Modulo di Matematica

Università di Udine Corso di Laurea in Biotecnologie

Paolo Baiti

A.A. 2015-2016

Importanza della matematica:

Introduzione

Motivazioni

Costruzione di un modello

Esempi di Modelli

Importanza della matematica:

• linguaggio delle scienze

Introduzione

Motivazioni

Costruzione di un modello

Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:

Introduzione

Motivazioni

Costruzione di un modello

Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico

Introduzione

Motivazioni

Costruzione di un modello

Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico
 - concetto di dimostrazione

Introduzione

Motivazioni

Costruzione di un modello

Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico
 - concetto di dimostrazione

Esempio di linguaggio:

lotimogioni	troduzione	
lotivazioiii	lotivazioni	

M

Costruzione di un modello

Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico
 - concetto di dimostrazione

Esempio di linguaggio:

II principio della dinamica

Introduzione

Motivazioni

Costruzione di un modello

Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico
 - concetto di dimostrazione

Esempio di linguaggio:

II principio della dinamica

$$\overline{F} = m \cdot \overline{a}$$

Introduzione

Motivazioni

Costruzione di un modello

Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico
 - concetto di dimostrazione

Esempio di linguaggio:

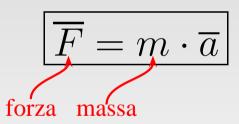
II principio della dinamica

$$\overline{F} = m \cdot \overline{a}$$

Introduzione

Motivazioni

Costruzione di un modello


Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico
 - concetto di dimostrazione

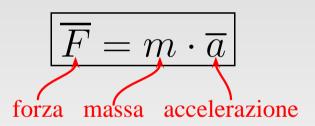
Esempio di linguaggio:

II principio della dinamica

Introduzione

Motivazioni

Costruzione di un modello


Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico
 - concetto di dimostrazione

Esempio di linguaggio:

II principio della dinamica

Introduzione

Motivazioni

Costruzione di un modello

Esempi di Modelli

Importanza della matematica:

- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico
 - concetto di dimostrazione

Esempio di linguaggio:

II principio della dinamica

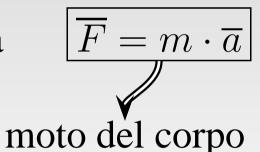
$$\overline{F} = m \cdot \overline{a}$$

Introduzione

Motivazioni

Costruzione di un modello

Esempi di Modelli

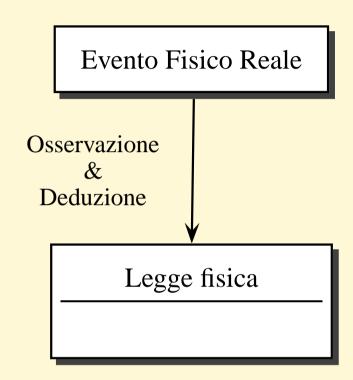

Importanza della matematica:

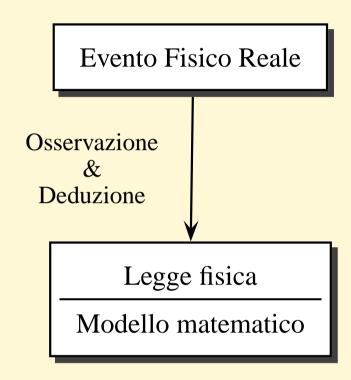
- linguaggio delle scienze
- valenza formativa:
 - metodo scientifico
 - concetto di dimostrazione

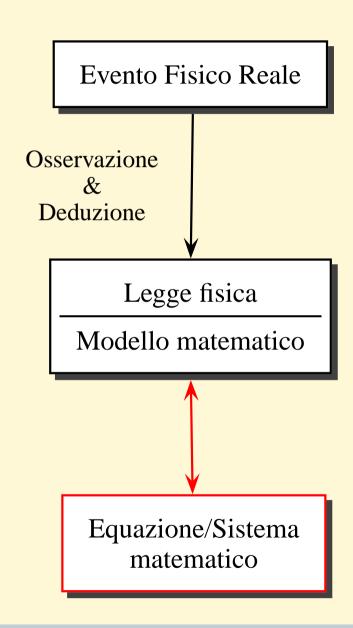
Esempio di linguaggio:

II principio della dinamica

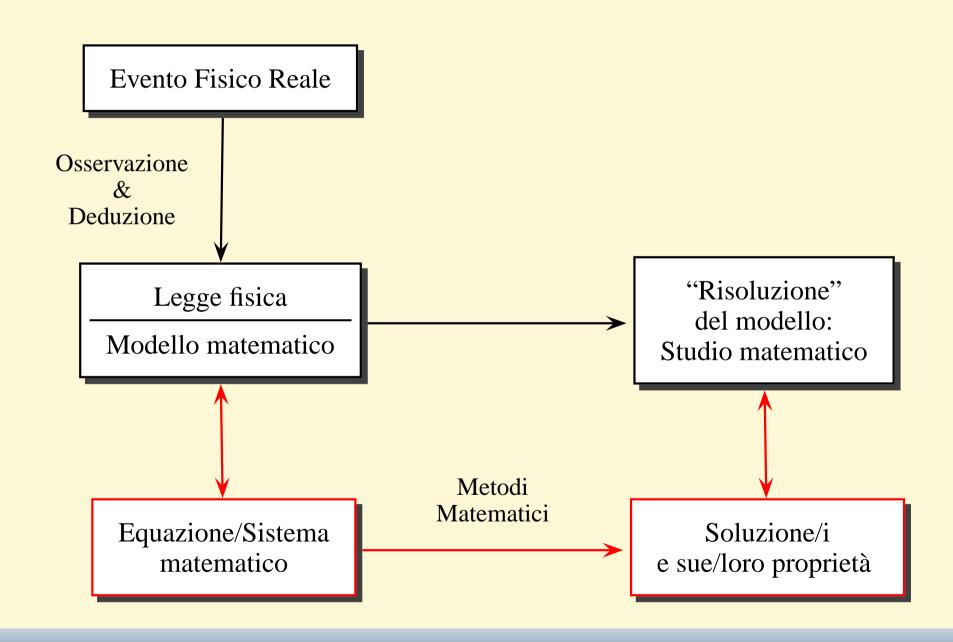
cinematica

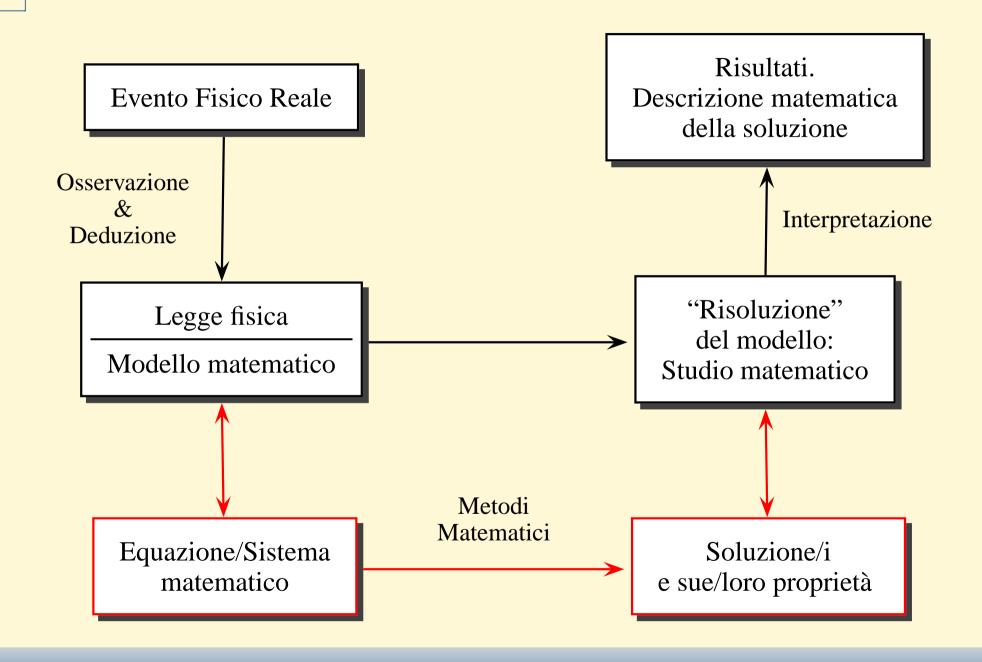

Introduzione

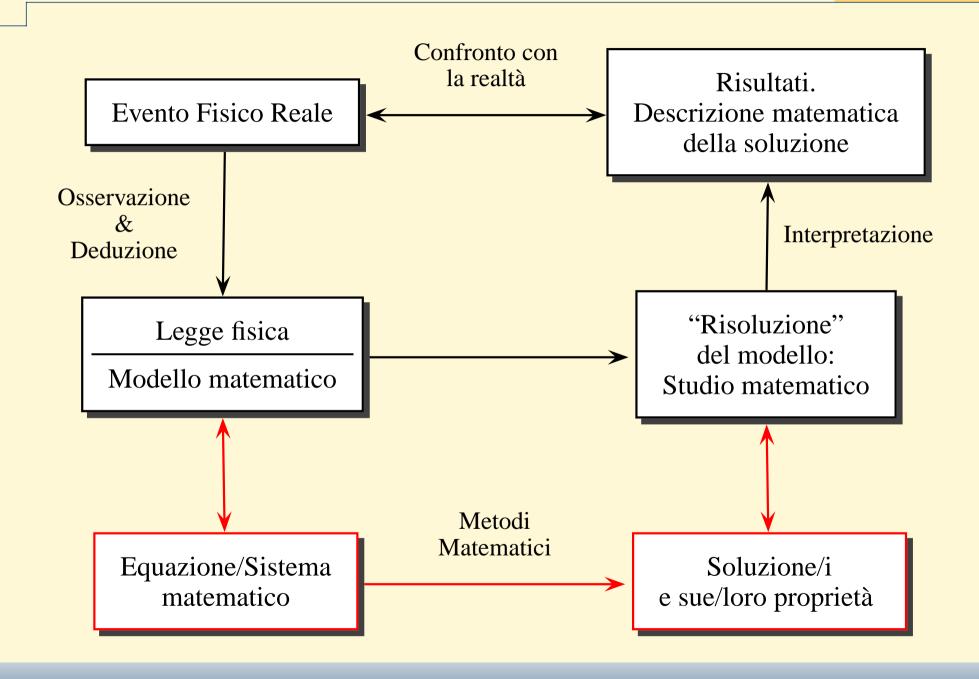

Motivazioni


Costruzione di un modello

Esempi di Modelli


Evento Fisico Reale





Esempi di Modelli

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>illimitate</u>

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>illimitate</u>

p(t) = densità di popolazione all'istante t

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>illimitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p$$

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>illimitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p$$

"tasso di crescita"

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>illimitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p$$

"tasso di crescita"

È un'equazione differenziale lineare del primo ordine

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>illimitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p$$

derivata di p rispetto al tempo

È un'equazione differenziale lineare del primo ordine

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst Legge di Keyfitz

Oscillatore armonico

Notizie sul corso

000000

Descrive la crescita di una popolazione isolata con risorse <u>limitate</u>

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>limitate</u>

p(t) = densità di popolazione all'istante t

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>limitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p - bp^2$$

tiene conto del sovraffollamento

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>limitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p - bp^2$$

tiene conto del sovraffollamento

È un'equazione differenziale non-lineare del primo ordine.

Esempi di Modelli
Legge di Malthus
Legge di Verhulst
Legge di Keyfitz
Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>limitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p - bp^2$$

È un'equazione differenziale non-lineare del primo ordine. Una soluzione è per esempio

$$p(t) = \frac{\lambda}{b + (\lambda - b)e^{-\lambda t}}$$

Introduzione
Esempi di Modelli
Legge di Malthus
Legge di Verhulst
Legge di Keyfitz
Oscillatore armonico

Descrive la crescita di una popolazione isolata con risorse <u>limitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p - bp^2$$

È un'equazione differenziale non-lineare del primo ordine. Una soluzione è per esempio

$$p(t) = \frac{\lambda}{b + (\lambda - b)e^{-\lambda t}}$$
 è una funzione

Introduzione
Esempi di Modelli
Legge di Malthus
Legge di Verhulst
Legge di Keyfitz
Oscillatore armonico

Legge di Verhulst

Descrive la crescita di una popolazione isolata con risorse <u>limitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p - bp^2$$

È un'equazione differenziale non-lineare del primo ordine. Una soluzione è per esempio

$$p(t) = \frac{\lambda}{b + (\lambda - b)e^{-\lambda t}}$$
 funzione esponenziale

è una funzione

Esempi di Modelli
Legge di Malthus
Legge di Verhulst
Legge di Keyfitz
Oscillatore armonico

Legge di Verhulst

Descrive la crescita di una popolazione isolata con risorse <u>limitate</u>

p(t) = densità di popolazione all'istante t

L'evoluzione nel tempo di p(t) è data da

$$\frac{dp}{dt} = \lambda p - bp^2$$

È un'equazione differenziale non-lineare del primo ordine. Una soluzione è per esempio

$$p(t) = \frac{\lambda}{b + (\lambda - b) \mathrm{e}^{-\lambda t}} \qquad \text{è una funzione}$$
 funzione esponenziale "e" è il numero di Nepero

Esempi di Modelli
Legge di Malthus
Legge di Verhulst
Legge di Keyfitz
Oscillatore armonico

Modello di crescita della popolazione mondiale

Introduzione

Esempi di Modelli Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Anno	Miliardi
1650	0,510
1700	0,625
1800	0,910
1900	1,600
1950	2,525
1970	3,696
1990	5,318

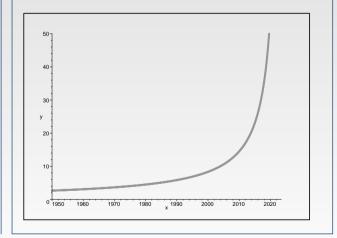
Introduzione	
Esempi di Modelli	
Legge di Malthus	
Legge di Verhulst	
Legge di Keyfitz	
Oscillatore armonico	_
Notizie sul corso	

$$N(t) = \frac{-196,088}{t - 2023,5}$$

Anno	Miliardi
1650	0,510
1700	0,625
1800	0,910
1900	1,600
1950	2,525
1970	3,696
1990	5,318

Introduzione
Esempi di Modelli
Legge di Malthus
Legge di Verhulst
Legge di Keyfitz
Oscillatore armonico
Notizie sul corso

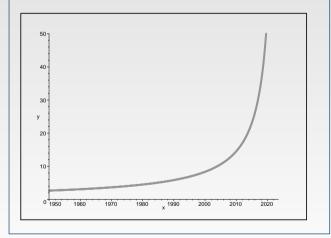
$$N(t) = \frac{-196,088}{t - 2023,5}$$
popolazione (in milardi)
$$tempo (d.c)$$


Anno	Miliardi
1650	0,510
1700	0,625
1800	0,910
1900	1,600
1950	2,525
1970	3,696
1990	5,318

Introduzione
Esempi di Modelli
Legge di Malthus
Legge di Verhulst
Legge di Keyfitz
Oscillatore armonico
Notizie sul corso

$$N(t) = \frac{-196,088}{t - 2023,5}$$
 popolazione (in milardi) tempo (d.c)

Anno	Miliardi
1650	0,510
1700	0,625
1800	0,910
1900	1,600
1950	2,525
1970	3,696
1990	5,318



Modello di crescita della popolazione mondiale

$$N(t) = \frac{-196,088}{t - 2023,5}$$
popolazione (in milardi)
$$tempo (d.c)$$

La popolazione crescerebbe a dismisura entro il 1 luglio 2023!

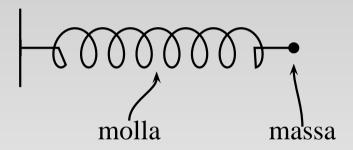
Anno	Miliardi
1650	0,510
1700	0,625
1800	0,910
1900	1,600
1950	2,525
1970	3,696
1990	5,318

Supponiamo di avere una molla in posizione d'equilibrio con una massa m a un estremo

Introduzione

Esempi di Modelli

Legge di Malthus


Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Supponiamo di avere una molla in posizione d'equilibrio con una massa m a un estremo

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst Legge di Keyfitz

Oscillatore armonico

Supponiamo di avere una molla in posizione d'equilibrio con una massa m a un estremo

Spostiamo la massa di una lunghezza x dalla posizione d'equilibrio.

Introduzione	
Esempi di Modelli	
Legge di Malthus	
Legge di Verhulst	
Legge di Keyfitz	
Oscillatore armonico	
Notizie sul corso	

Supponiamo di avere una molla in posizione d'equilibrio con una massa m a un estremo

Spostiamo la massa di una lunghezza x dalla posizione d'equilibrio.

La molla si allunga

Introduzione	
Esempi di Modelli	
Legge di Malthus	
Legge di Verhulst	
Legge di Keyfitz	
Oscillatore armonico	
Notizie sul corso	

Supponiamo di avere una molla in posizione d'equilibrio con una massa m a un estremo

Spostiamo la massa di una lunghezza x dalla posizione d'equilibrio.

La molla si allunga ed esercita una forza di richiamo \overline{F} diretta in senso contrario allo spostamento

Esempi di Modelli
Legge di Malthus
Legge di Verhulst
Legge di Keyfitz
Oscillatore armonico

Notizie sul corso

$$\overline{F}(x) = -k\overline{x}$$

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Notizie sul corso

$$\overline{F}(x) = -k\overline{x}$$
costante elastica della molla

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Notizie sul corso

$$\overline{F}(x) = -k\overline{x}$$

Ricordando che

$$\overline{F}=m\overline{a}$$
 (legge della dinamica)
$$a=\frac{d^2x}{dt^2}$$

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

$$\overline{F}(x) = -k\overline{x}$$

Ricordando che

$$\overline{F}=m\overline{a}$$
 (legge della dinamica)
$$a=\frac{d^2x}{dt^2} \qquad \text{derivata seconda di } x \text{ rispetto a } t$$

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

È un'equazione differenziale lineare del secondo ordine

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Notizie sul corso

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

È un'equazione differenziale lineare del secondo ordine

La soluzione generale x(t) è una funzione data da

$$x(t) = A \operatorname{sen}\left(\sqrt{\frac{k}{m}}x + b\right)$$

dove A, b sono costanti arbitrarie.

Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

È un'equazione differenziale lineare del secondo ordine

La soluzione generale x(t) è una funzione data da

$$x(t) = A \operatorname{sen}\left(\sqrt{\frac{k}{m}}x + b\right)$$

dove A, b sono costanti arbitrarie. sen è la funzione "seno" Introduzione

Esempi di Modelli

Legge di Malthus

Legge di Verhulst

Legge di Keyfitz

Oscillatore armonico

Notizie sul corso

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

• fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari
- studio di funzioni

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari
- studio di funzioni
- brain vs computer

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari
- studio di funzioni
- brain vs computer

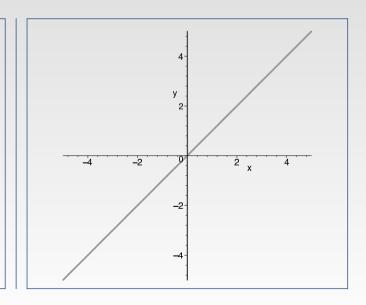
Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali


Schema

Info

- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari
- studio di funzioni
- brain vs computer

Consideriamo il seguente grafico:

Introduzione

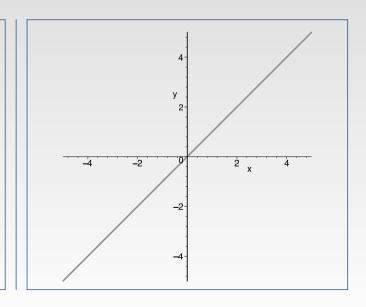
Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schem


Info

- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari
- studio di funzioni
- brain vs computer

Consideriamo il seguente grafico:

 \dots sembrerebbe il grafico della funzione y = x

Introduzione

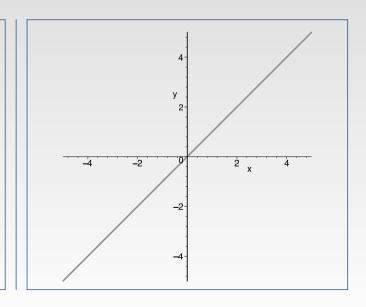
Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schem


Info

- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari
- studio di funzioni
- brain vs computer

Consideriamo il seguente grafico:

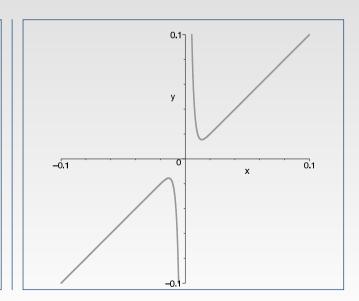
... sembrerebbe il grafico della funzione y = x ... ma proviamo a ingrandirlo vicino a (0,0)

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso


Argomenti principali

Schem

Info

- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari
- studio di funzioni
- brain vs computer

Cosa succede?

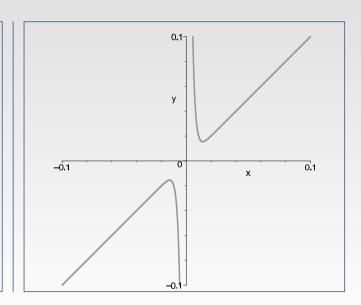
Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali


Schem

Info

- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari
- studio di funzioni
- brain vs computer

Chiaramente non è il grafico di y = x

Introduzione

Esempi di Modelli

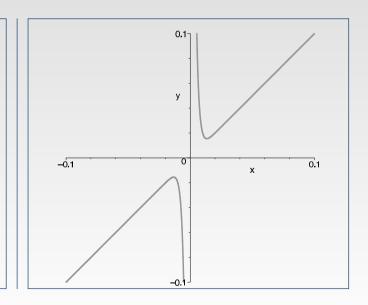
Notizie sul corso

Obiettivi del corso

Argomenti principali

Schem

Info



- fornire strumenti e nozioni di base per una comprensione (matematica) dei modelli
- riconoscere e sapere usare le funzioni elementari
- studio di funzioni
- brain vs computer

Chiaramente non è il grafico di y = x

Per x > 0, è il grafico di

$$y = x + \frac{1}{100^{100x} - 1}$$

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schem

Info

Argomenti principali

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

Argomenti principali

• numeri reali

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema

Come affrontare il corso

Info

- numeri reali
- funzioni funzioni elementari

Introduzione	
Esempi di Modelli	
Notizie sul corso	
Obiettivi del corso	
Argomenti principali	
Schema	
Info	

- numeri reali
- funzioni funzioni elementari
- limiti

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema
Info

- numeri reali
- funzioni funzioni elementari
- limiti
- derivate

Introduzione	
Esempi di Modelli	
Notizie sul corso	
Obiettivi del corso	
Argomenti principali	
Schema	
Info	

- numeri reali
- funzioni funzioni elementari
- limiti
- derivate
- integrali

Introduzione
Esempi di Modelli
Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema
Info
Come affrontare il corso

- numeri reali
- funzioni funzioni elementari
- limiti
- derivate
- integrali
- equazioni differenziali

Introduzione
Esempi di Modelli
Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema
Info

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

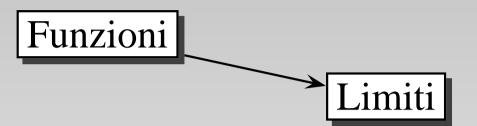
Info

Funzioni

Introduzione

Esempi di Modelli

Notizie sul corso


Obiettivi del corso

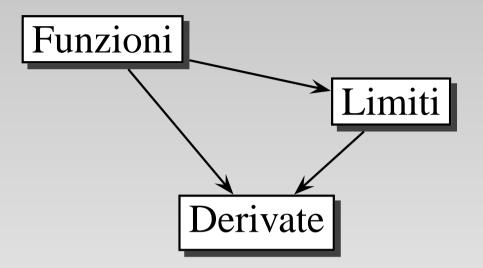
Argomenti principali

Schema

Info

Introduzione

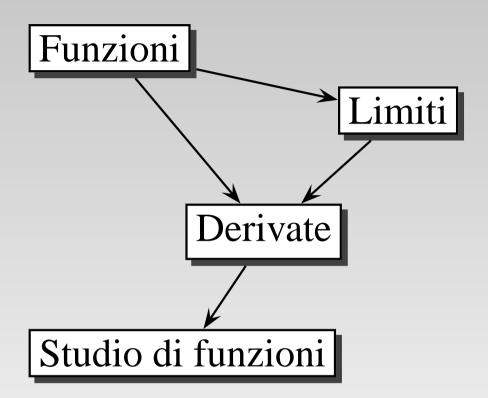
Esempi di Modelli


Notizie sul corso

Obiettivi del corso

Argomenti principali

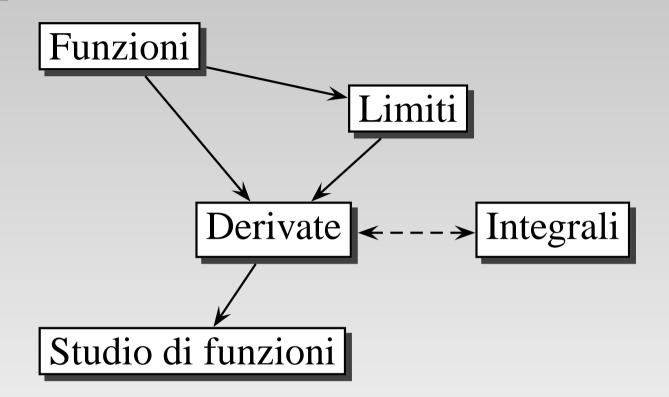
Schema


Info

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema
Info



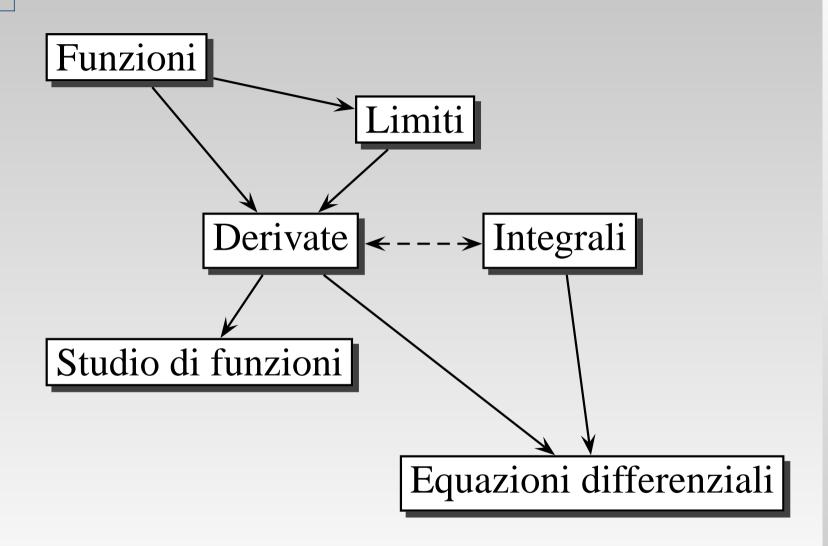
Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema
Info

Introduzione

Esempi di Modelli


Notizie sul corso

Obiettivi del corso

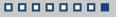
Argomenti principali

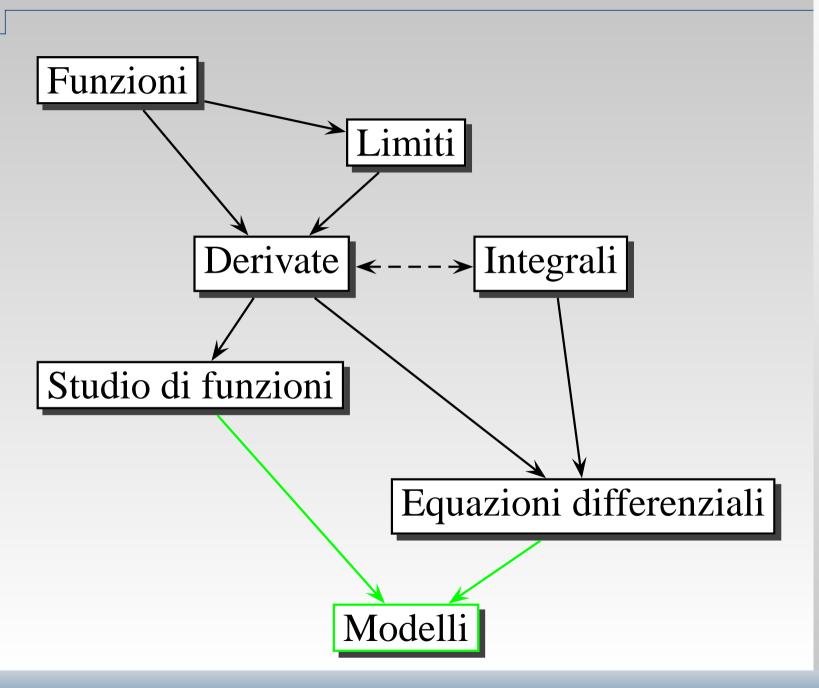
Schema

Info

Introduzione

Esempi di Modelli


Notizie sul corso


Obiettivi del corso

Argomenti principali

Schema

Info

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

Come affrontare il corso

0000000

■ 50 ore nel primo periodo didattico

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

- 50 ore nel primo periodo didattico
 - mercoledì 8.30-10.30 in Aula 11

Introduzione	
Esempi di Modelli	
Notizie sul corso	
Obiettivi del corso	
Argomenti principali	
Schema	

- 50 ore nel primo periodo didattico
 - mercoledì 8.30-10.30 in Aula 11
 - giovedì 14.30-16.30 in Aula Beta2

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema

Come affrontare il corso

Info

- 50 ore nel primo periodo didattico
 - mercoledì 8.30-10.30 in Aula 11
 - giovedì 14.30-16.30 in Aula Beta2
- Ricevimento:

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali

Info

Schema

- 50 ore nel primo periodo didattico
 - mercoledì 8.30-10.30 in Aula 11
 - giovedì 14.30-16.30 in Aula Beta2
- Ricevimento:
 - mercoledì 15.30-17.30

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema

Info

- 50 ore nel primo periodo didattico
 - mercoledì 8.30-10.30 in Aula 11
 - giovedì 14.30-16.30 in Aula Beta2
- Ricevimento:
 - mercoledì 15.30-17.30
- Esami:

Introduzione
Esampi di Madalli
Esempi di Modelli
Notizie sul corso
Notizie sul corso Obiettivi del corso

Info

000000

- 50 ore nel primo periodo didattico
 - mercoledì 8.30-10.30 in Aula 11
 - giovedì 14.30-16.30 in Aula Beta2
- Ricevimento:
 - mercoledì 15.30-17.30
- Esami:
 - scritto (misto teoria ed esercizi)

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Schema

Come affrontare il corso

Argomenti principali

- 50 ore nel primo periodo didattico
 - mercoledì 8.30-10.30 in Aula 11
 - giovedì 14.30-16.30 in Aula Beta2
- Ricevimento:
 - mercoledì 15.30-17.30
- Esami:
 - scritto (misto teoria ed esercizi)
 - eventuale orale

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

Importante sarà saper utilizzare gli strumenti

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

Importante sarà saper utilizzare gli strumenti

Suggerimenti:

studio quotidiano

Introduzione

Esempi di Modelli

Notizie sul corso

Obiettivi del corso

Argomenti principali

Schema

Info

Importante sarà saper utilizzare gli strumenti

Suggerimenti:

- studio quotidiano
 - comprensione argomenti

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema

Importante sarà saper utilizzare gli strumenti

Suggerimenti:

- studio quotidiano
 - comprensione argomenti
 - memorizzazione formule

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema

Importante sarà saper utilizzare gli strumenti

Suggerimenti:

- studio quotidiano
 - comprensione argomenti
 - memorizzazione formule
 - studio della "lingua"

Introduzione	
Esempi di Modelli	
Notizie sul corso	
Obiettivi del corso	
Argomenti principali	
Schema	
T C	

Importante sarà saper utilizzare gli strumenti

Suggerimenti:

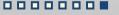
- studio quotidiano
 - comprensione argomenti
 - memorizzazione formule
 - studio della "lingua"
- fare esercizi

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema
Info

Importante sarà saper utilizzare gli strumenti


Suggerimenti:

- studio quotidiano
 - comprensione argomenti
 - memorizzazione formule
 - studio della "lingua"
- fare esercizi
 - collezione di temi di esame sul web

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema

Importante sarà saper utilizzare gli strumenti

Suggerimenti:

- studio quotidiano
 - comprensione argomenti
 - memorizzazione formule
 - studio della "lingua"
- fare esercizi
 - collezione di temi di esame sul web
- utilizzare il ricevimento

Introduzione

Esempi di Modelli

Notizie sul corso
Obiettivi del corso
Argomenti principali
Schema

Come affrontare il corso

Info

0000000