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Abstract. Elementary Affine Logic (EAL) is a variant of the Linear
Logic characterizing the computational power of the elementary bounded
Turing machines. The EAL Type Inference problem is the problem of
automatically assign to terms of λ-calculus EAL formulas as types. The
problem is solved by showing that every λ-term which is typeable has a
finite set of principal typing schemata, from which all and only its typings
can be derived, through suitable operations. An algorithm is showed, that
gives as output, for every λ-term, either a negative answer or the set of
its principal typing schemata.

1 Introduction

In a communication computing setting, for example in writing communication
protocols, it can be necessary to produce tools whose execution is limited in
time [10]. Starting from a seminal idea of Girard, which designed the first vari-
ant of Linear Logic normalizable in polynomial time, the Light Linear Logic [7],
some logical systems have been proposed in the literature, characterizing differ-
ent complexity classes. From each one of these logics a λ-calculus like language
can be defined, using the Curry-Howard isomorphism. In [2] a language has been
designed, ΛEA, starting from (the implicational fragment of) Elementary Affine
Logic (EAL), whose computational power is that one of elementary bounded
Turing machines. The language is untyped, and it can be assigned types which
are formulas of EAL through a type assignment system in natural deduction
style (NEAL), proving statements (typings) of the shape Γ `NEAL M : A, where
the context Γ assigns types to variables. However the language, as almost all
designed in this way, is quite complex, both as syntax and as reduction rules.
Indeed, its syntax reflects the inference rules, and its reduction rules reflect all
the normalization steps, which are quite involved. So it cannot be proposed as
paradigm for a real programming language. It would be interesting to have a
decidable type assignment system which directly assigns EAL formulas as types
to terms of the standard λ-calculus: in this way the programmer can use an easy



and well known language, while the compiler, through the type inference algo-
rithm, can automatically control the time complexity of the programs. Moreover
typability in EAL has an interesting and useful side effect. In fact, from a practi-
cal point of view, if we are interested in the efficient implementation of functional
languages, EAL-typeable terms are wonderful candidates. In fact they can be
reduced with the abstract subset of Lamping’s optimal reduction algorithm [9]
obtaining excellent performances. Hence a type inference algorithm in EAL can
be used in an optimal implementation of a functional language as a check: if it
returns true than compile the term for the abstract Lamping’s algorithm else
compile as usual.

A type assignment system for λ-calculus cannot be designed directly, since
the only way of defining a EAL typing for the λ-calculus is the following: a term
M ∈ Λ can have a typing Γ `NEAL M : A if and only if there is a term M ′ of
ΛEA such that it corresponds to M , and Γ `NEAL M ′ : A. The correspondence
between ΛEA and Λ is realized by performing the substitutions that are implicit
in terms of ΛEA. Moreover, in order to use typability as a sufficient condition
for reducing terms with the Lamping’s abstract algorithm, we restrict ourselves
to consider just terms of ΛEA wich are simple. To be simple means that the
corresponding proofnet contracts at most variables, i.e. terms of ΛEA sharing
non trivial subterms are not taken into account. In fact Lamping’s proofnets
corresponding to the initial translation of lambda terms do not share subterms.
The number of terms of ΛEA corresponding to a λ-term is in general infinite
(thanks to the possibility of adding boxes just replacing variables by variables),
and so at a first look the problem of the EAL type inference for the λ-calculus
seems semi-decidable.

However, in [2] it is proved that such a problem is decidable. More precisely a
procedure has been designed for assigning to a λ-term, that can be typed in the
Curry’s type assignment system [3, 4, 5], a set of types of EAL: the procedure
takes as input a pair of a term and a Curry’s type that can be assigned to it, and
produces as output either a negative result or a typing, assigning to the term
itself a set of EAL types related to the Curry type in input, in the sense that it
express the same functionality behavior.

In this paper we give a stronger solution of the problem, by designing a
modular type inference algorithm for λ-calculus. Namely the algorithm gener-
ates, for every λ-term, either a negative answer or a finite set of principal typing
schemata, from which all and only its typings can be derived by certain oper-
ations. The solution is given in two steps. First we introduce the language of
abstract EA-terms, to which EAL types can be assigned through a suitable type
assignment system, An abstract EA-terms codifies an infinite set of terms of
ΛEA, and in particular to every term M of ΛEA an abstract term in normal
form (its canonical form Can(M)) can be assigned. In particular, every typing
of M are typings of Can(M), and every typing of Can(M) is a typing of at
least one of the infinite set of terms it represents. We prove that every abstract
term has a principal typing schemata, from which all and only the typings for



it can be derived, through suitable operations. An algorithm PT ( ), generating
the principal typing scheme of an abstract EA-term, is showed.

Secondly we prove that the result can be extended to ΛEA, by designing
a procedure C( ) such that, for every pure λ-term M , C(M) generates all and
only the canonical forms of the terms of ΛEA corresponding to M . Since C(M)
generates always a finite set, the composition of C( ) and PT ( ) gives the desired
type inference algorithm for pure λ-terms.

The notion of principal typing for the EAL type assignment system is remi-
niscent of the corresponding notion for intersection types [12, 11]. In fact, while
in the seminal case of Curry’s type assignment types are obtained from the
schemata using substitutions [8], in both cases also other operations are involved,
which, for EAL typing, include to solve a system of linear constraints.

Related works are the results of Schellinx et al [13, 6] in the field of lin-
ear decorations of intuitionistic derivations and the type checking algorithm of
Baillot [1] for lambda terms in LAL.

The paper is organized as follows. In Section 2 the λEA-calculus and the type
assignment system `NEAL are recalled. Section 3 presents the abstract EA-terms,
the type assignment system `abs, and the notion of canonical forms. In Section 4
the principal typing property for abstract EA-terms is proved. In Section 5 the
principal typing property for the λ-calculus is proved. The appendix contains
the grammars generating EA-terms and simple EA-terms respectively, and the
sketches of some technical proofs.

2 The λEA-calculus

In this section we will briefly recall the λEA-calculus, as defined in [2], its typing
rules, its relation with the λ-calculus, and the definition of EAL-typability of
λ-calculus.

Definition 1. i) The set of terms of the λEA-calculus (ΛEA) is generated by
the grammar:

M ::= x | λx.M | (M M) | ! (M)
[
M/x, . . . , M/x

] | [M ]M=x,y

where all variables occur once. ΛEA is ranged over by M, N, P, Q.
ii) EA-types are formulas of Elementary Affine Logic, and they are generated

by the following grammar:

A ::= a | A ( A |!A
where a belongs to a countable set of basic type constants. EA-types will be
ranged over by A,B, C.

iii) The type assignment system `NEAL assigns EA-types to EA-terms, starting
from a context, assigning EA-types to variables. The rules of the system are
given in Table 1.

The following definition relates terms of ΛEA with the terms of the classical
λ-calculus.



Γ, x : A `NEAL x : A
ax

Γ `NEAL M :!A ∆, x :!A, y :!A `NEAL N : B

Γ, ∆ `NEAL [N ]M=x,y : B
contr

Γ, x : A `NEAL M : B

Γ `NEAL λx.M : A( B
(( I)

Γ `NEAL M : A( B ∆ `NEAL N : A

Γ, ∆ `NEAL (M N) : B
(( E)

∆1 `NEAL M1 :!A1 · · · ∆n `NEAL Mn :!An x1 : A1, . . . , xn : An `NEAL N : B

Γ, ∆1, . . . , ∆n `NEAL! (N)
�
M1/x1, . . . ,

Mn/xn

�
:!B

!

Table 1. Type assignment system for EA-terms.

Definition 2. i) The set of terms of the λ-calculus (Λ) are defined by the
following grammar:

M ::= x | MM | λx.M

By abuse of notation, Λ will be ranged over by M, N, P,Q, as ΛEA, being
the different meaning clear from the context.

ii) The erasure function ()∗ : ΛEA → Λ is defined by induction on the structure
of the EA-term as follows:

(x)∗ = x

(λx.M)∗ = λx.M∗

((M1 M2))∗ = (M∗
1 M∗

2 )

(!(M)[M1/x1, · · · , Mn/xn])∗ = M∗{M∗
1 /x1, . . . , M

∗
n/xn}

([M ]N=x1,x2)
∗ = M∗{N∗/x1, N

∗/x2}

In order to extend to Λ the notion of type assignment with EA-types, let
us introduce a particular class of EA-terms, the simple ones, which correspond,
if translated into proofnets, to contracting at most variables. We discard EA-
terms contracting non trivial subterms otherwise we could loose the possibility
of reducing lambda terms with the abstract Lamping’s algorithm.

Definition 3. i) The length L(M) of an EA-term M is defined inductively as
follows:

L(x) = 0
L(λx.M) = 1 + L(M)

L((M N)) = 1 + L(M) + L(N)

L(! (M)
[
M1/x1, . . . ,

Mn/xn

]
) = L(M) +

n∑

i=1

L(Mi)

L([M ]N=x,y) = L(M) + L(N).

ii) An EA-term M is simple if and only if
1. M has no subterm of the form [M1]M2=x,y where (M2)∗ is not a variable,
2. L(M) = L((M)∗)



Definition 4. Let M ∈ Λ. Γ `NEAL M : A if and only if Γ `NEAL P : A and
(P )∗ = M , for some P ∈ ΛEA, P simple.

Let M ∈ Λ and N ∈ ΛEA be correspondent if (N)∗ = M . The simple EA-
terms corresponding to a given λ-terms can be infinite, so at a first look the
problem of EA typability for λ-terms seems to be semi-decidable.

3 Abstract EA-terms and Canonical Forms

In this section the notion of abstract EA-terms, and a type assignment for as-
signing EA-types to them are introduced. As will be clarified in the sequel, a
term of AbsEA is a term in a meta-language, representing an infinite set of terms
of ΛEA.

Definition 5. The set AbsEA of abstract EA-terms is generated by the follow-
ing grammar:

M ::= x | λx.M | (M M) | [M ]N1→(cx1),...,Nk→(cxk) | ∇(M)[N1/x1, · · · , Nk/xn]

with the condition that every variable occur just once in a term.

On abstract EA-terms we define a reduction rule,→Can , whose role is to limit the
number of nested occurrences of subterms of the shape either [M ]N1→(cx1),...,Nk→(cxk)

or ∇(M)[N1/x1, · · · , Nk/xn]. The definition of the sets of free variables FV for
AbsEA and the reduction rules →Can are given in Figures 1 and 2 respectively.

Lemma 1. →Can is Church-Rosser.

The type assignment system assigning formulas of EAL to terms of AbsEA

is shown in Table 2. Note that the main difference between this system and that
one for ΛEA is that the rule (!m) is parametric, in the sense that it can assign
a type having any number m > 0 of modalities. In fact a derivation in the type
assignment system `abs can represent an infinite number of derivations in the
system `NEAL, by contracting in one application of the rule (!m) a sequence of
m > 0 application of the rule (!) and in one application of the rule (contr) a
sequence of the applications of the rule with the same name, acting on disjoint
pairs of variables.

Lemma 2 (Subject reduction). Let M ∈ AbsEA and M →∗
Can N , then

Γ `abs M : A ⇒ Γ `abs N : A.

Proof. By induction on the length of the reduction. By cases on the last step of
the reduction.

– if [x]...,N→(...,x,...),... →Can N than the type assignment is

...
Γ `abs N :!A′

... ∆1, x :!A′, ∆2 `abs x :!A′

∆1,∆2, Γ `abs [x]...,N→(...,x,...),... :!A′
contr



FV(x) ={x}

FV(λx.M)=FV(M)\{x}

FV((M1 M2))=FV(M1)∪FV(M2)

FV([M ]Clist)=(FV(M)\CV(Clist))∪

SSV(Clist)∪SFV(Clist)

FV(∇(M)[N1/x1,···

··· ,Nk /xk])=
Sk

i=1 FV(Ni)

SFV(x)= SFV(λx.M)=∅

SFV(∇(M)[N1/x1,··· ,Nk /xk])= SFV((M1 M2))=∅

SFV([M ]Slist)=SFV(M)∪SFV(Slist)

SFV(x→(x1,...,xn),Slist)=SFV(Slist)

SFV(M→(x1,...,xn),Slist)=FV(M)∪SFV(Slist)

CV(x)= CV(λx.M)=∅

CV(∇(M)[N1/x1,··· ,Nk /xk])= CV((M1 M2))=∅

CV([M ]Slist)=∅

CV(M→(x1,...,xn),Slist)={x1,...,xn}

∪CV(Slist)

SSV(x)= SSV(λx.M)=∅

SSV(∇(M)[N1/x1,··· ,Nk /xk])= SSV((M1 M2))=∅

SSV([M ]Slist)=SSV(M)∪SSV(Slist)

SSV(x→(x1,...,xn),Slist)={x}∪SSV(Slist)

SSV(M→(x1,...,xn),Slist)=SSV(Slist)

Fig. 1. Free, Contracted, Shared Free, and Single Shared Variables for EA-terms.

Γ, x : A `abs x : A
ax

Γ, x : A `abs M : B

Γ `abs λx.M : A( B
(( I)

Γ `abs M : A( B ∆ `abs N : A

Γ, ∆ `abs M N : B
(( E)

Γ1 `abs N1 :!A1

...
Γk `abs Nk :!Ak

x1
1 :!A1, . . . , x

1
n1 :!A1,

...

∆, xk
1 :!Ak, . . . , xk

nk
:!Ak `abs M : B

Γ1, . . . , Γk, ∆ `abs [M ]N1→(x1
1,··· ,x1

n1
),...,Nk→(xk

1 ,··· ,xk
nk

) : B
contr

∆1 `abs N1 :

mz}|{
!...! A1

...

∆k `abs Nk :

mz}|{
!...! Ak x1 : A1, . . . , xk : Ak `abs M : B m > 0

Γ, ∆1, . . . , ∆k `abs ∇(M)[N1/x1, · · · , Nk/xn] : !...!|{z}
m

B
!m

Table 2. Type assignment system for AbsEA-terms.



∇
�
∇(M)[y1/x1,··· ,yn/xn]

�
[M1/y1,··· ,Mn /yn]→Can∇(M)[M1/x1,...,Mn /xn]�

[M ]
...,xi→( dyni ),...

�
...,Nj→(z

j
1,...,z

j
k−1,xi,z

j
k+1,...,z

j
mj

),...
→Can�

[M ]...

�
...,Nj→(z

j
1,...,z

j
k−1, dyni ,z

j
k+1,...,z

j
mj

),...�
[M ]

N1→(cx1),...,Ni→( dxni ),...

�
Slist

→Can�
[M ]

N1→(cx1),...,Ni−1→( d
xi−1),Ni+1→( d

xi+1),...

�
Slist,Ni→( dxni )

if FV(Ni) ∩ CV(Slist) = ∅.

∇(M)[M1/x1,··· ,∇(N)[P1/y1,...,Pm /ym]/xi,··· ,Mn /xn]→Can

∇(M{N/xi})[M1/x1,··· ,P1/y1,··· ,Pm /ym,···Mn /xn]

∇(M)[··· ,
[Mi]

N1→(cy1),...,Nk→(dyk)/xi,··· ]→Can�
∇(M)[··· ,Mi{cz1/

c
y1,...,

c
zk/

d
yk}/xi,··· ]

�
N1→(cz1),...,Nk→(czk)

∇([M ]...,x→(bx),...)[··· ,y/x,··· ]→Can

�
∇([M ]...)[··· ,by/bx,··· ]

�
y→(by)

[M ]
...,[N]

P1→(cy1),...,Pk→(dyk)
→(cxi),...

→Can�
[M ]

...,N{cz1/
c
y1,··· ,

c
zk/

d
yk}→(cxi),...

�
P1→(cz1),...,Pk→(czk)

([M ]
M1→(cx1),...,Mk→(dxk)

N)→Can

h
(M{cy1/cx1,...,cyk/cxk} N)

i
M1→(cy1),...,Mk→(dyk)

(M [N ]
N1→(cx1),...,Nk→(dxk)

)→Can

h
(M N{cy1/cx1,...,cyk/cxk})

i
N1→(cy1),...,Nk→(dyk)

λx.[M ]Slist→Can [λx.M]Slist where x /∈ SFV(Slist) ∪ SSV(Slist)

∇(x)[M /x]→CanM

∇(M)[··· ,N /x,··· ]→Can∇(M)[··· ] where x/∈FV(M)

[x]...,N→(...,x,...),...→CanN

[M ]...,N→(...,x,...),...→Can [M ]...,N→(...),... where x/∈FV(M)

[M ]...,N→(x),...→Can [M{N/x}]...

Fig. 2. Reduction relation →Can for AbsEA terms.



hence, trivially, ∆1,∆2, Γ `abs N :!A′.
– if ∇(x)[N/x] →Can N than the type assignment is

Γ `abs N :

m︷︸︸︷
!...! A x : A `abs x : A m > 0

∆,Γ `abs ∇(x)[N/x] : !...!︸︷︷︸
m

A
!m

hence, trivially, ∆,Γ `abs N : !...!︸︷︷︸
m

A.

Other cases are equally easy. ut

The relation between ΛEA and AbsEA can be formalized by two embedding
functions, the function emb associating to every term of ΛEA a term of AbsEA

(its abstract representation) and the function bme, associating to every term of
AbsEA a set of terms in P(ΛEA) (the set of EA-terms which are represented by
it).

emb is inductively defined as follows:

emb(x) = x

emb(λx.M) = λx.emb(M)
emb((M1 M2) = (emb(M1) emb(M2))

emb([M ]N=x,y) = [emb(M)]emb(N)→(x,y)

emb(!(M)[N1/x1, · · · , Nk/xk]) = ∇(emb(M))[emb(N1)/x1, · · · , emb(Nk)/xk]

Lemma 3. ∀M ∈ ΛEA Γ `NEAL M : A ⇒ Γ `abs emb(M) : A

Proof. By structural induction on M , the thesis holds trivially for M = x
and by hypothesis for M = λx.M ′, M = (M1 M2) and M = [M1]N=x,y. For
M =!(M1)[N1/x1, · · · , Nk/xk] the thesis holds by the observation that !-rule in
the assignment system for ΛEA is simply a particular case of !m-rule in the as-
signment system for AbsEA. ut

In particular, to every term in ΛEA a canonical form can be assigned, which
is a term of AbsEA in normal form. The canonical form of M ∈ ΛEA can be
obtained by reducing to normal form (with respect to→Can) the term emb(M) ∈
AbsEA. Thanks to the Lemma 1 the canonical form of a term is unique: let us
call it Can(M).

Lemma 4. ∀M ∈ ΛEA. Γ `NEAL M : A then Γ `abs Can(M) : A.

Proof. By Lemma 3 and Lemma 2. ut



The function bme, from AbsEA to P(ΛEA), can be defined inductively in
the following way:

bme(x) = {x}
bme(λx.M) = {λx.M ′|M ′ ∈ bme(M)}

bme((M1 M2) = {(M ′
1 M ′

2)|M ′
1 ∈ bme(M1) ∧M ′

2 ∈ bme(M2)}

bme
(∇(M)[N1/x1, · · ·Nk/xk]

)
= {

n︷ ︸︸ ︷
!(· · ·!( M ′)[z1

1/x1, . . . , z
1
k/xk]

n−1︷ ︸︸ ︷
) · · · )[N ′

1/zn
1 , . . .

. . . , N ′
k/zn

k ] |M ′ ∈ bme(M) ∧N ′
i ∈ bme(Ni) ∧ n > 0}

bme([M ]N→(x1
1,x2

1,...,x
n1
1 ),···) = bme

([
[M ]y→(x1

1,x2
1)

]
N→(y,x3

1,...,x
n1
1 ),···

)

y fresh variable

bme([M ]N1→(x1
1,x2

1),N2→(cx2),···) = bme
([

[M ]N1→(x1
1,x2

1)

]
N2→(cx2),···

)

bme([M ]N→(x1,x2)) = {[M ′]N ′=x1,x2 |M ′ ∈ bme(M) ∧N ′ ∈ bme(N)}

Lemma 5. ∀M ∈ AbsEA

Γ `abs M : A ⇒ ∃M ′ ∈ bme(M) Γ `NEAL M ′ : A.

Example 1. i) The abstract term
λx.[λy.∇((x1 x2 t))[y/t, z1/x1,

z2/x2]]x→(z1,z2) is the canonical form of the
infinite set of terms:

{λx.
[
λzm+1

3 . !(...!(!︸ ︷︷ ︸
m+1

(x1 x2 t))[z
1
1/x1,

z1
2/x2,

z1
3/t])

· · · )[zm+1
1 /zm

1 , zm+1
2 /zm

2 , zm+1
3 /zm

3 ]
]
x→(zm+1

1 ,zm+1
2 )

| m ∈ ω}.

ii) The EA term:

λx.

[[
!((x1 y1 y2 y3 y4))[x/x1,

z1/y1,

z2/y2,
z3/y3,

z4/y4]
]
!(λx.x)[ ]=z1,z2

]

!(λx y.x)[ ]=z3,z4

has the following canonical form:

λx.

[
∇((x1 y1 y2 y3 y4))[x/x1,

z1/y1,
z2/y2,

z3/y3,
z4/y4]

]

∇(λx.x)[ ]→(z1,z2),∇(λx y.x)[ ]→(z3,z4)



4 Principal Typing for `abs
In this section we will prove that `abs enjoys the principal typing property,
i.e., every typing can be derived from a particular typing schemata by means
of suitable operations. First of all, let us introduce the notion of type scheme.
A type scheme represents an infinite set of types, namely all these ones that
can be obtained from it through a special kind of substitution, called scheme
substitution.

Definition 6. i) Type schemata are defined by the following grammar:

σ ::= α | σ ( σ |!p(σ)

where the exponent p is defined by the following grammar:

p ::= n | p + p

where α belongs to a countable set of scheme variables, ranged over by α, β, γ,
and n belongs to a countable set of literals; type schemata are ranged over
by σ, τ, ρ and exponentials are ranged over by p, q, r. Let T denote the set of
type schemata;

ii) A scheme substitution is a function from type schemata to types, denoted by
a pair of substitutions < S, X >, where S replaces scheme variables by types
and X replaces literals by natural numbers ≥ 1. The application of < S,X >
to a type scheme is defined inductively as follows:

< S, X > (α) = S(α);
< S,X > (σ ( τ) =< S,X > (σ) (< S, X > (τ);

< S,X > (!n1+...+niσ) = !...!︸︷︷︸
q

< S,X > (σ),

where q = X(n1) + ... + X(ni).

≡ denotes the syntactical identity between both types and type schemes.
In order to define the principal typing, we need a unification algorithm for

type schemes. But first some technical definitions are necessary.
First we introduce a function F collapsing all consecutive !p in a type scheme:

F (α) = α;
F (σ ( τ) = F (σ) ( F (τ);

F (!p(σ)) =!pF (σ) if F (σ) is not of the form !qτ.

F (!p(σ)) =!p+q(τ) if F (σ) =!qτ.

In the following we assume that type schemes are already transformed by F ,
i.e. it is not the case that a subterm !p(!q(σ)) occur in a type scheme.

Moreover, let =e be the relation between type scheme defined as follows:
α =e α; σ =e µ and τ =e ν imply σ ( τ =e µ ( ν; σ =e τ implies !pσ =e!qτ .



Roughly speaking, two type schemes are =e if and only if they are identical
modulo the exponentials.

The unification algorithm, which we will present in SOS style, is a function U
from T ×T to pairs of the shape < C, s >, where C (the modality set) is a set
of natural linear constraints, in the form p = q, where p and q are exponentials,
and s is a substitution, replacing scheme variables by type schemes. A set C
of linear constraints is solvable if there is a substitution from literals to natural
numbers such that, for every constraint n1 + ... + ni = m1 + ... + mj in C,
X(n1) + ... + X(ni) = X(m1) + ... + X(mj). Clearly the solvability of a set of
linear constraints is a decidable problem.

U(α, α) =< ∅, [ ] >

α is a scheme variable not occurring in τ

U(α, τ) =< ∅, [α 7→ τ ] >

α is a scheme variable not occurring in σ

U(σ, α) =< ∅, [α 7→ σ] >

U(ρ, µ) =< C, s >

U(!pρ, !qµ) =< C ∪ {p = q}, s >

U(σ1, τ1) =< C1, s1 > U(s1(σ2), s1(τ2)) =< C2, s2 >

U(σ1 → σ2, τ1 ( τ2) =< C1 ∪ C2, s1 ◦ s2 >

Note that U is a partially defined function: for example both U(α, α ( β)
and U(!pα, σ ( τ) are undefined.

The following lemma proves that U is the most general unifier for type
schemes, with respect to =e.

Lemma 6. i) (correctness) U(σ, τ) =< C, s > implies s(σ) =e s(τ).
ii) (completeness) s(σ) =e s(τ) implies U(σ, τ) =< C, s′ > and s = s′ ◦ s′′, for

some s′′.

Proof. (correctness) By induction on the rules deriving U(σ, τ) =< c, s >.
(Completeness) By induction on the pair (number of symbols of σ, number

of scheme variables occurring in σ). ut
Lemma 7. Let < S,X > be a scheme substitution such that < S, X > (σ) ≡<
S, X > (τ). Then U(σ, τ) =< C, s >, and there is < S′, X ′ > such that X ′ is a
solution of C and < S′, X ′ > (s(σ)) ≡< S, X > (σ).

Proof. By induction on the pair (number of symbols of σ, number of scheme
variables occurring in σ). ut

Let

U(σ1, σ2, . . . , σn) = let U(σ1, σ2) =< C1, s1 >

and let U(s1 ◦ · · · ◦ si(σi+1), s1 ◦ · · · ◦ si(σi+2)) =< Ci+1, si+1 >

in < C1 ∪ · · · ∪ Cn, s1 ◦ · · · ◦ sn > .



The following function PT ( ) takes as input a term of AbsEA and gives as
output a typing scheme , i.e., a triple of a scheme context, a type scheme and a
set of constraints, where a scheme context is a finite set of scheme assignments
to variables. PT (M) is designed by induction on the structure of M , and it is
based on the property that the type assignment `abs is syntax directed. Note
that, if restricted to terms of λ-calculus, PT coincides with the well known
principal type algorithm designed by Hindley for Curry’s type assignment [8].
PT is defined modulo names of type variables.

– PT (x) =< {x : α}, α, ∅ >, where α is fresh;
– PT (λx.M) = let PT (M) =< B, σ,C > in

if B = B′ ∪ {x : τ} then < B′, τ ( σ,C >
else < B, α ( σ,C > where α is fresh;

– PT (M N) = let PT (M) =< B1, σ1, C1 > and PT (N) =< B2, σ2, C2 >
and let they be disjoint in let U(σ1, σ2 ( α) =< C, s > (α fresh)
in < s(B1 ∪B2), s(α), C ∪ C1 ∪ C2 >;

– PT ([M ]N1→(cx1),...,Nk→(cxk)) = let PT (M) =< B, σ,C > and
PT (Ni) =< Bi, σi, Ci > (all disjoint and disjoint from PT (M))
and let U(B(x1

1), . . . , B(x1
n1

), σ1, !m1α1) =< C ′1, s1 >

and U(s1◦ · · · ◦ si(B(xi+1
1 )), . . . , s1 ◦ · · · ◦ si(B(xi+1

ni+1
)),

s1 ◦ · · · ◦ si(σi+1),!mi+1αi+1) =< C ′i+1, si+1 >
and s = s1 ◦ · · · ◦ sk

in< s(B/x̂1, ..., x̂k ∪
⋃

1≤j≤k Bj), s(σ), C ∪⋃
1≤j≤k Cj ∪

⋃
1≤j≤k C ′j > .

(where αi and mi are fresh and B/x̂1, ..., x̂k denotes the context obtained
from B by deleting the assignments to variables in x̂i (1 ≤ i ≤ k) )

– PT (∇(M)[N1/x1, . . . , Nm/xm]) = let PT (M) =< B, σ,C >
and PT (Ni) =< Bi, σi, Ci > (all disjoint and disjoint from PT (M))
and let U(!nB(x1), σ1) =< C ′1, s1 >
and U(!n(s1 ◦ · · · ◦ si(B(xi+1))), s1 ◦ · · · ◦si(σi+1)) =< C ′i+1, si+1 >
and s = s1 ◦ · · · ◦ sm

in <s(
⋃

1≤j≤m Bj), !n(s(σ)), C ∪⋃
1≤j≤m Cj ∪

⋃
1≤j≤m C ′j > (n fresh).

where xi
j denotes the j-th component of x̂i.

Let Θ be a scheme context: < S,X > (Θ) is an abbreviation for the scheme
context {x :< S, X > (σ) | x : σ ∈ Θ}.

From the typing scheme of a term all and only its typings can be derived,
through scheme substitutions, as proved in the next theorem.

Theorem 1 (Principal typing for AbsEA).
(correctness) PT (M) =< Θ, σ,C > implies, for all scheme substitution <

S, X > such that X satisfies C, < S, X > (Θ) `abs M :< S, X > (σ).
(completeness) Γ `abs M : A implies PT (M) =< Θ, σ,C > and there is a

scheme substitution < S,X > such that X satisfies C, Γ ⊇< S,X > (Θ) and
A ≡< S, X > (σ).

Proof. (correctness) By induction on M , using the fact that the derivations are
syntax directed.
(compl.) By induction on the derivation of Γ `abs M : A, using Lemma 7. ut



Example 2. i) Let M be the abstract term

λx.
[
λy.∇(x3 (x4 y1))[x1/x3 ,

x2/x4 ,
y/y1 ]

]
x→(x1,x2)

.

Then PT (M) = 〈∅, !n(α ( α) (!nα (!nα, ∅〉.
ii) Let N be the abstract term

λx.
[∇((x1 y1 y2 y3 y4))[x/x1 ,

z1/y1 ,
z2/y2 ,

z3/y3 ,
z4/y4 ]

]
∇(λx.x)[ ]→(z1,z2),∇(λx.λy.x)[ ]→(z3,z4)

Then PT (N) = 〈∅, !nσ (!nσ (!mτ (!mτ (!pα, {n = p, n = m}〉, where
σ ≡ β ( β and τ ≡ γ ( ε ( γ.

5 Type Inference for λ-calculus

In this section we prove that if a term of the λ-calculus is typeable in the type
assignment system `NEAL, than it has a finite set of principal typing schemes.
First of all, we can associate, to every λ-term, the set of canonical forms of all
terms of ΛEA corresponding to it, according with the following definition.

Definition 7. Let M ∈ Λ. The set of canonical forms of the terms of ΛEA

corresponding to the λ-termM is C(M) = {N | ∃R ∈ ΛEA such that (R)∗ =
M, R is simple and N = Can(R)}.

The following lemma proves the key property that assures us the decidability.

Lemma 8. For every M ∈ Λ, C(M) is finite.

We will show an algorithm C such that, for every M ∈ Λ, C(M) gives either
C(M) or a negative answer. C is correct and complete.

Let L(M) be the linearization of M with respect to all its free variables and
let Lx(M) be the set of fresh variables generated by L during the linearization
of x in M . I.e. let M = (x (x y y)) then L(M) = (x1 (x2 y1 y2)) and Lx(M) =
{x1, x2}, Ly(M) = {y1, y2} and Lz(M) = ∅ for any other variable z.

C has three sub-procedures:

– T building the linear part of the canonical forms;
– F and F′ building the boxes, i.e. the sharable parts of the canonical forms.

The algorithm is defined by the equations below. For space and readability
reasons we use meta notations. For example x ∈i>1 A iff x occurs in A more than
once, λx.(A) represents the set {λx.M | M ∈ A}, A@B stands for {(M N) |
M ∈ A ∧N ∈ B}.

C(M) = if ∃x1, . . . , xk ∈i>1 FV(M)

then
[
T(L(M)) ∪ F(L(M))

]
x1→(Lx1 (M)),...,xk→(Lxk

(M))

else T(M) ∪ F(M)



T(x) = {x}
T(λx.M) = if x ∈i>1 FV(M) then λx.

[
T(L(M)) ∪ F(L(M))

]
x→(Lx(M))

else λx.(T(M) ∪ F(M))

T((M N)) = T(M)@
(
T(N) ∪ F(N)

)

F(x) = F′(x) = ∅
F(M 6= x) = F′(M) ∪ ∇(

F′(M{ẑ/FV(M)}) ∪ T(M{ẑ/FV(M)}))[FV(M)/ẑ]

F′(M 6= x) = ∀A1, . . . , An, P, n > 0 s.t. M =α P{A1/y1, · · · , An/yn}
{y1, . . . , yn+k} = FV(P ) P 6= x ∀1 ≤ i ≤ n Ai = (Ai1 Ai2)

∇(
T(P{ẑk

1/ŷn+k
n+1}) ∪ (F′(P{ẑk

1/ŷn+k
n+1})

)[
T(A1)/y1, · · · ,T(An)/yn, ŷn+k

n+1/ẑk
1

]

Where ẑ and ẑk
1 are fresh variables. ẑk

1/ŷn+k
n+1 stands for z1/yn+1, · · · , zk/yn+k,

ẑ/FV(M) stands for the complete renaming of free variables of M width fresh
ones, and FV(M)/ẑ stands for the inverse substitution.

Example 3. Let M be the λ-term λx.λy.(x(x y)). The set C(M) contains 24 elements
and only six of them are typeable in EAL. They are:

– λx.[λy.∇((x3 (x4 y1)))[
x1/x3 , x2/x4 , y/y1 ]]x→(x1,x2) with

PT = 〈∅, !n(α( α)(!nα(!nα, ∅〉;
– λx.[∇(λy.(x3 (x4 y)))[x1/x3 , x2/x4 ]]x→(x1,x2) with

PT = 〈∅, !n(α( α)(!n(α( α), ∅}〉;
– λx.[∇(λy.∇((x5 (x6 y1)))[

x3/x5 , x4/x6 , y/y1 ])[
x1/x3 , x2/x4 ]]x→(x1,x2) with

PT = 〈∅, !n1(α( α)(!n2(!n3α(!n3α), {n1 = n2 + n3}〉;
– ∇(λx.[λy.∇((x3 (x4 y1)))[

x1/x3 , x2/x4 , y/y1 ]]x→(x1,x2))[ ] with
PT = 〈∅, !m(!n(α( α)(!nα(!nα), ∅〉;

– ∇(λx.[∇(λy.(x3 (x4 y)))[x1/x3 , x2/x4 ]]x→(x1,x2))[ ] with
PT = 〈∅, !m(!n(α( α)(!n(α( α)), ∅〉;

– ∇(λx.[∇(λy.∇((x5 (x6 y1)))[
x3/x5 , x4/x6 , y/y1 ])[

x1/x3 , ,x2/x4 ]]x→(x1,x2))[ ] with
PT = 〈∅, !m(!n1(α( α)(!n2(!n3α(!n3α)), {n1 = n2 + n3}〉;

Fact 1. ∀C ∈ C(M) (C)∗ = M

Theorem 2 (Soundness and Completeness of C). ∀M ∈ Λ

1. C(M) ⊆ C(M);
2. N ∈ C(M) and ∃Γ, A s.t. Γ `abs N : A ⇒ N ∈ C(M).

Proof. See Appendix A.4.

Now we are able to prove the existence of principal typings for terms of
λ-calculus.



Theorem 3 (Principal typing for Λ in EAL). ∀M ∈ Λ, Γ `NEAL M : A if
and only if PT (N) =< Θ, σ,C > and Γ ⊇< S, X > (Θ), A =< S, X > (σ),
for some scheme substitution < S, X > such that X satisfies C and for some
N ∈ C(M).

Proof. (If) Let be PT (N) =< Θ, σ,C >, then by Theorem 1 Γ `abs N : A and
by Lemma 5 ∃N ′ ∈ bme(N) Γ `NEAL N ′ : A, hence the thesis.

(Only if) Γ `NEAL M : A then by definition ∃R ∈ ΛEA Γ `NEAL R : A and R is
simple. Then Γ `abs Can(R) : A by Lemma 4. Moreover Can(R) ∈ CEA by
Lemma 9 and then, being Can(R) typeable, Can(R) ∈ CCEA by Lemma 14.
This is sufficient to prove that Can(R) ∈ C(M) (by Lemma 4). The thesis
holds by principal typing for AbsEA. ut
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A Appendix

A.1 Canonical forms

Definition 8. The set CEA of canonical forms is generated by the following
grammar (C is the starting symbol):

C ::= S | NS

S ::= [LB]Slist where CV(Slist) ⊆ FV(LB)
| [S]Slist where CV(Slist) ∩ SSV(S) = ∅

and CV(Slist) ⊆ FV(S) and ∀Si ∈ ST(S) CV(Slist) ∩ FV(Si) 6= ∅
Slist ::= NS → (x̂) | NS → (x̂), Slist where |x̂| ≥ 2
NS ::= LB | x
LB ::= L | B

L ::= (NS NS) | λx.NS | λx.S where S = [C]NS→(by) and x ∈ FV(NS)
DSL ::= D | S | L

B ::= D | ∇(DSL)[x̂/ŷ] where SBV(x̂/ŷ) ∩ SSV(DSL) = ∅
and BV(x̂/ŷ) = FV(DSL)

D ::= ∇(DSL)[Blist] where SBV(Blist) ∩ SSV(DSL) = ∅
and BV(Blist) = FV(DSL)

Blist ::= L/x | L/x,Blist | x/y,Blist

all variables are linear, x̂ stands for x1, . . . , xk and

– the set of shared terms ST,
– the set of banged variables BV and
– the set of single banged variables SBV

are defined as follows:

ST(NS) = ∅ ST([LB]Slist) = ST(Slist)
ST([S]Slist) = ST(Slist) ST(NS → (x1, . . . , xn)) = {NS}

ST(NS → (x1, . . . , xn), Slist) = {NS} ∪ ST(Slist)

BV(M/x) = {x} BV(M/x,Blist) = {x} ∪ BV(Blist)
SBV(y/x) = {x} SBV(L/x) = ∅

SBV(y/x, Blist) = {x} ∪ SBV(Blist) SBV(L/x, Blist) = SBV(Blist)

A canonical form is a term in a meta-language, representing an infinite set of
terms of ΛEA.

Lemma 9 (Soundness of Can). ∀M ∈ ΛEA Can(M) ∈ CEA

Lemma 10. ∀M ∈ CEA, M is in →Can normal form.



A.2 Simple Canonical Forms

Definition 9 (CCEA). The set of canonical EAL-terms contracting at most
variables CCEA is generated by the following grammar (CC is the starting sym-
bol):

CC ::= [K]Clist where CV(Clist) ⊆ FV(K) | K
Clist ::= y → (x̂) | y → (x̂), Clist where |x̂| ≥ 2

K ::= ∇(B)[x̂/ŷ] where BV(x̂/ŷ) = FV(B) | B | x
B ::= ∇ (B) [L] where BV(L) = FV(B) | R
L ::= A/x | y/x, L | A/x,L

R ::= λx.[K]x→(x1,...,xn) where {x1, . . . , xn} ⊆ FV(K) | λx.K | A
A ::= (R K) | (x K)

where all variables are linear, x̂ stands for x1, . . . , xn and n > 0.

Notice that side condition |x̂| ≥ 2 in the production of Clist implies [x]Clist is
not a possible term in CCEA by side condition CV(Clist) ⊆ FV(K) in production
of CC and by {x1, . . . , xn} ⊆ FV(K) in production of R.

Lemma 11.
CCEA ⊆ CEA

Fact 2. Each term in CCEA contracts at most variables.

Lemma 12. If M ∈ CEA is simple then 6 ∃N subterm of M such that N has
the form

[
[N ′]Slist1

]
Slist2

.

Lemma 13. If M ∈ CEA is simple then 6 ∃N subterm of M such that N has
the form ∇(

[N ′]Slist

)
[Blist].

Lemma 14. ∀M ∈ CEA, M simple,

Γ `abs M : A ⇒ M ∈ CCEA.

A.3 Properties of the Canonical Forms Algorithm

Lemma 15. Let LX be the language generated by the grammar of Definition 9
with starting element X, for X ∈ {R,A, B, K}, then the following hold:

1. T(M) ⊆ LR ∪ {x}
1.1) T(M 6= x) ⊆ LR

1.2) T((M1 M2)) ⊆ LA

2. F′(M) ⊆ LB

3. F(M) ⊆ Lk



Lemma 16. Let LCC the language of canonical forms generated by the gram-
mar of Definition 9, then

∀M ∈ Λ C(M) ⊆ LCC

Lemma 17. 1. M ∈ LR ∪ {x} ⇒ M ∈ T((M)∗)
2. M ∈ LA ⇒ (M)∗ = (M1 M2) ∧ M ∈ T((M1 M2))
3. M ∈ LB ⇒ M ∈ F′((M)∗) ∪ T((M)∗)
4. M ∈ LK ⇒ M ∈ F((M)∗) ∪ T((M)∗)

Lemma 18.
M ∈ LCC ⇒ M ∈ C((M)∗)

Theorem 4. ⋃

M∈Λ

C(M) = LCC

A.4 Proof of Theorem 2

Theorem 2 ∀M ∈ Λ

1. C(M) ⊆ C(M);
2. N ∈ C(M) and ∃Γ, A s.t. Γ `abs N : A ⇒ N ∈ C(M).

Proof. We recall the definition of C(M):

C(M) = {N | ∃R ∈ ΛEA s.t. (R)∗ = M, R is simple and N = Can(R)}

1. By Lemma 16 for any C ∈ C(M) we have C ∈ CCEA and hence, by
Lemma 11, C ∈ CEA. Moreover (C)∗ = M by Fact 1. Then C is in C(M)
because it exists R ∈ bme(C) s.t. (R)∗ = M , R is simple and it is sufficient
to notice that emb(bme(C)) is either equal to C (that is in →Can normal
form) or there are a set of →Can redexes after firing them we get C again.

2. By Lemma 9 Can(R) = N ∈ CEA. R is simple by hypothesis and then N is
simple too. Moreover Γ `abs N : A, hence, by Lemma 14, N ∈ CCEA and
then N ∈ C(M) by Lemma 18. ut


