B, ∆ `EAL C
((, l)

Γ, A `EAL B

Γ `EAL A (B
((, r)

Γ `EAL C

Γ, A `EAL C
Weak

Γ, !A, !A `EAL B

Γ, !A `EAL B
Contr

A1, . . . , An `EAL B

!A1, . . . , !An `EAL!B
!

The complexity bound for the cut elimination process can be obtained considering a normal-
ization strategy “by level”. Starting from level 0—the part of the proof net outside every
boxes—first reduce all linear cuts at that level, than perform all duplications and box fusions,
again at level 0. After this process we can consider the next level and perform the same
operations. Looking at Figure 2.10 we see that all rules of normalization of proof nets do
not change the box nesting except for that involving δ and ε. Since those operators are not

42 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

Ax

Cut

Ax

Cut

a

b

a

b

(+ (−

Cut

a b c d

Contr · · ·

N

· · ·

N

Contr Contr

Cut

Cut

· · ·

N

Cut

· · ·

N

Cut

Weak Weak Weak

· · ·

N ′

· · ·

N ′′

Cut Cut

N ′′

· · ·

N ′

· · ·

· · ·

N

Cut

δδ

· · ·

N

Cut

δ

· · ·

N

Cut

ε · · ·

N

Cut
ε ε

Cut
Cut

a c
b d

b

a

a

b

· · ·

Figure 2.10: Cut elimination.

2.1. LINEAR LOGIC 43

present in EAL, it is easy to see that the any normalization strategy and in particular the
normalization by level can not change the levels of the proof net. Moreover no reduction at
level i can create a new redex at level j < i. Then we are assured that the strategy by level
is terminating. Now consider the costs: if the proof net has size n at level i, the number
of graph reductions is at most n hence the cost of the graph reduction is at that level is at
most O(n2). Moreover, the proof net increases the size to at most an exponential. Than the
normal form of a proof net of size n and depth d is obtained with cost O(Kd(n)).

Any elementary function can be coded as a proof of EAL. Considering the result in [GAL92]
it is easy to see that the normalization of proofs of EAL can be implemented using the Lamp-
ing’s abstract algorithm. In fact, as we have already observed, no operators for δ and ε and
no rules changing the level of (parts of) the graph are present, hence we may simply label
each fan with its level in the starting graph and then “match them by label”, that is when
two fans face they duplicate each other if they have different level, annihilate otherwise.

Finally notice that EAL is decidable as it has been proved in [Lag01].

2.1.2 Light Affine Logic [Gir98, Asp98]

If we add a second modality to EAL and split the ! rule into three new rules, the first and
the second allowing to add a ! on the right hand side of the turnstile if there is at most one
assumption on the left hand side, the third coping with the general case with a context of any
dimension, but introducing the new modality §, we obtain a polynomial logic. Intuitively,
if we allow to duplicate (contract) only formulas of type ! and we allow to !-box only proof
nets with at most one negative conclusion, we force the normalization process to follow a
particular order of reduction that, once the box-nesting depth of the proof is fixed, turns out
to be polynomial in the size of the proof. Moreover any polynomial function can be coded
as a proof of Light Affine Logic.

A `LAL A
Ax

Γ `LAL A A,∆ `LAL B

Γ, ∆ `LAL B
Cut

Γ, A, B,∆ `LAL C

Γ, B, A,∆ `LAL C
Ex

Γ `LAL A B,∆ `LAL C

Γ, A (B, ∆ `LAL C
((, l)

Γ, A `LAL B

Γ `LAL A (B
((, r)

Γ `LAL C

Γ, A `LAL C
Weak

Γ, !A, !A `LAL B

Γ, !A `LAL B
Contr

`LAL B

`LAL!B
!0

A `LAL B

!A `LAL!B
!1

A1, . . . , An, An+1, . . . , An+k `LAL B

!A1, . . . , !An, §An+1, . . . , §An+k `LAL §B §

2.1.3 Soft Linear Logic [Laf01]

Recently Yves Lafont has showed a simpler logic with the same property of LAL, i.e. any
polynomial function can be coded as a proof of it and the normalization procedure, once the
box-nesting depth of the proof is fixed, has polynomial complexity in the size of the proof.
Soft Linear Logic is obtained from EAL simply removing weakening2 and contraction and

2The removal of weakening is not necessary and the affine version of SLL still has the polynomial properties
of the original one.

44 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

λz

z

@

n

y

@

λn

λy

λw

w

@

x

@

x

λx

@

Io

o

o

Io

IIo

(IIo
(Io)(Io

Io

IIo
(Io

Io

o

Io

Io

IIo
(Io

IIo
IIo

a)

λz

z

@

n

y

@

λn

λy

λw

w

@

x

@

x

λx

@

o

Io

!Io

!IIo
(!Io

IIo

IIo
!IIo

!IIo

Io

o

o

Io

IIo

b)

(!IIo
(!Io)(Io

!Io

!IIo
(!Io

Io

Figure 2.11: Type inference in EAL, I

λz

z

@

n

y

@

λn

λy

λw

w

@

x

@

x

λx

@

o

Io

!Io

!IIo
(!Io

IIo

IIo
!IIo

!IIo

Io

o

o

Io

!IIo

(!IIo
(!Io)(Io

!Io

!IIo
(!Io

Io

c)

λz

z

@

n

y

@

λn

λy

λw

w

@

x

@

x

λx

@

o

Io

!Io

!IIo
(!Io

IIo

IIo
!IIo

!IIo

I!o

!o
o

Io

!IIo

d)

(!IIo
(!Io)(I!o

!Io

!IIo
(!Io

I!o

Figure 2.12: Type inference in EAL, II

substituting them with a sort of general contraction

Γ, A(n) `SLL B

Γ, !A `SLL B
Contr

where A(n) indicates zero or more copies of the formula A. The whole set of rule for Soft
Linear Logic is the following:

A `SLL A
Ax

Γ `SLL A A,∆ `SLL B

Γ, ∆ `SLL B
Cut

Γ, A, B,∆ `SLL C

Γ, B, A,∆ `SLL C
Ex

Γ `SLL A B,∆ `SLL C

Γ, A (B, ∆ `SLL C
((, l)

Γ, A `SLL B

Γ `SLL A (B
((, r)

Γ, A(n) `SLL B

Γ, !A `SLL B
Contr

A1, . . . , An `SLL B

!A1, . . . , !An `SLL!B
!

2.2 Decorating terms

It should be clear from the rules of EAL that a derivation of a type in EAL (an EAL-type,
from now on) for a λ-term M consists of a skeleton – given by the derivation of a type
for M in the simple type discipline – together with a box decoration, introducing a suitable
number of !-rules. Such modalities are needed since only !-typed variables can be contracted.
Observe, moreover, that a given (simply typed) skeleton has an infinite number of possible
decorations, and not all of them are instances of a single, most general one.

Therefore, while the skeleton is trivially obtained, finding the right decoration is the
hard part, since the introduction of a box in a portion of the proof forces other boxes to

2.2. DECORATING TERMS 45

be introduced somewhere else. In [CM01] it has been given a type inference algorithm for
λ-terms in EAL, however the typing of the relevant terms in Section 2.3 is obtained using
some heuristics, which we describe in this section, as we need to type family of terms and
not just terms.

We may single out three main steps in the process of type inference3: “looking for
contractions”, “boxing arguments” and “opening boxes”. We discuss these steps by going
through an easy example.

Let
N=(λn.λy.((n λz.z) y) λx.(x (x λw.w)))

be the simply typed term to be typed in EAL. We start from the syntax tree of the term,
labelled with the types of the simple discipline (just changing→ into () as in Figure 2.11 (a),
where Iα=α (α for every type α.

Now look for contractions. If all the variables occur only once – they are used linearly –
we are done. This is not the case in our example, since x occurs twice in M=λx.(x (x λw.w)).
As contraction in EAL is admitted only for formulas of type !α, we need to introduce a !
before the abstraction of x. Using the usual sequent calculus notation, the simple type
derivation of M in Figure 2.11 (a) corresponds to the following derivation

o ` o
(Ax)

` Io
((, r)

Io ` Io
(Ax)

Io (Io ` Io
((, l)

Io ` Io
(Ax)

IIo , IIo ` Io
((, l)

IIo ` Io
Contr?

` IIo (Io
((, r)

which is not in EAL because the contraction rule is wrong. To obtain a correct EAL deriva-
tion we add a !-rule before contraction:

o ` o
(Ax)

` Io
((, r)

Io ` Io
(Ax)

Io (Io ` Io
((, l)

Io ` Io
(Ax)

IIo , IIo ` Io
((, l)

!IIo , !IIo `!Io
(!)

!IIo `!Io
(Contr.)

`!IIo (!Io
((, r)

The corresponding typing is represented in Figure 2.11 (b), where the type of x inside the
box is IIo , whereas it is !IIo outside. The new type for M , however, needs to be propagated
in the left branch of the tree for the full term N , or otherwise the topmost application would
have the wrong type. As a consequence, the variable n in Figure 2.11 (b) gets type !IIo (!Io.

Observe now that the leftmost innermost application is wrong. We need to box the
argument λz.z, which must have type !IIo , as it is shown in Figure 2.12 (c).

Finally, in order to apply (n λz.z) of type !Io =!(o (o) to y of type o, we need to
open the box , as in Figure 2.12 (d). As mentioned above, types inside boxes “lose” one !, in
particular !(o (o) becomes o (o, allowing us to perform the application.

Observe how a single contraction inside the term M forced us to introduce boxes all over
the tree.

3These steps are ad hoc heuristics. A complete approach to type inference is given in the next chapter.

46 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

The final decoration of Figure 2.12 (d) represents the following derivation in EAL:

Io`Io
(Ax)

`IIo

((,r)

`!IIo

(!)

o`o
(Ax)

o`o
(Ax)

Io,o`o
((,l)

!Io,!o`!o
(!)

!IIo(!Io,!o`!o
((,l)

!IIo(!Io`I!o
((,r)

`(!IIo(!Io)(I!o
((,r)

E....
`!IIo(!Io

`I!o
(Cut)

where E is the derivation given above for the subterm M .
As already mentioned, other decorations for N are possible. First, we may give N the

type !nI!o, by adding n !-rules at the end of the derivation. Or, to be more general, we may
give N the type !nI!mo, if we introduce m ≥ 1 !’s before the abstraction in the derivation of
M . But there are other possibilities. We may choose to introduce m !’s (“close” m boxes)
in Figure 2.12 (d) after the abstraction of y, obtaining for N the type !n+mIo.

Finally we remark that there exists simply typed terms without any EAL types. For
example the simply typed λ-term

(λn.(n λy.(n λz.y)) λx.(x (x y)))

has no EAL decoration. To see this in a simple way, write the term as a sharing graph and
reduce it in the abstract algorithm by matching fans by labels (see Figure 2.13 where the
redexes fired at every step are indicated by a dashed oval). The sharing graph in normal
form is a cycle, that is a sharing graph which does not correspond to any λ-term (least to
say to y, which is the normal form of the given term). This means that the oracle is needed
for the reduction of this term, and hence it cannot have a type in EAL. For a formal proof
we refer the reader to Example 1 in Chapter 3.

2.3 Coding type theory into EAL proofs

We show in this section how higher-order logic can be coded with EAL-typed λ-terms.
The (type-free) λ-terms we use are minor variants of those of [AM98], the main technical
contribution being the type-inference inside EAL.

Remark 20 The modifications to the encoding of [AM98] are the following: (i) we use
different terms for the encoding of equality; and (ii) the variable x1 is not a prime formula.
As a consequence of (ii), one has to adopt also a slightly different encoding of a Turing
Machine in the proof of Theorem 25. In particular, define x1 < y1=∃x2.true ∈ x2 ∧ false /∈
x2 ∧ y1 ∈ x2 ∧ x1 /∈ x2 and x1 = y1=¬(x1 < y1 ∨ y1 < x1).

Define the type of Booleans as B=!o (!o (!o; write Lτ
α for the EAL type of the generic

lists of elements of type α:

Lτ
α=!(α (τ (τ) (!(τ (τ).

Following [Mai92], quantifiers can be encoded by using iteration over lists. Given n ≥ 0
and some EAL type σ, suppose to have coded with the λ-term Q̂ : L!nB

σ the set Q =
{e1, . . . , em} of elements of type σ; suppose moreover that Ψ̂ : σ (!nB is a term encoding a
generic formula Ψ. Then (Q̂ λz.(AND (Ψ̂ z)) true) is the term encoding the formula ∀z ∈ Q Ψ.

2.3. CODING TYPE THEORY INTO EAL PROOFS 47

@

@

λ

λ

@

λ

@

@

y

?

B ?
◦

◦
⊗

λA

@

λ

@

?
◦

⊗
λA

λ

@

@

yB ?
◦

@

λ

@

⊗
λ

λ

λ

@

@

yB ?
◦

?
◦

A

◦
?

A

⊗
λ

A
◦ ?

◦
@ @

@ @

y

?

?

?

?

A

A

A

A

◦

◦

◦B B
◦ ◦

? ?

λ

⊗
λ

@

@

y

A
?◦

◦
◦

◦
◦

A
A

BB

? ?

?
?

λ

@

@

@

@

⊗
λ

λ

A
B

B

◦
?

◦
? ◦?

y

@

@

@

@

B

◦
?

λ

λ

B

◦
?

⊗
λ

⊗
λ

A? ◦

y

B◦
?

A? ◦

y

⊗ ⊗

◦ ?
B

Figure 2.13: Incorrect reduction of (λn.(n λy.(n λz.y)) λx.(x (x y))).

48 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

@

@ @

@

@

@

λ

λ

λ

λ

@

@

λ

λ

x

l

c

n

c’

n’

x

e c’

n’
c’

λe

@

l

l
c

c

n

!(!(!iLτ
α (γ (γ)(!(γ (γ))

!3+iα(!(Lγ

!iLτ
α

)(!(Lγ

!iLτ
α

)

!(γ (γ)

γ

γ (γ

Lγ

!iLτ
α

!iLτ
α (γ (γ

!i(!(α(τ (τ)(!(τ (τ)) ≡!iLτ
α

!(τ (τ)

τ

α

α(τ (τ

τ

ττ (τ

!(α(τ (τ)

γ

!(!iLτ
α (γ (γ)

Lγ

!iLτ
α

γ (γ

Lτ
α

τ (τ

!(!iLτ
α (γ (γ)

γ (γ

γ

!(Lγ

!iLτ
α

)(!(Lγ

!iLτ
α

)

Figure 2.14: EAL type of double

2.3. CODING TYPE THEORY INTO EAL PROOFS 49

Encoding of prime formulas can be understood as the λ-calculus translation of the following
inductive definitions:

x1 =1 y1 = x1 ↔ y1

xk−1 ∈k yk = ∃zk−1 ∈ yk zk−1 =k−1 xk−1

xk =k yk = ∀zk−1∈ Dk−1 (zk−1∈k xk ↔ zk−1∈k yk).

The quantified formulas ∃zk−1 ∈ yk in the definition of ∈k, and ∀zk−1 ∈ Dk−1 in the definition
of =k, are encoded by list iteration, as described above.

Definition 21 (Erasure) For A EAL-type, (A)∗ is the simple type obtained from A by
stripping all !’s and changing all (into →.

Definition 22 (Size of terms) • For σ simple type, size ||σ|| is defined inductively as
follows:

||o|| = 1
||α → β|| = 1 + ||α||+ ||β||.

• For M : σ simply typed term, size |M | is defined inductively as follows:

|x| = ||σ|| if x has type σ

|λx.M | = 1 + |M |
|(M N)| = 1 + |M |+ |N |.

• For M : A EAL-typed term, size |M | is defined inductively as follows:

|x| = ||(A)∗|| if x has type A

|λx.M | = 1 + |M |
|(M N)| = 1 + |M |+ |N |.

Definition 23 (Depth) • For A EAL type, depth d(A) is defined inductively as follows:

d(o) = 0
d(A (B) = max{d(A), d(B)}

d(!A) = 1 + d(A).

• For M : A EAL-typed term, depth d(M : A) is the maximum number of nested boxes
in the EAL-derivation of M : A.

The full encoding with EAL-types, is summarized in Table 2.1. The rest of the section
will prove all the statements about types, size and depth of EAL-derivations.

Note to Table 2.1

(*) The size of double and powerset depends on types α, γ, τ and are relevant
only to the calculus of Dk. Depth of eqk is relevant only to the calculus of depth
of memberk.
(**) ∆1 and ∆k are defined in Definition 24. Mk is defined in Lemma 36. Ek is
defined in the proof of Lemma 36. d is the constant of Theorem 4.1 in [AM98].
The function f is defined in Theorem 37.

50 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

T
able

2.1:
E

ncoding.

F
o
r
m

u
l
a

T
e
r
m

T
y
p
e

S
iz

e
D

e
p
t
h

t
r
u
e

λ
x

y
.x

∀
n
≥

0
.
! nB

3
n

f
a
l
s
e

λ
x

y
.y

∀
n
≥

0
.
! nB

3
n

N
O
T

λ
b

x
y
.(b

y
x)

∀
n
≥

0
.
! nB

(
! nB

12
n

A
N
D

λ
b
1

b
2

x
y
.(b

1
(b

2
x

y)
y)

∀
n
≥

0
.
! nB

(
! nB

(
! nB

21
n

O
R

λ
b
1

b
2

x
y
.(b

1
x

(b
2

x
y))

∀
n
≥

0
.
! nB

(
! nB

(
! nB

21
n

I
F
F

λ
b
1

b
2

x
y
.(b

1

(b
2

x
y)(b

2
y

x))
∀
n
≥

1
.
! nB

(
! nB

(
! nB

29
n

d
ou

ble
λ
x

l
c

n
.(l

λ
e.(c

λ
c ′

n ′.
(c ′

x(e
c ′

n ′)))(l
c

n))
∀
α
,γ

,τ,∀
i≥

0.
! 3

+
iα

(
!L

γ! iL
τα

(
!L

γ! iL
τα

(*)
3

+
i

p
ow

erset
λ
A
∗.(A

∗
d
ou

bleλ
c

n
.

(c
λ
c ′

n ′.n ′
n))

∀
α
,γ

,τ,∀
i≥

0.

L
!L

γ! i
L

τα

! 3
+

iα
(

! 2L
γ! iL

τα

(*)
4

+
i

D
1

λ
c

n
.(c

t
r
u
e

(c
f
a
l
s
e

n))
∀
τ
1 ,∀

n
0 ,n

1 ≥
0.

∆
1

(**)
≤

2d
(**)

n
0
+

n
1
+

1

D
k

(p
ow

erset
D

k−
1)

∀
τ
1 ,...,τ

k ,
∀
n

0 ,...,n
k−

1 ≥
0,

∀
n

k ≥
2(k−

1).
∆

k

(**)
≤

d(2
k)!

k
+

∑
ki=

0
n

i

eq
1

I
F
F

∀
n
≥

1
.
! nB

(
! nB

(
! nB

29
n

m
em

ber
k

λ
x

k−
1.λ

y
k.(y

k
λ
y

k−
1.(O

R
(eq

k−
1

x
k−

1
y

k−
1))

f
a
l
s
e)

∀
n
≥

0
.

! n
+

m
a
x{

2
k−

5
,2}M

k−
1

(
! n

+
m

a
x{

2
k−

7
,0}M

k

(
! n

+
m

a
x{

4
k−

9
,2

(k−
1
)}B

(**)
≤

c∗
k

2
+

d(2(k−
1))!

n
+

2(k−
1)

+
m

ax{2k−
7,0}

eq
k

λ
x

k.λ
y

k.(λ
op

.(D
k−

1
λ
z

k−
1.(A

N
D

(I
F
F

(op
z

k−
1

x
k)

(op
z

k−
1

y
k)))

t
r
u
e)

m
em

ber
k)

E
k

(**)
≤

c∗
k

2
+

d(2(k−
1))!

(*)

H
ig

h
e
r
-o

r
d
e
r

l
o
g

ic
f
o
r
m

u
l
a
s

tru
e∈

x
2

(m
em

ber
2
t
r
u
e

x
2)

! f
(2

)B
(**)

≤
4c

+
2d

f(2)
false∈

x
2

(m
em

ber
2
f
a
l
s
e

x
2)

! f
(2

)B
≤

4c
+

2d
f(2)

x
k−

1∈
x

k
(m

em
ber

k
x

k−
1

x
k)

! f
(k

)B
≤

c∗
k

2
+

d(2(k−
1))!

f(k)
¬

Φ
′

(N
O
T

Ψ
′)

! f
(k

j)+
h
+ P

`∈
J

2
(k

` −
1
)B

O
(|¬

Φ
′|d(2

k
M

A
X
)!)

f(k
j)

+
h

+
∑

`∈
J

2(k
` −

1)
Φ

1 ∧
Φ

2
(A
N
D

Ψ
1

Ψ
2)

! f
(k

j)+
h
+ P

`∈
J

2
(k

` −
1
)B

O
(|Φ

1 ∧
Φ

2 |d(2
k

M
A

X
)!)

f(k
j)

+
h

+
∑

`∈
J

2(k
` −

1)
Φ

1 ∨
Φ

2
(O
R

Ψ
1

Ψ
2)

! f
(k

j)+
h
+ P

`∈
J

2
(k

` −
1
)B

O
(|Φ

1 ∨
Φ

2 |d(2
k

M
A

X
)!)

f(k
j)

+
h

+
∑

`∈
J

2(k
` −

1)
∀
y

k
iΦ
′

(D
k
i
λ
y

k
i.(A

N
D

(λ
x

k
i.Ψ

′
y

k
i))

t
r
u
e)

! f
(k

j)+
h
+ P

`∈
J

2
(k

` −
1
)B

O
(|∀

y
k

iΦ
′|d(2

k
M

A
X
)!)

f(k
j)

+
h

+
∑

`∈
J

2(k
` −

1)
∃
y

k
iΦ
′

(D
k
i
λ
y

k
i.(O

R
(λ

x
k

i.Ψ
′
y

k
i))

f
a
l
s
e)

! f
(k

j)+
h
+ P

`∈
J

2
(k

` −
1
)B

O
(|∃

y
k

iΦ
′|d(2

k
M

A
X
)!)

f(k
j)

+
h

+
∑

`∈
J

2(k
` −

1)

2.3. CODING TYPE THEORY INTO EAL PROOFS 51

Lemma 29 (Booleans) We encode boolean values in EAL as follows:

1. true = λx y.x :!nB for any n ≥ 0, |true| = 3, d(true :!nB) = n and the deepest type
that appears in the EAL-derivation of true :!nB is !nB, of depth d(!nB) = n + 1;

2. false = λx y.y :!nB for any n ≥ 0, |false| = 3, d(false :!nB) = n, deepest type !nB of
depth d(!nB) = n + 1;

3. NOT = λb x y.(b y x) :!nB (!nB for any n ≥ 0, |NOT| = 12, d(NOT :!nB (· · ·) = n,
deepest type !nB of depth d(!nB) = n + 1;

4. AND = λb1 b2 x y.(b1 (b2 x y) y) :!nB (!nB (!nB for any n ≥ 0, |AND| = 21, d(AND :
!nB (· · ·) = n, deepest type !nB of depth d(!nB) = n + 1;

5. OR = λb1 b2 x y.(b1 x (b2 x y)) :!nB (!nB (!nB for any n ≥ 0, |OR| = 21, d(OR :!nB (
· · ·) = n, deepest type !nB of depth d(!nB) = n + 1;

6. IFF = λb1 b2 x y.(b1 (b2 x y) (b2 y x)) :!nB (!nB (!nB for any n ≥ 1, |IFF| = 29,
d(IFF :!nB (· · ·) = n, deepest type !nB of depth d(!nB) = n + 1;

Proof: Simple inspection of the EAL-derivations. ¤

Following [AM98], for any k the domain Dk can be encoded by a λ-term Dk representing
Dk as the list of its values. Define

D1 = λc.λn.(c true (c false n))
Dk = (powerset Dk−1),

where

powerset = λA∗.(A∗ double λc.λn.(c λc′.λn′.n′ n))
double = λx.λl.λc.λn.(l

λe.(c λc′.λn′.(c′ x (e c′ n′))) (l c n)).

Lemma 30 For any EAL-type α, γ and τ and for i ≥ 0:

• double has type !3+iα (!(Lγ
!iLτ

α
) (!(Lγ

!iLτ
α
); d(double :!3+iα (· · ·) = 3 + i and the

deepest type in the EAL-type derivation of double is !(Lγ
!iLτ

α
) of depth 2+max{d(γ), 1+

i + d(τ), 1 + i + d(α)}.

• powerset has type L
!(Lγ

!iLτ
α

)

!3+iα
(!!(Lγ

!iLτ
α
). d(powerset : L

!(Lγ

!iLτ
α

)

··· (· · ·) = 4 + i and
the deepest type in the EAL-type derivation of powerset is !!(Lγ

!iLτ
α
) of depth 3 +

max{d(γ), 1 + i + d(τ), 1 + i + d(α)}.
Proof: As for types, see figures 2.14 and 2.15, where the bold dashed lines
stand for i boxes.

The deepest type in the derivation of double :!3+iα (!(Lγ
!iLτ

α
) (!(Lγ

!iLτ
α
) is the

final type.

d(!3+iα (!(Lγ
!iLτ

α
) (!(Lγ

!iLτ
α
)) =

= max{3 + i + d(α), 1 + max{1 + d(γ), 1 + i + max{1 + d(τ), 1 + d(α)}}}
= d(!(Lγ

!iLτ
α
)).

52 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

double

@

λA*

λ

λ

@

@

λ

λ

c

n

n

c
c’

n’

n’

@

A*

L
!(L

γ

!iLτ
α

)

!3+iα
(!!(Lγ

!iLτ
α

)

L
!(L

γ

!iLτ
α

)

!3+iα

!(Lγ

!iLτ
α

)

!(Lγ

!iLτ
α

)

Lγ

!iLτ
α

!(γ (γ)

γ

γ
γ (γ

!(!iLτ
α (γ (γ)

!(!3+iα(!(Lγ

!iLτ
α

)(!(Lγ

!iLτ
α

))

!iLτ
α

!(τ (τ)

τ

!(!(Lγ

!iLτ
α

)(!(Lγ

!iLτ
α

))

Figure 2.15: EAL type of powerset

2.3. CODING TYPE THEORY INTO EAL PROOFS 53

Analogously, for powerset : L
!(Lγ

!iLτ
α

)

!3+iα
(!!(Lγ

!iLτ
α
):

d(L
!(Lγ

!iLτ
α

)

!3+iα
(!!(Lγ

!iLτ
α
)) =

= max

max
{

1 + 3 + i + d(α),
1 + 1 + max{1 + d(γ), 1 + i + max{1 + d(τ), 1 + d(α)}}

}
,

2 + max{1 + d(γ), 1 + i + max{1 + d(τ), 1 + d(α)}}

= d(!!(Lγ
!iLτ

α
)).

¤

Observe how the piling up of !’s is already present at this stage of the encoding — in the
type of powerset we have two consecutive !’s. Since in EAL is not possible to derive !α (α,
the number of consecutive !’s will keep increasing; intuitively, n applications of powerset will
produce 2n consecutive !’s in the final type.

Given the type schema

Definition 24

∆0 = !n0B

∆k = !nk(Lτk
∆k−1

,)

we can prove the following:

Lemma 31

1. ∀τ1, . . . , τk types in EAL, ∀n0, . . . , nk−1 ≥ 0, ∀nk ≥ 2(k − 1), Dk has type ∆k.

2. d(Dk : ∆k) = k +
∑k

i=0 ni.

3. The deepest type in the derivation of Dk is ∆k of depth
d(∆k) = max0≤j≤k

{∑k
i=j(1 + ni) + d(τj)

}
.

4. |Dk| ≤ d(2k)! where d is a fixed constant.

Proof: For the proof of the size of Dk see [AM98].

By induction on k:

k = 1 then

1. ∀τ1 type in EAL, ∀n0 ≥ 0 and ∀n1 ≥ 2(1 − 1), D1 has type ∆1 =
!n1(Lτ1

!n0B). The proof is shown in Figure 2.16.
2. Looking at Figure 2.16 is easy to see that the depth of D1 is 1+n0 +n1.
3. Again, looking at Figure 2.16, the deepest type is !n1(Lτ

!n0B) = ∆1 and

d(!n1Lτ1
!n0B) = n1 + 1 + max{d(τ1), n0 + 1}.

54 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

λ

λ

@

@
@

@

c

n

c true

c false

n

!(τ1 (τ1)

τ1
!n0B

!n0B

τ1 (τ1

τ1 (τ1
τ1

τ1

!n0B(τ1 (τ1

!(!n0B(τ1 (τ1)(!(τ1 (τ1)

!n1 (Lτ1
!n0 B)

!n0B(τ1 (τ1

Figure 2.16: EAL type of D1

@

L
!(L

γ

!i(Lτ
!jB

)
)

!3+i(!jB)
(!2(Lγ

!i(Lτ
!jB

)
)

L
!(L

γ

!i(Lτ
!jB

)
)

!3+i+jB

!2+m(Lγ

!i(Lτ
!jB

)
)

powerset D1

Figure 2.17: EAL type of D2

k ≥ 2 1. • if k = 2 by Lemma 30, powerset has type L
!(Lγ

!iLτ
α

)

!3+iα
(!!(Lγ

!iLτ
α
)

for any type α, γ and τ and for i ≥ 0, and, in particular, when
α =!jB, j ≥ 0, powerset has type:

L
!(Lγ

!iLτ
!jB

)

!3+i(!jB)
(!!(Lγ

!iLτ
!jB

)

By the previous point D1 has type !n1(Lτ1
!n0B) ∀n0, n1 ≥ 0 and for

any type τ1. Hence, in particular, for n1 = 0, n0 = 3 + i + j and
τ1 =!(Lγ

!i(Lτ
!jB

)
), D1 has type

L
!(Lγ

!iLτ
!jB

)

!3+i+jB

Hence D2 = (powerset D1), ∀m ≥ 0 has type

!2+m(Lγ
!iLτ

!jB

)

see Figure 2.17 where the bold box represents m “normal” boxes.
Then ∀τ1, τ2, ∀n0, n1 ≥ 0, ∀n2 ≥ 2,D2 has type

∆2 =!n2(Lτ2
!n1 (L

τ1
!n0 B

)
).

• if k > 2, Dk = (powerset Dk−1) by definition.
By inductive hypothesis ∀τ1, . . . , τk−1 types in EAL, ∀n0, . . . , nk−2 ≥

2.3. CODING TYPE THEORY INTO EAL PROOFS 55

@

!2(k−2)(L

!(L
γ

!i(Lτ

!j(L
τk−2
∆k−3

)
)
)

!3+i+j(L
τk−2
∆k−3

)
)

Dk−1

!2(k−1)+m(Lγ

!i(Lτ

!j(L
τk−2
∆k−3

)
)
)

powerset

L

!(L
γ

!i(Lτ

!j(L
τk−2
∆k−3

)
)
)

!3+i(!j(L
τk−2
∆k−3

))
(!2(Lγ

!i(Lτ

!j(L
τk−2
∆k−3

)
)
)

Figure 2.18: EAL type of Dk

0, ∀nk−1 ≥ 2(k − 2), Dk−1 has type ∆k−1 =!nk−1(Lτk−1

!nk−2 (L
τk−2
∆k−3

)
).

Similar to the previous case, for α =!j(Lτk−2

∆k−3
), nk−1 = 2(k −

2), nk−2 = 3+ i+ j and τk−1 =!(Lγ
!i(Lτ

!j(L
τk−2
∆k−3

)
)
) one has ∀m ≥ 0, Dk

of type

!2(k−1)+m(Lγ
!i(Lτ

!j(L
τk−2
∆k−3

)
)
)

(see Figure 2.18, where the inner bold box represents 2(k − 2) nor-
mal boxes and the outer one represents m normal boxes). Hence
∀τ1, . . . , τk, ∀n0, . . . , nk−1 ≥ 0,∀nk ≥ 2(k − 1),Dk has type

∆k =!nk(Lτk

!nk−1 (L
τk−1

!
nk−2 (L

τk−2
∆k−3

)
)
).

2. For k ≥ 2 one has:

Dk = (powerset

L···
!
3+nk−1 (!

nk−2 (L···
∆k−3

))

k−1

(powerset

L···
!
3+(3+nk−1+nk−2)

(!
nk−3 (L···

∆k−4
))

k−2

· · ·

(powerset
L···

!
3+(3+···(3+nk−1+nk−2)···+n1)

(!n0 B)

1

D1
L···

!
3+(3+···(3+nk−1+nk−2)···+n1)+n0 B) · · ·))

where the subscripts at every powerset simply distinguish various in-
stances of the same term (with different types).
Looking at Figure 2.18, every application of powersetj in the construc-
tion above is inside 2(j − 1) boxes, hence depth of Dk is

max

d(D1 : L···
!3(k−1)+

Pk−1
i=0

niB
),

max1≤j≤k−1{d(powersetj : L···
!
3(k−j)+

Pk−1
i=j−1

ni ···
) + 2(j − 1)}

+m

56 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

but

d(powersetj : L···
!
3(k−j)+

Pk−1
i=j−1

ni ···
) + 2(j − 1)

>

d(powersetj+1 : L···
!
3(k−j−1)+

Pk−1
i=j

ni ···
) + 2j

indeed

1 + 3(k − j) +
k−1∑

i=j−1

ni + 2(j − 1) > 1 + 3(k − j − 1) +
k−1∑

i=j

ni + 2j

m
−1 + nj−1 > −2

and by hypothesis every ni is greater than zero. Hence depth of Dk is

max

d(D1 : L···
!3(k−1)+

Pk−1
i=0

niB
),

d(powerset1 : L···
!3(k−1)+

Pk−1
i=0

ni ···
)

 + m

= max

{
1 + 3(k − 1) +

∑k−1
i=0 ni,

1 + 3(k − 1) +
∑k−1

i=0 ni

}
+ m

= k +
k∑

i=0

ni.

3. for Dk :!2(k−1)+mLτk
∆k−1

, looking at Figure 2.18, we prove first that the
deepest type is !2(k−1)+mLτk

∆k−1
, indeed

d(!2(k−1)Lτk

!nk−1L
τk−1

!
nk−2L

τk−2
∆k−3

) =

= 2(k − 1) + 1+

+ max

d(τk),

nk−1 + 1 + max
{

nk−2 + 1 + max{d(τk−2), d(∆k−3)},
d(τk−1)

}

= 2(k − 2) + 1 + max

1 + 1 + max
{

d(τk),
d(∆k−1)

}

3 + nk−1 + nk−2 + 1 + max
{

d(τk−2),
d(∆k−3)

}

= d(!2(k−2)L
!L

τk
∆k−1

!3+nk−1+nk−2L
τk−2
∆k−3

)

Then we have depth of type of Dk−i equals to depth of type of Dk−i−1

in the derivation of Dk. Moreover depth of type of Dk−i is greater than
depth of type of powersetk−i, hence the deepest type is the type of Dk.
Finally, assuming τ0 = o, we prove:

d(∆k) = max
0≤j≤k

k∑

i=j

(1 + ni) + d(τj)

2.3. CODING TYPE THEORY INTO EAL PROOFS 57

By induction on k:
d(∆0) = d(!n0B) = n0 + 1;

d(∆k) = 1 + nk + max{d(τk), d(∆k−1)}

IH= max

1 + nk + d(τk), 1 + nk + max

0≤j≤k−1

k−1∑

i=j

(1 + ni) + d(τj)

= max
0≤j≤k

k∑

i=j

(1 + ni) + d(τj)

 .

¤

Prime formulas are encoded by the following terms.

eq1 = IFF with n = 1
memberk = λxk−1.λyk.(yk λyk−1.(OR

(eqk−1 xk−1 yk−1)) false)
eqk = λxk.λyk.(λop.(Dk−1 λzk−1.(AND

(IFF (op zk−1 xk) (op zk−1 yk))) true)
memberk)

Observe that memberk is defined for k ≥ 2.

Lemma 32 Let
M1 = B

Mk = L!2k−3B
!Mk−1

.

Then

1. memberk has EAL-type

!m+max{2k−5,2}Mk−1 (!m+max{2k−7,0}Mk (!m+max{4k−9,2(k−1)}B

for any m ≥ 0.

2. ∃c ≥ 0.∃d ≥ 0. |memberk| ≤ c ∗ k2 + d(2(k − 1))!.

3. d(memberk :!m+max{2k−5,2}Mk−1 (· · ·) = m + 2(k − 1) + max{2k − 7, 0}.
4. The deepest type in memberk is !m+max{4k−9,2(k−1)}B of depth max{4k − 8, 2k − 1}.

We will prove Lemma 32 after a detour regarding some open terms whose instances yield
memberk and eqk. For k ≥ 2, define

eq′1 = IFF

member′k = λxk−1.λyk.(yk λyk−1.(OR (eq′k−1 xk−1 yk−1)) false)

eq′k = λxk.λyk.(λop.(dk−1 λzk−1.(AND (IFF (op zk−1 xk)
(op zk−1 yk))) true) member′k)

58 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

Note that member′k, for k ≥ 3 and eq′k, for k ≥ 2, are not closed terms, due to the presence of
the unbound variable dk−1 in the definition of eq′k. In particular, for k ≥ 3, FV (member′k) =
{d1, . . . , dk−2} and, for k ≥ 2, FV (eq′k) = {d1, . . . , dk−1}.

Moreover notice that:

memberk = member′k[D1/d1, . . . ,Dk−2/dk−2]
eqk = eq′k[D1/d1, . . . ,Dk−1/dk−1].

Definition 25 We define types Ek = Ek
1 (Ek

1 (Ek
3 of eq′k, for k ≥ 1, and Mk = Mk

1 (
Mk

2 (Mk
3 of member′k, for k ≥ 2 as follows:

E1
1 = !B E1

3 = !B

Mk
1 = !Ek−1

1 Mk
2 = L

Ek−1
3

Ek−1
1

Mk
3 = !Ek−1

3

Ek
1 = !Mk

2 Ek
3 = !Mk

3

Hence

E1 = !B (!B (!B

Mk = !Ek−1
1 (L

Ek−1
3

Ek−1
1

(!Ek−1
3

Ek = !Mk
2 (!Mk

2 (!Mk
3

Lemma 33 ∀n ≥ 0 ∀k ≥ 1 ∃n0, . . . , nk ≥ 0 ∃τ1, . . . , τk s.t. ∆k =!n(LEk
3

Ek
1
)

Lemma 34 ∀k ≥ 1 ∃n0, . . . , nk−1 ≥ 0 ∃τ1, . . . , τk such that ∀nk ≥ 0 ∆k =!nk(LMk+1
3

Mk+1
1

).

Lemma 35 1. For any k ≥ 2, member′k has type Mk in EAL, with FV (member′k) =

{d1, . . . , dk−2}, di of type !2(k−2−i)+1(LM i+1
3

M i+1
1

); moreover d(member′k : Mk) = 2(k − 1);

2. for any k ≥ 1, eq′k has type Ek in EAL, with FV (eq′k) = {d1, . . . , dk−1}, di of type

!2(k−1−i)(LM i+1
3

M i+1
1

) for k ≥ 1; moreover d(eq′k : Ek) = 2(k − 1) + 1.

Proof: By mutual induction on k.
First of all, note that ∀k ≥ 2 Mk

3 ≡!2(k−1)B and ∀k ≥ 1 Ek
3 ≡!2(k−1)+1B.

The proof for member′k is shown in Figure 2.19, where OR has type

!2(k−2)+1B (!2(k−2)+1B (!2(k−2)+1B

for the observation above, and the bold box represents 2(k − 2) + 1 normal

boxes. Note that eq′k−1 has free variables d1 :!2(k−3)(LM2
3

M2
1
), . . . , dk−2 : L

Mk−1
3

Mk−1
1

and

it is inside a box; hence member′k has the same free variables with the same

types, but with one more !, that is d1 :!2(k−3)+1(LM2
3

M2
1
), . . . , dk−2 :!(LMk−1

3

Mk−1
1

). The

proof for eq′k is shown in Figure 2.20. Note that member′k has free variables

d1 :!2(k−3)+1(LM2
3

M2
1
), . . . , dk−2 :!(LMk−1

3

Mk−1
1

) and it is inside a box therefore, the free

2.3. CODING TYPE THEORY INTO EAL PROOFS 59

@ false

@

@

OR

@

@

!Ek−1
1 (L

E
k−1
3

E
k−1
1

(!Ek−1
3

λxk−1

λyk

yk

λyk−1

eq′k−1 xk−1

yk−1

Ek−1
1

Ek−1
1

Ek−1
3

Ek−1
3

L
E

k−1
3

E
k−1
1

(!Ek−1
3

!(Ek−1
1 (Ek−1

3 (Ek−1
3)

L
E

k−1
3

E
k−1
1

Ek−1
3 (Ek−1

3

Ek−1
1 (Ek−1

1 (Ek−1
3

!(Ek−1
3 (Ek−1

3)

Ek−1
3 (Ek−1

3 (Ek−1
3

!Ek−1
3

Figure 2.19: EAL type of member′k

variables of eq′k are dk−1 : L
Mk

3

Mk
1

and the variables of member′k with the same type

with one more !, that is d1 :!2(k−2)(LM2
3

M2
1
), . . . , dk−1 : L

Mk
3

Mk
1
.

Looking at figures 2.20 and 2.19,

d(eq′1 : E1) = 1

d(member′k : Mk) = max{d(false : Ek−1
3), d(OR :Ek−1

3 (· · ·), d(eq′k−1 :Ek−1)}+ 1

= max{2(k − 2) + 1, d(eq′k−1 : Ek−1)}+ 1
IH= max{2(k − 2) + 1, 2(k − 2) + 1}+ 1 = 2(k − 1)

d(eq′k : Ek) = max{2(k − 1), d(member′k : Mk)}+ 1
IH= max{2(k − 1), 2(k − 1)}+ 1
= 2(k − 1) + 1.

¤

Lemma 36 ∀k ≥ 2 ∀n ≥ max{2k − 7, 0} memberk has type !nMk
1 (!nMk

2 (!nMk
3 in

EAL.

Proof: By the previous lemma member′k has type Mk in EAL, with free vari-

ables d1 :!2(k−3)+1(LM2
3

M2
1
), . . . , dk−2 :!(LMk−1

3

Mk−1
1

), and by Lemma 31, ∀τ1, . . . , τj types

60 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

@

@

@

@

@

@

@

@

@

@

λxk

λyk

member′kλop

dk−1

AND

op zk−1

λzk−1

true

!(Mk
1 (Mk

2 (Mk
3)

!Mk
3

!Mk
3

Mk
3!(Mk

3 (Mk
3)

L
Mk

3
Mk

1
!(Mk

1 (Mk
3 (Mk

3)

Mk
3 (Mk

3

Mk
3 (Mk

3
Mk

3

Mk
3

Mk
2

Mk
2

!Mk
2 (!Mk

3

!Mk
2 (!Mk

2 (!Mk
3

!(Mk
1 (Mk

2 (Mk
3)(!Mk

3

Mk
3

yk

IFF

op zk−1

xk Mk
1Mk

1 (Mk
2 (Mk

3

Mk
3 (Mk

3 (Mk
3

Mk
3 (Mk

3 (Mk
3

Mk
1

Figure 2.20: EAL type of eq′k

2.3. CODING TYPE THEORY INTO EAL PROOFS 61

Mk
1 (Mk

2 (Mk
3

λxk−1

λyk

d1 dk−2di−1 di

body of member′k

Mk
1 (Mk

2 (Mk
3

λxk−1

λyk

D1 dk−2Di−1 di

body of member′k

!mMk
1 (!mMk

2 (!mMk
3

λxk−1

λyk

D1 Di−1

body of member′k

Di dk−2

!pMk
1 (!pMk

2 (!pMk
3

λxk−1

λyk

D1 Di−1

body of member′k

Di

Dk−2

λxk−1

λyk

D1 Di−1

body of member′k

Di

Dk−2

n

!p+nMk
1 (!p+nMk

2 (!p+nMk
3

Figure 2.21: EAL type of memberk

62 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

in EAL, ∀n0, . . . , nj−1 ≥ 0, ∀nj ≥ 2(j − 1), Dj has type ∆j , in particular, by

Lemma 34, Dj has type !max{2(j−1),2(k−2−j)+1}(LMj+1
3

Mj+1
1

). The proof is shown in

Figure 2.21, where

1. i = dk
2e is the lowest i s.t. 2(i− 1) > 2(k − 2− i) + 1,

2.

D1 : !2(k−3)+1(LM2
3

M2
1
)

...
Di−1 : !2(k−2−i+1)+1(LM i

3

M i
1
)

Di : !2(i−1)(LM i+1
3

M i+1
1

)

...

Dk−2 : !2(k−3)(LMk−1
3

Mk−1
1

)

3. the bold box inserted at step three represent m =
{

1 k even
3 k odd

boxes,

4. p = max{2k − 7, 0}.
The other bold boxes represent four normal boxes. ¤

Proof: [of Lemma 32]

1. In view of Lemma 36, we need to prove that ∀k ≥ 2, ∀n ≥ max{2k −
7, 0}, ∃m ≥ 0, such that

!nMk
1 (!nMk

2 (!nMk
3 =

= !m+max{2k−5,2}Mk−1 (!m+max{2k−7,0}Mk (!m+max{4k−9,2(k−1)}B.

and vice versa ∀m ≥ 0, ∃n ≥ max{2k−7, 0} such that the same equivalence
holds.

(a) !nMk
3 =!m+max{2k−7,0}+2(k−1)B =!m+max{4k−9,2(k−1)}B;

(b) by induction on k ≥ 2 we prove Mk
2 = Mk:

(k = 2) M2
2 = L!B

!B = L!4−3B
!M1

= M2;

(k > 2) Mk
2 = L!2(k−2)+1B

!Mk−1
2

IH= L!2k−3B
!Mk−1

= Mk.

Hence trivially !nMk
2 =!m+max{2k−7,0}Mk;

(c) !m+max{2k−7,0}Mk
1 =!m+max{2k−7,0}!!Mk−1

2 =!m+max{2k−5,2}Mk−1.

2. First notice the following:

(E1
1)∗ = (∆0)∗ = (B)∗

(Ek
1)∗ = (LB

Ek−1
1

)∗ = (LB
∆k−2

)∗ = (∆B
k−1)

∗

(M2
1)∗ = (∆0)∗ = (B)∗

(Mk
1)∗ = (LB

Ek−2
1

)∗ = (LB
∆k−3

)∗ = (∆B
k−2)

∗

2.3. CODING TYPE THEORY INTO EAL PROOFS 63

and

||(∆τ
k)
∗|| = k(4 + 4||(τ)∗||) + 5

||(B)∗|| = ||(∆o
0)
∗|| = ||(∆0)∗|| = 5

||(∆B
k)
∗|| = 24k + 5 ≤ 24(k + 1)

hence

|memberk| = 8 + |OR|+ |eqk−1|+ |false|
+ |yk|+ |xk−1|+ |yk−1|

= 32 + |eqk−1|+ ||(∆B
k−1)

∗||+ 2||(∆B
k−2)

∗||
= 32 + 24(k − 1) + 5 + 48(k − 2) + 10 + |eqk−1|
= 72k − 73 + |eqk−1|

|eqk| = 14 + |AND|+ |IFF|+ |true|+ |Dk−1|
+ |memberk|+ |op|+ 2|zk−1|+ |xk|+ |yk|

= 14 + 21 + 29 + 3 + |Dk−1|+ |memberk|
+ ||(∆B

k−2 (∆B
k−1 (B)∗||+ 2||(∆B

k−2)
∗||+ 2||(∆B

k−1)
∗||

= 144k − 112 + |Dk−1|+ |memberk|
≤ 144k − 112 + d(2(k − 1))! + |memberk|

then

|member2| = 72 ∗ 2− 73 + 29 = 100
|memberk| ≤ ck ∗ k + d(2(k − 2))! + |memberk−1|

≤
k∑

i=3

cii +
k−2∑

i=1

d(2i)! ≤ c ∗ k2 + d(2(k − 1))!

3. Looking at Figure 2.21, by Lemma 36 we have depth

max

d(member′k : Mk) + max{2k − 7, 0},
max1≤j<dk/2e{d(Dj :!2(k−2−j)+1L···

Mj+1
1

)}+ max{2k − 7, 0}
maxdk/2e≤j≤k−2{d(Dj :!2(j−1)L···

Mj+1
1

) + 4(k − 2− j)}

+ m

First we need to show that for all k ≥ 1 Ek
1 = ∆k−1 with nk−1 = · · · =

n0 = 1 (we use notation ∆(1,...)
k−1) and for all k ≥ 2 Mk

1 = ∆k−2 with

nk−2 = 2 and nk−3 = · · · = n0 = 1 (we use ∆(2,1,...)
k−2). By induction on k:

E1
1 =!B = ∆(1,...)

0

Ek
1 =!LEk−1

1

IH=!L
∆

(1,...)
k−2

= ∆(1,...)
k−1

then, using the result above:

M2
1 =!E1

1 =!2B = ∆(2)
0

Mk
1 =!Ek−1

1 =!2Mk−1
2 =!2LEk−2

1
=!2L

∆
(1,...)
k−3

= ∆(2,1,...)
k−2 .

64 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

therefore, in the calculus of d(Dj) for d(memberk), we have
∑j−1

`=0 n` = j+1.
Hence

d(memberk :!max{2k−5,2}+nMk−1 (· · ·) =

= max

d(member′k : Mk) + max{2k − 7, 0},
max1≤j<dk/2e{d(Dj :!2(k−2−j)+1L···

∆
(2,1,...)
j−1

)}+ max{2k − 7, 0}
maxdk/2e≤j≤k−2{d(Dj :!2(j−1)L···

∆
(2,1,...)
j−1

) + 4(k − 2− j)}

+ m

= m + 2(k − 1) + max{2k − 7, 0}

4. In the derivation of memberk the deepest type is the deeper between the
type of member′k and the types of the various Dis.
First notice that Mk = Mk

2 = ∆k−1 with nk−1 = 0 and nk−2 = · · · = n0 = 1
and τki =!2ki−3B, then

d(Mk) = d(Mk
2) = d(∆

(0, 1, . . .)
τki =!2ki−3B

k−1) =

= max
0≤j≤k−1

k−1∑

i=j

(1 + ni) + d(τj)

 = 2k − 1.

Hence depth of type of memberk is:

d(!max{2k−5,2}Mk−1 (!max{2k−7,0}Mk (!max{4k−9,2(k−1)}B) =

= max{4k − 8, 2k − 1} = d(!max{4k−9,2(k−1)}B)

By Lemma 36, the Dis have type !max{2(i−1),2(k−2−i)+1}(LM i+1
3

M i+1
1

) for 1 ≤ i ≤
k − 2.

d(!max{2(i−1),2(k−2−i)+1}(LM i+1
3

M i+1
1

)) = 2k − 1.

Hence the deepest type is !max{4k−9,2(k−1)}B, of depth max{4k − 8, 2k − 1}.
¤

Putting together all the ingredients of the encoding, we obtain our main technical result.

Theorem 37 Define f(k) =
{

2k − 1 1 ≤ k ≤ 3
4k − 9 k ≥ 4

.

Let Ψ[xk1
1 , . . . , xkn

n] be the term encoding an arbitrary formula Φ with free variables x
ki+1

i+1 , . . . , xkn
n ,

0 ≤ i ≤ n, and m quantifiers over D1, . . . ,Di. Then

∃J ⊆ {1, . . . , i}, ∃j ∈ {1, . . . , n}, ∃d ≤ m,

such that in EAL
Ψ[xk1

1 , . . . , xkn
n] :!f(kj)+d+

P
`∈J 2(k`−1)B

and free variables (i + 1 ≤ h ≤ n)

xkh
h :!max{2kh−7,1}+f(kj)−f(kh)+d+

P
`∈J 2(k`−1)Mkh

.

Moreover

2.3. CODING TYPE THEORY INTO EAL PROOFS 65

1. d(Ψ[xk1
1 , . . . , xkn

n] :!f(kj)+d+
P

`∈J 2(k`−1)B) = f(kj) + d +
∑

`∈J 2(k` − 1);

2. the deepest type in the EAL-derivation of Ψ[xk1
1 , . . . , xkn

n] is the final one, of depth
≤ f(kj) + d +

∑
`∈J 2(k` − 1) + 1;

3. the size of Ψ[xk1
1 , . . . , xkn

n] is O(|Φ|(2kMAX)!) where kMAX is the greatest k such that
memberk appears in Ψ[xk1

1 , . . . , xkn
n].

Proof: By induction on Ψ.

base : all base cases have no quantifiers, hence m = d = 0 and J = ∅. Then the
thesis becomes Ψ :!f(kj)B with free variables xki

i :!max{2ki−7,1}+f(kj)−f(ki)Mki

and

1. d(Ψ) = f(kj);
2. the deepest type is the final one of depth ≤ f(kj) + 1;
3. size of Ψ is O(|Φ|(2k)!).

We show the proof for the general case Ψ[xk−1, xk] = (memberk xk−1 xk),
leaving the cases Ψ[x2] = (member2 true x2) and Ψ[x2] = (member2 false x2)
to the reader.
By Lemma 32 Ψ[xk−1, xk] :!m3B for every m3 ≥ max{4k−9, 2(k−1)}. Now,
f(k) ≥ max{4k − 9, 2(k − 1)} hence Ψ[xk−1, xk] :!f(k)B.
Again by Lemma 32 xk :!m2Mk for any m2 ≥ max{2k−7, 0}, and in particu-
lar xk :!max{2k−7,1}+f(k)−f(k)Mk, and xk−1 :!m1Mk−1 for any m1 ≥ max{2k−
5, 2}, and in particular max{2(k−1)−7, 1}+f(k)−f(k−1) ≥ max{2k−5, 2}.
1. Regarding the depth of the formula we have:

d(Ψ[xk−1, xk] :!f(k)B) = d(memberk :!max{2k−5,3}Mk−1)

=
{

2(k − 1) + 1 k ≤ 3
4k − 9 k ≥ 4

= f(k)

Than the thesis holds with kj = k. Moreover,

2. considering the EAL-derivations, the deepest type is the type of memberk

of depth max{4k − 8, 2k − 1} ≤ f(k) + 1 by Lemma 36.
3. Finally, by Lemma 36, size of Ψ is O(|Φ|(2k)!).

inductive step :

if Ψ[xk1
1 , . . . , xkn

n] = (NOT Ψ′[xk1
1 , . . . , xkn

n]) then the thesis holds by induc-
tive hypothesis. Moreover
1. about depth we have:

d(Ψ[xk1
1 . . . xkn

n] :!f(kj)+d+
P

`∈J 2(k`−1)B) =

= max{d(NOT :!f(kj)+d+
P

`∈J 2(k`−1)B), d(Ψ′ :!f(kj)+d+
P

`∈J 2(k`−1)B)}
IH= max{f(kj) + d +

∑

`∈J

2(k` − 1), f(kj) + d +
∑

`∈J

2(k` − 1)}

= f(kj) + d +
∑

`∈J

2(k` − 1)

66 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

@

@

AND

Ψ1[x
k11
11

, . . . , x
kn1
n1]

!
f(kj1

)+d1+
P

`∈J1
2(k`−1)

B =!p1 B

!p1 B

!p1 B

!p1 B(!p1 B

Ψ2[x
k12
12

, . . . , x
kn2
n2]

!
f(kj2

)+d2+
P

`∈J2
2(k`−1)

B

!p1 B(!p1 B(!p1 B

t

Figure 2.22: EAL type of an AND formula

2. It is easy to see that the deepest type is the final one, of depth

d(!f(kj)+d+
P

`∈J 2(k`−1)B) = f(kj) + d +
∑

`∈J

2(k` − 1) + 1.

3. By inductive hypothesis |Ψ′[xk1
1 , . . . , xkn

n]| is O(|Φ′|(2kMAX)!) and
by Lemma 29 |NOT| = 12 hence the thesis holds.

if Ψ[xk1
1 , . . . , x

ki2
i2

, . . . , x
ki1
i1

, . . . , xkn
n] = (AND Ψ1[xk1

1 , . . . , x
ki1
i1

] Ψ2[x
ki2
i2

, . . . , xkn
n])

then by inductive hypothesis ∃J1 ⊆ {1, . . . , i}, ∃d1 ≤ m, ∃j1 ∈
{1, . . . , n} such that Ψ1 :!f(kj1

)+d1+
P

`∈J1
2(k`−1)B and

xkh
h :!max{2kh−7,1}+f(kj1

)−f(kh)+d1+
P

`∈J1
2(k`−1)

Mkh

for 1 ≤ h ≤ i1, and exists J2 ⊆ {1, . . . , i}, ∃d2 ≤ m, ∃j2 ∈ {1, . . . , n}
such that Ψ2 :!f(kj2

)+d2+
P

`∈J2
2(k`−1)B and

xkh
h :!max{2kh−7,1}+f(kj2

)−f(kh)+d2+
P

`∈J2
2(k`−1)

Mkh

for i2 ≤ h ≤ n. Without loss of generality suppose

f(kj1) + d1 +
∑

`∈J1

2(k` − 1) ≥ f(kj2) + d2 +
∑

`∈J2

2(k` − 1)

then we can construct

f(kj1) + d1 +
∑

`∈J1

2(k` − 1)− (f(kj2) + d2 +
∑

`∈J2

2(k` − 1))

boxes4 around Ψ2 (t boxes in Figure 2.22). Then

Ψ2 :!

0BB@ f(kj2
)+d2+

P
`∈J2

2(k`−1)+

+f(kj1
)+d1+

P
`∈J1

2(k`−1)−

−(f(kj2
)+d2+

P
`∈J2

2(k`−1))

1CCA
B

hence
Ψ2 :!f(kj1

)+d1+
P

`∈J1
2(k`−1)B

For free variables is analogous.
4Remember that “constructing n boxes around a term” is always possible in EAL, for the presence of the

!-introduction rule.

2.3. CODING TYPE THEORY INTO EAL PROOFS 67

1. As above, suppose

f(kj1) + d1 +
∑

`∈J1

2(k` − 1) ≥ f(kj2) + d2 +
∑

`∈J2

2(k` − 1)

and that we need to add f(kj1)+d1+
∑

`∈J1
2(k`−1)−(f(kj2)+d2+

∑
`∈J2

2(k` − 1)) boxes around Ψ2[x
ki2
i2

, . . . , xkn
n] as in Figure 2.22.

Then

d(Ψ[xk1
1 . . . xkn

n] :!f(kj1
)+d1+

P
`∈J1

2(k`−1)B) =

= max

d(AND :!f(kj1
)+d1+

P
`∈J1

2(k`−1)B),
d(Ψ1[xk1

1 , . . . , x
ki1
i1

] :!f(kj1
)+d1+

P
`∈J1

2(k`−1)B),

d(Ψ2[x
ki2
i2

, . . . , xkn
n] :!f(kj2

)+d2+
P

`∈J2
2(k`−1)B)+

+f(kj1) + d1 +
∑

`∈J1
2(k` − 1)−

−(f(kj2) + d2 +
∑

`∈J2
2(k` − 1))

= f(kj1) + d1 +
∑

`∈J1
2(k` − 1)

2. It is easy to see that the deepest type is the final one, of depth

d(!f(kj)+d+
P

`∈J 2(k`−1)B) = f(kj) + d +
∑

`∈J

2(k` − 1) + 1.

3. By inductive hypothesis |Ψ′[xk1
1 , . . . , xkn

n]| is O(|Φ′|(2kMAX)!) and
by Lemma 29 |AND| = 21 hence the thesis holds.

If Ψ[xk1
1 , . . . , x

ki2
i2

, . . . , x
ki1
i1

, . . . , xkn
n] = (OR Ψ1[xk1

1 , . . . , x
ki1
i1

] Ψ2[x
ki2
i2

, . . . , xkn
n])

as above.

If Ψ[xk1
1 , . . . , xkn

n] = (Dki
λyki .(AND (λxki .Ψ′[xk1

1 , . . . , xkn
n] yki))true) then

by inductive hypothesis Ψ′ has m′ quantifiers over D1, . . . ,Di′ and there
exist

J ′ ⊆ {1, . . . , i′} ∧ j′ ∈ {1, . . . , n} ∧ d′ ≤ m′

such that

Ψ′ :!f(kj′)+d′+
P

`∈J′ 2(k`−1)B

with free variables

xkh
h :!max{2kh−7,1}+f(kj′)−f(kh)+d′+

P
`∈J′ 2(k`−1)Mkh

.

Now Ψ has m = m′ + 1 quantifiers over D1, . . . ,Di′ ,Di, then we can
type Ψ in EAL adding 2(ki− 1) boxes as in Figure 2.23 where the bold
box represents 2(ki − 1) boxes, p1 = f(kj) + d′ +

∑
`∈J ′ 2(k` − 1) and

p2 = max{2ki − 7, 1}+ f(kj)− f(ki) + d′ +
∑

`∈J ′ 2(k` − 1). Hence the
thesis holds with J = J ′ ∪ {i}, j = j′ and d = d′ + 1.

68 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

@

@ true

Dki

@

λy

@AND

yλxki

Ψ′[xk1
1 , . . . , xkn

n]

!p1 B

!p2Mki
(!p1 B

!p2Mki

!p1 B(!p1 B

!p1 B

!p1 B

!p1+2(ki−1)+1B =!
f(kj)+d′+1+

P
`∈J′∪{i} 2(k`−1)+m

B

!2(ki−1)(L!p1 B
!p2Mki

)
!(!p2Mki

(!p1 B(!p1 B)

!(!p1 B(!p1 B)

Figure 2.23: EAL type of an arbitrary formula

1. About depth we have the following:

d(Ψ[xk1
1 . . . xkn

n] :!f(kj′)+(d′+1)+
P

`∈J′∪{h} 2(k`−1)B) =

= max

d(true :!f(kj′)+d′+
P

`∈J′ 2(k`−1)B) + 2(kh − 1) + 1,

d(AND :!f(kj′)+d′+
P

`∈J′ 2(k`−1)B) + 2(kh − 1) + 1,

d(Ψ′[xk1
1 . . . xkn

n] :!f(kj′)+d′+
P

`∈J′ 2(k`−1)B) + 2(kh − 1) + 1,
d(Dkh

:!2(kh−1)L···
!
max{2kh−7,1}+f(kj′)−f(kh)+d′+P`∈J′ 2(k`−1)

Mkh

)

= max

f(kj′) + d′ +
∑

`∈J ′ 2(k` − 1) + 2(kh − 1) + 1,
f(kj′) + d′ +

∑
`∈J ′ 2(k` − 1) + 2(kh − 1) + 1,

f(kj′) + d′ +
∑

`∈J ′ 2(k` − 1) + 2(kh − 1) + 1,

1 + 3(kh − 1) +
∑kh−1

`=0 n`

but

!max{2kh−7,1}+f(kj′)−f(kh)+d′+
P

`∈J′ 2(k`−1)Mkh
=

= ∆
(max{2kh−7,1}+f(kj′)−f(kh)+d′+

P
`∈J′ 2(k`−1),1,...)

kh−1

hence

= max

f(kj′) + (d′ + 1) +
∑

`∈J ′∪{h} 2(k` − 1),
1 + 3(kh − 1) + max{2kh − 7, 1}+ f(kj′)−

−f(kh) + d′ +
∑

`∈J ′ 2(k` − 1) + (kh − 1)

= max

f(kj′) + (d′ + 1) +
∑

`∈J ′∪{h} 2(k` − 1),
f(kj′) + (d′ + 1) +

∑
`∈J ′∪{h} 2(k` − 1)+

+2(kh − 1) + max{2kh − 7, 1} − f(kh)

2(kh − 1) + max{2kh − 7, 1} − f(kh) = 0 then

= f(kj′) + (d′ + 1) +
∑

`∈J ′∪{h} 2(k` − 1)

2.3. CODING TYPE THEORY INTO EAL PROOFS 69

2. Looking at Figure 2.23, the deepest type is again the final one,
indeed

d(!2(ki−1)(L!p1B
!p2Mki

)) =

= 2(ki − 1) + 1 + max

f(kj) + d′ +
∑

`∈J ′ 2(k` − 1) + 1,
max{2ki − 7, 1}+ f(kj)− f(ki) + d′+

+
∑

`∈J ′ 2(k` − 1) + 2ki − 1

but f(ki) = 2(ki − 1) + max{2ki − 7, 1}, then

= 2(ki − 1) + 1 + max
{

f(kj) + d′ +
∑

`∈J ′ 2(k` − 1) + 1
f(kj) + d′ +

∑
`∈J ′ 2(k` − 1) + 1

}

= f(kj) + (d′ + 1) +
∑

`∈J ′∪{i}
2(k` − 1) + 1

= d(!f(kj)+d+
P

`∈J 2(k`−1)B)

3. An arbitrary formula Φ is built up from AND, OR, true, false, IFF,
NOT, Di, memberj all bounded by O(d(2kMAX)!), then the size of
the term encoding Φ is O(|Φ|d(2kMAX)!).

The case Ψ[xk1
1 , . . . , xkn

n] = (Dki
λyki .(OR (λxki .Ψ′[xk1

1 , . . . , xkn
n] yki)) false) is

analogous. ¤

The following bound on the number of !’s in the type of a lambda term encoding an
arbitrary formula provides a limitation also for the box-nesting depth.

Corollary 38 Let Ψ be a term encoding an arbitrary formula. Then Ψ has type in EAL !tB
with t = O(n · kMAX) where kMAX is the greatest k such that memberk appears in Ψ and n
is the number of quantifiers in Ψ.

Proof: By Theorem 37 Ψ has type !tB with t = f(kj) + m +
∑

`∈J 2(k` − 1) ≤
f(kMAX) + n + 2n(kMAX − 1). ¤

In order to obtain the desired result on complexity of duplication, it remains to be shown
that the pre-compilation of the λ-terms given by eta-expansion can be performed inside EAL.

Theorem 39 If M has an EAL type, so does or(M).

Proof: It is sufficient to prove that for any EAL type σ the η-expansion η(x)σ

is always typeable in EAL, as it is described in Figure 2.24. ¤

Theorem 40 Let Ψ a term encoding an arbitrary formula. Then d(or(Ψ)) = O(n · kMAX),
where n is the number of quantifiers in Ψ and kMAX is the greatest k such that memberk

appears in Ψ.

Proof: It is sufficient to investigate depth of types in the derivation of Ψ.
Indeed, depth of or(Ψ) cannot exceed depth of Ψ plus the maximal depth of
a type in the derivation of Ψ, because, in the worst case, we can η-expand the
deepest variable of deepest type in Ψ and d(η(x)σ) is trivially d(σ). ¤

70 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

λxk

η(x2)α2
m2

@
η(xk)αk

mk

@

λx2

λx1

x

@

η(x1)α1
m1

n1

n2

nk

Figure 2.24: η(x)!n1(!m1α1(!n2(!m2α2(···!nk(!mkαk(!mk+1o)···))

This is what is needed to obtain Theorem 24 for EAL-typed terms, and, hence, our main
result:

Theorem 41 There exists a set of λ-terms En : B which normalize in at most n shared β-
reductions, where the number of non β-interactions that are required to normalize En using
Lamping’s abstract algorithm grows as Ω(K`(n)) for any fixed integer ` ≥ 0.

2.4 Conclusions

The complexity of optimal sharing is not elementary. This does not mean that the sharing
mechanism introduced by Lamping is unfeasible. The non elementary complexity is inherent
to the problem of deciding truth of higher order formulas encoded in this Chapter. For
that reason the sum of unit cost operations performed by Lamping’s algorithm must be non
elementary. We have shown that the problem can be solved with the abstract Lamping’s
algorithm and then only beta and sharing reductions are needed. Since the number of
optimal beta reduction steps is polynomial, as it is shown by Asperti, our result says that
the majority of the computation is performed by the sharing that should be, for this reason,
non elementary.

2.4. CONCLUSIONS 71

λc
’

λn
’

n’

@

c

@

n

λnλc

@

c’
x

@

c’
e

λ λc’ n’

@

@

n’

λe @

c

@

l
@

l
c

λ λ λ λ @

x l c n

@

n

@λA
*

@

A
*

λc
’

λn
’

n’

@

c

@

n

λnλc

@

c’
x

@

c’
e

λ λc’ n’

@

@

n’

λe @

c

@

l
@

l
c

λ λ λ λ @

x l c n

@

n

@λA
*

@

A
*

λc λn @

@

tr
ue

c

@

@
n

fa
ls

e
c

@

@

λx
3

@

@
tr

ue

@

A
N

D

λc
’

λn
’

n’

@

c

@

n

λnλc

@

c’
x

@

c’
e

λ λc’ n’

@

@

n’

λe @

c

@

l
@

l
c

λ λ λ λ @

x l c n

@

n

@λA
*

@

A
*

λc λn @

@

tr
ue

c

@

@
n

fa
ls

e
c

@

λy
3

λx
2 λy

2

λc
’

λn
’

n’

@

c

@

n

λnλc

@

c’
x

@

c’
e

λ λc’ n’

@

@

n’

λe @

c

@

l
@

l
c

λ λ λ λ @

x l c n

@

n

@λA
*

@

A
*

λc λn @

@

tr
ue

c

@

@
n

fa
ls

e
c

@

λx
2 λy
2

@

N
O

T

@

@

@

@
A

N
D

x2

@

@

y2

y3

tr
ue

m
em

be
r3

@

x3

@

@

A
N

D

@

@
fa

ls
e

@

O
R

@

x2

@

@

tr
ue

y2

m
em

be
r2

Figure 2.25: ∀x3(∃x2 true ∈ x2 ∧ ¬(∀x2 x2 ∈ x3))

72 CHAPTER 2. COMPLEXITY OF OPTIMAL SHARING

3
EAL-typing

In the previous Chapter we have seen that the complexity of optimal sharing is not elementary
recursive. We have shown that a particular family of lambda terms is typeable in EAL
and then we have proved the thesis. As we have already mentioned, we used an ad hoc
technique. In the current Chapter we prove that type inference in EAL is decidable. After
the study in [Sch94, DJS95] on linear decorations, we propose a simple idea for producing
all possible decorations in EAL of a given intuitionistic derivation. Then we give a type
inference algorithm in EAL for simply typed lambda terms. Given a simply typed lambda
term, our algorithm produces an EAL-type with a parametric number of ! and a set of
linear constraints such that for any solution of the set of constraints it is possible to build
an EAL-type for the starting lambda term. Finally we prove the existence of a principal
type for terms of EAL. We give a procedure that given a pure lambda term generates a
finite set of “schemata” such that any EAL-type for the lambda term can be obtained by
substitutions.

3.1 Type inference in EAL

A simple inspection of the rules of EAL shows that any λ-term with an EAL-type has also
a simple type1. Indeed, the simple type (and the corresponding derivation) is obtained
by forgetting the exponentials, which must be present in an EAL derivation because of
contraction.

The idea underlying our type inference algorithm is simple:

1. finding all “maximal decorations”;

2. solving sets of linear constraints.

We informally present the main point with an example on the term two ≡ λxy.(x(x y)).
One (sequent) simple type derivation for two is:

1However there are simply typed terms not typeable in EAL as we have already shown in Section 2.2.

74 CHAPTER 3. EAL-TYPING

w:α`w:α y:α`y:α

x:α→α,y:α`(x y):α z:α`z:α

x:α→α,x:α→α,y:α`(x(x y)):α

x:α→α,x:α→α`λy.(x(x y)):α→α

x:α→α`λy.(x(x y)):α→α

`λxy.(x(x y)):(α→α)→α→α

If we change every → in (, the previous derivation can be viewed as the skeleton of an
EAL derivation. To obtain a full EAL derivation (provided it exists), we need to decorate
this skeleton with exponentials, and to check that the contraction is performed only on
exponential formulas.

Let’s produce first a maximal decoration of the skeleton, interleaving n ! introduction
rules after each logical rule. For example

w:α`EALw:α y:α`EALy:α

x:α(α,y:α`EAL(x y):α

becomes
w:α`EALw:α

!n1w:α`EAL!
n1w:α

!n1
y:α`EALy:α

!n2y:α`EAL!
n2y:α

!n2

x:!n2α(!n1α,y:!n2α`EAL(x y):!n1α

where n1 and n2 are fresh variables. We obtain in this way a meta-derivation representing
all EAL derivations with n1, n2 ∈ IN.

Continuing to decorate the skeleton of two (i.e. to interleave ni ! rules) we obtain

w:α`EALw:α

w:!n1α`EALw:!n1α
!n1

y:α`EALy:α

y:!n2α`EALy:!n2α
!n2

x:!n2α(!n1α,y:!n2α`EAL(x y):!n1α

x:!n3 (!n2α(!n1α),y:!n2+n3α`EAL(x y):!n1+n3α
!n3

z:α`EALz:α

z:!n4α`EALz:!n4α
!n4

x:!n1+n3α(!n4α,x:!n3 (!n2α(!n1α),y:!n2+n3α`EAL(x(x y)):!n4α

x:!n5 (!n1+n3α(!n4α),x:!n3+n5 (!n2α(!n1α),y:!n2+n3+n5α`EAL(x(x y)):!n4+n5α
!n5

x:!n5(!n1+n3α(!n4α),x:!n3+n5(!n2α(!n1α)`EALλy.(x(x y)):!n2+n3+n5α(!n4+n5α

x:!n5+n6(!n1+n3α(!n4α),x:!n3+n5+n6 (!n2α(!n1α)`EALλy.(x(x y)):!n6 (!n2+n3+n5α(!n4+n5α)
!n6

x:!n5+n6 (!n1+n3α(!n4α)`EALλy.(x(x y)):!n6(!n2+n3+n5α(!n4+n5α)

The last rule—contraction—is correct in EAL iff the types of x are unifiable and banged. In
other words iff the following constraints are satisfied:

n1,n2,n3,n4,n5,n6∈IN ∧ n5=n3+n5 ∧ n1+n3=n2 ∧ n4=n1 ∧ n5+n6≥1.

The second, third and fourth of these constraints come from unification; the last one from
the fact that contraction is allowed only on exponential formulas. These constraints are
equivalent to

n1,n5,n6∈IN ∧ n3=0 ∧ n1=n2=n4 ∧ n5+n6≥1.

Since clearly these constraints admit solutions, we conclude the decoration procedure ob-
taining

...
x:!n5+n6 (!n1α(!n1α)`EALλy.(x(x y)):!n6 (!n1+n5α(!n1+n5α)

`EALλxy.(x(x y)):!n5+n6 (!n1α(!n1α)(!n6 (!n1+n5α(!n1+n5α)

3.1. TYPE INFERENCE IN EAL 75

@

@

!n2+n3+n5

!n1

!n1+n3
!n1+n3 (!n4

!n4+n5

!n4

!n2+n3+n5 (!n4+n5

!n6 (!n2+n3+n5 (!n4+n5)

!n5+n6 (!n1+n3 (!n4)(!n6 (!n2+n3+n5 (!n4+n5)

!n2 (!n1 !n2

!n3 (!n2 (!n1) !n2+n3

!n3+n5+n6 (!n2 (!n1)

!n5 (!n1+n3(!n4)

!n5+n6 (!n1+n3(!n4)

!n3+n5(!n2(!n1)

λy

y

xx

λx

Figure 3.1: Meta EAL type derivation of two.

Thus two has EAL types !n5+n6(!n1α (!n1α) (!n6(!n1+n5α (!n1+n5α), for any n1, n5, n6

solutions of
n1,n5,n6∈IN ∧ n5+n6≥1.

We may display the full derivation in a more manageable way, representing the skeleton
with the syntax tree of the lambda term with edges labelled with types and adding boxes
representing the ! introduction rules, as in Figure 3.1.

Finally notice that at the beginning of this section, we started with “one (sequent)
derivation” for two (there are other derivations, building in a different way the application
x(x y))). If that derivation had produced an unsolvable set of constraint, the procedure
should restart with another derivation. To avoid this problem, our search for maximal
decorations (i.e., the collection of constraints) is not performed on sequent derivations, but
on the syntax tree of the term. For this reason we introduce NEAL in Section 3.1.1. However,
the fact that multiple derivations for a term and principal type scheme are possible, will
surface again. It may happen that a solution to a set of constraints corresponds to more
than one derivation (a superposition of derivations), with non compatible box-assignments.
In this case, Lemma 59 ensures that compatible box assignments may be found.

3.1.1 NEAL

The natural deduction calculus (NEAL) for EAL in given in Figure 3.2, after [BBdPH93,
Asp98, Rov98].

Lemma 42 (Weakening) If Γ `NEAL A then B, Γ `NEAL A.

Proof: Trivially by induction for contr, ((I) and ((E) rules and by
definition for ax and ! rules. ¤

To annotate NEAL derivations, we use terms generated by the following grammar (ele-
mentary affine terms ΛEA):

M ::= x | λx.M | (M M) | ! (M) [M/x, . . . , M/x] | ‖M‖M
x,x

Observe that in ! (M) [M/x, . . . ,M/x], the [M/x] is a kind of explicit substitution. To
define ordinary substitution, define first the set of free variables of a term M , FV(M), induc-
tively as follows:

76 CHAPTER 3. EAL-TYPING

Γ, A `NEAL A
ax

Γ `NEAL!A ∆, !A, !A `NEAL B

Γ, ∆ `NEAL B
contr

Γ, A `NEAL B

Γ `NEAL A (B
((I)

Γ `NEAL A (B ∆ `NEAL A

Γ, ∆ `NEAL B
((E)

∆1 `NEAL!A1 · · ·∆n `NEAL!An A1, . . . , An `NEAL B

Γ, ∆1, . . . , ∆n `NEAL!B
!

Figure 3.2: Natural Elementary Affine Logic in sequent style notation

• FV(x) = {x}
• FV(λx.M) = FV(M)r {x}
• FV(M1 M2) = FV(M1) ∪ FV(M2)

• FV(! (M) [M1/x1, . . . , Mn/xn]) =
⋃n

i=1 FV(Mi) ∪ FV(M)r {x1, . . . , xn}

• FV(‖M‖N
x1,x2

) = (FV(M)r {x1, x2}) ∪ FV(N)

Ordinary substitution N{M/x} of a term M for the free occurrences of x in N , is defined
in the obvious way:

1. x{M/x} = M ;

2. y{M/x} = y if y 6= x;

3. λx.N{M/x} = λx.N ;

4. λy.N{M/x} = λz.(N{z/y}{M/x}) where z is a fresh variable;

5. (N P){M/x} = (N{M/x} P{M/x});
6. ! (N) [P1/x1, . . . , Pn/xn] {M/x} =

! (N{y1/x1} · · · {yn/xn}{M/x}) [P1{M/x}/y1, . . . , Pn{M/x}/yn]
if x /∈ {x1, . . . , xn}, where y1, . . . , yn are all fresh variables;

7. ! (N) [P1/x1, . . . , Pn/xn] {M/x} =! (N) [P1{M/x}/x1, . . . , Pn{M/x}/xn]
if ∃i s.t. xi = x;

8. ‖N‖P
y,z {M/x} = ‖N{y′/y}{z′/z}{M/x}‖P{M/x}

y′,z′ if x /∈ {y, z}, where y′, z′ are fresh
variables;

9. ‖N‖P
y,z {M/x} = ‖N‖P{M/x}

y,z if x ∈ {y, z}.
Elementary terms may be mapped to λ-terms, by forgetting the exponential structure:

• x∗ = x

• (λx.M)∗ = λx.M∗

3.1. TYPE INFERENCE IN EAL 77

Γ, x : A `NEAL x : A
ax

Γ `NEAL M :!A ∆, x :!A, y :!A `NEAL N : B

Γ,∆ `NEAL ‖N‖M
x,y : B

contr

Γ, x : A `NEAL M : B

Γ `NEAL λx.M : A (B
((I)

Γ `NEAL M : A (B ∆ `NEAL N : A

Γ, ∆ `NEAL (M N) : B
((E)

∆1 `NEAL M1 :!A1 · · ·∆n `NEAL Mn :!An x1 : A1, . . . , xn : An `NEAL N : B

Γ,∆1, . . . , ∆n `NEAL! (N) [M1/x1, . . . ,Mn/xn] :!B !

Figure 3.3: Term Assignment System for Natural Elementary Affine Logic

• (M1 M2)∗ = (M∗
1 M∗

2)

• (! (M) [M1/x1, . . . , Mn/xn])∗ = M∗{M∗
1 /x1, . . . ,M

∗
n/xn}

• (‖M‖N
x1,x2

)∗ = M∗{N∗/x1, N
∗/x2}

Definition 26 (Legal elementary terms) The elementary terms are legal under the following
conditions:

1. x is legal;

2. λx.M is legal iff M is legal;

3. (M1 M2) is legal iff M1 and M2 are both legal and FV(M1) ∩ FV(M2) = ∅;
4. ! (M) [M1/x1, . . . , Mn/xn] is legal iff M and Mi are legal for any i 1 ≤ i ≤ n and

FV(M) = {x1, . . . , xn} and (i 6= j ⇒ FV(Mi) ∩ FV(Mj) = ∅);

5. ‖M‖N
x,y is legal iff M and N are both legal and FV(M) ∩ FV(N) = ∅.

Proposition 43 If M is a legal term, then every free variable x ∈ FV(M) is linear in M .

Proof: By trivial induction on the structure of M using definitions of legal
terms and FV. ¤

Note
From now on we will consider only legal terms.

Notation
Let Γ = {x1 : A1, . . . , xn : An} be a basis. dom(Γ) = {x1, . . . , xn}; Γ(xi) = Ai; Γ ¹ V = {x :
A|x ∈ V ∧A = Γ(x)}.

The term assignment system is shown in Figure 3.3, where all bases in the premises of
the contraction, (elimination and !-rule, have domains with empty intersection.

Lemma 44

1. If Γ `NEAL M : A then FV(M) ⊆ dom(Γ);

78 CHAPTER 3. EAL-TYPING

2. if Γ `NEAL M : A then Γ ¹ FV(M) `NEAL M : A.

Lemma 45 (Substitution) If Γ, x : A `NEAL M : B and ∆ `NEAL N : A and dom(Γ) ∩
dom(∆) = ∅ then Γ, ∆ `NEAL M{N/x} : B.

Proof: Recalling that both M and N are legal terms, by easy induction on
the structure of M . ¤

Theorem 46 (Equivalence) Γ `EAL A if and only if Γ `NEAL A.

Lemma 47 (Unique Derivation) For any legal term M and formula A, if there is a valid
derivation of the form Γ `NEAL M : A, then such derivation is unique (up to weakening).

A notion of reduction is needed to state and obtain completeness of the type inference
algorithm. We have first two logical reductions (→β and →dup) corresponding to the elim-
ination of principal cuts in EAL. The other five reductions are permutation rules, allowing
contraction to be moved out of a term.

(λx.M N) →β M{N/x}

‖N‖!(M)[M1/x1,...,Mn/xn]
x,y →dup∥∥∥∥
∥∥∥N{!(M)[x′1/x1,...,x′n/xn]/x}{!(M ′)[y′1/y1,...,y′n/yn]/y}

∥∥∥
M1

x′1,y′1
· · ·

∥∥∥∥
Mn

x′n,y′n

!(M)[M1/x1, · · · ,!(N)[P1/y1,...,Pm/ym] /xi, · · · ,Mn /xn] →!−!

!(M{N/xi})[M1/x1, · · · ,P1 /y1, · · · ,Pm /ym, · · ·Mn /xn]

(‖M‖M1
x1,x2

N) →@−c ‖(M{x′1/x1, x
′
2/x2} N)‖M1

x′1,x′2

(M ‖N‖N1
x1,x2

) →@−c ‖(M N{x′1/x1, x
′
2/x2})‖N1

x′1,x′2

!(M)[M1/x1, · · · ,‖Mi‖N
y,z /xi, · · · ,Mn /xn] →!−c∥∥∥!(M)[M1/x1, · · · ,Mi{y′/y,z′/z} /xi, · · · ,Mn /xn]

∥∥∥
N

y′,z′

‖M‖‖N‖
P
y1,y2

x1,x2 →c−c

∥∥∥‖M‖N{y′1/y1,y′2/y2}
x1,x2

∥∥∥
P

y′1,y′2

λx. ‖M‖N
y,z →λ−c ‖λx.M‖N

y,z where x /∈ FV(N)

where M ′ in the →dup-rule is obtained from M replacing all its free variables with fresh ones
(xi is replaced with yi); x′1 and x′2 in the →@−c-rule, y′ and z′ in the →!−c-rule and y′1, y

′
2 in

the →c−c-rule are fresh variables.

Definition 27 The reduction relation on legal terms Ã is defined as the reflexive and tran-
sitive closure of the union of →β,→dup,→!−!,→@−c,→!−c,→c−c,→λ−c.

Proposition 48 Let M Ã N and M be a legal term, then N is a legal term.

Proposition 49 Let M→r N where r is not →β, then M∗ = N∗.

3.1. TYPE INFERENCE IN EAL 79

n : IIo → Io `EAL n : IIo → Io

z : Io `EAL z : Io

`EAL λz.z : IIo

n : IIo → Io `EAL (n λz.z) : Io y : o `EAL y : o

n : IIo → Io, y : o `EAL ((n λz.z) y) : o

n : IIo → Io `EAL λy.((n λz.z) y) : Io

`EAL λn.λy.((n λz.z) y) : (IIo → Io) → Io

x : IIo `EAL x : IIo

x : IIo `EAL x : IIo

w : o `EAL w : o

`EAL λw.w : Io

x : IIo `EAL (x λw.w) : Io

x : IIo `EAL (x (x λw.w)) : Io

`EAL λx.(x (x λw.w)) : IIo → Io

`EAL (λn.λy.((n λz.z) y) λx.(x (x λw.w))) : o → o

Figure 3.4: Simple type derivation of (λn.λy.((n λz.z) y) λx.(x (x λw.w))) : o → o

Lemma 50 Let M be a well typed term in {dup, !−!,@− c, !− c, c− c, λ− c}-normal form,
then

1. if R = ‖N‖P
x,y is a subterm of M , then either P = (P1 P2) or P is a variable;

2. if R =! (N) [P1/x1, . . . , Pk/xk] is a subterm of M , then for any i ∈ {1, . . . , k} either
Pi = (Qi Si) or Pi is a variable.

Theorem 51 (Subject Reduction) Let Γ `NEAL M : A and M Ã N , then Γ `NEAL N :
A.

3.1.2 Example of type inference

The type inference algorithm is given as a set of inference rules, specifying several functions.
The complete set of rules is given in Section 3.1.4; the properties of the algorithm will be
stated and proved in Section 3.1.3. We start here with the detailed discussion of an example,
which will also introduce the various rules and the problems they face.

A class of types for an EAL-typeable term can be seen as a decoration of a simple type
with a suitable number of boxes.

Definition 28 A general EAL-type Θ is generated by the following grammar:

Θ ::=!n1+···+nko|!n1+···+nk(Θ (Θ)

where k ≥ 0 and n1, . . . , nk are variables ranging on IN.

We shall illustrate our algorithm on the term (λn.λy.((n λz.z) y) λx.(x (x λw.w))) : o → o,
whose simple type derivation is given in Figure 3.4 (Iα stands for α → α).

The algorithms searches for the leftmost innermost subterm which is not already EAL-
typed. In this case, it is the variable

n : (((o → o) → (o → o)) → (o → o)) .

Its most general EAL-type is obtained from its simple type by adding pi modalities wherever
possible. This is the rôle of the function P:

P(o) =!po
(3.1)

P(σ) = Θ P(τ) = Γ
P(σ → τ) =!p(Θ (Γ)

. (3.2)

The main function of the algorithm—the type synthesis function S—may now be applied.
In the case of a variable x of simple type σ the rule is:

P(σ) = Θ
S(x : σ) = 〈Θ, {x : Θ}, ∅, ∅〉 (3.3)

Observe that, given a term M of simple type σ, S(M : σ) returns a quadruple:

80 CHAPTER 3. EAL-TYPING

〈general EAL-type, base2 {xi : Θi}i of pairs (variable:general EAL-type), set of linear
constraints, critical points3〉.

In our example we obtain:

n :!p1 (!p2 (!p3(!p4o (!p5o) (!p6(!p7o (!p8o)) (!p9(!p10o (!p11o)) . (3.4)

for any pi ∈ IN, 1 ≤ i ≤ 11. In the following we will not explicit the “∈ IN” for any variables
we will introduce, being this constraint implicated by Definition 28.

Notation
From now on, we will write (n (m) instead of (!no (!mo), for a better reading.

Analogously, z : (o → o) is typed

z : p12(p13 (p14) (3.5)

It is now the turn of the subterm λz.z. The type synthesis rule for an abstraction λx.M ,
where x occurs in M , takes the following steps:

1. infer the EAL-type for M ;

2. add all possible boxes around M (function B, which will be described later); the algo-
rithm tries to build all possible decorations4 that in the case of an abstraction λx.M
are the decorations of all subterms of M , already build by inductive hypothesis, plus
all possible box-decorations of the whole M , performed at this stage of the inference
by function B, plus all possible box decorations of λx.M , eventually performed at the
next step of the inference procedure;

3. contract all the types of abstracted variable x (function C, which will be described
later).

The rule is the following:

C(Θ1, . . . ,Θh) = A3

B

M, B1, Γ1, cpts ∪

sl1(x)
...

slk(x)

, A1

 =

〈
B ∪

x : Θ1
...

x : Θh

, Γ, A2

〉

S(M : τ) = 〈Γ1, B1, A1, cpts ∪ {sl1(x), . . . , slk(x)}〉

S(λx.M : σ → τ) =
〈

Θ1 (Γ, B,

{
A2

A3
, cpts

〉 (3.6)

In our example, there is only one occurrence of z and therefore the contraction function C
is called with only one type and does not produce any constraint. Also the boxing function
B produce no result, being called on a variable, i.e. it acts as the identity returning a triple
with the same base, type and (empty, in this case) set of constraints:

B(z, {z : p12(p13o (p14o)}, p12(p13o (p14o), ∅, ∅) =
〈{z : p12(p13o (p14o)}, p12(p13o (p14o), ∅〉.

2A base here is a multiset, i.e. there could be serveral copies of x : Θ.
3We will discuss critical points in a moment.
4More precisely it builds all possible decorations without exponential cuts and with some other properties

listed in Theorem 58.

3.1. TYPE INFERENCE IN EAL 81

@

n
λz

z

b1

Figure 3.5: Decoration of (n λz.z).

The rôle of cpts and sl will be discussed in the context of the critical points, below. Coming
back to our example, for λz.z : ((o → o) → (o → o)) we infer the EAL-type

λz.z : p12(p13 (p14) (p12(p13 (p14) (3.7)

When the algorithm infers the EAL-type for (n λz.z) : (o → o), it:

1. adds all possible boxes around the argument λz.z with the boxing function, that in
this case adds b1 boxes around λz.z returning a triple with the same base, b1 banged
type and unmodified set of (again empty) constraints:

B(λz.z, ∅, p12(p13 (p14) (p12(p13 (p14), ∅, ∅) =
= 〈∅, b1(p12(p13 (p14) (p12(p13 (p14)), ∅〉

2. imposes the EAL-type of n to be functional, i.e. the constraint

p1 = 0 (3.8)

3. unifies the EAL-type of the boxed λz.z with the argument part of the EAL-type of n:

U

(
b1(p12(p13 (p14) (p12(p13 (p14)),

p2(p3(p4 (p5) (p6(p7 (p8))

)
.

Observe that the implicational structure of the types is already correct, since we start
from a simple type derivation. Therefore, unification only produces a set of contraints
on the variables used to indicate boxes. In our example, we get the constraints:

b1 = p2

p12 = p3

p13 = p4

p14 = p5

p12 = p6

p13 = p7

p14 = p8

⇔

b1 = p2

p3 = p6 = p12

p4 = p7 = p13

p5 = p8 = p14.

(3.9)

The type synthesis rule5 for an application, provided that M and N are not applications
5We will explain d later

82 CHAPTER 3. EAL-TYPING

themselves, is:

U (Θ1, Θ3) = A4

B(N,B2, Θ2, cpts2, A2) = 〈B3, Θ3, A3〉
S(N : σ) = 〈Θ2, B2, A2, cpts2〉
S(M : σ → τ) = 〈!

P
ni(Θ1 (Γ), B1, A1, cpts1〉

S((M N) : τ) =

〈
Γ, B1 ∪B3,

A1

A3

A4∑
ni = 0

, cpts1 d cpts2

〉
(3.10)

Figure 3.5 shows the decoration obtained so far for:

n : b1(p3(p4 (p5) (p3(p4 (p5)) (p9(p10 (p11) ` (n λz.z) : p9(p10 (p11). (3.11)

Next step is the inference of a general EAL-type p15 for y : o. Then the algorithm starts
to process ((n λz.z) y) : o. As before, the algorithm

1. applies B to the argument y (a void operation here, since the boxing function does
nothing for variables);

2. imposes the EAL-type of (n λz.z) to be functional:

p9 = 0. (3.12)

3. unifies the EAL-types, to make type-correct the application:

U (p10, p15) = p10 = p15. (3.13)

However, the present case is more delicate than the application we treated before,
since the function part is already an application. Two consecutive applications in
((n λz.z) y) indicates that more than one decoration is possible. Indeed, there can be
several sequent derivations building the same term, that can be differently decorated.
The issue is better appreciated if we look ahead for a moment and we consider the term
λy.((n λz.z) y). There are two (simple) sequent derivations for this term, both starting
with the term (x y) : o, for x : o → o, y : o. The first derivation, via a left →-rule,
obtains ((n λz.z) y) : o; then it bounds y, giving λy.((n λz.z) y) : o → (o → o). The
second derivation permutes the rules: it starts by binding y, obtaining λy.(x y) and
only at this point substitues (n λz.z) for x, via the left →-rule. When we add boxes
to the two derivations, we see this is a critical situation. Indeed, in the first derivation
we may box (x y), then ((n λz.z) y) and finally λy.((n λz.z) y). In the second, we box
(x y), then λy.(x y) and finally the whole term. The two (incompatible) decorations
are depicted in the two bottom trees of Figure 3.9. The critical edge—where the box-
ing radically differs—is the root of the subtree for ((n λz.z) y), corresponding to the x
that is substituted for in the left →-rule. Let us then resume the discussion of the type
inference for this term. At this stage we collect the critical point, marked with a star
in Figure 3.6, indicating the presence of two possible derivations. When, in the future,
it will be possible to add boxes, for example b2 in Figure 3.6 during the type inference
of λy.((n λz.z) y), the algorithm will consider the critical point as one of the closing
points of such boxes, c2 in Figure 3.6, eventually modifying the constraint in Equa-
tion (3.12) that impose type of (n λz.z) to be functional and not exponential. Indeed,

3.1. TYPE INFERENCE IN EAL 83

@

@

n
λz

z

b1

y
c1

b2 λy

Figure 3.6: Critical point in the decoration of λy.((n λz.z)y).

Figure 3.7: Combinations of two critical points.

for completeness, the algorithm must take into account all possible derivations. When
there will be more than one critical point, at every stage of the type inference, when
it is possible to apply a ! rule, the algorithm will compute all possible combinations
of the critical points (see Figure 3.7, showing a schematic example with two critical
points) eventually modifying some constraints. We call slices6 such combinations of
critical points; they are the data maintained by the algorithm and indicated in the
rules as cpts. The task of combining the two lists of slices collected during the type
inference of the function and argument part of an application is performed by d whose
rules are given in Section 3.1.4.

Definition 29 The list of free variable occurrences of a lambda term M is defined in
the following way:

(a) FVO(x) = [x];

(b) FVO(λx.M) = FVO(M)− x;

(c) FVO((M1 M2)) = FVO(M1) :: FVO(M2) (the concatenation of lists).

6We thank Philippe Dague for useful discussions and suggestions on the calculation of critical points.

84 CHAPTER 3. EAL-TYPING

Definition 30 A slice is a set of pairs (constraint, list of free variable occurrences) as
in the following7:

sl =
{
(Aj1 , [y11 , . . . , y1h

]), . . . , (Ajk , [yk1 , . . . , ykh
])

}

A slice corresponds to a combination of critical points.

In our example the algorithm collects the slice (p9 = 0, [n]). Notice that a slice parti-
tions the set of free variable occurrences in a derivation: it marks the set of variable
occurrences whose types should not be modified when the box is added. This is the
intuitive meaning of the set of free variable occurrences in the data structure we use.

Notation

• sl(x) indicates a slice having x as an element of every list of variables in it.

• x ∈ sl if and only if there exists one element of sl whose list of variables contains
x.

• Aj ∈ sl if and only if there exists one element of sl whose constraint is Aj .

• Being Aj the constraint ±nj1±· · ·±njk
= 0, Aj−n corresponds to the constraint

±nj1 ± · · · ± njk
− n = 0.

The general type inference rule for the application we are considering now, i.e. ((M1 M2) N)
when N is not an application, is the following:

cpts = (cpts1 ∪ {(
∑

ni = 0, FVO((M1 M2)))}) d cpts2

U (Θ1,Θ3) = A4

B(N, B2, Θ2, cpts2, A2) = 〈B3, Θ3, A3〉
S(N : σ) = 〈Θ2, B2, A2, cpts2〉
S((M1 M2) : σ → τ) = 〈!

P
ni(Θ1 (Γ), B1, A1, cpts1〉

S((M1 M2) N) : τ) =

〈
Γ, B1 ∪B3,

A1

A3

A4∑
ni = 0

, cpts

〉
(3.14)

In the example case we obtain:

n : b1(p3(p4 (p5) (p3(p4 (p5))
(p9(p10 (p11),

y : p10

 ` ((n λz.z) y) : p11 (3.15)

and critical points cpts = {(p9 = 0, [n])}.
Typing λy.((n λz.z) y) : o → o involves rule (3.6), the same we used for λz.z, but now

the boxing procedure B is called on a subterm that is not a single variable. The complete
set of rules for B is the following:

B(x,B,Γ, cpts, A) = 〈B, Γ, A〉 (3.16)
7Aj means the j-th row of the matrix A, i.e. the j-th constraint.

3.1. TYPE INFERENCE IN EAL 85

Boxing of a variable produces no changes in the base, type and set of constraints.

B(B, Γ, cpts, A) = 〈B1, Γ1, A1〉
B(M, B,Γ, cpts, A) = 〈!bB1, !bΓ1, A1〉 (3.17)

B takes care of the list of critical points, by adding boxes “inside” the term as in Figure 3.7;
at the end, B adds b boxes “around” the term.

B(B, Γ, ∅, A) = 〈B, Γ, A〉 (3.18)

B with no critical points produces no changes.

B (B1, !cΓ, cpts, A2) = 〈B, ∆, A1〉
B1 =

{
xi :

{
!cΘi xi /∈ sl
Θi xi ∈ sl

}

i

A2 =
({

Aj Aj /∈ sl
Aj − c Aj ∈ sl

)

j

B({xi : Θi}i, Γ, {sl} ∪ cpts,A) = 〈B, ∆, A1〉 (3.19)

Therefore, rule (3.6) gives in our case:

S(λy.((n λz.z) y) : o → o) =

〈
b2 + c1 + p10 (b2 + c1 + p11,

{n : b2(b1(p3(p4 (p5) (p3(p4 (p5)) (p9(p10 (p11))} ,

...
p9 − c1 = 0

...

,

{(p9 − c1 = 0, [n])}

〉
(3.20)

where p9 − c1 = 0 is the unique constraint (Equation (3.12)) modified by B. The decoration
obtained is shown in Figure 3.6. Observe that, at this stage, the presence of incompatible
derivations does not show up yet. It will be taken into account as soon as we will try to box
a superterm of the one we just processed. If λy.((n λz.z) y) would be the whole term, on
the contrary, an additional call to the function B would be performed, see the rule (3.59) for
function S .

When the algorithm processes λn.λy.((n λz.z) y) : (((o → o) → (o → o)) → (o → o)) →
(o → o) it applies again rule (3.6). It adds c2 boxes passing through the critical point and
b3 boxes around the term, obtaining:

S(λn.λy.((n λz.z) y) : (((o → o) → (o → o)) → (o → o)) → (o → o)) =

〈

b3 + b2(b1(p3(p4 (p5) (p3(p4 (p5)) (p9(p10 (p11))
(b3 + c2(b2 + c1 + p10 (b2 + c1 + p11)

,

∅,

...
p9 − c1 − c2 = 0

...

,

∅

〉
(3.21)

86 CHAPTER 3. EAL-TYPING

@

@

n
λz

z

y
c1

b1

λy

λn

c2

b3

b2

Figure 3.8:

where p9 − c1 − c2 = 0 is the uniqe constraints modified at this stage of the synthesis.
The critical point (p9−c2−c2 = 0, [n]) is removed. In fact, to bound n, the substitution of

n(λz.z) for x has to be already performed. It does not make sense to derive first λn.λy.(x y),
add boxes, and then substitute n(λz.z) for x, since this would be a free-variable catching
substitution.

Figure 3.8 shows the decoration obtained. Notice that boxes c2 and b2 belong to the two
incompatible EAL-derivations we already discussed before. The algorithm maintains at the
same time these derivations guaranteeing (see Lemma 59) that if the final solution instan-
tiates two incompatible derivations, we can always calculate an equivalent EAL-derivation
(Figure 3.9 shows the two possible derivations for our example).

Going on with the type synthesis, the algorithm starts processing the leftmost occurrence
of x in (x (x λw.w)). We use superscripts (1) and (2) to discriminate the right and left
occurrence, respectively. For the leftmost—x(2) : (o → o) → (o → o)—we infer the EAL-
type

p16(p17(p18 (p19) (p20(p21 (p22)); (3.22)

analogously, for the rightmost x(1) : (o → o) → (o → o) we get the EAL-type

p23(p24(p25 (p26) (p27(p28 (p29)). (3.23)

The EAL-type of w : o is p30 and then λw.w : o → o is typeable in EAL with type p30 (p30.
The innermost application (x(1) λw.w) is typed p27(p28 (p29), once we have imposed

p23 = 0, (3.24)

we have boxed λw.w with b4 boxes, and we have unified the types

U (p24(p25 (p26), b4(p30 (p30)) =
{

b4 = p24

p25 = p26 = p30.
(3.25)

3.1. TYPE INFERENCE IN EAL 87

@

@

@

@

@

@

n
λz

z

y
c1 + b2

b1

λy

λn
b3 + b2

c2 − b2

n
λz

z

y
c1 + c2

b1

b2 − c2
λy

λn
b3 + c2

n
λz

z

y
c1

b1

b2
λy

λn

c2

b3

b2 ≤ c2c2 ≤ b2

Figure 3.9: Superimposed derivations.

When the algorithm processes (x(2) (x(1) λw.w)), it adds b5 boxes around the argument,
imposes

p16 = 0 (3.26)

and unifies the types

U (p17(p18 (p19), b5 + p27(p28 (p29)) =

p17 = b5 + p27

p18 = p28

p19 = p29.
(3.27)

Moreover, the presence of two consecutive applications makes the algorithm collect a new
critical point (p17 = b5 + p27, [x(1)]). The derivation obtained is:

{
x(1) : b5(b4(p25 (p25) (p27(p18 (p19)),

x(2) : p17(p18 (p19) (p20(p21 (p22)

}
` (x(2) (x(1) λw.w)) : p20(p21 (p22)

(3.28)
and its decoration is shown in Figure 3.10.

For the type inference of λx.(x(2) (x(1) λw.w)) : ((o → o) → (o → o)) → (o → o), the
algorithm applies the usual rule for abstractions seen above (3.6), but in this case there are
two instances of the bound variable x. Here comes to work the function C, whose rules are
the following.

88 CHAPTER 3. EAL-TYPING

@

@

w

b4

x(1) λw

b5

x(2)

Figure 3.10:

C(Θ) = ∅ (3.29)

U (!n1+···+nhΘ1, Θ2, . . . ,Θk) = A

C(!n1+···+nhΘ1, . . . , Θk) =
{

n1 + · · ·+ nh ≥ 1
A

(3.30)

Therefore the contraction of k general EAL-types is obtained by unification and the con-
straint that the contracted types have at least one “!” (since in EAL contraction is allowed
only for exponential formulas).

Coming back to our example, the algorithm adds c3 boxes passing through the critical
point and b6 boxes around the body of the abstraction. The B function modifies the first
constraint in Equation (3.27):

p17 = b5 + p27 − c3 . (3.31)

Then the algorithm contracts the types of x:

C
(

b6 + b5(b4(p25 (p25) (p27(p18 (p19)),
b6 + c3(p17(p18 (p19) (p20(p21 (p22))

)
=

=

b6 + b + 5 ≥ 1
b5 = c3

b4 = p17

p18 = p19 = p21 = p22 = p25

p20 = p27

(3.32)

Finally it removes the critical point (p17 = b5 + p27 − c3, [x(1)]).
The derivation obtained, whose decoration is shown in Figure 3.11, is:

` λx.(x (x λw.w)) : b6 + b5(b4(p18 (p18) (p20(p18 (p18))
(b6 + b5 + p20(p18 (p18). (3.33)

The algorithm process now the whole term (λn.λy.((n λz.z) y) λx.(x (x λw.w))) : o → o.
It adds b7 boxes around the argument of the application and unifies the EAL-types for the

3.1. TYPE INFERENCE IN EAL 89

@

@

b5

x(2)

w

b4

x(1) λw

λx

c3

b6

Figure 3.11:

correct application:

U

(
b3 + b2(b1(p3(p4 (p5) (p3(p4 (p5)) (p9(p10 (p11),

b7(b6 + b5(b4(p18 (p18) (p20(p18 (p18)) (b6 + b5 + p20(p18 (p18)

)
=

=

b7 = b3 + b2

b1 = b6 + b5

b4 = p3 = p20

p4 = p5 = p10 = p11 = p18

p9 = b6 + b5 + p20

(3.34)

Since this is the complete term, the final step of the algorithm is a single call to the function
S , which in this case simply adds b8 boxes around the term. Therefore, the simply typed
lambda term

(λn.λy.((n λz.z) y) λx.(x (x λw.w))) : o → o (3.35)

has EAL-type
!b8+b3+c2(!b2+c1+p4o (!b2+c1+p4o) (3.36)

for any p1, . . . , p30, b1, . . . , b8, c1, c2, c3 ∈ IN solutions of the set of constrains8 in equations (3.8)–
(3.34):

b6 + b5 ≥ 1
b7 = b3 + b2

b1 = p2 = b6 + b5

b5 = c3

p1 = p16 = p23 = 0
p9 = c1 + c2 = b6 + b5 + b4

p17 = b5 + p27 − c3

b4 = p3 = p6 = p12 = p17 = p20 = p24 = p27

p4 = p5 = p7 = p8 = p10 = p11 = p13 = p14 = p15 = p18

p4 = p19 = p21 = p22 = p25 = p26 = p28 = p29 = p30.

(3.37)

The final decoration is shown in Figure 3.12. Considering the set of constraints in Equa-
8We have boxed the constraints which were not modified by B until the end of the type inference process

in the exposition above. They are now all collected in the set of constraints below.

90 CHAPTER 3. EAL-TYPING

@

@

@

@

@

n
λz

z

y
c1

b1

λy

λn

c2

b3

b2

b5

x(2)

w

b4

x(1)

c3

b6
λx

λw

b7

b8

Figure 3.12: Final superimposed decoration.

@

@

@

@

@

n
λz

z

y

n1

λy

λn
n3

n2

n1 + n4

x(2)

w

n4

x(1)

n1
λx

λw

n5

n2 + n3

Figure 3.13: Final decoration.

tion (3.37) and the incompatibility of c2 and b2 stated above, the simply typed term

(λn.λy.((n λz.z) y) λx.(x (x λw.w))) : o → o

can be typed in EAL either:

1. for any n1, . . . , n6 ∈ IN, n1 ≥ 1 with EAL-type !n3+n5(!n1+n2+n4+n6o (!n1+n2+n4+n6o)
and decoration shown in Figure 3.13, or

2. for any m1, . . . , m7 ∈ IN, m1 ≥ 1 ∧ m2 + m3 = m1 + m5 with EAL-type
!m3+m4+m6(!m2+m7o (!m2+m7o) and decoration shown in Figure 3.14.

3.1.3 Type Inference

A class of types for an EAL-typeable term can be seen as a decoration of a simple type with
a suitable number of boxes. We propose an algorithm collecting integer constraints whose
solutions corresponds to proper box assignments.

3.1. TYPE INFERENCE IN EAL 91

@

@

@

@

@

n
λz

z

y
m2

m1

λy

λn

m3

m4

x(2)

w

m5

x(1)

m1
λx

λw

m4

m6

Figure 3.14: Another possible final decoration.

Definition 31 (Type Synthesis Algorithm) Given a simply typeable lambda term and its
principal type scheme M : σ, the type synthesis algorithm S (M : σ) returns a triple
〈Θ, B, A〉, where Θ is a general EAL-type, B is a base (i.e. a multi-set of pairs variable,
general EAL-type) and A is a set of linear constraints.

The algorithm S (M : σ) is defined in the Section 3.1.4. One of the crucial issues is the
localization of the points where derivations may differ for the presence or absence of boxes
around some subterms. This is the role of critical points, managed by the boxing procedure,
B (see Section 3.1.4).

Proposition 52 (Termination) Let M be a simply typed term and let σ be its most general
type. S (M : σ) always terminates with a triple 〈Θ, B, A〉.

The algorithm is exponential in the size of the λ-term, because to investigate all possible
derivations we need to (try to) box all possible combinations of critical points (see the clauses
for the product union, d, in Section 3.1.4) that are roughly bounded by the size of the term.

Correctness and completeness of S are much simpler if, instead of EAL, we formulate
proofs and results with reference to an equivalent natural deduction formulation.

3.1.4 The full algorithm

In the following n, n1, n2 are always fresh variables, o is the base type. Moreover, we consider
!n1(!n2Θ) syntactically equivalent to !n1+n2Θ.

Notation
Given a set of linear constraints A and a solution X of A, for any general EAL-type Θ and
for any base B = {x1 : Θ1, . . . , xn : Θn}, we denote with X(Θ) the instantiation of Θ with X
and with X(B) the instantiation of B with X, i.e. X(B) = {x1 : X(Θ1), . . . , xn : X(Θn)}.

Unification: U

Unification takes a set of h ≥ 2 general EAL-types having the same underlying intuition-
istic shape and returns a set of linear equations A such that for any solution X of A, the

92 CHAPTER 3. EAL-TYPING

instantiations of the h general EAL-types are syntactically identical.

U (!
P

ni1o, . . .!
P

nih o) =

∑
ni1 −

∑
ni2 = 0

...∑
nih−1

−∑
nih = 0

(3.38)

U (Θ11 , . . . ,Θ1h
) = A1 U (Θ21 , . . . , Θ2h

) = A2

U

!
P

ni1 (Θ11 (Θ21),
...,
!
P

nih (Θ1h
(Θ2h

)

 =

∑
ni1 −

∑
ni2 = 0

...∑
nih−1

−∑
nih = 0

A1

A2

(3.39)

Contraction (C) and Type Processing (P)

Contraction in EAL is allowed only for exponential formulas. Thus, given k general EAL-
types, C returns a the same set of constraints of U with the additional constraint that the
number of external ! must be greater than zero.

C(Θ) = ∅ (3.40)

U (!n1+···+nhΘ1, Θ2, . . . ,Θk) = A

C(!n1+···+nhΘ1, . . . , Θk) =
{

n1 + · · ·+ nh ≥ 1
A

(3.41)

Given a simple type τ , P returns the most general EAL-type whose cancellation is τ simply
adding everywhere p exponentials (every p is a fresh variable).

P(o) =!po
(3.42)

P(σ) = Θ P(τ) = Γ
P(σ → τ) =!p(Θ (Γ)

(3.43)

Boxing: B and B

B(B, Γ, ∅, A) = 〈B, Γ, A〉 (3.44)

B (B1, !cΓ, cpts, A2) = 〈B, ∆, A1〉
B1 =

{
xi :

{
!cΘi xi /∈ sl
Θi xi ∈ sl

}

i

A2 =
({

Aj Aj /∈ sl
Aj − c Aj ∈ sl

)

j

B({xi : Θi}i,Γ, {sl} ∪ cpts,A) = 〈B,∆, A1〉 (3.45)

3.1. TYPE INFERENCE IN EAL 93

B(x,B,Γ, cpts, A) = 〈B, Γ, A〉 (3.46)

B(B, Γ, cpts, A) = 〈B1, Γ1, A1〉
B(M, B,Γ, cpts, A) = 〈!bB1, !bΓ1, A1〉 (3.47)

Proposition 53 Let b, c1, . . . , ck be the fresh variables introduced by B(M, B,Γ, cpts, A) =
〈!bB1, !bΓ1, A1〉 and let X be a solution of A, then

1. X1 = (X, b = 0, c1 = 0, . . . , ck = 0) is a solution of A1;

2. X1(Γ1) = X(Γ);

3. X1(B1) = X(B).

Product union: d

∅ d cpts = cpts
(3.48)

cpts d ∅ = cpts
(3.49)

sl21

...
sln1

d

sl12

...
sln2

= cpts

sl11

...
sln1

d

sl12

...
sln2

= {sl11 , sl11 ∪ sl12 , . . . , sl11 ∪ sln2} ∪ cpts

(3.50)

Type synthesis: S
Let ¬app(M) ↔6 ∃M1, M2 s.t. M = (M1 M2).

P(σ) = Θ
S(x : σ) = 〈Θ, {x : Θ}, ∅, ∅〉 (3.51)

h ≥ 1
C(Θ1, . . . ,Θh) = A3

B

M, B1, Γ1, cpts ∪

sl1(x)
...

slk(x)

, A1

 =

〈
B ∪

x : Θ1
...

x : Θh

, Γ, A2

〉

S(M : τ) = 〈Γ1, B1, A1, cpts ∪ {sl1(x), . . . , slk(x)}〉

S(λx.M : σ → τ) =
〈

Θ1 (Γ, B,

{
A2

A3
, cpts

〉 (3.52)

94 CHAPTER 3. EAL-TYPING

x /∈ FV((M1 M2))
cpts = cpts1 ∪ {(

∑
ni − n = 0, FVO(M1 M2))}

P(σ) = Θ
B ((M1 M2), B1, Γ1, cpts1, A1) =

〈
B, !

P
niΓ, A

〉
S((M1 M2) : τ) = 〈Γ1, B1, A1, cpts1〉

S(λx.(M1 M2) : σ → τ) =
〈

Θ (!nΓ, B,

{
A∑

ni − n = 0
, cpts

〉 (3.53)

¬app(M)
x /∈ FV(M)
P(σ) = Θ
B (M,B1, Γ1, cpts, A1) = 〈B, Γ, A〉
S(M : τ) = 〈Γ1, B1, A1, cpts〉

S(λx.M : σ → τ) = 〈Θ (Γ, B,A, cpts〉 (3.54)

¬app(M) ∧ ¬app(N)
U (Θ1, Θ3) = A4

B(N,B2, Θ2, cpts2, A2) = 〈B3, Θ3, A3〉
S(N : σ) = 〈Θ2, B2, A2, cpts2〉
S(M : σ → τ) = 〈!

P
ni(Θ1 (Γ), B1, A1, cpts1〉

S((M N) : τ) =

〈
Γ, B1 ∪B3,

A1

A3

A4∑
ni = 0

, cpts1 d cpts2

〉
(3.55)

¬app(M)
cpts = cpts1 d

(
cpts2 ∪ {(A1

4, FVO((N1 N2)))}
)

U (Θ3, Θ1) = A4

B((N1 N2), B2, Θ2, cpts2, A2) = 〈B3, Θ3, A3〉
S((N1 N2) : σ) = 〈Θ2, B2, A2, cpts2〉
S(M : σ → τ) = 〈!

P
ni(Θ1 (Γ), B1, A1, cpts1〉

S((M (N1 N2)) : τ) =

〈
Γ, B1 ∪B3,

A1

A3

A4∑
ni = 0

, cpts

〉
(3.56)

Notice that A1
4 indicates the equality constraints between the outermost number of ! in the

type of (N1 N2) and in the function part of the type of M .

¬app(N)
cpts = (cpts1 ∪ {(

∑
ni = 0, FVO((M1 M2)))}) d cpts2

U (Θ1, Θ3) = A4

B(N, B2,Θ2, cpts2, A2) = 〈B3, Θ3, A3〉
S(N : σ) = 〈Θ2, B2, A2, cpts2〉
S((M1 M2) : σ → τ) = 〈!

P
ni(Θ1 (Γ), B1, A1, cpts1〉

S((M1 M2) N) : τ) =

〈
Γ, B1 ∪B3,

A1

A3

A4∑
ni = 0

, cpts

〉
(3.57)

3.1. TYPE INFERENCE IN EAL 95

cpts4 = cpts2 ∪ {(A1
4, FVO((N1 N2)))}

cpts3 = cpts1 ∪ {(
∑

ni = 0, FVO((M1 M2)))}
U (Θ3,Θ1) = A4

B((N1 N2), B2, Θ2, cpts2, A2) = 〈B3, Θ3, A3〉
S((N1 N2) : σ) = 〈Θ2, B2, A2, cpts2〉
S((M1 M2) : σ → τ) = 〈!

P
ni(Θ1 (Γ), B1, A1, cpts1〉

S((M1 M2) (N1 N2)) : τ) =

〈
Γ, B1 ∪B3,

A1

A3

A4∑
ni = 0

, cpts3 d cpts4

〉
(3.58)

Type synthesis algorithm: S

S simply box the term, forgets the set of critical points and eventually contracts common
variables in the base.

C(Θ11 , . . . ,Θk1) = A1 . . . C(Θ1h
, . . . ,Θkh

) = Ah

B(M,B1, Θ1, cpts, A′) =

〈

x1 : Θ11 , . . . , x1 : Θk1 ,
...

xh : Θ1h
, . . . , xh : Θkh

, Θ, A

〉

S(M : σ) = 〈Θ1, B1, A
′, cpts〉

S (M : σ) =

〈
Θ, {x1 : Θ11 , x2 : Θ12 , . . . , xh : Θ1h

} ,

A
A1
...

Ah

〉
(3.59)

Example 1 We have already seen in Chapter 2 that the simply typed lambda term

(λn.(n λy.(n λz.y)) λx.(x (x y))) : o

is not typeable in EAL. Here follows the trace of the type synthesis algorithm executed on
such a term:
S(λn.(n λy.(n λz.y)) λx.(x (x y))) : o)
S(λn.(n λy.(n λz.y)) : ((o → o) → o) → o)
S((n λy.(n λz.y)) : o)
S(n : (o → o) → o)

P((o → o) → o) = p1(p2(p3 (p4) (p5)
= 〈p1(p2(p3 (p4) (p5), {n : p1(p2(p3 (p4) (p5)}, ∅, ∅〉

S(λy.(nλz.y) : o → o)
S((n λz.y) : o)
S(n : (o → o) → o)

96 CHAPTER 3. EAL-TYPING

P((o → o) → o) = p6(p7(p8 (p9) (p10)
= 〈p6(p7(p8 (p9) (p10), {n : p6(p7(p8 (p9) (p10)}, ∅, ∅〉

S(λz.y : o → o)
S(y : o)

P(o) = p11

= 〈p11, {y : p11}, ∅, ∅〉
B(y, {y : p11}, p11, ∅, ∅) = 〈{y : p11}, p11, ∅〉
P(α) = p12

= 〈p12 (p11, {y : p11}, ∅, ∅〉
B(λz.y, {y : p11}, p12 (p11, ∅, ∅)

B({y : p11}, p12 (p11, ∅, ∅) = 〈{y : p11}, p12 (p11, ∅〉
= 〈{y : b1 + p11}, b1(p12 (p11), ∅〉

U (p7(p8 (p9), b1(p12 (p11)) =

p7 = b1

p8 = p12

p9 = p11

=

〈
p10, {n : p6(p7(p8 (p9) (p10), y : b1 + p11},

p7 = b1

p8 = p12

p9 = p11

p6 = 0

, ∅
〉

= 〈p10, {n : b1(p8 (p9) (p10, y : b1 + p9}, ∅, ∅〉
B((n λz.y), {n : b1(p8 (p9) (p10, y : b1 + p9}, p10, ∅, ∅)

= 〈{n : b2(b1(p8 (p9) (p10), y : b2 + b1 + p9}, b2 + p10, ∅〉
C(b2 + b1 + p9) = ∅
= 〈b2 + b1 + p9 (b2 + p10, {n : b2(b1(p8 (p9) (p10)}, ∅, ∅〉
B(λy.(n λz.y), {n : b2(b1(p8 (p9) (p10)}, b2 + b1 + p9 (b2 + p10, ∅, ∅)

= 〈{n : b3 + b2(b1(p8 (p9) (p10)}, b3(b2 + b1 + p9 (b2 + p10), ∅〉

U (p2(p3 (p4), b3(b2 + b1 + p9 (b2 + p10)) =

p2 = b3

p3 = b2 + b1 + p9

p4 = b2 + p10

=

〈
p5,

{
n : p1(p2(p3 (p4) (p5),
n : b3 + b2(b1(p8 (p9) (p10)

}
,

p2 = b3

p3 = b2 + b1 + p9

p4 = b2 + p10

p1 = 0

, ∅
〉

=
〈

p5,

{
n : b3(b2 + b1 + p9 (b2 + p10) (p5,
n : b3 + b2(b1(p8 (p9) (p10)

}
, ∅, ∅

〉

B
(

(n λy.(n λz.y)),
{

n : b3(b2 + b1 + p9 (b2 + p10) (p5,
n : b3 + b2(b1(p8 (p9) (p10)

}
, p5, ∅, ∅

)

=
〈{

n : b4(b3(b2 + b1 + p9 (b2 + p10) (p5),
n : b4 + b3 + b2(b1(p8 (p9) (p10)

}
, b4 + p5, ∅

〉

C(b4(b3(b2 + b1 + p9 (b2 + p10) (p5), b4 + b3 + b2(b1(p8 (p9) (p10))

=

b4 ≥ 1
b4 = b4 + b3 + b2

b3 = b1

b2 + b1 + p9 = p8

b2 + p10 = p9

p5 = p10

=

b4 ≥ 1
b3 = 0
b2 = 0
b1 = 0
p8 = p5

p9 = p5

p10 = p5

= 〈b4((p5 (p5) (p5) (b4 + p5, ∅, {b4 ≥ 1}, ∅〉

3.1. TYPE INFERENCE IN EAL 97

S(λx.(x (x y)) : (o → o) → o)
S((x (x y)) : o)
S(x : o → o)

= 〈p1(p2 (p3), {x : p1(p2 (p3)}, ∅, ∅〉
S((x y) : o)
S(x : o → o)

= 〈p4(p6 (p7), {x : p4(p6 (p7)}, ∅, ∅〉
S(y : o)

= 〈p8, {y : p8}, ∅, ∅〉
U (p6, p8) = {p6 = p8}
= 〈p7, {x : p6 (p7, y : p6}, ∅, ∅〉

B((x y), {x : p6 (p7, y : p6}, p7, ∅, ∅)
= 〈{x : b1(p6 (p7), y : b1 + p6}, b1 + p7, ∅〉

U (b1 + p7, p2) = {b1 + p7 − p2 = 0}
cpts =

{(
b1 + p7 − p2 = 0,

{
x : b1(p6 (p7),
y : b1 + p6

})}

=

〈
p3,

x : p2 (p3,
x : b1(p6 (p7),
y : b1 + p6

 , {b1 + p7 − p2 = 0}, cpts

〉

B

(x (x y)),

x : p2 (p3,
x : b1(p6 (p7),
y : b1 + p6

 , p3, cpts, {b1 + p7 − p2 = 0}

B

x : p2 (p3,
x : b1(p6 (p7),
y : b1 + p6

 , p3, cpts, {b1 + p7 − p2 = 0}

=

〈

x : b2(p2 (p3),
x : b1(p6 (p7),
y : b1 + p6

 , b2 + p3, {b1 + p7 − p2 − b2 = 0}

〉

=

〈

x : b3 + b2(p2 (p3),
x : b3 + b1(p6 (p7),
y : b3 + b1 + p6

 , b3 + b2 + p3, {b1 + p7 − p2 − b2 = 0}

〉

C(b3 + b2(p2 (p3), b3 + b1(p6 (p7)) =

b3 + b2 ≥ 1
b3 + b2 = b3 + b1

p2 = p6

p3 = p7

=

b3 + b2 ≥ 1
b2 = b1

p2 = p6

p3 = p7

=

〈
b3 + b2(p2 (p3) (b3 + b2 + p3, {y : b3 + b1 + p6},

b1 + p7 − p2 − b2 = 0
b3 + b2 ≥ 1
b2 = b1

p2 = p6

p3 = p7

, ∅

〉

= 〈b3 + b1(p2 (p2) (b3 + b1 + p2, {y : b3 + b1 + p2}, {b3 + b1 ≥ 1}, ∅〉
B(λx.(x (x y)), {y : b3 + b1 + p2}, b3 + b1(p2 (p2) (b3 + b1 + p2, ∅, {b3 + b1 ≥ 1})

= 〈{y : b2 + b3 + b1 + p2}, b2(b3 + b1(p2 (p2) (b3 + b1 + p2), {b3 + b1 ≥ 1}〉
U (b4((p5 (p5) (p5, b2(b3 + b1(p2 (p2) (b3 + b1 + p2))

=

b4 = b2

p5 = p2

p5 = b3 + b1 + p2

=

b4 = b2

p5 = p2

b3 + b1 = 0

98 CHAPTER 3. EAL-TYPING

Notice that the last constraint b3 + b1 = 0 is incompatible with the previous b3 + b1 ≥ 1
hence the set of solutions is empty.

3.1.5 Properties of the Type Syntesis Algorithm

The following Lemma states that any slice in the set of critical points bars the rest of the
term.

Lemma 54 Let S(M : σ) = 〈Θ, B, A, cpts〉. For any slice sl in cpts, sl = {cpt1, . . . , cptk},
for every path from the root of the syntax tree of M to any leaf, there exists at least one cpti
in the path.

Proof: By induction on M . The unique interesting case is M = (M1 M2).
The thesis holds by inductive hypothesis and by a simple inspection of rules for
S and for the product union. ¤

The following lemma illustrates the relation between the set of critical points calculated by
the algorithm for a given term M and a particular class of decompositions of M .

Lemma 55 Let S(M : σ) = 〈Θ, B, A, cpts〉.

1. ∀{cpt1, . . . , cptk} = sl ∈ cpts there exist P, (N11 N21), . . . , (N1k
N2k

) such that P is not
a variable, x1, . . . , xk ∈ FV(P) and M = P{(N11 N21)/x1, . . . , (N1k

N2k
)/xk};

2. ∀P, (N11 N21), . . . , (N1k
N2k

) such that P is not a variable, x1, . . . , xk ∈ FV(P) and
M = P{(N11 N21)/x1, . . . , (N1k

N2k
)/xk}, there exists {cpt1, . . . , cptk} = sl ∈ cpts

such that cpti is the critical point at the root of (N1i N2i).

Proof: By structural induction on M .

1. If M is a variable, the thesis trivially holds being cpts = ∅. If M = λx.M ′,
either sl consists of a single critical point corresponding to the root of M ′,
then P = λx.y, or sl is a slice of M ′, then by inductive hypothesis there
exists P ′ s.t. the thesis holds for M ′. We take P = λx.P ′. Finally if
M = (M1 M2), if in sl there is a critical point cpti corresponding to the
root of M1 then by Lemma 54 all the other critical points in sl belong to
M2 or there is only one critical point corresponding to the root of M2. In
the first case by inductive hypothesis there exists P2 s.t. the thesis holds
for M2 and sl without cpti. Then we take P = (y P2). The other cases are
analogous.

2. If M is a variable then 6 ∃P and the thesis trivially holds. If M = λx.M ′

then P = λx.P ′. If P ′ is a variable, then the slice to consider is the one
containing only the critical point corresponding to the root of M ′. Such
a slice has been added to cpts in the rule for S(λx.(M1 M2) : σ) where
x /∈ FV((M1 M2)). Otherwise the thesis holds by inductive hypothesis.
Finally if M = (M1 M2), then P = (P1 P2). If both P1 and P2 are not a
variable, then by inductive hypothesis there exists sl1 and sl2. Then the
thesis holds by definition of product union. The other cases are analogous.

¤

3.1. TYPE INFERENCE IN EAL 99

Consider the length L(M) of an EAL-term M defined inductively:

L(x) = 0
L(λx.M) = 1 + L(M)

L((M N)) = 1 + L(M) + L(N)

L(! (M) [M1/x1, . . . , Mn/xn]) = L(M) +
n∑

i=1

L(Mi)

L(‖M‖N
x,y) = L(M) + L(N).

Definition 32 An EAL-term M is simple if and only if

1. M has no subterm of the form ‖M1‖M2
x,y where (M2)∗ is not a variable,

2. L(M) = L((M)∗)

Fact 56 A simple EAL-term contracts at most variables.

Definition 33 The set of candidate EAL-terms is the set of all EAL-terms P such that

1. P is in {!−!, @− c, !− c, c− c, λ− c, dup}-normal form;

2. P is simple;

3. if ‖R‖Q
x,y is a subterm of P , then x, y ∈ FV(R);

4. if ! (R) [Q1/x1, . . . , Qk/xk] is a subterm of P , then R is not a variable.

Lemma 57 For any Θ general EAL-type there exists X s.t. X(P(Θ)) = Θ.

Theorem 58 (Completeness) Let Γ `NEAL P : Ψ and let P be a candidate EAL-term.
Let S (P ∗ : Ψ) = 〈Θ, B, A〉, then there exists X integer solution of A such that X(B) ⊆ Γ,
Ψ = X(Θ) and X(B) `NEAL P : X(Θ).

Proof: The request on the {!−!, @ − c, ! − c, c − c, λ − c, dup}-normal form
is not a loss of generality, for the subject reduction lemma and Proposition 49.
By Lemma 50, the only restriction induced by the request of contracting at
most variable is the exclusion of elementary terms with subterms of the form
‖R‖(Q1 Q2)

x,y or !(R)[P1/x1, · · · , (Q1 Q2)/x, · · · , Pn/xn] with ‖S‖x
y,z subterm of R.

In a sense, these terms “contract too much”. Indeed, it could be the case that
a term P is elementary thanks to the sharing of a β-redex (inside (Q1 Q2)).
However, the corresponding λ-term P ∗, cannot share any redex—there is no
sufficient syntax for this in the λ-calculus—hence P ∗ could be not elementary. We
also do not take into account elementary affine terms with “false contractions”.
This is not a limitation by Lemma 42 and Theorem 51. Finally we discard term
such !(x)[M/x]. Again this is not a limitation, in fact (!(x)[M/x])∗ = M∗ and
Γ `NEAL!(x)[M/x] :!Ψ if and only if Γ `NEAL M :!Ψ. Our aim is to identify λ-
terms that are reducible using optimal reduction without the oracle needed for the
correct matching of fans. The NEAL terms excluded corresponds to EAL proof
nets which are not (the initial encoding of) λ-terms, since they either contract
an application or contract a variable introduced by a weakening or contains a
superfluous number of exponentials.

By induction on P .

100 CHAPTER 3. EAL-TYPING

• If Γ, x : Ψ `NEAL x : Ψ then S(x : Ψ) = 〈P(Ψ), {x : P(Ψ)}, ∅〉 and
the thesis holds by Lemma 57 being any X solution of the empty set of
constraints.

• If the type derivation ends with

Γ `NEAL x :!Φ ∆, y :!Φ, z :!Φ `NEAL N : Ψ
Γ, ∆ `NEAL ‖N‖x

y,z : Ψ

then the thesis holds by inductive hypothesis on ∆, y :!Φ, z :!Φ `NEAL N : Ψ.

• If P is an abstraction then the type derivation is

Γ, x : Ψ `NEAL M : Φ
Γ `NEAL λx.M : Ψ (Φ

The thesis holds by inductive hypothesis. Notice that the solution X in-
stantiates all variables introduced by the B call of the rule for S to 0. It is
easy to see looking at the rules for B that if in the solution X there is one
variable introduced by B that is not set to zero, then the type is exponential
and Ψ (Φ is not.

• If P is an application

Γ `NEAL M : Φ (Ψ ∆ `NEAL N : Φ
Γ,∆ `NEAL (M N) : Ψ

By inductive hypothesis there are solutions X1 for M and X2 for N . Now,
by the same considerations of the previous point, X1 sets all variables intro-
duced by the last B call to 0. Thus the constraint

∑
nj = 0 of the rule for

S is satisfied. Moreover X1, X2 satisfies the constraints for the unification
of types, because they are identical by hypothesis. Hence the thesis holds.

• Finally, if the derivation is

∆1 `NEAL M1 :!Φ1 · · ·∆n `NEAL Mn :!Φn x1 : Φ1, . . . , xn : Φn `NEAL N : Ψ
Γ,∆1, . . . , ∆n `NEAL! (N) [M1/x1, . . . , Mn/xn] :!Ψ

then by Lemma 50 either Mi is a variable or an application. If all Mi

are variables, then the thesis holds getting the solution of the inductive
hypothesis and increasing the variable b introduced by B by one.
If there is an Mi that is an application, then by Lemma 55 there is a critical
point collected by the algorithm at the root of Mi. Then we take as solution
X the union of the solutions obtained by inductive hypothesis with the
variable introduced by B for the critical point corresponding to Mi increased
by one.

¤

Notation
We use

Γ ` M :!nA x : A ` N : B

Γ `!n(N)[M/x] :!nB

3.1. TYPE INFERENCE IN EAL 101

@

@ @

@

@

@

@

n1

n2

n1 + n2

x0 x1 x2 x3 x4 x5 x6 x7

!n2 (α(!n1 (β(γ))

α

β

γ1γ = γ1(γ2

α(
!n

1 (β
(

γ)
!n

1 (β
(

γ)

!n1+n2γ2

Figure 3.15: Boxes as levels.

as a shorthand for

Γ ` M :

n︷︸︸︷
! · · ·!A

x2 :!!A ` x2 :!!A
x1 :!A ` x1 :!A x : A ` N : B

x1 :!A `!(N)[x1/x] :!B
....

xn−1 :

n−1︷︸︸︷
! · · ·! : A `

n−1︷ ︸︸ ︷
!(· · ·!(N)[x1/x] · · ·)[xn−1/xn−2] :

n−1︷︸︸︷
! · · ·! B

Γ `
n︷ ︸︸ ︷

!(· · ·!(N)[x1/x] · · ·)[M/xn−1] :

n︷︸︸︷
! · · ·!B

Lemma 59 (Superimposing of derivations) Let S (M : σ) = 〈Θ, B, A〉 and let A be
solvable. If there is a solution X1 of A that instantiates two boxes belonging to two super-
imposed derivations that are not compatible, then there exists another solution X2 where all
the instantiated boxes belong to the same derivation.

Moreover X1(Θ) = X2(Θ) and X1(B) = X2(B).

Proof: The proof of the lemma can be easily understood if we follow the
intuition explained below with an example.

We may think of boxes as levels; boxing a subterm can then be seen as raising
that subterm, as in Figure 3.15, where also some types label the edges of the
syntax tree of a simple term. In particular, the edge starting from the @-node
and ending in x0 has label !n2(α (!n1(β (γ)) at level 0 (nearest to x0) and has
label (α (!n1(β (γ)) at level n2. This is the graphical counterpart of the !-rule

. . . , x0 : T, . . . ` . . .

. . . , x0 :!n2T, . . . ` . . .
!n2

The complete decoration of Figure 3.15 can be produced in NEAL in two ways:
by the instantiation of

!n2 ((((x0 x1)y)((x4 x5)w))) [(x2 x3)/y, (x6 x7)/w]

and9

!n1 (((z(x2 x3))((x4 x5)w))) [(x0 x1)/z, (x6 x7)/w],
9The correct legal terms should have all free variable inside the square brackets. We omit to write variables

when they are just renamed, for readability reasons (compare the first elementary term above with the (fussy)
correct one !n2 ((((x0 x1)y)((x4 x5)w))) [x′0/x0, x

′
1/x1, (x2 x3)/y, x′4/x4, x

′
5/x5, (x6 x7)/w]).

102 CHAPTER 3. EAL-TYPING

+ =

=

=

=

=

+ +

+ +

=

=

=

=

Figure 3.16: Equivalences of boxes.

which are boxes belonging to two different derivations. Graphically such an
instantiation can be represented as in the first row of Figure 3.16, where incom-
patibility is evident by the fact that the boxes are not well stacked, in particular
the rectangular one covers a hole. To have a correct EAL-derivation it is neces-
sary to find the equivalent, well stacked configuration (that corresponds to the
subsequent application of boxes from the topmost to the bottommost).

The procedure by which we find the well stacked box configuration is visualized
in Figure 3.16. The reader may imagine the boxes subject to gravity (the passage
from the first to the second row of Figure 3.16) and able to fuse each other when
they are at the same level (the little square in the third row fuse with the solid
at its left in the passage from the third to the fourth row).

The “gravity operator” corresponds to finding the minimal common subterm of
all the superimposed derivations and it is useful for finding the correct order of
application of the ! rule. The “fusion operator” corresponds to the elimination
of a cut between two exponential formulas. Moreover, the final configuration of
Figure 3.16 corresponds to a particular solution of the set of constraints produced
by the type synthesis algorithm, that instantiates the following boxes:

!n1
(
!n2−n1 (!n1 (((z y)((x4 x5)w))) [(x0 x1)/z]) [(x2 x3)/y]

)
(x6 x7)/w]

Finally, notice that during the procedure all types labelling the boundary edges
of the lambda-term never changes, i.e. the instantiations of the term type (the
label of the topmost edge) and the base types (the labels of the edges at the
bottom) remain unchanged.

Now let S(M : σ) = 〈Θ, B,A〉 and let X be the solution that instantiates k
overlapping—thus incompatible—boxes. Consider the boxed syntax tree of M
and associate to any node its level, i.e. the number of boxes containing the node.
Notice that if there is a wire connecting tho nodes a of level ` and b of level `+k,
then the type labeling the wire is !kΨ near a and Ψ near b, i.e. the sum of level
and number of exponentials for types labeling the syntax tree is an invariant.

3.1. TYPE INFERENCE IN EAL 103

N P

Q

k

h

M

M

N P

Q

k

h−k

M

N P

Q

k−h

h

k<=h k>h

Figure 3.17: Fusion of boxes.

We break the boxes using the following procedure: starting from the root of the
syntax tree of M , we are at level i = 0; we proceed with a breath first visit and
whenever encounter a node of level ` 6= i we close i boxes, open ` boxes and set
i to `.

At the end of the procedure described above there are no more overlapping boxes,
but it could be happen that there is a variable x not in the same boxes of its
binding lambda node. Such configuration of boxes is not correct. However the
level of the variable and lambda node is the same because the procedure of
breaking boxes does not change level of nodes. Moreover all nodes belonging to
the path from the lambda node to the variable have level higher or equal to the
level of the variable since they all were initially in the same box and some of them
were eventually also in some overlapping boxes that increase the level. Hence we
can fuse boxes until variable and corresponding binder are in the same box. The
fusion operation is shown in Figure 3.17 and described by the following equation:

!k(M{!h−k(N)[Q/z]/x})[P /y] if k ≤ h
↗

!k(M)[P /y, !h(N)[Q/z]/x]
↘

!h(!k−h(M)[N/x])[Q/z, P /y] if k > h

After all fusions are performed, all variables are in the same boxes of their lambda
binders and there are no more overlapping boxes, thus the decoration obtained
corresponds to an EAL-derivation. By completeness exists X2 solution corre-
sponding to such decoration. Moreover types labeling the syntax tree are un-
changed by the transformations applied, hence the thesis. ¤

104 CHAPTER 3. EAL-TYPING

Theorem 60 (Soundness) Let S (M : σ) = 〈Θ, B,A〉. For every X integer solution of A,
there exists P elementary affine term such that P ∗ = M and X(B) `NEAL P : X(Θ).

Proof: By induction on the structure of M , using the superimposing lemma.
We first need a definition:

Θ

Γ (Θ

λx @
Γ

Θ

Γ (Θ

Θ

n

!nΘ

Figure 3.18: Type labels for decorated syntax trees.

Definition 34 A syntax tree T is correctly decorated if the edges of the graph
are labeled according to Figure 3.18 (in the rightmost picture, Θ is inside n boxes).
Moreover all edges connecting a variable x occurring multiple, are labeled with the
same type !nΓ. In the case the variable is abstracted, the type label of variable
is syntactically identical to the argument part of the type label of the edge at the
root of the abstraction.

Given a correctly decorated syntax tree, and an instantiation X for the general
EAL-types labeling its edges such that the number of exponentials for types
of multiple variables is greater than 1, it is easy to build the corresponding
NEAL derivation, using the Curry-Howard isomorphism and eventually applying
a contraction before the (introduction for binded variables and at the end of
the derivation for free variables.

Thus, in order to prove soundness of our algorithm, it is sufficient to prove by
structural induction on M that we can build a correctly decorated syntax tree.
If the solution taken into account instantiates two overlapping boxes we use
Lemma 59. Hence without loss of generality we can consider X such that all
boxes are compatible. The only interesting part of the proof is the checking of

@

M1 M2

Θ (!nΓ

λk

!
P

niΓ

!
P

ni−cΓc

n =
∑

ni − c

@

N1 N2

@

!
P

ni2Θ′
3

M

!
P

ni2
−cΘ′

3!
P

ni1Θ′
1 (Γ

c

∑
ni1 =

∑
ni2 − c

@

M1 M2

N

@

∑
ni − c = 0

!
P

ni(Θ1 (Γ)

Θ1 (Γ

c

Figure 3.19: Decorations given by B.

rules for B. In Figure 3.19 it is shown how build a correctly decorated syntax

3.2. PRINCIPAL TYPE 105

tree when the solution X instantiates a box passing through a critical point (all
three cases of critical points are depicted). ¤

3.2 Principal type

We prove that it is possible to identify a principal type for any term in ΛEA. The principal
type algorithm produces an EAL-type with type and natural variables, and a set of linear
constraints. All EAL-types for the elementary term can be obtained via substitutions of type
and natural variables fulfilling the set of constraints. We can associate to any elementary
term a canonical form that, intuitively, postpone contractions whenever is possible and
collapses consecutive ! introduction rules. Finally we give a procedure to calculate the set
of canonical forms of EAL corresponding to a given lambda term. Such a procedure, in
combination with the principal type algorithm, allows to identify the set of principal types
of a lambda term in EAL.

Definition 35 Let M ∈ Λ. Γ `NEAL M : A if and only if Γ `NEAL R : A and (R)∗ = M , for
some R ∈ ΛEA, R simple.

As we have already mentioned in the previous section, in order to synthesize EAL-types
for lambda terms, we do not consider EAL-derivations contracting subterms. Our goal is
to identify lambda terms that are reducible using the abstract Lamping’s algorithm. If we
allow contraction of subterm, we should respect such contractions during the translation into
sharing graphs. We are intentioned to investigate this possibility in the future.

Finally notice that we still allow weakening of subterms in the above definition.

3.2.1 Abstract EAL-terms

Before introducing the canonical forms, we need an intermediate language. The set AbsEA

of abstract EAL-terms is generated by the following grammar:

M ::= x | λx.M | (M M) | [M]N1→(cx1),...,Nk→(cxk) | ∇(M)[N1/x1, · · · , Nk/xn]

with the condition that every variable occurs just once in a term (x̂i is a placeholder for
x1

i , . . . , x
ni
i).

Definition 36 We define the following operations on abstract EAL-terms:

1. the set of free variables FV:

FV(x) = {x} (3.60)
FV(λx.M) = FV(M) \ {x} (3.61)

FV((M1 M2)) = FV(M1) ∪ FV(M2) (3.62)

FV([M]Clist) = (FV(M) \ CV(Clist))∪
SSV(Clist) ∪ SFV(Clist)

(3.63)

FV(∇(M)[N1/x1, · · · , Nk/xk]) = FV(M) \ {x1, . . . , xk} ∪
k⋃

i=1

FV(Ni) (3.64)

106 CHAPTER 3. EAL-TYPING

2. the set of contracted variables CV:

CV(M → (x1, . . . , xn)) = {x1, . . . , xn} (3.65)
CV(M → (x1, . . . , xn), Slist) = {x1, . . . , xn} ∪ CV(Slist) (3.66)

3. the set of shared free variables SFV:

SFV(M) = ∅ (3.67)
SFV([M]Slist) = SFV(M) ∪ SFV(Slist) (3.68)

SFV(x → (x1, . . . , xn)) = ∅ (3.69)
SFV(x → (x1, . . . , xn), Slist) = SFV(Slist) (3.70)

SFV(M → (x1, . . . , xn)) = FV(M) (3.71)
SFV(M → (x1, . . . , xn), Slist) = FV(M) ∪ SFV(Slist) (3.72)

where M in Equation (3.67) is not a contraction (i.e. it is not of the form [M ′]Slist)
and M in equations (3.71) and (3.72) is not a variable;

4. the set of single shared variables SSV:

SSV(M) = ∅ (3.73)
SSV([M]Slist) = SSV(M) ∪ SSV(Slist) (3.74)

SSV(x → (x1, . . . , xn)) = {x} (3.75)
SSV(x → (x1, . . . , xn), Slist) = {x} ∪ SSV(Slist) (3.76)

SSV(M → (x1, . . . , xn)) = ∅ (3.77)
SSV(M → (x1, . . . , xn), Slist) = SSV(Slist) (3.78)

where M in Equation (3.73) is not a contraction and M in equations (3.77) and (3.78)
is not a variable;

5. the set of shared terms ST:

ST(M) = ∅ (3.79)
ST([M]Slist) = ST(Slist) (3.80)

ST(M → (x1, . . . , xn)) = {M} (3.81)
ST(M → (x1, . . . , xn), Slist) = {M} ∪ ST(Slist) (3.82)

where M in Equation (3.79) is not a contraction;

6. the set of banged variables BV:

BV(M/x) = {x} (3.83)
BV(M/x, Blist) = {x} ∪ BV(Blist) (3.84)

7. the set of single banged variables SBV:

SBV(y/x) = {x} (3.85)
SBV(M/x) = ∅ (3.86)

SBV(y/x, Blist) = {x} ∪ SBV(Blist) (3.87)
SBV(M/x, Blist) = SBV(Blist) (3.88)

where M in equations (3.86) and (3.88) is not a variable.

3.2. PRINCIPAL TYPE 107

On AbsEA a reduction relation can be defined as follows.

Definition 37 The reduction relation →Can on AbsEA is the transitive and contextual clo-
sure of the following set of reduction relations {→∇−collaps,→var−collaps,→c−collaps,→∇−∇
,→∇−c,→c−∇,→c−c,→@−c−1,→@−c−2,→λ−c,→∇−ε−1,→∇−ε−2,→c−ε−1,→c−ε−2,→c−ε−3}, de-
fined as follows:

∇(∇(M)[y1/x1, · · · , yn/xn]
)
[M1/y1, · · · , Mn/yn]

→∇−collaps ∇ (M)
[
M1/x1, . . . ,

Mn/xn

]
(3.89)

[
[M]...,xi→(yi

1,...,yi
ni

),...

]
...,Nj→(zj

1,...,zj
k−1,xi,z

j
k+1,...,zj

mj
),...

→var−collaps

[
[M]...

]
...,Nj→(zj

1,...,zj
k−1,yi

1,...,yi
ni

,zj
k+1,...,zj

mj
),...

(3.90)

Note: if the sharing list of the inner contraction becomes empty, then the square brackets are
removed.

[
[M]

N1→(cx1),...,Ni→(xi
1,...,xi

ni
),...

]
Slist

→c−collaps

[
[M]

N1→(cx1),...,Ni−1→(dxi−1),Ni+1→(dxi+1),...

]
Slist,Ni→(xi

1,...,xi
ni

)

if FV(Ni) ∩ CV(Slist) = ∅. (3.91)

Note: if the sharing list of the inner contraction becomes empty, then the square brackets are
removed.

∇(M)[M1/x1, · · · ,∇(N)[P1/y1,...,Pm/ym] /xi, · · · ,Mn /xn] →∇−∇
∇(M{N/xi})[M1/x1, · · · ,P1 /y1, · · · ,Pm /ym, · · ·Mn /xn] (3.92)

∇(M)[· · · ,
[Mi]

N1→(
c
y1),...,Nk→(

c
yk)/xi, · · ·] →∇−c[
∇(M)[· · · , Mi{ bz1/cy1,...,czk/cyk}/xi, · · ·]

]
N1→(bz1),...,Nk→(czk)

(3.93)

∇([M]...,x→(bx),...)[· · · , y/x, · · ·] →c−∇
[∇([M]...)[· · · , ŷ/x̂, · · ·]]

y→(by)
(3.94)

[M]
...,[N]

P1→(cy1),...,Pk→(
c
yk)

→(bxi),...
→c−c

[
[M]

...,N{ bz1/cy1,··· ,czk/cyk}→(bxi),...

]
P1→(bz1),...,Pk→(czk)

(3.95)

([M]
M1→(cx1),...,Mk→(cxk)

N) →@−c−1
[
(M{ŷ1/x̂1, . . . , ŷk/x̂k} N)

]
M1→(cy1),...,Mk→(cyk)

(3.96)

(M [N]
N1→(cx1),...,Nk→(cxk)

) →@−c−2
[
(M N{ŷ1/x̂1, . . . , ŷk/x̂k})

]
N1→(cy1),...,Nk→(cyk)

(3.97)

108 CHAPTER 3. EAL-TYPING

λx.[M]Slist →λ−c [λx.M]Slist where x /∈ SFV(Slist) ∪ SSV(Slist) (3.98)

∇(x)[M/x] →∇−ε−1 M (3.99)

∇(M)[· · · , N/x, · · ·] →∇−ε−2 ∇(M)[· · ·] where x /∈ FV(M) (3.100)
[x]...,N→(...,x,...),... →c−ε−1 N (3.101)

[M]...,N→(...,x,...),... →c−ε−2 [M]...,N→(...),... where x /∈ FV(M) (3.102)

[M]...,N→(x),... →c−ε−3 [M{N/x}]... (3.103)

All new variables introduced in the equations above are intended fresh.

Lemma 61 →Can is Church-Rosser.

Definition 38 The type assignmennt system assigning formulas of EAL to terms of AbsEA

is shown in Table 3.1.

Γ, x : A `abs x : A
ax

Γ, x : A `abs M : B

Γ `abs λx.M : A (B
((I)

Γ `abs M : A (B ∆ `abs N : A

Γ, ∆ `abs M N : B
((E)

Γ1 `abs N1 :!A1
...

Γk `abs Nk :!Ak ∆, x̂1 :!A1, . . . , x̂k :!Ak `abs M : B

Γ1, . . . ,Γk, ∆ `abs [M]N1→(cx1),...,Nk→(cxk) : B
contr

∆1 `abs N1 :

m︷︸︸︷
!...! A1

...

∆k `abs Nk :

m︷︸︸︷
!...! Ak x1 : A1, . . . , xk : Ak `abs M : B m > 0

Γ, ∆1, . . . ,∆k `abs ∇(M)[N1/x1, · · · , Nk/xn] : !...!︸︷︷︸
m

B
!m

Table 3.1: Type assignment system for AbsEA-terms.

Lemma 62 (Subject reduction) Let M ∈ AbsEA and M →∗
Can N , then

Γ `abs M : A ⇒ Γ `abs N : A.

Proof: By induction on the length of the reduction. By cases on the last step
of the reduction.

→c−ε−1 then
[x]...,N→(...,x,...),... →c−ε−1 N

3.2. PRINCIPAL TYPE 109

the type assignment is

...
Γ `abs N :!A′

... . . . , x :!A′, . . . `abs x :!A′

. . . ,Γ `abs [x]...,N→(...,x,...),... :!A′
contr

hence, trivially, . . . ,Γ `abs N :!A′.

→∇−ε−1 then
∇(x)[N/x] →∇−ε−1 N

the type assignment is

Γ `abs N :

m︷︸︸︷
!...! A x : A `abs x : A m > 0

∆, Γ `abs ∇(x)[N/x] : !...!︸︷︷︸
m

A
!m

hence, trivially, ∆, Γ `abs N : !...!︸︷︷︸
m

A.

Other cases are equally easy. ¤

3.2.2 Principal Typing for `abs

In this section we will prove that `abs enjoies the principal typing property, i.e., every typing
can be derived from a particular one by means of a suitable substitution. First of all, let us
introduce the notion of type scheme.

Definition 39 i) Type schemata are defined by the following grammar:

σ ::= α | σ (σ |!
P

ni(σ)

where α belongs to a countable set of scheme variables, ranged over by α, β, γ; type
schemata are ranged over by σ, τ, ρ; let T denote the set of type schemata;

ii) A scheme substitution is a function from type schemata to types, replacing scheme
variables by types and !

Pk
i=1 ni by ! · · ·!︸︷︷︸

p

, for some p > k.

We can decompose a scheme substitution S into a pair (S̄, X), where S̄ substitutes scheme

variables with type schemata, X replaces !
Pk

i=1 ni by

p︷︸︸︷
! · · ·!, for some p > k, and S = S̄ ◦X.

≡ denotes the syntactical identity between schemata.
In order to define the principal typing of a canonical form, we need a unification algorithm

for type schemes. The unification algorithm, which we will present in SOS style, is a function
U from T ×T to pairs of the shape < C, s >, where C (the modality set) is a set of natural
linear constraints, and s is a substitution, replacing scheme variables by type schemes.

A scheme substitution S is associated to < C, s > if the decomposition of S is (s,X)
where X is a solution of C.

110 CHAPTER 3. EAL-TYPING

Before U we introduce a function F collapsing all !
P

ni :

F (!
P

ni(x)) =!
P

ni(x) F (x) = x

F (σ) =!
P

mj (τ)

F (!
P

ni(σ)) =!
P

ni+
P

mj (τ)

F (σ (τ) = ρ

F (!
P

ni(σ (τ)) =!
P

ni(ρ)
F (σ) = σ1 F (τ) = τ1

F (σ (τ) = σ1 (τ1

In the following we assume that types unified by U are already transformed by F , i.e. it is
not the case that !n(!m(σ)) is a subtype of them.

U(α, α) =< ∅, [] >

α is a scheme variable not occurring in τ

U(α, τ) =< ∅, [α 7→ τ] >

α is a scheme variable not occurring in σ

U(σ, α) =< ∅, [α 7→ σ] >

U(ρ, µ) =< C, s >

U(!
P

niρ, !
P

mjµ) =< C ∪ {∑ni −
∑

mj = 0}, s >

U(σ1, τ1) =< C1, s1 > U(s1(σ2), s1(τ2)) =< C2, s2 >

U(σ1 → σ2, τ1 (τ2) =< C1 ∪ C2, s1 ◦ s2 >

Lemma 63 i) (correctness) U(σ, τ) =< C, s > implies ∀S scheme substitution associ-
ated to < C, s >, S(σ) ≡ S(τ)

ii) (completeness) S(σ) ≡ S(τ) and the decomposition of S is (s,X) implies U(σ, τ) =<
C, s′ > and X is a solution of C and s = s′ ◦ s′′, for some s′′.

Proof: By structural induction on σ, τ , decomposing S. ¤

Let

U(σ1, σ2, . . . , σn) = let U(σ1, σ2) =< C1, s1 > and

let U(s1 ◦ · · · ◦ si(σi+1), s1 ◦ · · · ◦ si(σi+2)) =< Ci+1, si+1 >

in < C1 ∪ · · · ∪ Cn, s1 ◦ · · · ◦ sn > .

The following function PT takes as input a term of ΛEA and gives as output a triple of a
scheme context, i.e. a finite set of scheme assignments, a type scheme and a set of linear
natural constraints. PT is defined modulo names of type variables.

• PT (x) =< {x : α}, α, ∅ >, where α is fresh;

• PT (λx.M) = let PT (M) =< B, σ,C > in
if B = B′ ∪ {x : τ} then < B′, τ (σ,C >

else < B, α (σ,C >
where α is fresh;

3.2. PRINCIPAL TYPE 111

• PT (M N) = let PT (M) =< B1, σ1, C1 > and
PT (N) =< B2, σ2, C2 > and
let they be disjoint in

let U(σ1, σ2 (α) =< C, s >
(α fresh) in

< s(B1 ∪B2), s(α), C ∪ C1 ∪ C2 >;

• PT ([M]N1→(cx1),...,Nk→(cxk)) =
let PT (M) =< B, σ,C > and

PT (Ni) =< Bi, σi, Ci >
(all disjoint and disjoint from PT (M)) and

let U(B(x1
1), . . . , B(xn1

1), σ1, !m1α1) =< C ′
1, s1 >

and U(s1 ◦ · · · ◦ si(B(x1
i+1)), . . . , s1 ◦ · · · ◦ si(B(xni

i+1)),
s1 ◦ · · · ◦ si(σi+1), !mi+1αi+1) =< C ′

i+1, si+1 >
and s = s1 ◦ · · · ◦ sk

in < s(B ∪⋃
1≤j≤k Bj), s(σ), C ∪⋃

1≤j≤k Cj ∪
⋃

1≤j≤k C ′
j > .

(αi and mi fresh)

• PT (∇(M)[N1/x1, . . . , Nm/xm]) =
let PT (M) =< B, σ,C >

PT (Ni) =< Bi, σi, Ci >
(all disjoint and disjoint from PT (M)) and

in U(!nB(x1), σ1) =< C ′
1, s1 >

and U(!n(s1 ◦ · · · ◦ si(B(xi+1))), s1 ◦ · · · ◦ si(σi+1)) =< C ′
i+1, si+1 >

and s = s1 ◦ · · · ◦ sm

in < s(
⋃

1≤j≤m Bj), !n(s(σ)), C ∪⋃
1≤j≤m Cj ∪

⋃
1≤j≤m C ′

j >

(n fresh).

where xi
j denotes the i-th component of x̂j .

Theorem 64 (Principal typing for AbsEA) Γ `abs M : A if and only if PT (M) =<
Θ, σ, C > and Γ ⊇ S(Θ), A = S(σ), for some scheme substitution S satisfying C.

Proof: By structural induction on M . ¤

3.2.3 Canonical Forms

A term of AbsEA is a term in a meta-language, representing an infinite set of terms of ΛEA.
In particular, to every term in ΛEA a canonical form can be assigned, which is a term of
AbsEA in normal form.

First consider the embedding function from ΛEA to AbsEA:

emb(x) = x

emb(λx.M) = λx.emb(M)
emb((M1 M2) = (emb(M1) emb(M2))

emb(! (M) [N1/x1, . . . , Nk/xk]) = ∇(emb(M))[emb(N1)/x1, · · ·
· · · , emb(Nk)/xk]

emb(‖M‖N
x,y) = [emb(M)]emb(N)→(x,y)

112 CHAPTER 3. EAL-TYPING

The canonical form of M ∈ ΛEA can be obtained by reducing to normal form (with
respect to →Can) the term emb(M) ∈ AbsEA. Thanks to the Lemma 61 the canonical form
of a term is unique: let us call it Can(M).

Lemma 65 ∀M ∈ ΛEA Γ `NEAL M : A ⇒ Γ `abs emb(M) : A

Proof: By structural induction on M , the thesis holds trivially for M = x
and by hypothesis for M = λx.M ′, M = (M1 M2) and M = [M1]N=x,y. For
M =!(M1)[N1/x1, · · · , Nk/xk] the thesis holds by the observation that !-rule in the
assignment system for ΛEA is simply a particular case of !m-rule in the assignment
system for AbsEA. ¤

Lemma 66 ∀M ∈ ΛEA. Γ `NEAL M : A then Γ `abs Can(M) : A.

Proof: By Lemma 65 and Lemma 62. ¤

Consider the following embedding function from AbsEA to P(ΛEA):

bme(x) = {x}
bme(λx.M) = {λx.M ′|M ′ ∈ bme(M)}

bme((M1 M2) = {(M ′
1 M ′

2)|M ′
1 ∈ bme(M1) ∧M ′

2 ∈ bme(M2)}
bme

(∇(M)[N1/x1, · · ·Nk/xk]
)

=

{
n︷ ︸︸ ︷

!(· · ·!(M ′)[z1
1/x1, . . . , z

1
k/xk]) · · ·

· · ·)[N ′
1/zn

1 , . . . , N ′
k/zn

k] |
M ′ ∈ bme(M) ∧N ′

i ∈ bme(Ni) ∧ n > 0}

bme([M]N→(x1
1,x2

1,...,x
n1
1),···) = bme

([
[M]y→(x1

1,x2
1)

]
N→(y,x3

1,...,x
n1
1),···

)

y fresh variable

bme([M]N1→(x1
1,x2

1),N2→(cx2),···) = bme
([

[M]N1→(x1
1,x2

1)

]
N2→(cx2),···

)

bme([M]N→(x1,x2)) = {∥∥M ′∥∥N ′

x1,x2
| M ′ ∈ bme(M) ∧N ′ ∈ bme(N)}

Lemma 67 ∀M ∈ AbsEA

Γ `abs M : A ⇒ ∃M ′ ∈ bme(M) Γ `NEAL M ′ : A.

Proof: It is sufficient to choose the necessary expansion of ! according to the
derivation Γ `abs M : A and to notice that bme simply impose an order of binary
contraction that does not prejudice the possibility of deriving a type. ¤

We can now formally define the set of EAL-canonical forms.

Definition 40 The set CEA of canonical forms is generated by the following grammar (C
is the starting symbol):

3.2. PRINCIPAL TYPE 113

Productions Comment

C ::= S | NS a canonical form is either a shar-
ing term or a non-sharing term.

S ::= [LB]Slist

where CV(Slist) ⊆ FV(LB) |
a sharing term can be a linear
or banged one contracting a list
of terms. In this case the set
of variables contracted must be a
subset of the free variables of LB.
In other words, it is not allowed
to contract a weakened variable.

[S]Slist

where CV(Slist) ∩ SSV(S) = ∅
and CV(Slist) ⊆ FV(S)
and ∀Si ∈ ST(S)

CV(Slist) ∩ FV(Si) 6= ∅

a sharing term can also be built
using another sharing term, but
in this case it is not possible to
contract a previously contracted
variable (there is no need of con-
tracting a set of variables in two
steps). As in the previous case
it is not allowed to contract a
weakened variable. Moreover ev-
ery subterm previously contracted
must have at least a free variable
that is contracted now (if this is
not the case, there is no need
of two different steps of contrac-
tion and it is possible to collapse
them).

114 CHAPTER 3. EAL-TYPING

Productions Comment

Slist ::= NS → (x̂) | NS → (x̂), Slist
where |x̂| ≥ 2

a list of shared terms is made
of non-sharing terms. Moreover
there must be at least two con-
tracted variables.

NS ::= LB | x a non-sharing term is either a
linear or banged one or is a vari-
able.

LB ::= L | B
L ::= (NS NS) | λx.NS | a linear term can be an appli-

cation or an abstraction of non-
sharing terms.

λx.S where S = [C]NS→(by)

and x ∈ FV(NS)
a linear term can also be an ab-
straction of a sharing term pro-
vided that it shares a single sub-
term and that the variable binded
by the abstraction is free in the
shared subterm.

DSL ::= D | S | L
B ::= D | ∇(DSL)[x̂/ŷ] where

SBV(x̂/ŷ) ∩ SSV(DSL) = ∅
and BV(x̂/ŷ) = FV(DSL)

this kind of box is all around the
term and only (and all the) vari-
ables exit from the ∇. Actually,
inside the box the term can be
linear, or a sharing term with
no single variables contracted, or
a banged term “of type D”, i.e.
with a box closed before a sub-
term.

D ::= ∇(DSL)[Blist] where
SBV(Blist) ∩ SSV(DSL) = ∅
and BV(Blist) = FV(DSL)

this kind of banged terms put the
box before a subterm. As in the
previous case, if the term inside
the box is a sharing term, then
it must have no single variable
contracted. The distinction be-
tween two kinds of banged terms
means that we can put a sequence
of boxes closing them before one
or more subterms (type D) and
finally eventually box all the term
(type B).

3.2. PRINCIPAL TYPE 115

Productions Comment

Blist ::= L/x | L/x, Blist | x/y,Blist the list of subterms that are “out
of the box” contains at least a
term that is not a variable. Such
a term is a linear one.

all variables are linear.

Lemma 68 (Soundness of Can) ∀M ∈ ΛEA Can(M) ∈ CEA

Proof: By absurd let M be the smallest normal form s.t. M /∈ LC (the
language of CEA). By structural induction on M we will show that either M ∈
LC or M is not in →Can -normal form.

M = x then M ∈ LC thanks to the derivation C → NS → x;

M = λx.M ′ and by hypothesis M ′ is in n.f. and M ′ ∈ LC because it is smaller
than M . But we have the following derivations:

C → NS → LB → L → λx.NS
↘

λx.S S = [C]NS→(by) and x ∈ FV(NS)

M ′ ∈ LC then, by the first production rule of the grammar, either M ′ ∈
LNS or M ′ ∈ LS . If M ′ ∈ LNS we have by derivation above M ∈ LC .
Then it must be M ′ ∈ LS . If M ′ contracts more than one subterm, i.e. it
has the form [M ′′]N1→(cx1),N2→(cx2),... then since in M all variables are linear
x can not be at the same time in the free variables of both N1 and N2, hence
there is a →λ−c-redex. The same if M ′ contracts only one subterm but x is
not in the free variables of such subterm. Then it must be M ′ = [M ′′]N→(by)

and x ∈ FV(N) thus M ∈ LC .

M = (M1 M2) and by hypothesis M1,M2 are normal forms ∈ LC . Consider now
the derivation:

C → NS → LB → L → (NS NS)

If both M1 and M2 are ∈ LNS then M ∈ LC , then it must be either M1 /∈
LNS or M2 /∈ LNS . But M1 ∈ LC then either M1 ∈ LS or M1 ∈ LNS .
But if M1 ∈ LS then there is a →@−c−1-redex. Analogously for M2.

M = [M1]Clist and by hypothesis M1 and every N of Clist are normal forms
∈ LC . Consider the derivation:

C → S → [LB]Slist CV(Slist) ⊆ FV(LB)
↘

[S]Slist CV(Slist) ∩ SSV(S) = ∅
CV(Slist) ⊆ FV(S)
∀Si ∈ ST(S) CV(Slist) ∩ FV(Si) 6= ∅

If CV(Clist) 6⊆ FV(M1) then there is a →c−ε−2-redex, thus CV(Clist) ⊆
FV(M1). Now M1 ∈ LC then M1 ∈ LS or M1 ∈ LNS = LLB ∪ Lx i.e.
there are three cases:

116 CHAPTER 3. EAL-TYPING

1. M1 ∈ Lx then there is a →c−ε−1-redex;
2. M1 ∈ LLB then M ∈ LC by derivation above;
3. M1 ∈ LS then there are two cases:

(a) CV(Clist) ∩ SSV(M) 6= ∅ then there is a →var−collaps-redex;
(b) ∃Si ∈ ST(S) CV(Slist)∩ FV(Si) = ∅ then there is a →c−collaps-redex.

M = ∇(M1)[Mlist] and M1 and each Ni in Mlist are normal forms ∈ LC . Con-
sider the derivation:

C → NS → LB → B → ∇(DSL)[x̂/ŷ] BV(x̂/ŷ) = FV(DSL)
↘ and SBV(x̂/ŷ) ∩ SSV(DSL) = ∅

∇(DSL)[Blist] BV(Blist) = FV(DSL)
and SBV(Blist) ∩ SSV(DSL) = ∅

If BV(Mlist) 6= FV(M1) then there is a →∇−ε−2-redex, thus BV(Mlist) =
FV(M1).
Now M1 ∈ LC = LS ∪LNS .

1. If M1 ∈ LS ⊆ LDSL then if SBV(Mlist) ∩ SSV(M1) 6= ∅ then there is a
→c−∇-redex else there must exists a Ni /∈ LL ∪Lx, with Ni ∈ LC by
hypothesis.
(a) Ni ∈ LS then there is a →∇−c-redex;
(b) Ni ∈ LNS then it must be Ni ∈ LB then there is a →∇−∇-redex;
otherwise M ∈ LC by the derivation above.

2. If M1 ∈ LNS

(a) if M1 ∈ LL then there must exists a N1 /∈ LL ∪Lx, with Ni ∈ LC

by hypothesis. As above by cases on Ni;
(b) if M1 ∈ Lx then there is a →∇ ε−1-redex;
(c) if M1 ∈ LB it must be M1 /∈ LD then there is a →∇−∇-redex;
otherwise M ∈ LC by the derivation above.

¤

Lemma 69 ∀M ∈ CEA, M is in →Can normal form.

Proof: By induction on the length of derivation of M , there is no redex in it.
¤

3.2.4 Canonical Forms Algorithm C

We have seen in Section 3.1 that lambda terms typeable in EAL are skeletons that can
be decorated. We can obtain decidability of type inference of lambda terms in EAL in a
different way using the principal type theorem and the canonical forms.

Definition 41 Let M ∈ Λ. The set of canonical forms corresponding to M is C(M) = {N |
∃R ∈ ΛEA such that (R)∗ = M, R is simple and N = Can(R)}.

Lemma 70 For every M ∈ Λ, C(M) is finite.

3.2. PRINCIPAL TYPE 117

We will show an algorithm C such that, for every M ∈ Λ, C (M) gives either C(M) or a
negative answer. C is correct and complete.

Let L(M) be the linearization of M with respect to all its free variables and let Lx(M)
be the set of fresh variables generated by L during the linearization of x in M . I.e. let
M = (x (x y y)) then L(M) = (x1 (x2 y1 y2)) and Lx(M) = {x1, x2}, Ly(M) = {y1, y2} and
Lz(M) = ∅ for any other variable z.

The algorithm is defined by the following equations:

C (M) = if ∃x1, . . . , xk ∈i>1 FV(M) then[
T(L(M)) ∪ F(L(M))

]
x1→(Lx1 (M)),...,xk→(Lxk

(M))

else

T(M) ∪ F(M)

T(x) = {x}
T(λx.M) = if x ∈i>1 FV(M) then

λx.
[
T(L(M)) ∪ F(L(M))

]
x→(Lx(M))

else

λx.(T(M) ∪ F(M))

T((M N)) = T(M)@
(
T(N) ∪ F(N)

)

F(x) = ∅
F(M 6= x) = F′(M) ∪∇(

F′(M{ẑ/FV(M)}) ∪ T(M{ẑ/FV(M)}))[FV(M)/ẑ]

F′(x) = ∅
F′(M 6= x) = ∀A1, . . . , An, P, n > 0 s.t.

M =α P{A1/y1, · · · , An/yn}
{y1, . . . , yn+k} = FV(P) P 6= x

∀1 ≤ i ≤ n Ai = (Ai1 Ai2)

∇(
T(P{ẑk

1/ŷn+k
n+1}) ∪ (F′(P{ẑk

1/ŷn+k
n+1})

)[
T(A1)/y1,

· · · ,T(An)/yn, ŷn+k
n+1/ẑk

1

]

Where ẑ and ẑk
1 are fresh variables. ẑk

1/ŷn+k
n+1 stands for z1/yn+1, · · · , zk/yn+k, ẑ/FV(M)

stands for the complete renaming of free variables of M width fresh ones, and FV(M)/ẑ
stands for the inverse substitution.

Fact 71 ∀C ∈ C (M) (C)∗ = M

In order to prove soundness and completeness of C , we define the subset of EAL-canonical
forms we are interested in, i.e. the set of canonical forms contracting at most variables.

Definition 42 (CCEA) The set of simple canonical EAL-terms CCEA is generated by the
following grammar (CC is the starting symbol):

118 CHAPTER 3. EAL-TYPING

Productions Comment

CC ::= [K]Clist where CV(Clist) ⊆ FV(K) | K a simple canonical form
can eventually contract
some variables. No other
subterm of it can be a
contraction except before a
lambda abstraction binding
the contracted variable.

Clist ::= y → (x̂) | y → (x̂), Clist where |x̂| ≥ 2 each component of a con-
traction list contracts at
least two variables. Only
variables are shared. No
more complex subterm.

K ::= ∇(B)[x̂/ŷ] where BV(x̂/ŷ) = FV(B) |
B | x

this kind of box corresponds
to “B” production in canon-
ical forms grammar. There
is only one side condition
because SSV(B) = ∅.

B ::= ∇ (B) [L] where BV(L) = FV(B) | R this kind of box corresponds
to “D” in canonical forms
grammar.

L ::= A/x | y/x, L | A/x,L differently from canonical
forms, the list of subterms
out of the box is made of ap-
plications.

R ::= λx.[K]x→(x1,...,xn)

where {x1, . . . , xn} ⊆ FV(K)
| λx.K | A

it is possible to introduce
a contraction just before
the shared variable has been
binded by a lambda abstrac-
tion.

A ::= (R K) | (x K) the functional part of an ap-
plication can be either an
abstraction or an applica-
tion itself or a variable. No
contraction or box is al-
lowed.

where all variables are linear, x̂ stands for x1, . . . , xn and n > 0.

Notice that side condition |x̂| ≥ 2 in the production of Clist implies [x]Clist is not a pos-
sible term in CCEA by side condition CV(Clist) ⊆ FV(K) in production of CC and by
{x1, . . . , xn} ⊆ FV(K) in production of R.

3.2. PRINCIPAL TYPE 119

Lemma 72
CCEA ⊆ CEA

Proof: By absurd, let M be the smallest term in CCEA but not in CEA. The
proof is easy by induction on the structure of M . ¤

Fact 73 Each term in CCEA contracts at most variables.

Lemma 74 If M ∈ CEA is simple then @N subterm of M such that N has the form[
[N ′]Slist1

]
Slist2

.

Proof: If M is simple then SFV(N) = ∅ for any subterm N of M . Hence
looking at the grammar, the only possible contraction is [LB]Slist. ¤

Lemma 75 If M ∈ CEA is simple then @N subterm of M such that N has the form
∇(

[N ′]Slist

)
[Blist].

Proof: If M is simple then SSV([N ′]Slist) ⊆ FV([N ′]Slist) = BV(Blist). Now
suppose SSV([N ′]Slist) 6= ∅, then there exists x ∈ SSV([N ′]Slist). x /∈ SBV(Blist)
by the grammar, then x ∈ BV(Blist) \ SBV(Blist) hence M contracts a subterm
that is not a variable and this contradicts the hypothesis. ¤

Lemma 76 ∀M ∈ CEA, M simple,

Γ `abs M : A ⇒ M ∈ CCEA.

Proof: By absurd let M be the smallest canonical form in CEA such that
Γ `abs M : A ∧ M /∈ CCEA. By structural induction on M is easy to prove that
either there is a derivation in the grammar of CCEA or M is not typeable. ¤

Lemma 77 Let LX be the language generated by the grammar of Definition 42 with starting
element X, for X ∈ {R, A, B, K}, then the following hold:

1. T(M) ⊆ LR ∪ {x}
(a) T(M 6= x) ⊆ LR

(b) T((M1 M2)) ⊆ LA

2. F′(M) ⊆ LB

3. F(M) ⊆ Lk

Lemma 78 Let LCC the language of canonical forms generated by the grammar of Defini-
tion 42, then

∀M ∈ Λ C (M) ⊆ LCC

Lemma 79 1. M ∈ LR ∪ {x} ⇒ M ∈ T((M)∗)

2. M ∈ LA ⇒ (M)∗ = (M1 M2) ∧ M ∈ T((M1 M2))

3. M ∈ LB ⇒ M ∈ F′((M)∗) ∪ T((M)∗)

4. M ∈ LK ⇒ M ∈ F((M)∗) ∪ T((M)∗)

120 CHAPTER 3. EAL-TYPING

Lemma 80

M ∈ LCC ⇒ M ∈ C ((M)∗)

Theorem 81 ⋃

M∈Λ

C (M) = LCC

Proof: By Lemma 80 and Lemma 78. ¤

Theorem 82 (Soundness and Completeness of C) ∀M ∈ Λ

1. C (M) ⊆ C(M);

2. N ∈ C(M) and ∃Γ, A s.t. Γ `abs N : A ⇒ N ∈ C (M).

Proof: We recall the definition of C(M):

C(M) = {N | ∃R ∈ ΛEA s.t. (R)∗ = M, R is simple and N = Can(R)}

1. By Lemma 78 for any C ∈ C (M) we have C ∈ CCEA and hence, by
Lemma 72, C ∈ CEA. Moreover (C)∗ = M by Fact 71. Then C is in
C(M) because it exists R ∈ bme(C) s.t. (R)∗ = M , R is simple and it is
sufficient to notice that emb(bme(C)) is either equal to C (that is in →Can

normal form) or there are a set of →var−collaps, →c−collaps and →∇−collaps

redexes after firing them we get C again.

2. By Lemma 68 Can(R) = N ∈ CEA. R is simple by hypothesis and then N
is simple too. Moreover Γ `abs N : A, hence, by Lemma 76, N ∈ CCEA and
then N ∈ C (M) by Lemma 80.

¤

Theorem 83 (Principal typing for Λ in EAL) ∀M ∈ Λ Γ `NEAL M : A if and only if
PT (N) =< Θ, σ, C > and Γ ⊇ S(Θ), A = S(σ), for some scheme substitution S satisfying
C and for some N ∈ C (M).

Proof:

(If) Let be PT (N) =< Θ, σ, C >, then by Theorem 64 Γ `abs N : A and by
Lemma 67 ∃N ′ ∈ bme(N) Γ `NEAL N ′ : A, hence the thesis.

(Only if) Γ `NEAL M : A then by definition ∃R ∈ ΛEA Γ `NEAL R : A and
R is simple. Then Γ `abs Can(R) : A by Lemma 66. Moreover Can(R) ∈
CEA by Lemma 68 and then, being Can(R) typeable, Can(R) ∈ CCEA by
Lemma 76. This is sufficient to prove that Can(R) ∈ C (M) (by Lemma 81).
The thesis holds by principal typing for AbsEA.

¤

3.2. PRINCIPAL TYPE 121

3.2.5 Conclusions

We presented two different approaches for obtaining complete algorithms to derive EAL-
types for λ-terms. One of our main goals is the characterization of those lambda terms
that can be optimally reduced without the oracle, for which EAL-typeability is a sufficient
condition. One should not see (N)EAL as a programming language; instead, it is a kind of
intermediate language: if a λ-term is typeable in EAL, then we can compile it in a special
manner with excellent performances during reduction, otherwise we compile it in the usual
way, using the oracle.

Considering the type synthesis algorithm of Section 3.1.4, a puzzling open problem is
whether there exist terms yielding constraints with only non integer solutions. Of course they
have to be non EAL-typeable terms, in view of our completeness theorem. Our extensive
experiments never produced such a scenario, yet we could not prove that the constraints
have always integral solutions. Would there be any logical meaning for a term with a non
integral number of boxes?

Following the other approach, the one of canonical forms, it could be interesting to
investigate the possibility to extend the algorithm C to the full set of canonical forms. In this
case the extended algorithm should search for common subterm to contract. The existence
of such a (EAL-typeable) canonical form for a given lambda term will suggest the possibility
of reducing it inside the Lamping’s abstract algorithm provided that it is translated taken
into account the common sub-terms identified by the canonical forms.

Finally, as we have already mentioned at the beginning of the Chapter, it is worth to
investigate the possible extensions to other fragments of Linear Logic and in particular Soft
Linear Logic, in the affine version, seems to be a good candidate.

122 CHAPTER 3. EAL-TYPING

II
The Implementation of Functional

Languages

4
Optimal Reducers

4.1 A tool for reducers comparison

We developed a tool for the comparison of various implementation of optimal reduction. The
tool consists in some modules common to all implementations plus the specific modules for
every different reducer (see Figure 4.1). It has been developed in Java with the help of Java
Compiler Compiler as parser generator and consists of about 13.500 lines of source code.

All different reducers implemented are based on graph rewriting. However it is possible
to extend the tool adding other reducers based, for example on GOI as in [PQ00, Pin01] or
based on interaction nets as in [Mac00].

Common modules are:

1. the parser. This module simply collects definitions and produces the syntax tree of
λ-terms. The grammar accepted by the parser is showed in Table 4.1. The parser
accepts a list of definitions of the form Id = Term separated by a semicolon, eventually
ended by a term that represents the functional program to be evaluated. A term in
a definition must be a closed term, i.e. all variables not bound must be identifiers of
previous definitions. We allow some “syntactic sugar”:

• the syntax tree of \x y.M is the same of \x.\y.M ;

• the syntax tree of (M1 M2 M3) is the same of ((M1 M2) M3).

2. The simple type inference algorithm. The module implements the usual simple
type synthesis for λ-terms:

x : newvar ` x : newvar
ax B ` M : t

B r {x} ` λx.M : B(x) → t
→

B1 ` M1 : t1 B2 ` M2 : t2

unify(commonvars(B1, B2)) = s
unify(s(t2) → newvar2, s(t1)) = s′

B1, B2 ` (M1 M2) : s′(newvar) @

where s, s′ are substitutions of the form {typevar ← type, . . . , typevar ← type}.

126 CHAPTER 4. OPTIMAL REDUCERS

parser

GUI

infosstatisticsdefinitionsflagsinput area

trans reduction readback

H G

inference

type

simple

expander

eta

S

Lamping’s implementation

S

trans reduction readback

H G

Lamping’s translation

trans reduction readback

H G

GAL translation

inference

EAL type

trans reduction readback

H G S

EAL translation

Mux implementation

Figure 4.1: Architecture of the Optimal Reduction tool.

Figure 4.2: The GUI.

Start ::= ListOfDefs(; (Term)?)? < EOF >
| Term < EOF >

Def ::= Id = Term
ListOfDefs ::= Def(; Def)∗

Term ::= \(Id)+.Term
| (Term (Term)+)
| Id

Id ::= ([a− z][A− Z][0− 9])+

Table 4.1: Grammar accepted by the optimal reducer.

4.1. A TOOL FOR REDUCERS COMPARISON 127

n

n+1

f j

cb

a

nn

n+1

b c

f j+1

a

nn

f j

n+1
n+1

b c

a

Figure 4.3: Void total effect.

YES NOn+1

n

n

a

b

n

a

b

n+1

a

b

Figure 4.4: Critical pair.

3. The eta expansion. The module produces, given a simple typed lambda term M , the
optimal root or(M) as defined in Section 1.5. If the eta expansion option is checked,
then the lambda term will be first typed, then eta expanded and finally its optimal
root will be translated in sharing graphs.

4. The safe heuristic. The use of safe optimization was proposed by Asperti in [Asp95]
and developed in [AC97]. As already pointed out by Lamping in his original paper, the
initial translation introduces a certain number of useless control operators. Inspecting
the graph reduction of, for example (2 λz.z), we observe that in the final graph in
normal form, representing λz.z, there are redundant control nodes, accumulated during
the reduction, in particular there are two useless brackets and two useless croissants.
Moreover, if we consider the reduction of λx.((λz.λw.w x) x), we will see in the final
representation of the normal form λx.x a redundant fan with a garbage node connected
to its auxiliary door, a redundant bracket and a redundant croissant.

The problem of accumulation of control nodes is not a minor problem of optimal
reduction. Actually, the reduction of λn.((n 2) λz.z) is exponential in n essentially for
the accumulation of redundant control nodes. Now consider a specific configuration:
a croissant of index i + 1 whose principal port is connected to the auxiliary port of a
bracket of index i. Such configuration can be thought as a single “super node” with
a void effect on level of nodes (the bracket first face and increase by one and then
immediately the croissant decrease by the same amount, Figure 4.3). Thus one could
be tempted to declare useless such control nodes and delete them. Unfortunately such
optimization is not correct in the case the bracket node has to be annihilated by one of
its copies, as in Figure 4.4. Consider also a configuration of a fan node with a garbage
node connected to one of its auxiliary doors. The total effect of this configuration

128 CHAPTER 4. OPTIMAL REDUCERS

n

n

n

n

n+1

n

n

n

n+1

n

n n n

n

(1)

(5) (6)

(2) (3)

(4)

Figure 4.5: Safe rules.

is again void, and both nodes could be erased except in the case the fan has to be
annihilated by one of its copies.

Definition 43 (safe operators) A sharing operator s (fan, croissant or bracket) in
a sharing graph G is safe if it can only match with itself.

Proposition 84 The rules in Figure 4.5 are correct provided the lower operator is
safe. Moreover, given the configurations in the lhs of rules 1,2,3,6, when the lower
operator is safe, the upper one is safe too.

The problem of recognizing safe operator was partially solved by Asperti with the
heuristic implemented in this module. The problem of giving a precise, operational
characterization of safe nodes is still open. A sufficient condition for safeness of a
control node is given by the safeness tag whose algorithm is described below:

• all sharing operators are initially tagged safe.

• Both residuals of an operator interacting with a lambda node are tagged unsafe.

• All other interaction rules preserve the tag of the (ancestor of) the interacting
operators.

• Given the configurations in the lhs of the rules in Figure 4.5, if the lower operator
is tagged safe, the upper operator can be tagged safe as well.

Theorem 85 If a sharing operator is tagged safe, then it is safe.

When the safe option is checked the optimal reducer tags the sharing operators as
described above and implements the safe rules 1,2,4,5 of Figure 4.5.

Specific modules implementing optimal reducers are:

4.1. A TOOL FOR REDUCERS COMPARISON 129

(a)
(b)

Figure 4.6: Options.

1. Lamping’s graph implementation, as it is described in [AG98]. For such an im-
plementation it is possible to choose various initial translations:

• Lamping’s initial translation. In this case the lambda term is translated into
Lamping’s graph using the translation function in Figure 1.25. For this translation
is available the safe heuristic (flag S in Figure 4.1).

• Gonthier, Abadi and Lévy initial translation. In this case the translation function
used is the one showed in Figure 4.7;

1F(x) =

F(MN) =
F(M) F(N)

1

1

1

.

@ 0

0

λ x.M)F(=
F(M)

0

λ

. . .

0

Figure 4.7: Gonthier, Abadi and Lévy initial translation.

• Elementary Affine Logic initial translation. This module implements the type
synthesis algorithm described in Section 3.1. If the term to evaluate is typeable

130 CHAPTER 4. OPTIMAL REDUCERS

(a) (b)
(c)

Figure 4.8: Menus

in Elementary Affine Logic, then it is reducible—and then reduced—inside the
abstract Lamping’s algorithm. For this translation is available the safe heuristic.

2. Mux implementation, described in [Gue96]. The initial translation used for this
implementation is the Lamping’s one. All sharing operators are substituted by a unique
node, the multiplexer or mux. The idea behind mux is simple: consider two consecutive
fans, one connected through its principal port to the auxiliary port of the other. Such
configuration can be thought as—and behaves like—a single ternary fan. In general a
tree of fans with n leaves can be substituted by a single mux with n auxiliary doors.
Consider now a fan with a croissant at one of its auxiliary doors. The global effect on
a node of this configuration is to duplicate and then lower the level of the copy where
the croissant is connected. The same effect can be obtained with a single node that
duplicates and increase the level of the copy connected to the auxiliary door where
there was the croissant. Generalizing this two observations, the mux are generalized
fans with n ≥ 1 auxiliary ports having an integer weight associated. For this module is
available the safe heuristic. Moreover if the safe option is checked, the reducer tries to
apply the absorption rule as described in [GMM96]: if there are two muxes in series,
they are collapsed provided that the lower is safe.

All modules use the reduction strategy introduced in [Pey87]: starting from the root of the
graph, look for a redex ever exiting from the principal door of the nodes we encounter. There
are some options available for the reducers that allow to

• reduce either in head normal form or in full normal form (flag H in Figure 4.1). In the
first case the seeking of redexes ends when the algorithm finds a node connected to
the root through its principal door. If the full normal form is selected, after the head
normal form has been found, the algorithm insert a new temporary root behind the
first node and re-start the reduction until either a new head normal form is reached or
it reaches a lambda node from its binding port. The entire process continue until the
whole graph has been visited;

• either activate or not the garbage collection rules (flag G in Figure 4.1).

The tool has a graphical interface, visible in figures 4.2—4.9, allowing the user to insert,
view and delete definitions, evaluate λ-terms and check the chosen options. It is possible to
save and load sets of definitions (Figure 4.8 (a)) and moreover it is possible to define, save,
load and run a set of tests for a given λ-term (Figure 4.8 (b)). The last option is thought
in order to give the opportunity of compare the performances of different reducer with the
same input.

Finally the graphical interface shows, after the evaluation of a term, a set of statistics
(Figure 4.9) that allow to compare the optimal reducers. The items taken into account for

4.1. A TOOL FOR REDUCERS COMPARISON 131

Figure 4.9: The statistics panel.

the statistics are reducer-dependent, i.e. if the selected reducer is the Lamping’s implemen-
tation with Lamping’s initial translation, the statistic panel will show, among the others,
the number of optimal beta steps and the number of control interactions. If the selected
initial translation is the Elementary Affine Logic one, the statistic panel will not show the
number of control interaction because for that reducer there are no control interaction to
count (remember that if a term is typeable in Elementary Affine Logic, then is reducible
inside the abstract algorithm).

Our aim is to give a tool for the comparison of different graph reducers in terms of
unit cost operations. Figures 4.10, 4.12 and 4.14 show a graph of the unit cost operations
performed by, respectively, the Lamping’s optimal reducer, the Lamping’s optimal reducer
with additional safe rules and the EAL-optimal reducer—essentially the abstract Lamping’s
provided that the lambda term has EAL type—during the reduction of the lambda term
((((3 2) 2) λx.x) λx.x)1 to the complete normal form. The pictures well show how the
brackets and croissants interactions are predominant in the first case, the great majority in
the second case and how the performances are dramatically improved both with safe rules by
Asperti and in particular with EAL-typeable terms. Moreover in Figures 4.11, 4.13 and 4.15
it is shown the number of different nodes during the reduction. Also in this case it is evident
the dramatic improvement due to the safe rules (compare Figure 4.11 with Figure 4.13).

Similar improvements are obtained for all Church numerals, booleans, lists and relative
operations and in general all the terms used in Chapter 2. In particular it is possible to
achieve these performance enhancements for the encoding of the elementary Turing machines.

1This particular term is one of the benchmarks used in [Mac00].

132 CHAPTER 4. OPTIMAL REDUCERS

Figure 4.10: Unit cost operations for Lamping’s optimal reducer.

4.1. A TOOL FOR REDUCERS COMPARISON 133

Figure 4.11: Number of graph nodes during the reduction for the Lamping’s optimal reducer.

134 CHAPTER 4. OPTIMAL REDUCERS

Figure 4.12: Unit cost operations for Lamping’s optimal reducer with safe rules.

4.1. A TOOL FOR REDUCERS COMPARISON 135

Figure 4.13: Number of graph nodes during the reduction for the Lamping’s optimal reducer
with safe rules.

136 CHAPTER 4. OPTIMAL REDUCERS

Figure 4.14: Unit cost operations for EAL-reducer.

4.1. A TOOL FOR REDUCERS COMPARISON 137

Figure 4.15: Number of graph nodes during the reduction for the EAL-reducer.

138 CHAPTER 4. OPTIMAL REDUCERS

4.2 Implementation details

Note
Code in this section is a simplified version of the original one.

All the java classes of the tool are collected in the following packages structure:

• the root package is OptimalReduction. At this level of the hierarchy we found only
the class Main and other classes providing help during the development. For example
the class Debug provides methods for selective debugging.

public class Debug {
public static boolean ON = false;
private static final boolean FILE_OUTPUT = true;
public static final int SyntaxTree_substitution = 0;

...
public static final int abslampinggraph = 8;

private static final boolean FILE_OUTPUT = true;
private static boolean modules[] = {

false,
false,
true,
false,
false,
true,
false,
false,
false

};

Wherever in the code there is the necessity of a debugging message, it is possible to
insert a static method call

if (Debug.ON) {Debug.println(<debug message>,Debug.<module>);}

and the message <debug message> is printed only if the flag corresponding to Debug.
<module> is true. Moreover notice that the flag Debug.ON is static and then all debug
messages are eliminated at compile time if it is set to false.

• The package OptimalReduction.parser collects all classes used during precisely the
parsing. These files are mostly produced automatically by the JavaCC parser generator.
The main class, OptimalReduction.parser.parser, returns the syntax tree of the
parsed lambda terms. This is a cause of inefficiency. As we have to parse a lambda
term in order to translate it into sharing graphs, we could modify the parser in such
a way it returns a graph. But doing this way we should build a new parser for every
different sharing graph. Moreover we should modify the implementation of each sharing
graph in the case we slightly modify the syntax of lambda terms. For these reasons we
had preferred to insert an additional level of abstraction.

4.2. IMPLEMENTATION DETAILS 139

Figure 4.16: Java classes hierarchy for sharing graphs.

• The package OptimalReduction.syntax contains the classes implementing the ab-
straction level of syntax trees of lambda terms.

• OptimalReduction.types concern simple type inference and eta expansion.

In the next sections we will see more in depth the packages specific to the implementation
of optimal reducers and to the comparison of them.

4.2.1 Sharing graphs

The package OptimalReduction.sharingGraphs contains three different implementation of
optimal reducers (see Figure 4.16):

1. LampingGraph;

2. MuxGraph;

3. AbstractLampingGraph.

They are all subclasses of the abstract class sharingGraph:

public abstract class sharingGraph {
public abstract sharingGraph translate(SyntaxTree term);
public abstract sharingGraph reduce();
public abstract String readBack();

...

Methods translate, reduce and readBack are implementation-dependent. All subclasses
of sharingGraph fulfill them in different ways.

All sharing graphs can eventually implement different initial translations and different
reduction strategies. For this purpose sharingGraph provides the following methods:

public void setInitialTranslation(int translation)
throws SharingGraphsException {

if (implementsInitialTranslation(translation)) {
initialTranslation = translation;

} else {
throw(new SharingGraphsException());

140 CHAPTER 4. OPTIMAL REDUCERS

}
}

public void setReductionStrategy(char strategy)
throws SharingGraphsException {

if (implementsReductionStrategy(strategy)) {
reductionStrategy = strategy;

} else {
throw(new SharingGraphsException());

}
}

public abstract boolean implementsInitialTranslation(int translation);
public abstract boolean implementsReductionStrategy(char strategy);

Moreover any optimal reducer can either activate or not the garbage collector and can reduce
either to full or head normal form. The methods for setting these options are common to all
implementations and then are fulfilled by sharingGraph:

public void setGarbageCollection(boolean value) {
this.garbagecollection = value;

}

public void setHNF(boolean value) {
this.hnf = value;

}

All three subclasses of sharingGraph implement only one reduction strategy (the leftmost-
outermost one). The main cycle in the method reduce simply visits the graph every exiting
from the principal port of the nodes

n = root.principal();

and checks every time if it is possible for the current node to interact:

public sharingGraph reduce() {
if (tryInteraction(root))
headnormalform = true;

else {
n = root.principal();
this.stack.push(root);

}
while (!headnormalform) {
if (tryInteraction(n)) {
try {
n = this.stack.pop();

} catch (EmptyStackException e) {
//n was the root
headnormalform = true;

}
} else {

4.2. IMPLEMENTATION DETAILS 141

this.stack.push(n);
n = n.principal();
if (n instanceof freeVarNode)
try {

while (true) {
n = this.stack.pop();

}
} catch (EmptyStackException e) {

headnormalform = true;
}

}
}
if (!this.hnf) {
reduceTofullNF();

}
return this;

}

The use of the stack is suggested for efficiency reasons. The full normal form is obtained
placing a new root after the lambda nodes reached at the end of the head-normal form
reduction procedure

RootNode newroot = passOn(currentRoot);

and going on reducing to the head normal form the body.

private void reduceTofullNF() throws SharingGraphsException {
RootNode newroot = passOn(currentRoot);
if (newroot == null) {//a free var reached passing on nodes

//from their principal port
if (!root.equals(currentRoot))//disconnect provisional root
...
return;//full normal form reached

} else {
boolean headnormalform = false;
if (tryInteraction(newroot))
headnormalform = true;

else {
n = newroot.principal();
this.stack.push(newroot);

}
while (!headnormalform &&

!(n instanceof freeVarNode) && !n.visited) {
if (tryInteraction(n)) {
try {

n = this.stack.pop();
} catch (EmptyStackException e) {

//n was the root
headnormalform = true;

}

142 CHAPTER 4. OPTIMAL REDUCERS

} else {
this.stack.push(n);
n = n.principal();
if (n instanceof freeVarNode || n.visited)
//empty the stack

try {
while (true) {
this.stack.pop();

}
} catch (EmptyStackException e) {}

}
}
if (headnormalform)
reduceTofullNF();

else {//found either a visited node or a free variable

if there is an application in the current normal form, a new root is placed on top of the
argument and the procedure goes on recursively.

RootNode newroot2 = lookForApplication();
if (newroot2 == null) {//no application node found
...
//eventually disconnect provisional root
...
return;//full normal form reached

} else {
reduceTofullNF();

}
}

}
}

Finally tryInteraction(n) inserts an additional level of abstraction: code implementing
local graph rewriting rules and also safe rules is written here. This allow the reuse of code
when varying reduction strategy or reduction rules.

4.2.2 Graph nodes

Package OptimalReduction.sharingGraphs.nodes collect all classes implementing the agents,
in the interaction nets terminology, of the sharing graphs. Figure 4.17 shows the hierarchy.

A GraphNode is simply a composed by a principal port, a set of auxiliary ports, the
relative methods for the access and modification of the ports and a method returning a copy
of the node (this is useful during the reduction, since graph nodes may be duplicated):

public class GraphNode {
// Array of ports. ports[0] is the principal port.
protected Port[] ports;

public Port getPrincipalPort() {
return ports[0];

4.2. IMPLEMENTATION DETAILS 143

Figure 4.17: Java classes hierarchy for nodes.

}
protected void setPrincipalPort(Port p) {
...
}
protected void setAuxiliaryPort(Port p, int i) {
...
}
protected Port getAuxiliaryPort(int i) {
...
}
public Object copy() {
...
}

}

A LampingGraphNode is a graph node with a level:

public class LampingGraphNode extends GraphNode
implements NodeWithLevel {

public int level;
...

RootNode, freeVarNode and GarbageNode are all graph nodes with no auxiliary ports.
All the other classes extend LampingGraphNodes but MuxNode. Moreover the package

provides an interface for the safe rules NodeSafe. All classes implementing such interface
can interact when, during the reduction, a safe rule is performed.

Notice that the code implementing the interaction rules is not inside the classes of this
package. A graph node, in general, can not “know” how to interact with another node. The

144 CHAPTER 4. OPTIMAL REDUCERS

Figure 4.18: Java classes hierarchy for the GUI and statistics.

needed knowledge reside at level of the optimal reducer (the tryInteraction method).

4.2.3 Graphical User Interface

The class Gui of package OptimalReduction.GUI implements the user interface. All methods
for the input/output are here. However, the most important feature implemented in this
package is the management of statistics (see Figure 4.18).

Since the reduction of a lambda term can be a long process, all sharing graphs are
implemented as threads running concurrently with the main one. Every time an interaction
occurs, the sharing graph creates a new interaction event:

public class InteractionEvent extends EventObject {
...

In this way the graphical interface gives an immediate feedback during the reduction. More-
over it is possible to extend the tool in order to execute multiple reducers at the same time.

We have extended the EventObject of the java hierarchy in order to be conform to the
java events management. Actually the GUI contains one or more components managing the
interaction statistics (JPInteractions) that implements the InteractionListener inter-
face. When a sharing graph creates a new event, it dispatches the event to the list of its
registered listeners. This mechanism mimic the one used with Swing/JFC of Java2.

JPInteractions shows the evolution of interactions and nodes using two additional
classes: InteractionMonitor and NodeMonitor. Moreover JPInteractions records the
history of the computation and eventually outputs it in a file. Graphs of figures 4.10–4.15
are obtained using this feature.

public class JPInteractions extends JPanel
implements InteractionListener {

private ArrayList history = new ArrayList();
private PrintWriter historyFile;
...
public void printHistory(PrintWriter out) {
...

Conclusions

We believe that an efficient implementation of the lambda calculus could exist. Lamping’s
implementation of Lévy’s optimal reduction is a good starting point. We think that the
computational overhead due to the accumulation of control nodes can be resolved using the
safe rules of Asperti and refining the initial translation of lambda terms in sharing graphs.
The decoration procedure explained in Chapter 3 can be easily extended to full Linear Logic
and it is possible to calculate, for a given simply typed lambda terms, its decoration with
minimal use of δ and ε rules, hence it is possible to find the initial translation with the
minimal number of brackets and croissants. It remains to investigate the extensions to other
logics of first and second order.

For what concerns the study of the complexity of lambda reduction we can sum up the
work done so far with the following table:

[Sta79] Typed λ-calculus is not elementary recursive.

[Sch82] Number of β in the reduction of simply typed lambda

terms is Ω

(
2 . .

.2n)

∃ a strategy s.t. #β ≤ f ∈ E4.

[FS91] ∃M s.t. µβ(M) > 5µπ(M).
Propose a new measure ν.
Turner and Hughes implementations are 2Ω(ν).

[LM96, LM97] Abstract Lamping’s algorithm is Ω (2ν).
Propose two new measures based on Lévy’s labels.

[AM98] Optimal beta is not elementary recursive.

We proved in Chapter 2 that also optimal duplication is not elementary recursive.
What is a good measure of the reduction of functional programs remains an open question.

We think that the proposal of Lawall and Mairson of considering the sum of new labels
generated during the reduction as complexity measure is the most promising one. From one

146 CONCLUSIONS

side, it introduces an element relative to the length of the reduction chain; from the other,
it is implementation independent.

Further works will include the study and the characterization of the class of lambda terms
reducible with the abstract Lamping’s algorithm. The canonical forms of EAL can help in
the understanding of possible regularity of lambda terms in this class.

It will be interesting to extend our type inference algorithm to a polynomial logic. At the
moment the two most promising candidates are Light Affine Logic and Soft Linear Logic. In
this way we will have a procedure to prove the polynomial complexity of the reduction of a
given lambda term.

In Section 3.2 we defined the set of EAL-types of a lambda term referring to the set
of EAL-terms contracting at most variable. Removing this constraint could be a possible
extension of our work. In this case the existence of an EAL-type for a lambda terms will
imply that exist a sharing graph whose read back is the term itself and it is reducible with
the Lamping’s abstract algorithm, but we should abandon the usual translation and adopt
a new one taking care of the contraction imposed by the EAL-type derivation.

Finally, from the practical point of view, it will be worth to enrich the language of the
optimal reduction tool of Chapter 4 adding naturals, boolean, lists and relative operations.
Extending the type inference in EAL and the benefits of reduction with oracle O(1) to
this new language, will allow us to compare a prototype of optimal reducer with other
implementation of functional languages using the benchmarks available in the literature.
Clearly we should translate and refine the code in a more efficiently executable language
than Java (for example C++).

Bibliography

[AC97] Andrea Asperti and Juliusz Chroboczek. Safe operators: brackets closed forever.
Applicable Algebra in Engineering, Communication and Computing, 8(6), 1997.

[ACM00] Andrea Asperti, Paolo Coppola, and Simone Martini. (Optimal) duplication is
not elementary recursive. In Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POLP-00), pages 96–107,
N.Y., January 19–21 2000. ACM Press.

[AG98] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Func-
tional Programming Languages, volume 45 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1998.

[AM98] Andrea Asperti and Harry G. Mairson. Parallel beta reduction is not elemen-
tary recursive. In Conference Record of POPL ’98: The 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 303–315,
San Diego, California, 19–21 January 1998.

[Asp94] Andrea Asperti. Linear logic, comonads and optimal reductions. Fundamentae
Informaticae, 22(1):3–22, 1994. Special Issue devoted to Categories in Computer
Science.

[Asp95] Andrea Asperti. δ◦!ε = 1: Optimizing optimal λ-calculus implementations. In
Jieh Hsiang, editor, Proceedings of the 6th International Conference on Rewrit-
ing Techniques and Applications (RTA-95), volume 914 of Lecture Notes in Com-
puter Science, pages 102–116, Berlin, April 5–7 1995. Springer-Verlag.

[Asp96] Andrea Asperti. On the complexity of beta-reduction. In ACM, editor, Confer-
ence record of POPL ’96, 23rd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages: papers presented at the Symposium: St. Pe-
tersburg Beach, Florida, 21–24 January 1996, pages 110–118, New York, NY,
USA, 1996. ACM Press.

[Asp98] Andrea Asperti. Light affine logic. In Proc. of Symposium on Logic in Computer
Science, 1998.

[Bac78] John Backus. Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. Communications of the ACM,
21(8):613–641, august 1978. ACM Turing Award Lecture.

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus - Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, Amsterdam - New York - Oxford, 2 edition, 1984.

148 BIBLIOGRAPHY

[BBdPH93] Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. A term
calculus for intuitionistic linear logic. In M. Benzen and J.F. Groote, editors,
Typed Lambda Calculus and Applications. Int. Conference on Typed Lambda
Calculus and Applications, TLCA’93, volume 664 of Lecture Notes in Computer
Science, pages 75–90, March 1993.

[Bru72] Nicolaas G. De Bruijn. Lambda calculus notation with nameless dummies: a
tool for automatic formula manipulation, with application to the church-rosser
theorem. Indagationes Mathematicae, 34:381–392, 1972.

[CM01] Paolo Coppola and Simone Martini. Typing Lambda Terms in Elementary Logic
with Linear Constraints. In Samson Abramsky, editor, Proc. of Typed Lambda
Calculi and Applications, 5th International Conference, TLCA 2001, volume
2044 of Lecture Notes in Computer Science, pages 76–90. Springer, may 2001.

[Cop97] Paolo Coppola. Complessità e Riduzione Ottimale nel Lambda Calcolo. Master’s
thesis, Università degli Studi di Udine, 1997.

[CR91] William Clinger and Jonathan A. Rees. The Revised4 Report on the Algorithmic
Language Scheme. ACM LISP Pointers, 4(3):1–55, 1991.

[DJS95] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. On the linear dec-
oration of intuitionistic derivations. In Archive for Mathematical Logic, vol-
ume 33, pages 387–412, 1995.

[FS91] Gudmund S. Frandsen and Carl Sturtivant. What is an efficient implementa-
tion of the λ-calculus? In John Hughes, editor, Proceedings of Functional Pro-
gramming Languages an Computer Architecture, volume 523 of Lecture Notes
in Computer Science, pages 289–312, Berlin, Germany, August 1991. Springer.

[GAL92] Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. Linear logic without
boxes. In Proceedings, Seventh Annual IEEE Symposium on Logic in Com-
puter Science, pages 223–234, Santa Cruz, California, 22–25 June 1992. IEEE
Computer Society Press.

[Gan80] Robin O. Gandy. Proofs of strong normalization. In Jonathan P. Seldin and
J. Roger Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 457–477. Academic Press, London, 1980.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987.

[Gir98] Jean-Yves Girard. Light linear logic. Information and Computation, 204(2):143–
175, 1998.

[GMM96] Stefano Guerrini, Simone Martini, and Andrea Masini. Coherence for sharing
proof nets. In Harald Ganzinger, editor, Proceedings of the 7th International
Conference on Rewriting Techniques and Applications (RTA-96), volume 1103
of Lecture Notes in Computer Science, pages 215–229, New Brunswick, NJ,
USA, July 27–30 1996. Springer-Verlag.

[Grz53] Andrzej Grzegorczyk. Some classes of recursive functions. Rozprawy Matematy-
czne, 1953.

BIBLIOGRAPHY 149

[Gue96] Stefano Guerrini. Theoretical and Pratical Issues of Optimal Implementation of
Functional Languages. Phd thesis, Dipartimento di Informatica, Universitá di
Pisa, Pisa, 1996. TD-3/96.

[Hen63] Leon Henkin. A theory of propositional types. Fundamenta Mathematicae,
52:323–344, 1963.

[Hug82] R. John M. Hughes. Super combinators: A new implementation method for
applicative languages. In Conference Record of the 1982 ACM Symposium on
Lisp and Functional Programming, pages 1–10. ACM, ACM, August 1982.

[Joh84] Thomas Johnsson. Efficient compilation of lazy evaluation. ACM SIGPLAN
Notices, 19(6):58–69, June 1984.

[Kat90] Vinod K. Kathail. Optimal Interpreters for Lambda-calculus Based Functional
Programming Languages. PhD thesis, MIT, May 1990.

[Laf01] Yves Lafont. Soft Linear Logic and Polynomial Time. ftp://iml.univ-
mrs.fr/pub/lafont/soft.ps.gz, 2001.

[Lag01] Ugo Dal Lago. Semantica delle fasi per logiche lineari elementari. Master’s
thesis, Università degli Studi di Udine, 2001.

[Lam90] John Lamping. An algorithm for optimal lambda calculus reduction. In ACM,
editor, POPL ’90. Proceedings of the seventeenth annual ACM symposium on
Principles of programming languages, January 17–19, 1990, San Francisco, CA,
pages 16–30, New York, NY, USA, 1990. ACM Press.

[Lan64] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, January 1964.

[Lév78] Jean-Jacques Lévy. Réductions Correctes et Optimales dans le Lambda Calcul.
Thèse de Doctorat d’Etat, University of Paris VII, 1978.

[Lév80] Jean-Jacques Lévy. Optimal reductions in the lambda-calculus. In Jonathan P.
Seldin and J. Roger Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 159–191. Academic Press,
London, 1980.

[LM96] Julia L. Lawall and Harry G. Mairson. Optimality and inefficiency: What
isn’t a cost model of the lambda calculus? In Proceedings of the 1996 ACM
SIGPLAN International Conference on Functional Programming, pages 92–101,
Philadelphia, Pennsylvania, 24–26 May 1996.

[LM97] Julia L. Lawall and Harry G. Mairson. On global dynamics of optimal graph
reduction. In Proceedings of the 1997 ACM SIGPLAN International Conference
on Functional Programming, pages 188–195, Amsterdam, The Netherlands, 9–
11 June 1997.

[Mac00] Ian Mackie. Interaction nets for linear logic. Theoretical Computer Science,
247(1-2):83–140, september 2000.

[Mai92] Harry G. Mairson. A simple proof of a theorem of Statman. Theoretical Com-
puter Science, 103(2):387–394, September 1992.

150 BIBLIOGRAPHY

[McC62] John McCarthy. Lisp 1.5 Programmer’s Manual. Cambridge, Massachussets,
1962.

[Mey74] Albert R. Meyer. The inherent computational complexity of theories of ordered
sets. In Proceedings of the International Congress of Mathematicians, pages
477–482, 1974.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, December 1978.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Computer Science. Prentice-Hall, 1987.

[Pin01] Jorge Sousa Pinto. Parallel Implementation Models for the λ-Calculus Using the
Geometry of Interaction. In Samson Abramsky, editor, Proc. of Typed Lambda
Calculi and Applications, 5th International Conference, TLCA 2001, volume
2044 of Lecture Notes in Computer Science, pages 385–399. Springer, may 2001.

[PQ00] Marco Pedicini and Francesco Quaglia. A parallel implementation for opti-
mal lambda-calculus reduction. In Proceedings of the 2nd Imternational ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP-00), pages 3–14, N.Y., September 20–23 2000. ACM Press.

[PW93] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In ACM, editor, Conference record of the Twentieth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages: papers pre-
sented at the symposium, Charleston, South Carolina, January 10–13, 1993,
pages 71–84, New York, NY, USA, 1993.

[Rov98] Luca Roversi. A Polymorphic Language which is Typable and Poly-step. In Pro-
ceedings of the Asian Computing Science Conference (ASIAN’98), volume 1538
of Lecture Notes in Computer Science, pages 43 – 60, Manila (The Philippines),
December 1998. Springer Verlag.

[Sch82] Helmut Schwichtenberg. Complexity of normalization in the pure typed lambda-
calculus. In A. S. Troelstra and D. van Dalen, editors, Proceedings L. E. J.
Brouwer Centenary Symp., Noordwijkerhout, The Netherlands, 8–13 June 1981,
volume 110 of Studies in Logic and the Foundations of Mathematics, pages 453–
457. North-Holland, Amsterdam, 1982.

[Sch94] Harold Schellinx. The Noble Art of Linear Decorating. PhD thesis, Institute for
Logic, Language and Computation, University of Amsterdam, 1994.

[Sch01] Aleksy Schubert. The Complexity of β-Reduction in Low Orders. In Samson
Abramsky, editor, Proc. of Typed Lambda Calculi and Applications, 5th Inter-
national Conference, TLCA 2001, volume 2044 of Lecture Notes in Computer
Science, pages 400–414. Springer, May 2001.

[Sta79] Richard Statman. The typed λ-calculus is not elementary recursive. Theoretical
Computer Science, 9:73–81, 1979.

BIBLIOGRAPHY 151

[Ste84] Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, 1984.

[Tur76] David A. Turner. The SASL language manual. Technical report, University of
Kent, Canterbury, U.K., 1976.

[Tur79] David A. Turner. A new implementation technique for applicative languages.
Software – Practice and Experience, 9:31–49, 1979.

[Tur85] David A. Turner. Miranda: a non-strict functional language with polymorphic
types. In Jean-Pierre Jouannaud, editor, Functional Programming Languages
and Computer Architecture, volume 201 of Lecture Notes in Computer Science,
pages 1–16. Springer Verlag, September 1985.

[vEP93] Marko van Eekelen and Rinus Plasmeijer. Functional Programming and Parallel
Graph Rewriting. Addison Wesley, 1993.

[Wad71] Christophe P. Wadsworth. Semantics and pragmatics of the lambda calcu-
lus. Ph.D. thesis, Programming Research Group, Oxford University, September
1971.

