Limiti

Sia a_n una successione di numeri reali

Problema: cosa succede ad a_n , quando n diventa arbitrariamente grande?

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Sia a_n una successione di numeri reali

Problema: cosa succede ad a_n , quando n diventa arbitrariamente grande?

I valori

cresceranno?

Limiti di funzioni reali Introduzione Esempio 1 Esempio 2 Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$ Limite finito per $x \to +\infty$ Illustrazione della definizione 1 Illustrazione della definizione 2 Illustrazione della definizione 3 Limiti di successioni Altri Limiti Verifiche di limite Operazioni con i limiti

Limiti e continuità

Sia a_n una successione di numeri reali

Problema: cosa succede ad a_n , quando n diventa arbitrariamente grande?

I valori

- cresceranno?
- decresceranno?

Limiti di funzioni reali Introduzione Esempio 1 Esempio 2 Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$ Limite finito per $x \to +\infty$ Illustrazione della definizione 1 Illustrazione della definizione 3 Limiti di successioni Altri Limiti Verifiche di limite

Operazioni con i limiti

Sia a_n una successione di numeri reali

Problema: cosa succede ad a_n , quando n diventa arbitrariamente grande?

I valori

- cresceranno?
- decresceranno?
- approssimeranno sempre meglio un qualche valore "limite"?

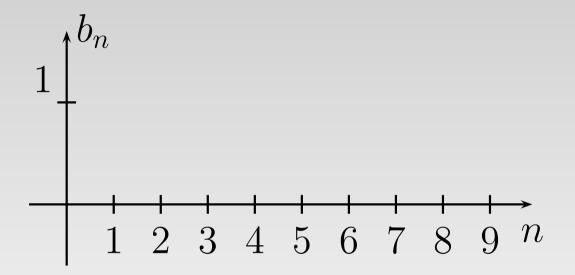
Limiti di funzioni reali Introduzione Esempio 1 Esempio 2 Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$ Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2
Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Limiti e continuità

0000

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

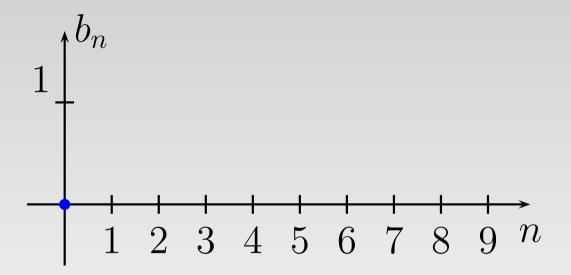
Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0	0

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

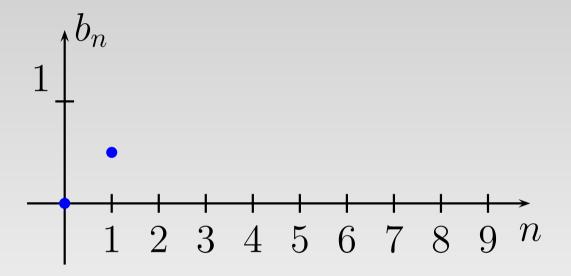
Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0 1	0 1/2
1	1/2

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

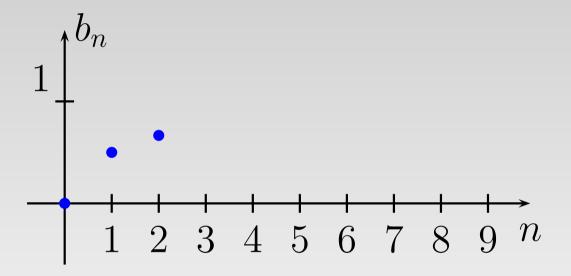
Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0 1 2	0 1/2 2/3

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

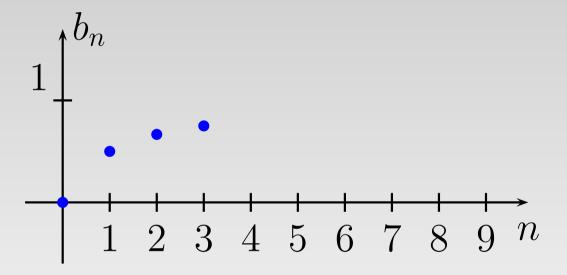
Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

	n	b_n
0 0 1 1/2 2 2/3 3 3/4	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	0 1/2 2/3

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

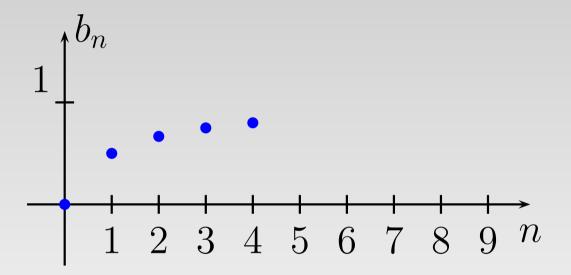
Limite $-\infty$ per $x \! \to \! +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0	0
1	1/2
2	2/3
3	3/4
4	4/5

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

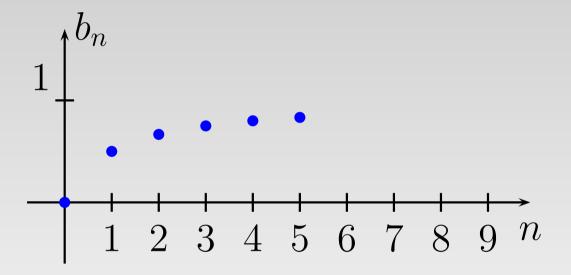
Limite $-\infty$ per $x \! \to \! +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0 1 2 3 4 5	0 1/2 2/3 3/4 4/5 5/6

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

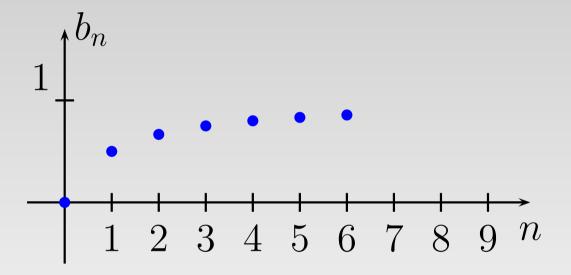
Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0	0
1	1/2
2	2/3
3	3/4
4	4/5
5	5/6
6	6/7

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

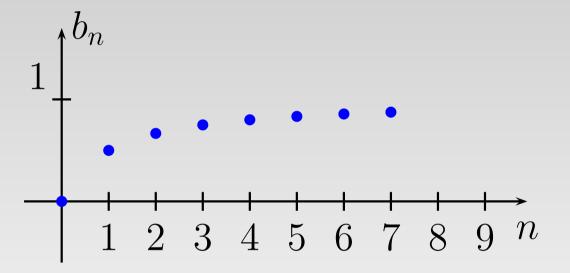
Limite $-\infty$ per $x\!\to\!+\infty$

Limite finito per $x \rightarrow +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0	0
1	1/2
2	2/3
3	3/4
4	4/5
5	5/6
6	6/7
7	7/8

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

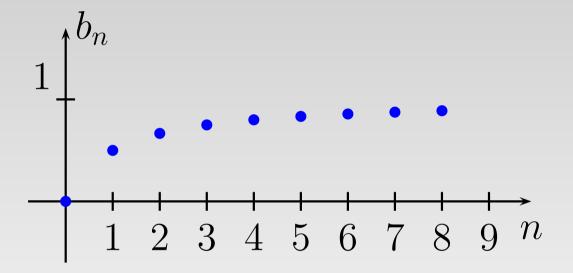
Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0 1 2 3 4 5 6 7 8	0 1/2 2/3 3/4 4/5 5/6 6/7 7/8 8/9

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

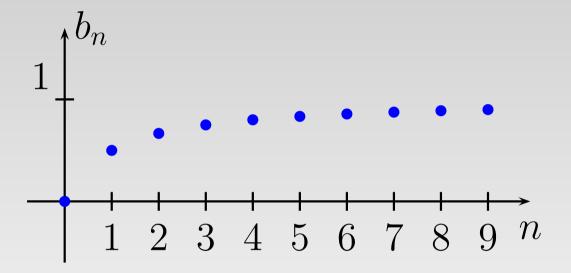
Limite $-\infty$ per $x\!\to\!+\infty$

Limite finito per $x \rightarrow +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3


Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0	0
1	1/2
2	2/3
3	3/4
4	4/5
5	5/6
6	6/7
7	7/8
8	8/9
9	9/10

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \rightarrow +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

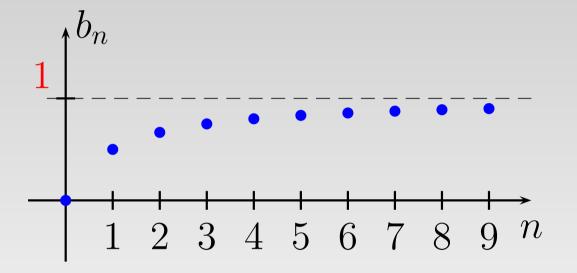
Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$


n	b_n
0	0
1	1/2
2	2/3
3	3/4
4	4/5
5	5/6
6	6/7
7	7/8
8	8/9
9	9/10

Si osserva che i valori tendono a crescere ed avvicinarsi sempre più a 1

Limiti di funzioni reali
Introduzione
Esempio 1
Esempio 2
Limite $+\infty$ per $x \to +\infty$
Limite $-\infty$ per $x \to +\infty$
Limite finito per $x \to +\infty$
Illustrazione della definizione 1
Illustrazione della definizione 2
Illustrazione della definizione 3
Limiti di successioni
Altri Limiti
Verifiche di limite

Operazioni con i limiti

Disegniamo nel piano cartesiano i primi termini della successione $b_n = \frac{n}{n+1}$

n	b_n
0	0
1	1/2
2	2/3
3	3/4
4	4/5
5	5/6
6	6/7
7	7/8
8	8/9
9	9/10

Si osserva che i valori tendono a crescere ed avvicinarsi sempre più a 1

Il concetto di limite (finito) formalizzerà questa osservazione

Limiti di funzioni reali
Introduzione

Esempio 1

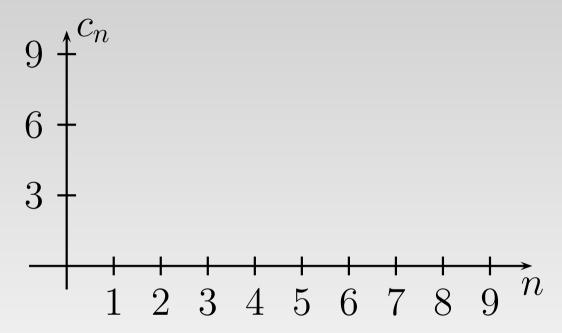
Esempio 2

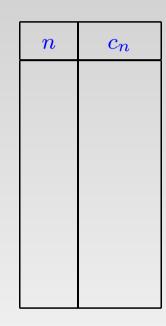
Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$ Limite finito per $x \to +\infty$ Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti


Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

Limiti di funzioni reali

Introduzione

Esempio 1

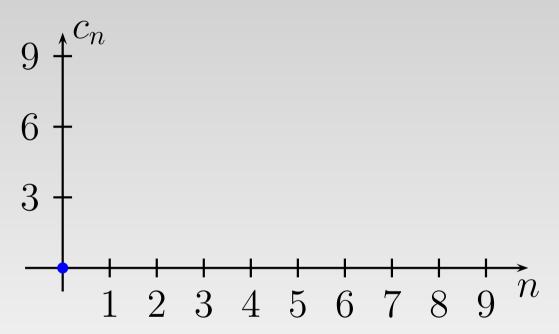
Esempio 2

$$Limite + \infty \text{ per } x \to + \infty$$

Limite
$$-\infty$$
 per $x \to +\infty$

Limite finito per
$$x \rightarrow +\infty$$

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0	0

Limiti di funzioni reali

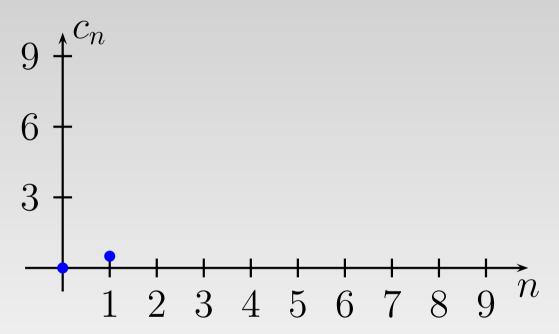
Introduzione

Esempio 1

Esempio 2

$$Limite + \infty \text{ per } x \to + \infty$$

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0 1	0
	1/2

Limiti di funzioni reali

Introduzione

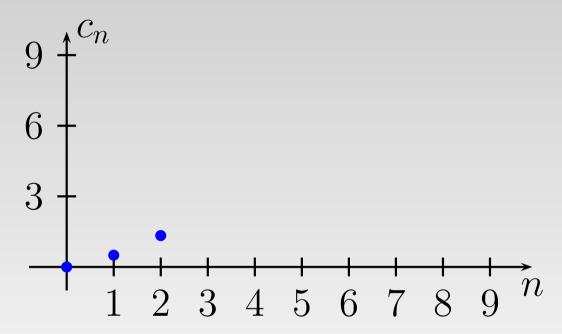
Esempio 1

Esempio 2

Limite
$$+\infty$$
 per $x \to +\infty$
Limite $-\infty$ per $x \to +\infty$

Limite finito per
$$x \to +\infty$$

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0 1 2	0 1/2 4/3

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$

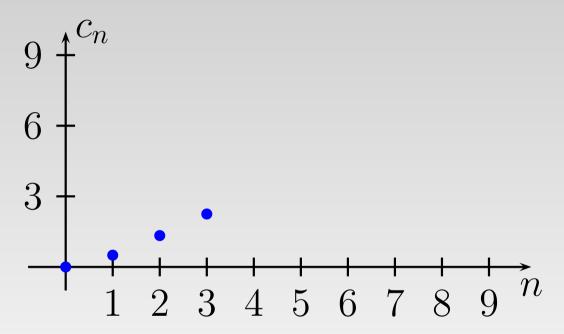
Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0 1 2 3	0 1/2 4/3 9/4

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$

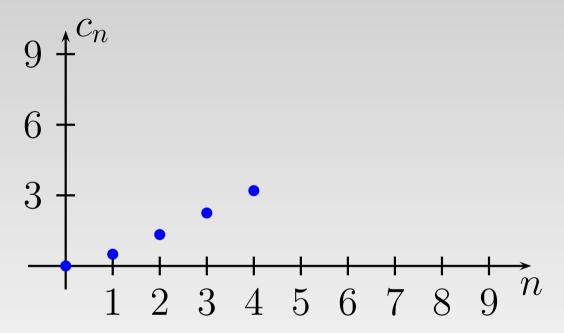
Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0	0
1	1/2
2	4/3
3	9/4
4	16/5

Limiti di funzioni reali

Introduzione

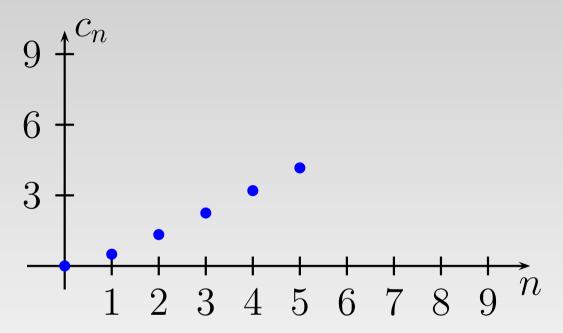
Esempio 1

Esempio 2

Limite
$$+\infty$$
 per $x \to +\infty$
Limite $-\infty$ per $x \to +\infty$

Limite finito per
$$x \to +\infty$$

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0	0
1	1/2
2	4/3
3	9/4
4	16/5
5	25/6

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$

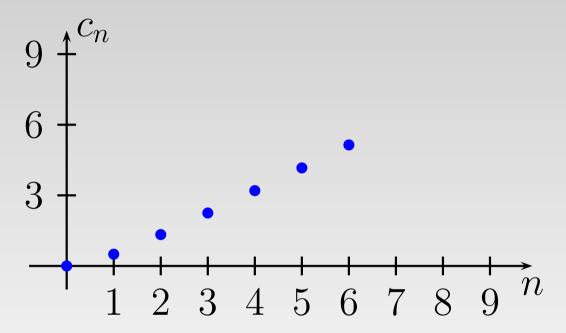
Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0	0
1	1/2
2	4/3
3	9/4
4	16/5
5	25/6
6	36/7

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$

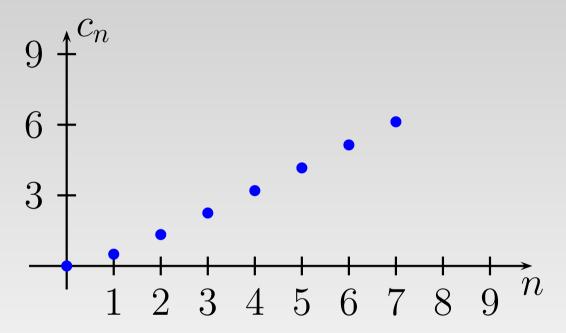
Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0	0
1	1/2
2	4/3
3	9/4
4	16/5
5	25/6
6	36/7
7	49/8

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$

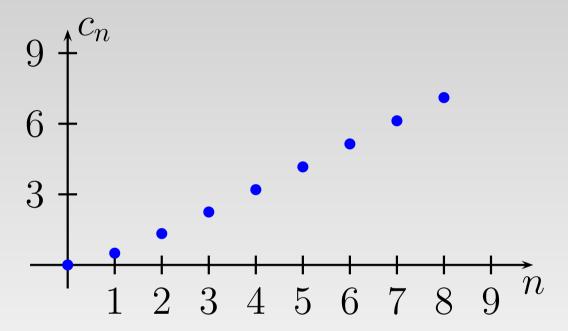
Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0 1 2 3 4 5 6 7	0 1/2 4/3 9/4 16/5 25/6 36/7 49/8
8	64/9

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$

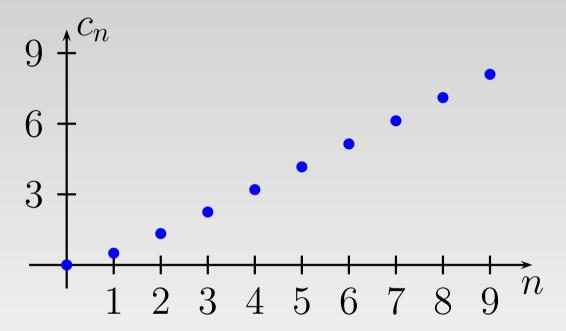
Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0	0
1	1/2
2	4/3
3	9/4
4	16/5
5	25/6
6	36/7
7	49/8
8	64/9
9	81/10

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$

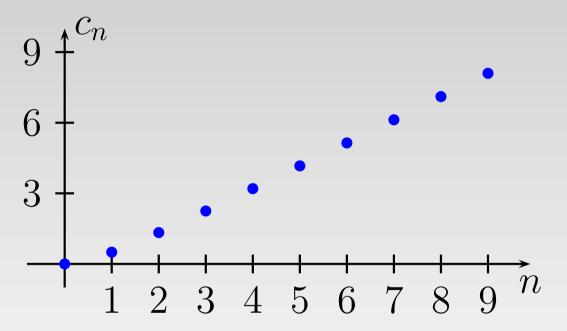
Limite finito per $x \rightarrow +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0	0
1	1/2
2	4/3
3	9/4
4	16/5
5	25/6
6	36/7
7	49/8
8	64/9
9	81/10

Si osserva che, al crescere di n, i valori c_n crescono, ma non esiste un maggiorante

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$

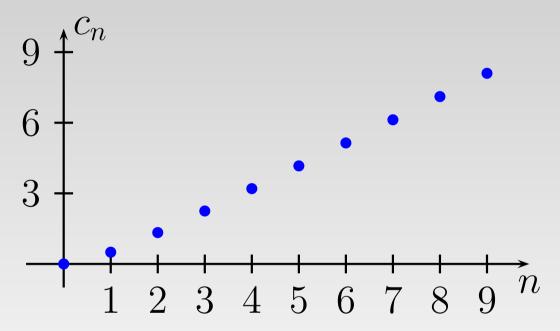
Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Facciamo la stessa cosa con la successione

$$c_n = \frac{n^2}{n+1}$$

n	c_n
0	0
1	1/2
2	4/3
3	9/4
4	16/5
5	25/6
6	36/7
7	49/8
8	64/9
9	81/10

Si osserva che, al crescere di n, i valori c_n crescono, ma non esiste un maggiorante

Il concetto di limite (infinito) formalizzerà questa osservazione

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

 $Limite + \infty per x \rightarrow + \infty$

 $\text{Limite} - \infty \text{ per } x \to + \infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1
Illustrazione della definizione 2

mustrazione dena demnizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limite $+\infty$ per $x \to +\infty$

Sia $f:]a, +\infty[\to \mathbb{R} \text{ (oppure } f: \mathbb{N} \to \mathbb{R})$

Diremo che f ha limite $+\infty$ per x tendente a $+\infty$ e si scrive

$$\lim_{x \to +\infty} f(x) = +\infty$$

se per ogni $M \in \mathbb{R}$ esiste $x_M \in \mathbb{R}$ tale che f(x) > M per ogni $x \in]a, +\infty[$ con $x > x_M$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limite $-\infty$ per $x \to +\infty$

Sia $f:]a, +\infty[\to \mathbb{R} \text{ (oppure } f: \mathbb{N} \to \mathbb{R})$

Diremo che f ha limite $-\infty$ per x tendente a $+\infty$ e si scrive

$$\lim_{x \to +\infty} f(x) = -\infty$$

se per ogni $M \in \mathbb{R}$ esiste $x_M \in \mathbb{R}$ tale che f(x) < M per ogni $x \in]a, +\infty[$ con $x > x_M$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limite finito per $x \to +\infty$

Sia $f:]a, +\infty[\to \mathbb{R} \text{ (oppure } f: \mathbb{N} \to \mathbb{R})$

Diremo che f ha limite $\ell \in \mathbb{R}$ per x tendente $a + \infty$ e si scrive

$$\lim_{x \to +\infty} f(x) = \ell$$

se per ogni $\varepsilon > 0$ esiste $x_{\varepsilon} \in \mathbb{R}$ tale che $\ell - \varepsilon < f(x) < \ell + \varepsilon$ per ogni $x \in]a, +\infty[$ tale che $x > x_{\varepsilon}$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \rightarrow +\infty$

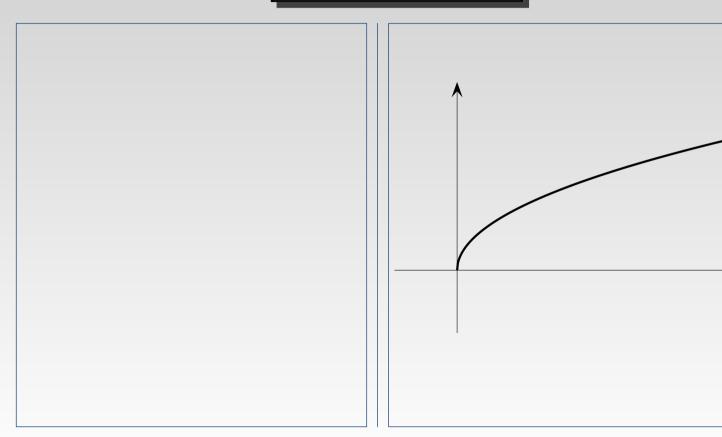
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustrazione della definizione 1

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

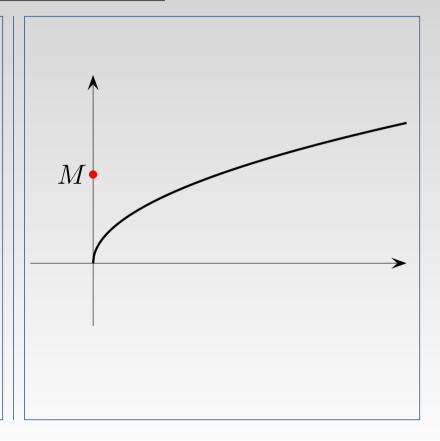

Operazioni con i limiti

Illustrazione della definizione 1

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Dato un valore M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

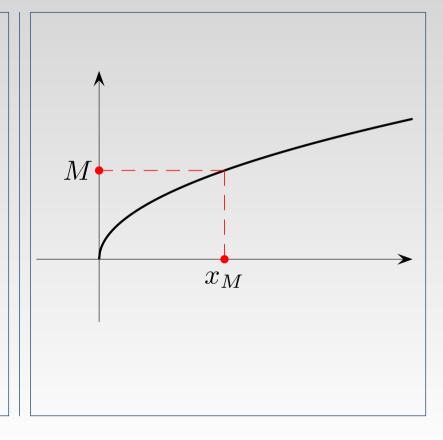
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Dato un valore M esiste x_M nel dominio

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

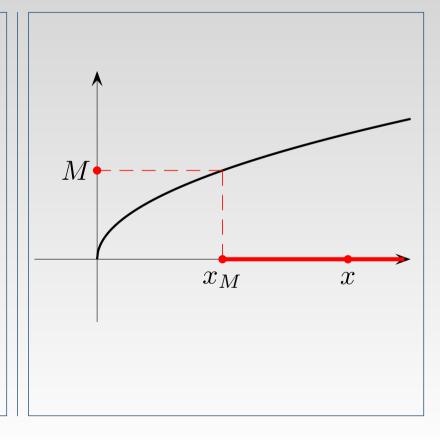
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Dato un valore Mesiste x_M nel dominio tale che tutti gli $x > x_M$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

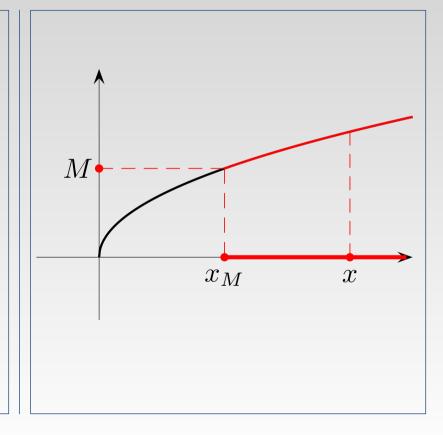
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Dato un valore Mesiste x_M nel dominio tale che tutti gli $x > x_M$ hanno valori corrispondenti f(x) > M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

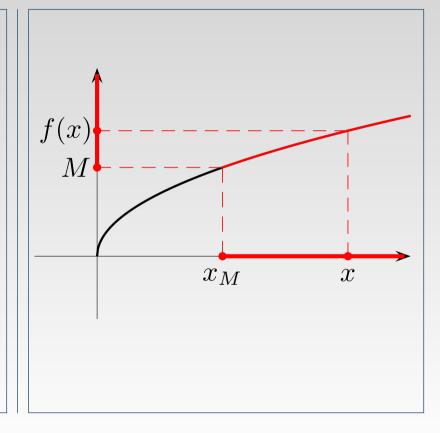
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Dato un valore Mesiste x_M nel dominio tale che tutti gli $x > x_M$ hanno valori corrispondenti f(x) > M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

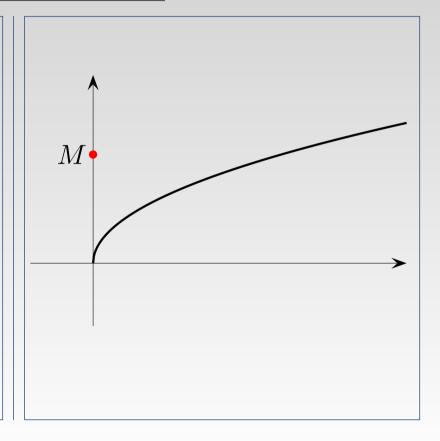
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Cambiando M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

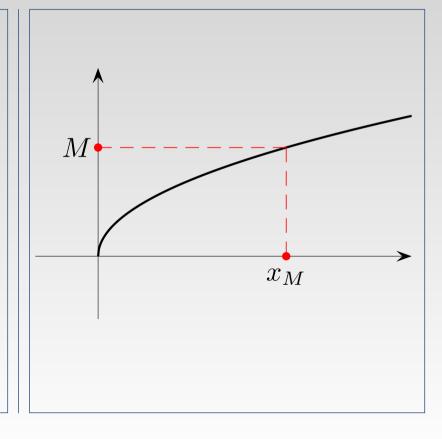
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

0000000

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Cambiando Msi trova un altro corrispondente x_M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

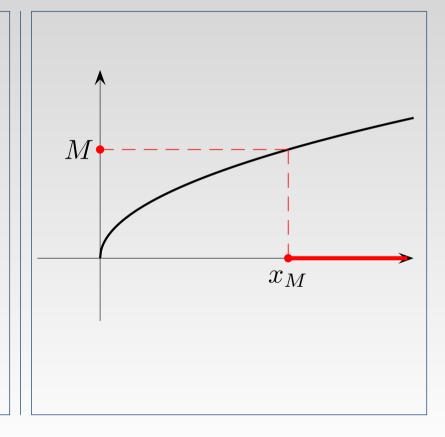
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Cambiando M si trova un altro corrispondente x_M con analoghe proprietà

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

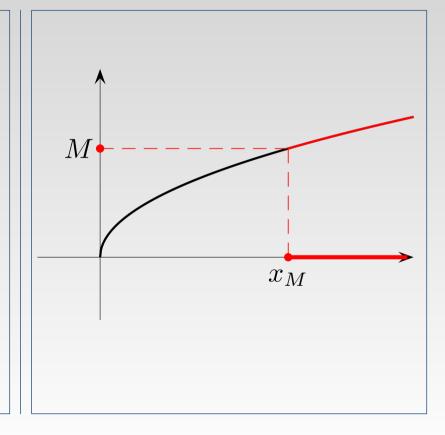
Illustrazione della definizione 2.

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Cambiando Msi trova un altro corrispondente x_M con analoghe proprietà

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

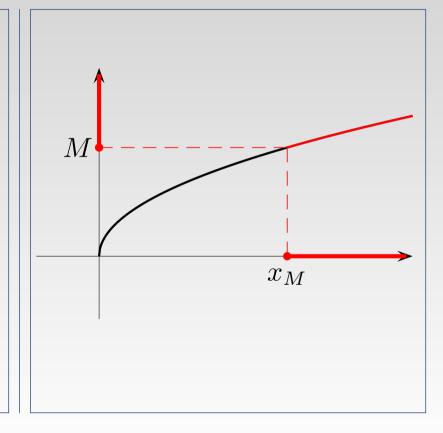
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Cambiando Msi trova un altro corrispondente x_M con analoghe proprietà

Limiti di funzioni reali Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

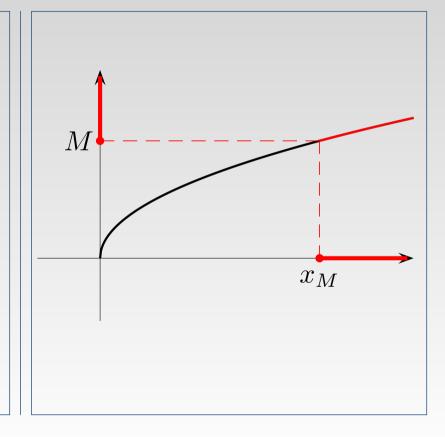
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Questo dev'essere vero per ogni M!

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

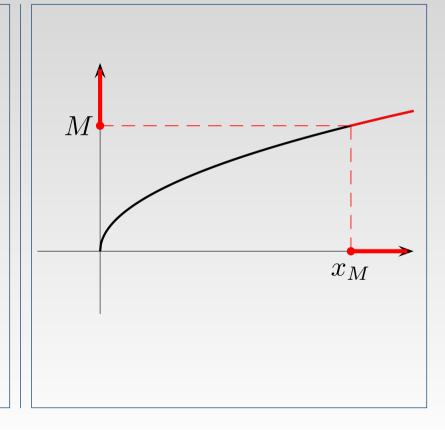
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Questo dev'essere vero per ogni M!

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

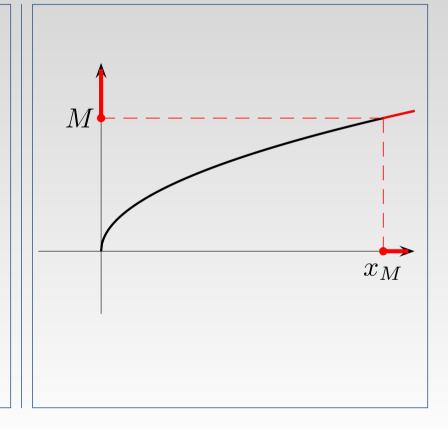
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Questo dev'essere vero per ogni M!

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Equivalentemente è come richiedere che, dato M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

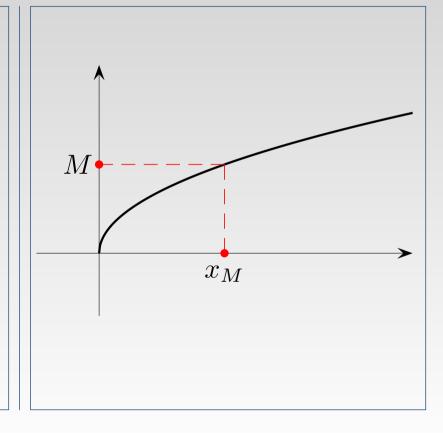
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Equivalentemente è come richiedere che, dato M

si riesce a trovare un x_M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

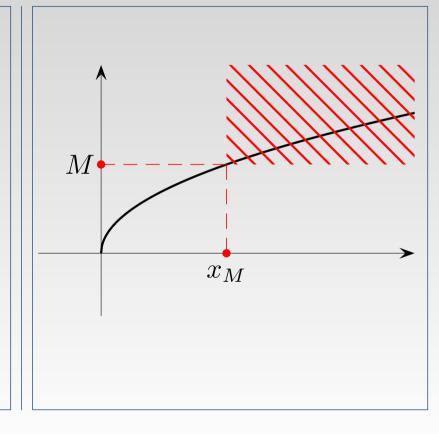
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Equivalentemente è come richiedere che, dato M

si riesce a trovare un x_M tale che il grafico della funzione per $x > x_M$ stia tutto nella regione tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

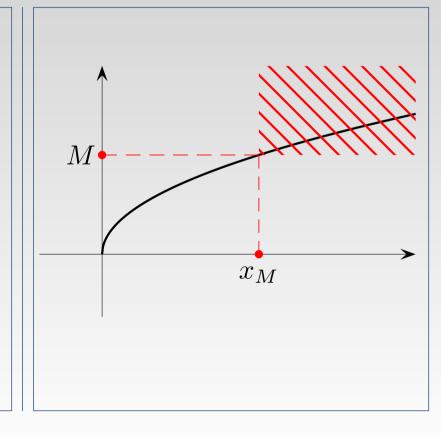
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Equivalentemente è come richiedere che, dato M

si riesce a trovare un x_M tale che il grafico della funzione per $x > x_M$ stia tutto nella regione tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

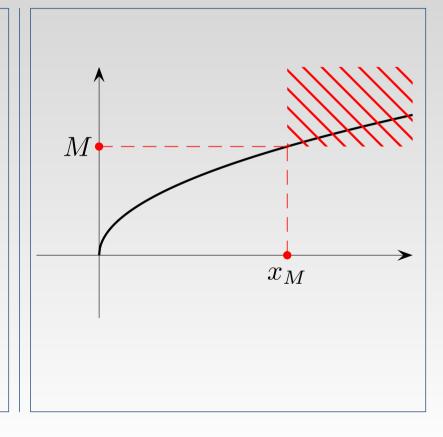
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Equivalentemente è come richiedere che, dato

si riesce a trovare un x_M tale che il grafico della funzione per $x > x_M$ stia tutto nella regione tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

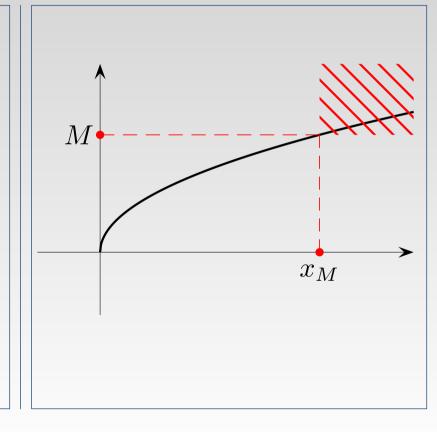
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Equivalentemente è come richiedere che, dato M

si riesce a trovare un x_M tale che il grafico della funzione per $x > x_M$ stia tutto nella regione tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

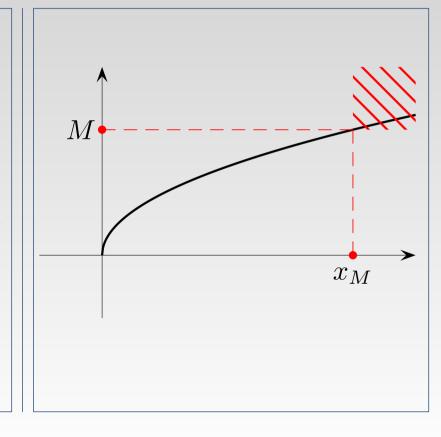
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Equivalentemente è come richiedere che, dato M

si riesce a trovare un x_M tale che il grafico della funzione per $x > x_M$ stia tutto nella regione tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

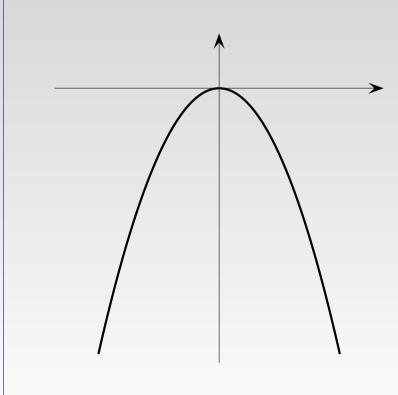
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

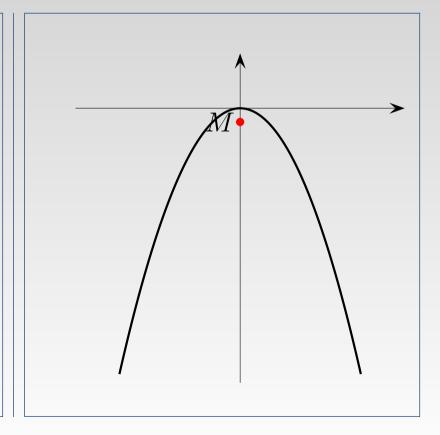
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Dato un valore M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

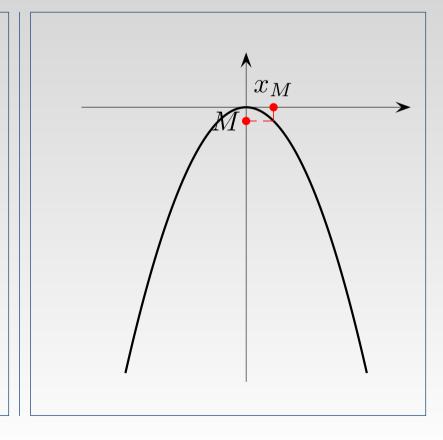
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Dato un valore M esiste x_M nel dominio

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

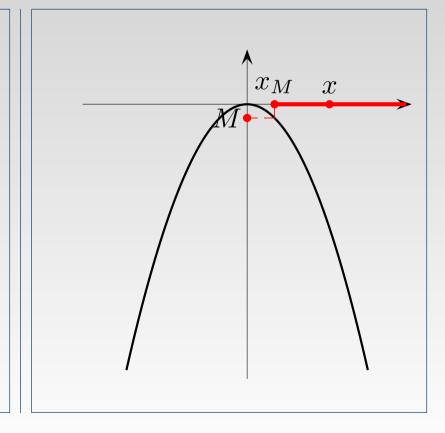
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

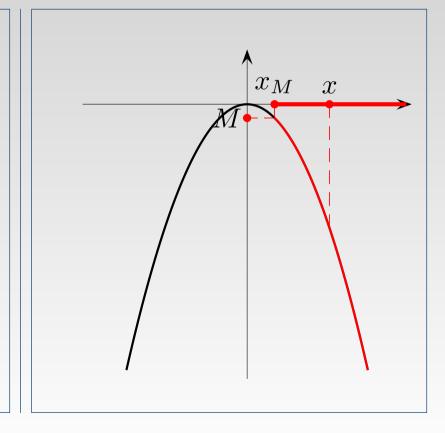
Dato un valore Mesiste x_M nel dominio tale che tutti gli $x > x_M$

Limiti di funzioni reali Introduzione Esempio 1 Esempio 2 Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$ Limite finito per $x \to +\infty$ Illustrazione della definizione 1

Illustrazione della definizione 2
Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Dato un valore Mesiste x_M nel dominio tale che tutti gli $x > x_M$ hanno valori corrispondenti f(x) < M

Limiti di funzioni reali Introduzione Esempio 1 Esempio 2 Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

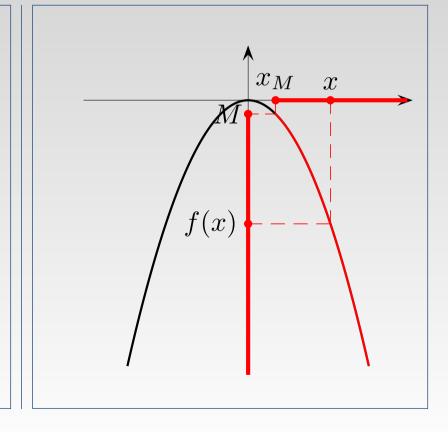
Limite finito per $x \rightarrow +\infty$ Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

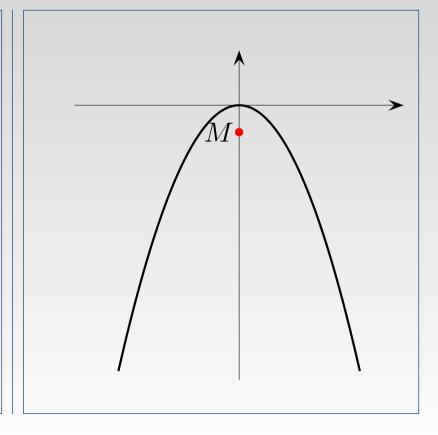
$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Dato un valore Mesiste x_M nel dominio tale che tutti gli $x > x_M$ hanno valori corrispondenti f(x) < M

Limiti di funzioni reali Introduzione Esempio 1 Esempio 2 Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$ Limite finito per $x \to +\infty$ Illustrazione della definizione 1 Illustrazione della definizione 3 Limiti di successioni Altri Limiti

Verifiche di limite

Limiti e continuità


000000

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Cambiando M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

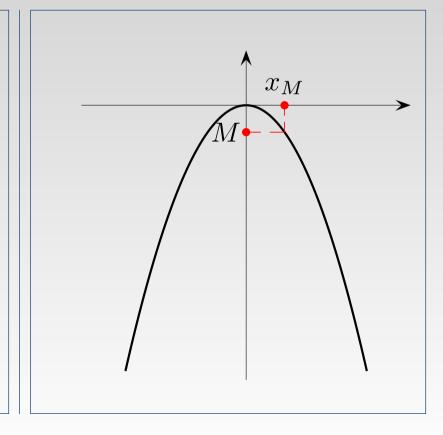
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

0000000

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Cambiando Msi trova un altro corrispondente x_M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

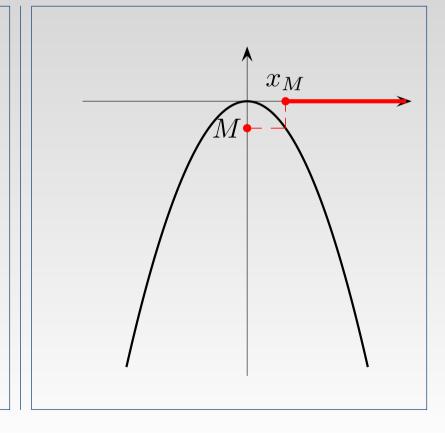
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la seconda definizione col seguente esempio

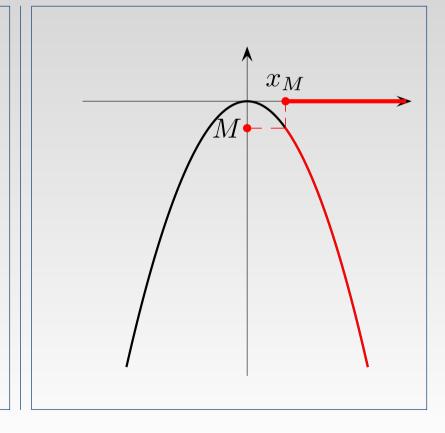
$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Cambiando Msi trova un altro corrispondente x_M con analoghe proprietà

Limiti di funzioni reali Introduzione Esempio 1 Esempio 2 Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$ Limite finito per $x \to +\infty$ Illustrazione della definizione 1 Illustrazione della definizione 2 Illustrazione della definizione 3 Limiti di successioni

Verifiche di limite

Limiti e continuità


Operazioni con i limiti

Altri Limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Cambiando Msi trova un altro corrispondente x_M con analoghe proprietà

Limiti di funzioni reali Introduzione Esempio 1 Esempio 2 Limite $+\infty$ per $x \to +\infty$

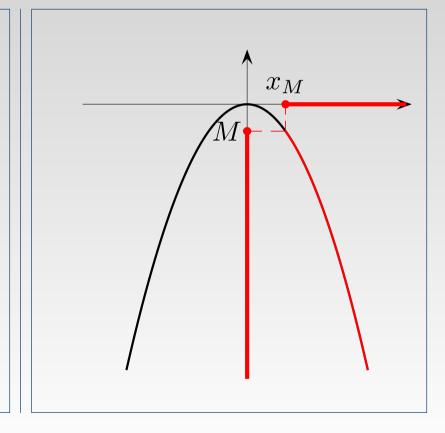
Limite $-\infty$ per $x \to +\infty$ Limite finito per $x \to +\infty$ Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

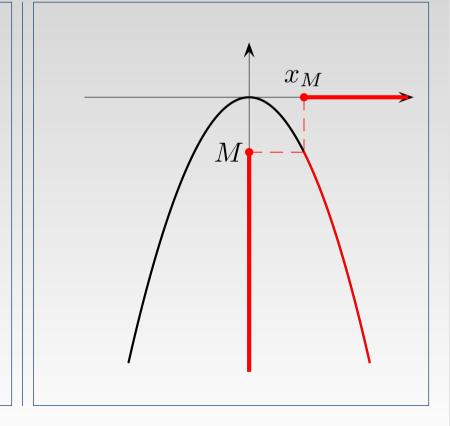
Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Cambiando Msi trova un altro corrispondente x_M con analoghe proprietà

Limiti di funzioni reali Introduzione Esempio 1 Esempio 2 Limite $+\infty$ per $x \to +\infty$ Limite $-\infty$ per $x \to +\infty$ Illustrazione della definizione 1 Illustrazione della definizione 3 Limiti di successioni


Varific	che di limite	

Altri Limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Questo dev'essere vero per ogni M!

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

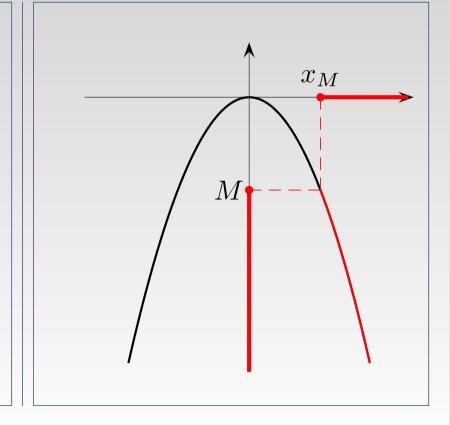
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Questo dev'essere vero per ogni M!

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

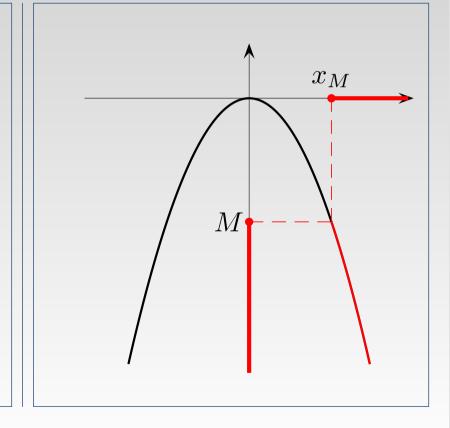
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Questo dev'essere vero per ogni M!

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

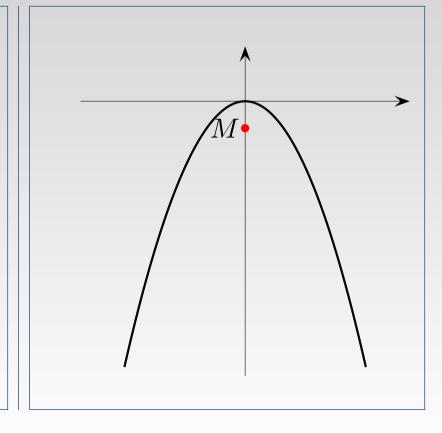
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Equivalentemente è come richiedere che, dato M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

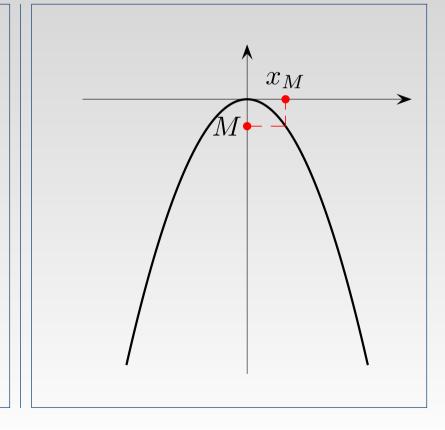
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Equivalentemente è come richiedere che, dato M

si riesce a trovare un x_M

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

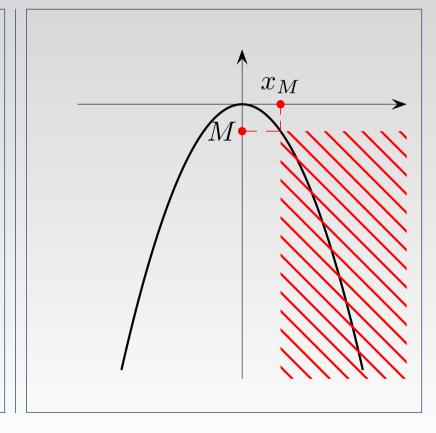
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Equivalentemente è come richiedere che, dato M

si riesce a trovare un x_M tale che il grafico della funzione per $x > x_M$ stia tutto nella regione tratteggiata

Limiti di funzioni reali
Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

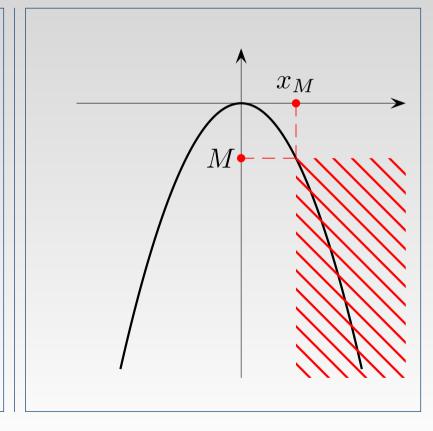
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Equivalentemente è come richiedere che, dato M

si riesce a trovare un x_M tale che il grafico della funzione per $x > x_M$ stia tutto nella regione tratteggiata

Limiti di funzioni reali
Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

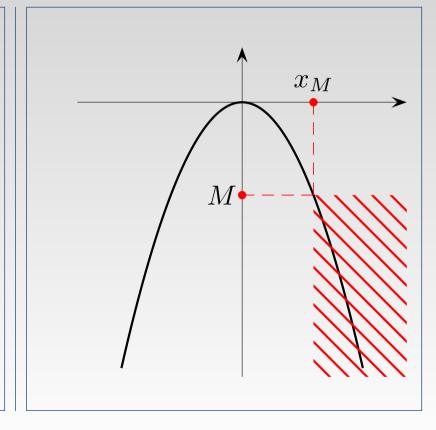
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Equivalentemente è come richiedere che, dato M

si riesce a trovare un x_M tale che il grafico della funzione per $x > x_M$ stia tutto nella regione tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Illustriamo la seconda definizione col seguente esempio

$$\lim_{x \to +\infty} (-x^2) = -\infty$$

Equivalentemente è come richiedere che, dato

si riesce a trovare un x_M tale che il grafico della funzione per $x > x_M$ stia tutto nella regione tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

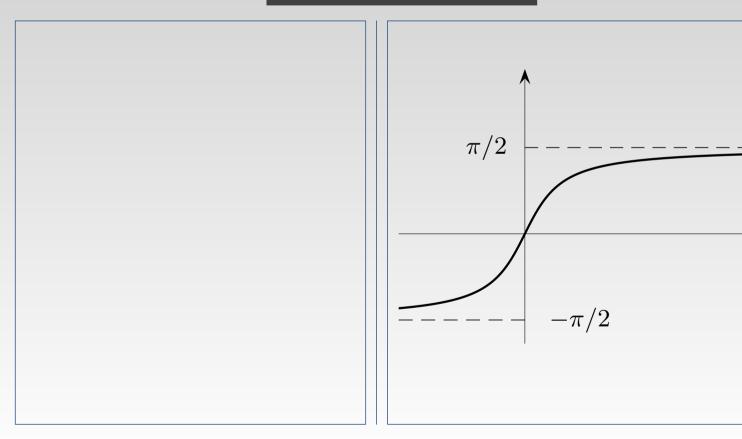
Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni


Altri Limiti

Verifiche di limite

Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

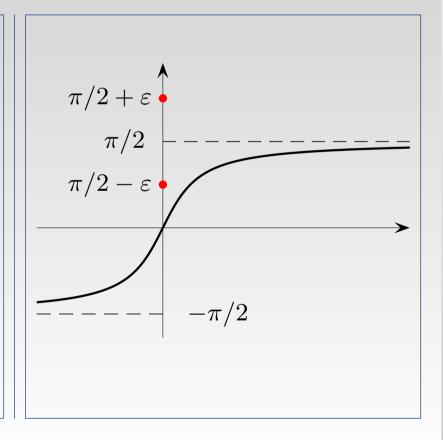
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

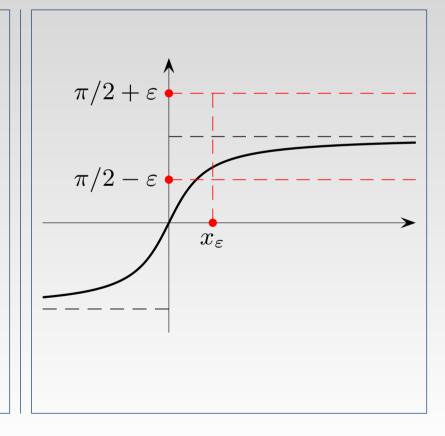
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Dato $\varepsilon > 0$ esiste x_{ε} nel dominio

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

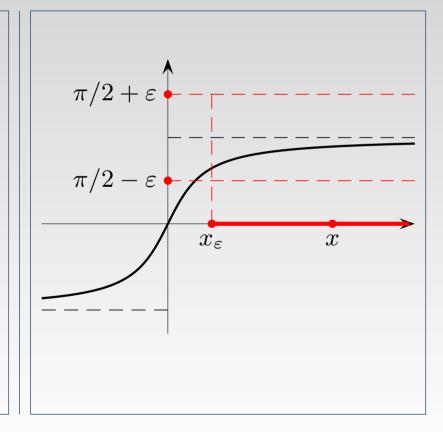
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Dato $\varepsilon > 0$ esiste x_{ε} nel dominio tale che a tutti gli $x > x_{\varepsilon}$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

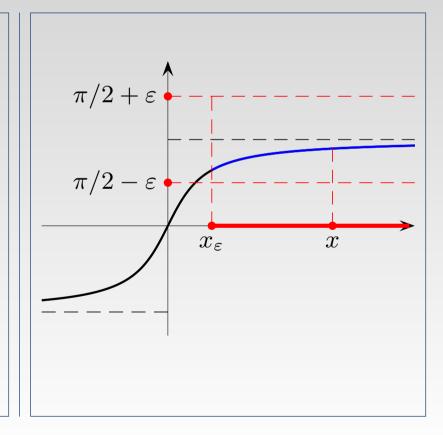
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Dato $\varepsilon > 0$ esiste x_{ε} nel dominio tale che a tutti gli $x > x_{\varepsilon}$ corrispondono valori

$$\frac{\pi}{2} - \varepsilon < f(x) < \frac{\pi}{2} + \varepsilon$$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

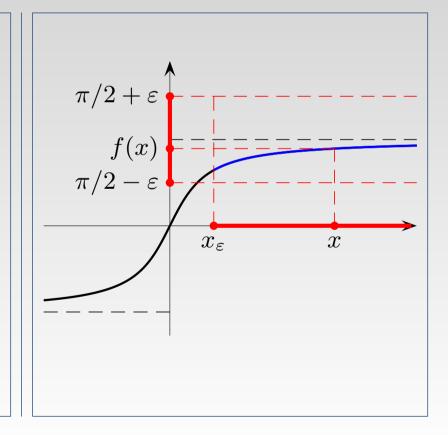
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Dato $\varepsilon > 0$ esiste x_{ε} nel dominio tale che a tutti gli $x > x_{\varepsilon}$ corrispondono valori

$$\frac{\pi}{2} - \varepsilon < f(x) < \frac{\pi}{2} + \varepsilon$$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

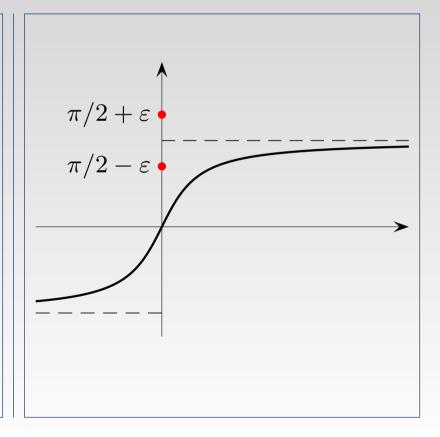
Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti


Verifiche di limite

Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Cambiando $\varepsilon > 0$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

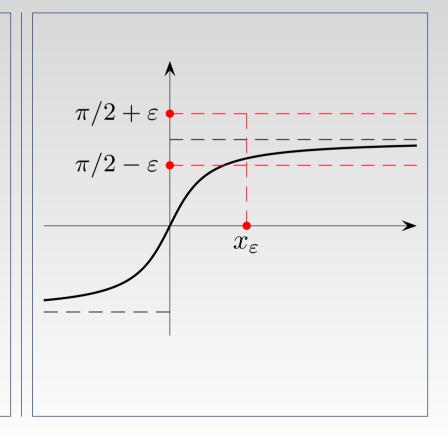
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Cambiando $\varepsilon > 0$ si trova un altro corrispondente x_{ε}

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

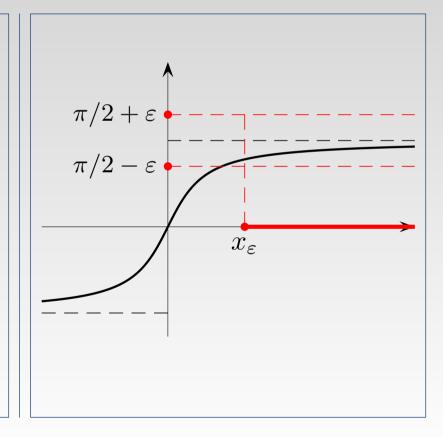
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Cambiando $\varepsilon > 0$ si trova un altro corrispondente x_{ε} con analoghe proprietà

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

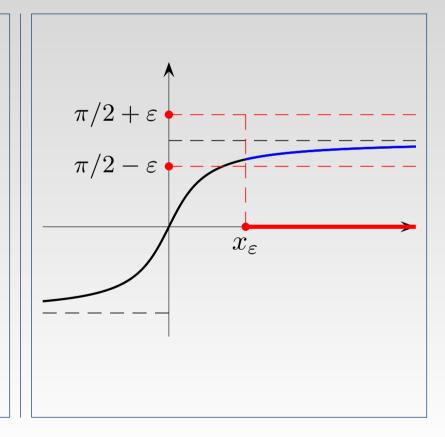
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Cambiando $\varepsilon > 0$ si trova un altro corrispondente x_{ε} con analoghe proprietà

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

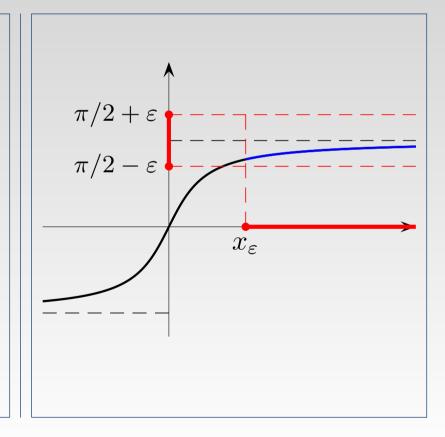
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Cambiando $\varepsilon > 0$ si trova un altro corrispondente x_{ε} con analoghe proprietà

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

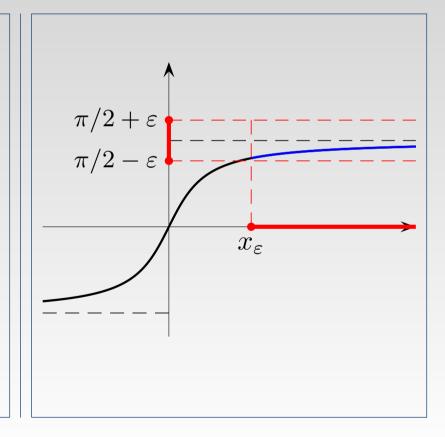
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Questo dev'essere vero per ogni $\varepsilon > 0$!

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

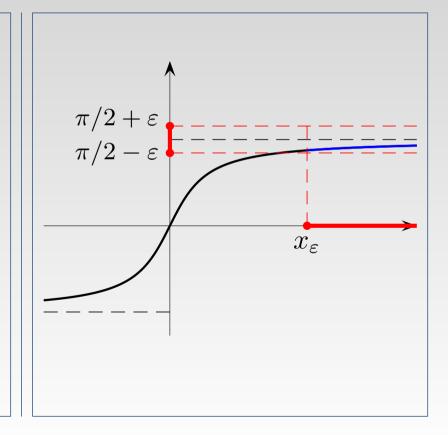
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Questo dev'essere vero per ogni $\varepsilon > 0$!

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

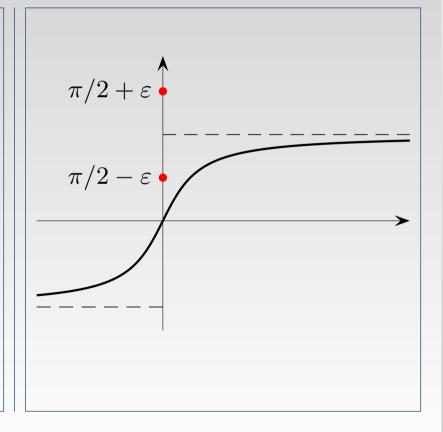
Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti


Limiti e continuità

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Equivalentemente è come richiedere che, dato

$$\varepsilon > 0$$

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

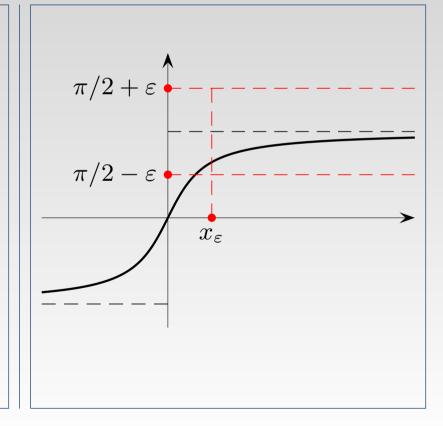
Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti


Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Equivalentemente è come richiedere che, dato

$$\varepsilon > 0$$

si riesce a trovare un x_{ε}

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

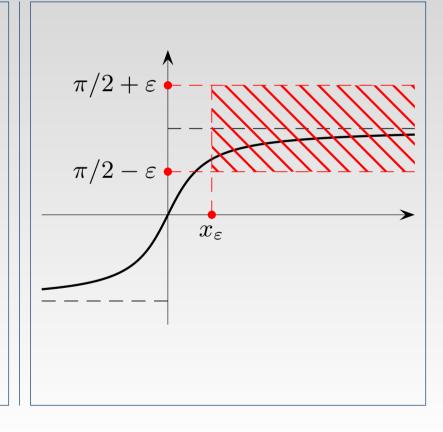
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

si riesce a trovare un x_{ε} tale che il grafico della funzione per $x > x_{\varepsilon}$ stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

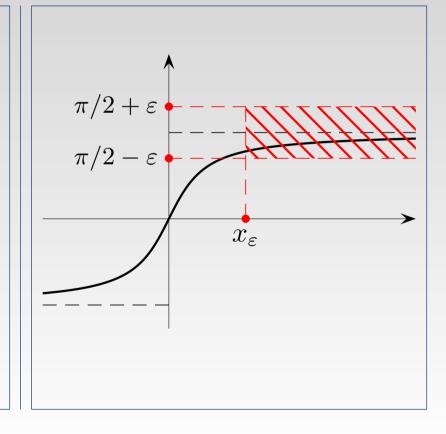
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

si riesce a trovare un x_{ε} tale che il grafico della funzione per $x > x_{\varepsilon}$ stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

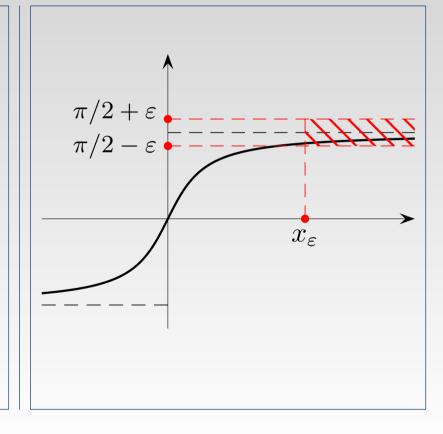
Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite


Operazioni con i limiti

Illustriamo la terza definizione col seguente esempio

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

si riesce a trovare un x_{ε} tale che il grafico della funzione per $x>x_{\varepsilon}$ stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Introduzione

Esempio 1

Esempio 2

Limite $+\infty$ per $x \to +\infty$

Limite $-\infty$ per $x \to +\infty$

Limite finito per $x \to +\infty$

Illustrazione della definizione 1

Illustrazione della definizione 2

Illustrazione della definizione 3

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limiti di successioni

Limiti di funzioni reali

Limiti di successioni

Limiti finiti

Limiti infiniti

Successioni monotone

Limite di successioni monotone

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limiti finiti

Data una successione $f : \mathbb{N} \to \mathbb{R}$, si possono riadattare le definizioni di limite:

Limiti di funzioni reali

Limiti di successioni

Limiti finiti

Limiti infiniti

Successioni monotone

Limite di successioni monotone

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limiti e continuità

Limiti finiti

Data una successione $f : \mathbb{N} \to \mathbb{R}$, si possono riadattare le definizioni di limite: posto $f(n) = a_n$

Diremo che (a_n) converge a $\ell \in \mathbb{R}$ e scriveremo

$$\lim_{n \to \infty} a_n = \ell$$

se per ogni $\varepsilon > 0$ esiste $n_{\varepsilon} \in \mathbb{N}$ tale che $\ell - \varepsilon < a_n < \ell + \varepsilon$ per ogni $n > n_{\varepsilon}$

Limiti di funzioni reali

Limiti di successioni

Limiti finiti

Limiti infiniti

Successioni monotone

Limite di successioni monotone

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limiti e continuità

Limiti infiniti

Diremo che (a_n) diverge a $+\infty$ (rispettivamente $-\infty$) e scriveremo

$$\lim_{n\to\infty} a_n = +\infty \text{ (rispettivamente } -\infty)$$

se per ogni $M \in \mathbb{R}$ esiste $n_M \in \mathbb{N}$ tale che $a_n > M$ (rispettivamente $a_n < M$) per ogni $n > n_M$

Limiti di funzioni reali

Limiti di successioni

Limiti finiti

Limiti infiniti

Successioni monotone

Limite di successioni monotone

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Successioni monotone

La definizione di funzione monotone si traduce per le successioni nel seguente modo:

Limiti di funzioni reali
Limiti di successioni
Limiti finiti
Limiti infiniti
Successioni monotone
Limite di successioni monotone
Altri Limiti
Verifiche di limite
Operazioni con i limiti
Limiti e continuità

Successioni monotone

La definizione di funzione monotone si traduce per le successioni nel seguente modo:

 \bullet (a_n) è strettamente crescente se

$$a_n < a_{n+1} \ \forall n \in \mathbb{N}$$

• (a_n) è crescente (o non decrescente) se

$$a_n \le a_{n+1} \ \forall n \in \mathbb{N}$$

• (a_n) è strettamente decrescente se

$$a_n > a_{n+1} \ \forall n \in \mathbb{N}$$

• (a_n) è decrescente (o non crescente) se

$$a_n \geq a_{n+1} \ \forall n \in \mathbb{N}$$

Limiti di funzioni reali

Limiti di successioni

Limiti finiti

Limiti infiniti

Successioni monotone

Limite di successioni monotone

Altri Limiti

Verifiche di limite

Limiti e continuità

Si può dimostrare il seguente

Teorema. Ogni successione monotona ha limite, finito o infinito.

Limiti di funzioni reali

Limiti di successioni

Limiti finiti

Limiti infiniti

Successioni monotone

Limite di successioni monotone

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Si può dimostrare il seguente

Teorema. Ogni successione monotona ha limite, finito o infinito. Più precisamente:

Limiti di successioni
Limiti di successioni
Limiti finiti
Limiti infiniti
Successioni monotone
Limite di successioni monotone
Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limiti e continuità

Si può dimostrare il seguente

Teorema. Ogni successione monotona ha limite, finito o infinito. Più precisamente:

Limiti di successioni	
Limiti finiti	
Limiti infiniti	
Successioni monotone	
Limite di successioni monot	one
	one
Limite di successioni monot Altri Limiti	one
	one

Si può dimostrare il seguente

Teorema. Ogni successione monotona ha limite, finito o infinito. Più precisamente:

LIII	niti di funzioni reali
Lin	niti di successioni
Lin	niti finiti
Lin	niti infiniti
Suc	cessioni monotone
Lin	nite di successioni monotone
Altı	ri Limiti
Altı	ri Limiti
	i Limiti ifiche di limite
Ver	
Ver	ifiche di limite

Altri Limiti

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

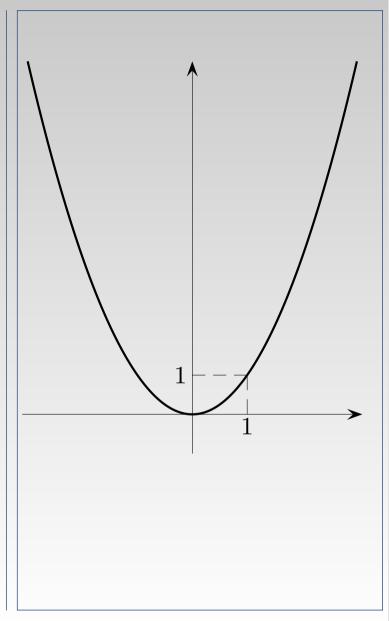
Illustrazione della definizione

Limite finito per $x \rightarrow x \frac{\pm}{0}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x \frac{\pm}{0}$


Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

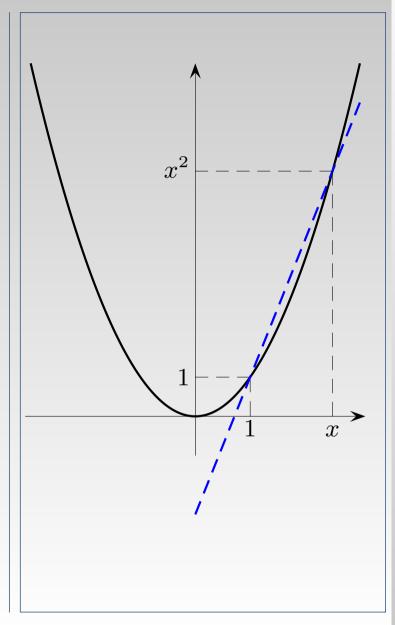
Limite finito per $x \to x_0$ Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

 $Limite + \infty \text{ per } x \to x \frac{\pm}{0}$


Illustrazione delle definizioni Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Sia $f(x) = x^2$

Consideriamo la retta secante passante per i punti del grafico di ascissa 1 e x

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$ Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

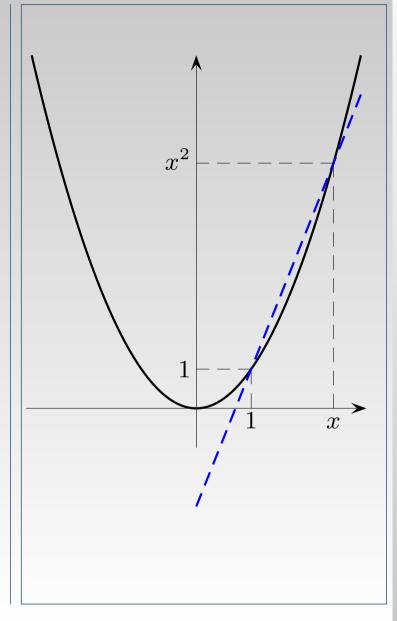
Un'importante osservazione

Altri limiti

 $\text{Limite} + \infty \text{ per } x \rightarrow x \stackrel{\pm}{0}$

Illustrazione delle definizioni Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Sia $f(x) = x^2$

Consideriamo la retta secante passante per i punti del grafico di ascissa 1 e x

Il coefficiente angolare è

$$m(x) = \frac{x^2 - 1}{x - 1}$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$ Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

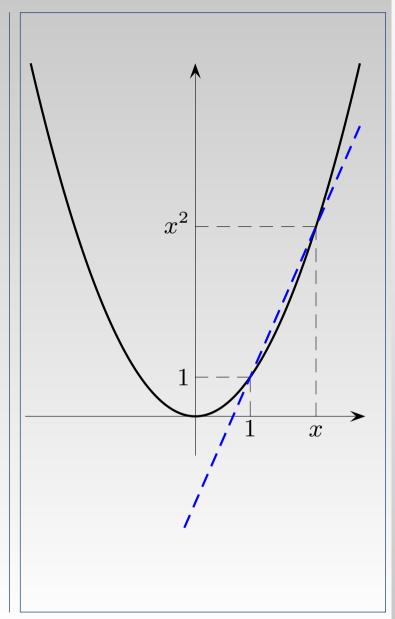
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Sia $f(x) = x^2$

Consideriamo la retta secante passante per i punti del grafico di ascissa 1 e x

Il coefficiente angolare è

$$m(x) = \frac{x^2 - 1}{x - 1}$$

Facciamo variare $x \neq 1$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$ Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

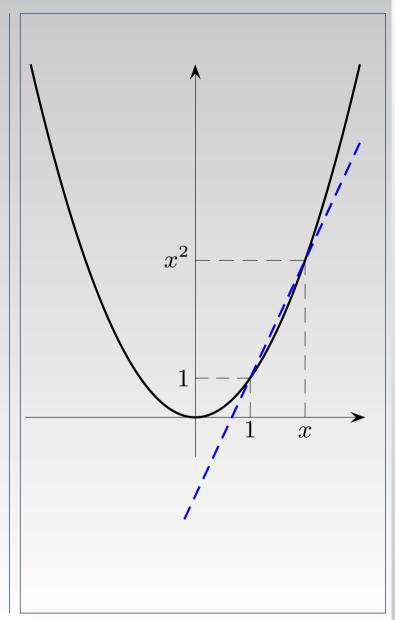
Altri limiti

Limite $+\infty$ per $x \to x \frac{\pm}{0}$

Illustrazione delle definizioni Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Sia $f(x) = x^2$

Consideriamo la retta secante passante per i punti del grafico di ascissa 1 e x

Il coefficiente angolare è

$$m(x) = \frac{x^2 - 1}{x - 1}$$

Facciamo variare $x \neq 1$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$ Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

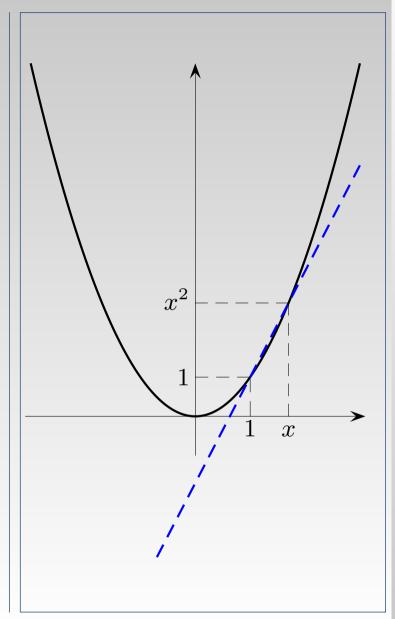
Altri limiti

Limite $+\infty$ per $x \to x \frac{\pm}{0}$

Illustrazione delle definizioni Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Sia $f(x) = x^2$

Consideriamo la retta secante passante per i punti del grafico di ascissa 1 e x

Il coefficiente angolare è

$$m(x) = \frac{x^2 - 1}{x - 1}$$

Facciamo variare $x \neq 1$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$ Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

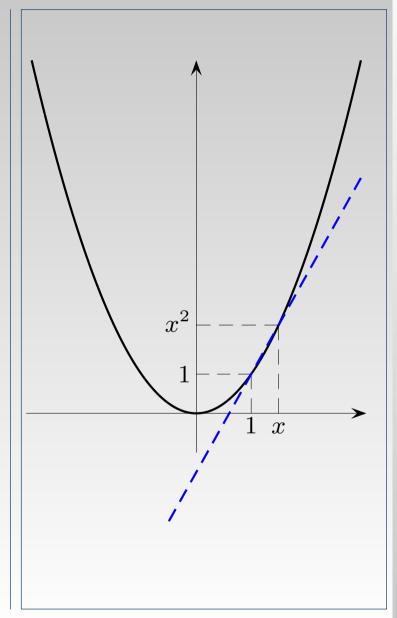
Altri limiti

Limite $+\infty$ per $x \to x \frac{\pm}{0}$

Illustrazione delle definizioni Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Sia $f(x) = x^2$

Consideriamo la retta secante passante per i punti del grafico di ascissa 1 e x

Il coefficiente angolare è

$$m(x) = \frac{x^2 - 1}{x - 1}$$

Facciamo variare $x \neq 1$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$ Illustrazione della definizione

Limite finito per $x \to x_0^{\pm}$

Un'importante osservazione

Altri limiti

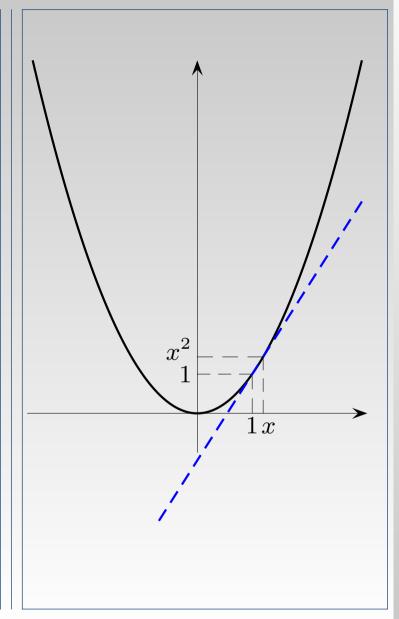
Limite $+\infty$ per $x \to x \frac{\pm}{0}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Sia $f(x) = x^2$

Consideriamo la retta secante passante per i punti del grafico di ascissa 1 e x

Il coefficiente angolare è

$$m(x) = \frac{x^2 - 1}{x - 1}$$

Facciamo variare $x \neq 1$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$ Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$ Illustrazione delle definizioni

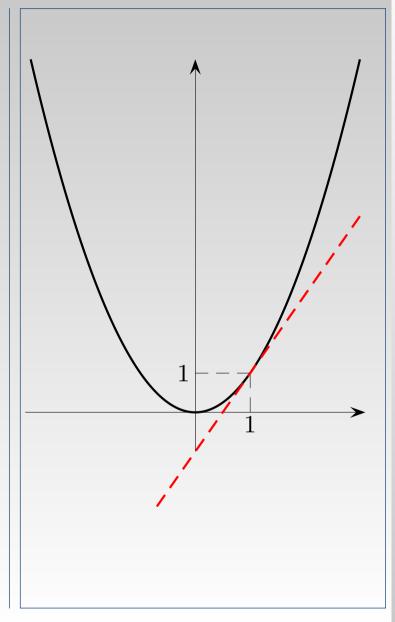
Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Sia $f(x) = x^2$

Consideriamo la retta secante passante per i punti del grafico di ascissa 1 e x


Il coefficiente angolare è

$$m(x) = \frac{x^2 - 1}{x - 1}$$

Facciamo variare $x \neq 1$

Al "limite", quando x tende a 1, m(x) tende al coefficiente angolare della retta tangente in x=1; si avrà

$$\lim_{x \to 1} m(x) = 2$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$ Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

 $Limite + \infty \text{ per } x \to x \frac{\pm}{0}$

Illustrazione delle definizioni Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Limite finito per $x \to x_0$

Siano $f:]a, b[\setminus \{x_0\} \to \mathbb{R} \ \mathbf{e} \ x_0 \in [a, b]$

Si dice che f ha limite $\ell \in \mathbb{R}$ per x tendente a x_0 , e si scrive

$$\lim_{x \to x_0} f(x) = \ell$$

se e solo se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che $\ell - \varepsilon < f(x) < \ell + \varepsilon$ per ogni $x \in]a, b[\setminus \{x_0\}$ tale che $x_0 - \delta < x < x_0 + \delta$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x ightarrow \overline{x_0}$

Illustrazione della definizione

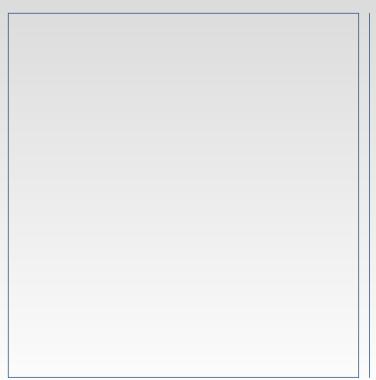
Limite finito per $x \rightarrow x_0^{\pm}$

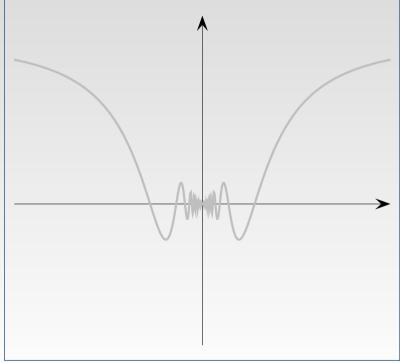
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni


Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

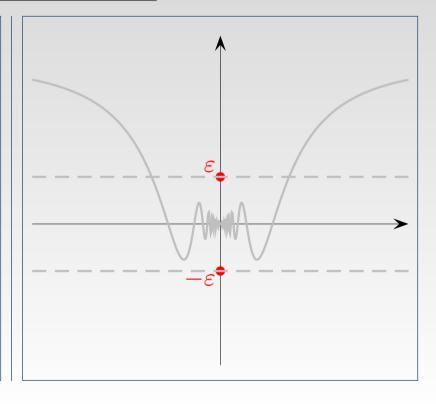
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Dato $\varepsilon > 0$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

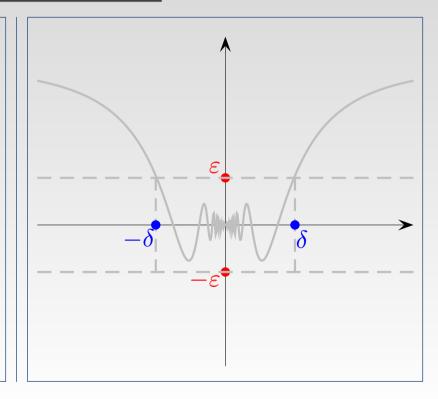
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Dato
$$\varepsilon > 0$$
 esiste $\delta > 0$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

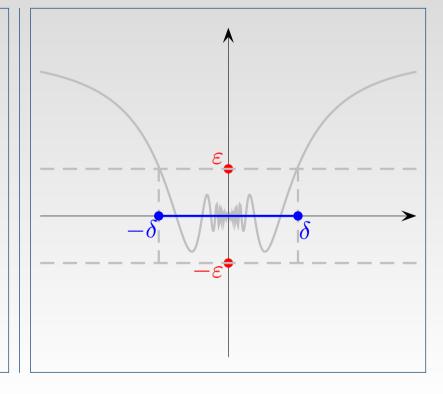
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Dato $\varepsilon > 0$ esiste $\delta > 0$ tale che se

$$x_0 - \delta < x < x_0 + \delta$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

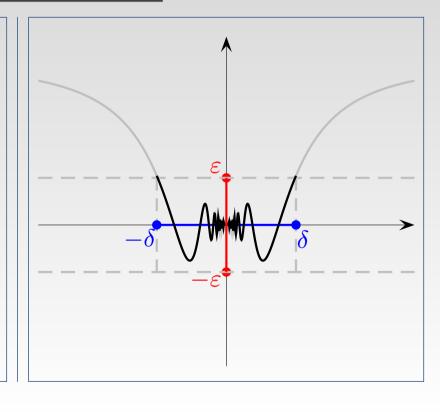
Verifiche di limite

Operazioni con i limiti

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Dato $\varepsilon > 0$


esiste $\delta > 0$ tale che se

$$x_0 - \delta < x < x_0 + \delta$$

allora

$$\ell - \varepsilon < f(x) < \ell + \varepsilon$$

$$\operatorname{con} \ell = 0 e x_0 = 0$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

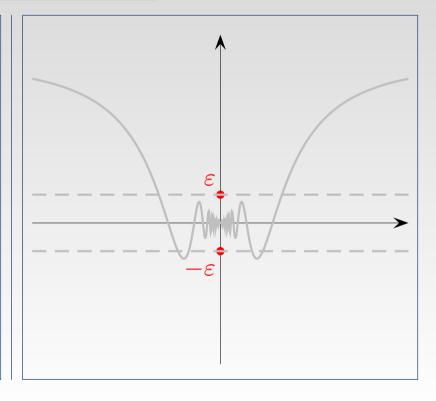
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Cambiando $\varepsilon > 0$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

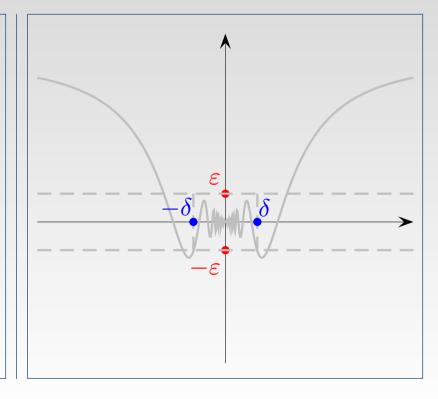
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

000000

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Cambiando $\varepsilon > 0$ si trova un altro corrispondente δ

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

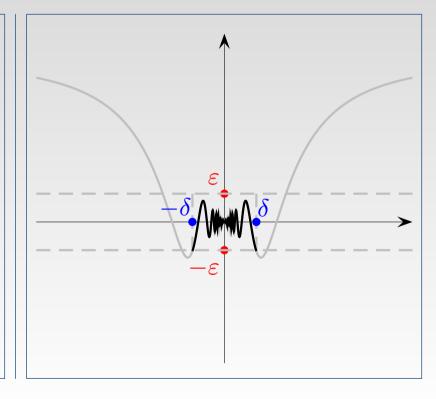
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

000000

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Cambiando $\varepsilon > 0$ si trova un altro corrispondente δ con analoghe proprietà

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

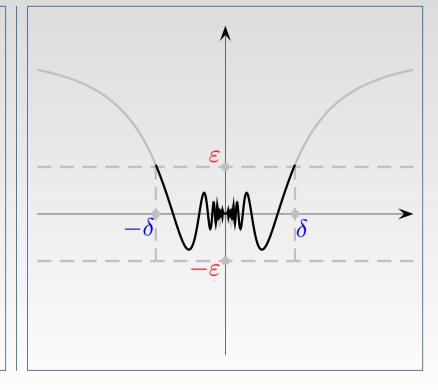
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Questo dev'essere vero per ogni $\varepsilon > 0$!

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

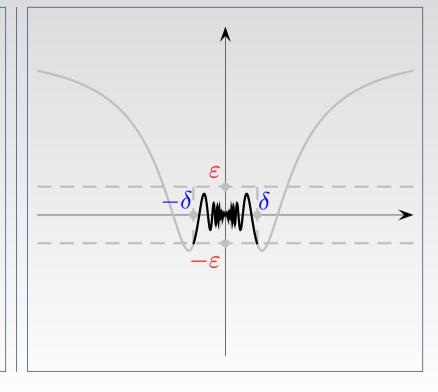
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Questo dev'essere vero per ogni $\varepsilon > 0$!

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

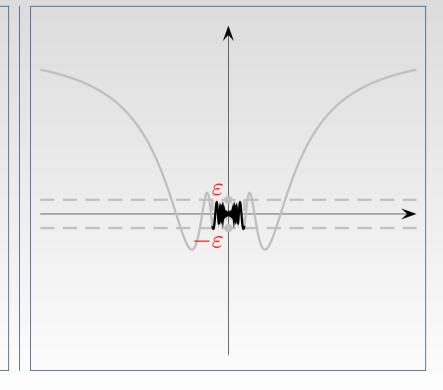
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Questo dev'essere vero per ogni $\varepsilon > 0$!

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

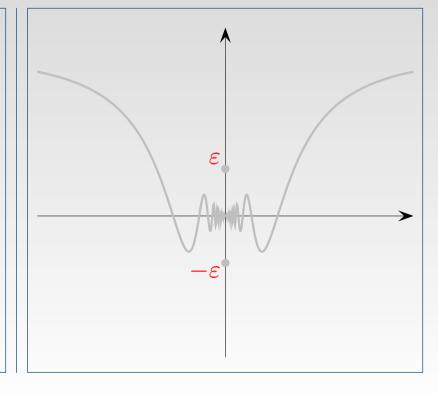
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Equivalentemente è come richiedere che, dato

$$\varepsilon > 0$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

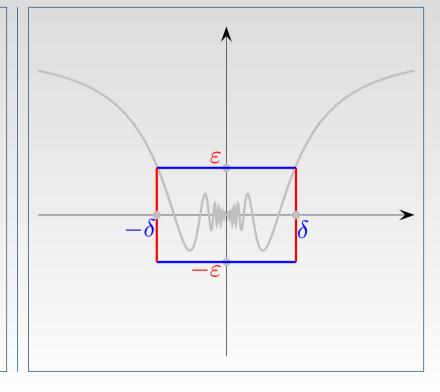
Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Limiti e continuità


Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Equivalentemente è come richiedere che, dato

$$\varepsilon > 0$$

si riesce a trovare un δ

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

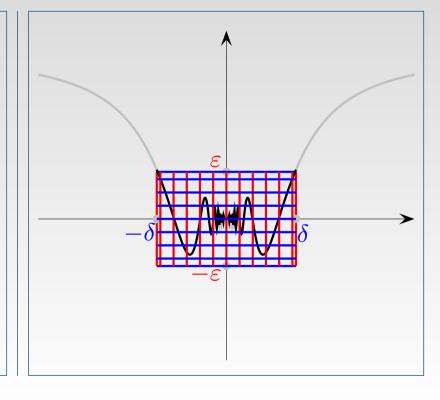
Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Limiti e continuità

Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

si riesce a trovare un δ tale che se $-\delta < x < \delta$ il grafico della funzione stia tutto nella regione tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

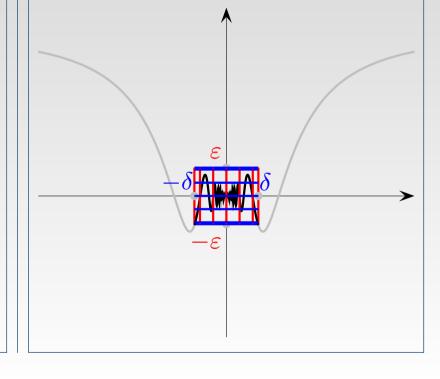
Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Limiti e continuità


Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

si riesce a trovare un δ tale che se $-\delta < x < \delta$

il grafico della funzione stia tutto nella regione tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

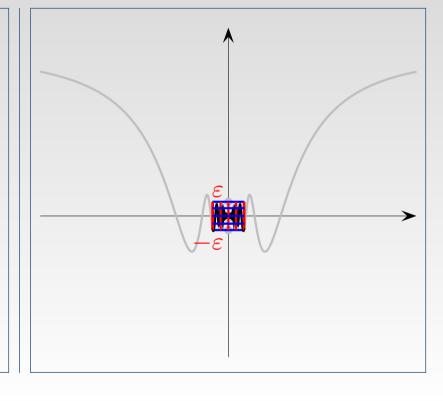
Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Limiti e continuità


Illustriamo la definizione di limite finito per $x \to x_0$ col seguente esempio

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Equivalentemente è come richiedere che, dato

 $\varepsilon > 0$

si riesce a trovare un δ tale che se $-\delta < x < \delta$ il grafico della funzione stia tutto nella regione tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

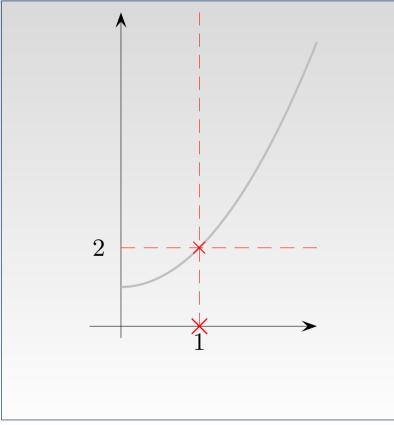
Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni


Ricapitolazione

Verifiche di limite

Operazioni con i limiti

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

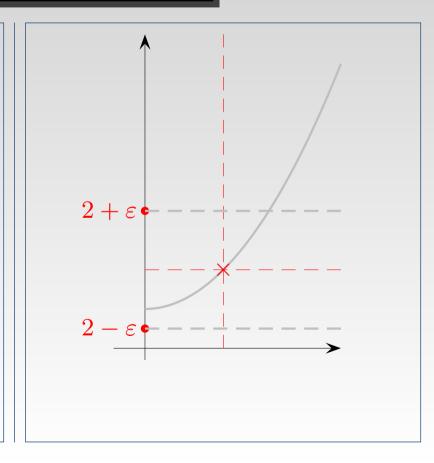
Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni


Ricapitolazione

Verifiche di limite

Operazioni con i limiti

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

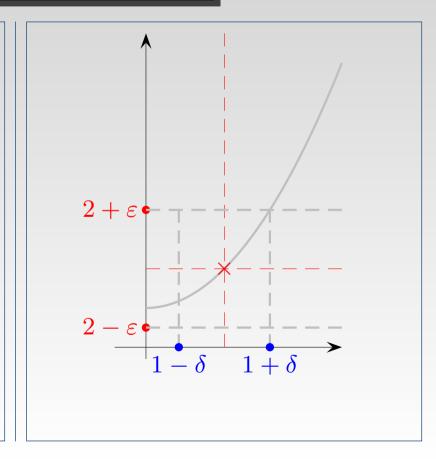
Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni


Ricapitolazione

Verifiche di limite

Operazioni con i limiti

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Dato $\varepsilon > 0$ esiste $\delta > 0$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

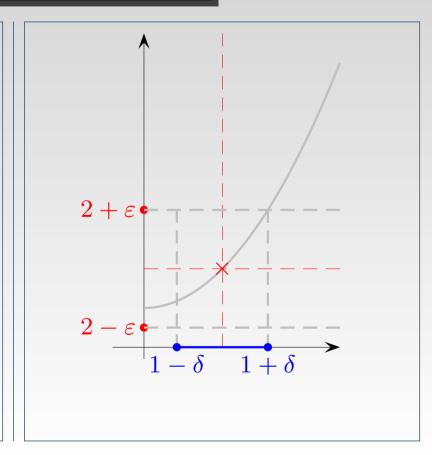
Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti


$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Dato $\varepsilon > 0$

esiste $\delta > 0$ tale che se

$$x_0 - \delta < x < x_0 + \delta$$

$$e x \neq x_0$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

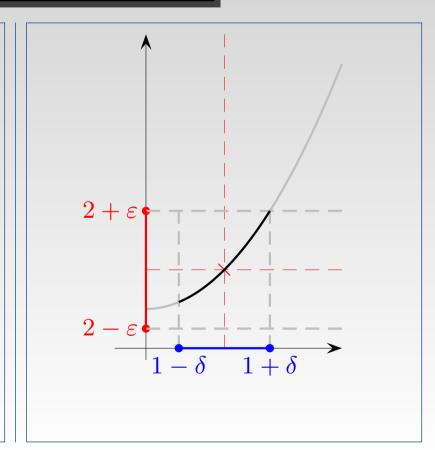
Ricapitolazione

Verifiche di limite

Operazioni con i limiti

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Dato $\varepsilon > 0$


esiste $\delta > 0$ tale che se

$$x_0 - \delta < x < x_0 + \delta$$

e $x \neq x_0$ allora

$$\ell - \varepsilon < f(x) < \ell + \varepsilon$$

dove $\ell = 2$ e $x_0 = 1$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

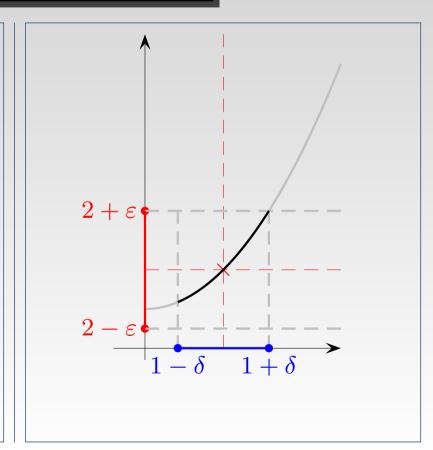
Ricapitolazione

Verifiche di limite

Operazioni con i limiti

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Dato $\varepsilon > 0$


esiste $\delta > 0$ tale che se

$$1 - \delta < x < 1 + \delta$$

e $x \neq x_0$ allora

$$2 - \varepsilon < f(x) < 2 + \varepsilon$$

dove $\ell = 2$ e $x_0 = 1$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

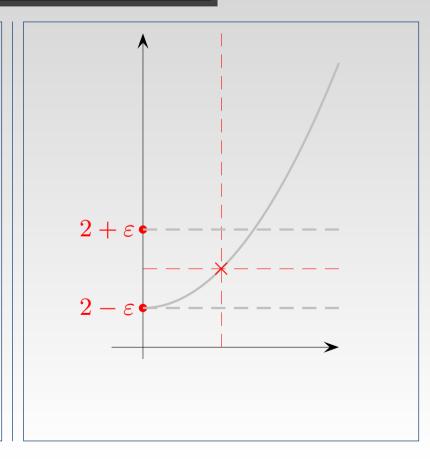
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Cambiando $\varepsilon > 0$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

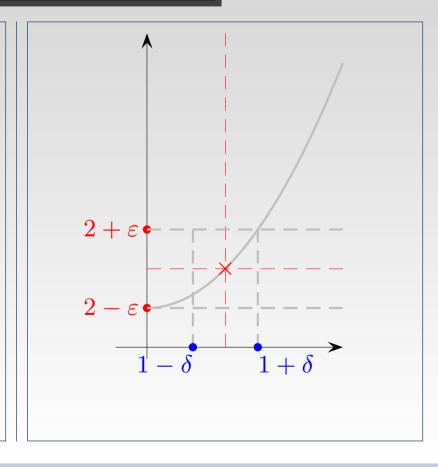
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

0000000

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Cambiando $\varepsilon > 0$ si trova un altro corrispondente δ

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

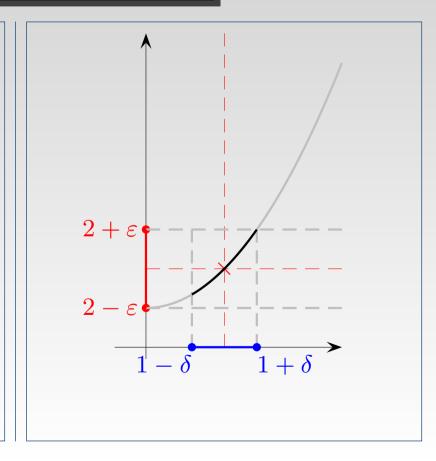
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

00000000

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Cambiando $\varepsilon > 0$ si trova un altro corrispondente δ con analoghe proprietà

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

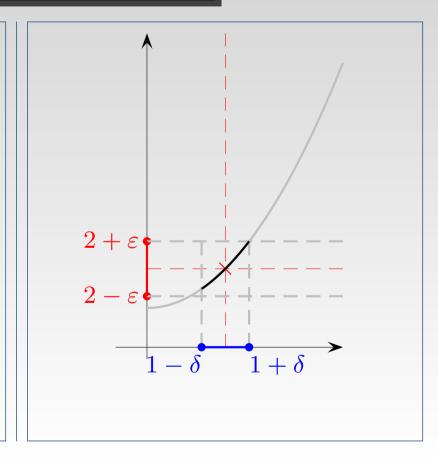
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Questo dev'essere vero per ogni $\varepsilon > 0$!

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

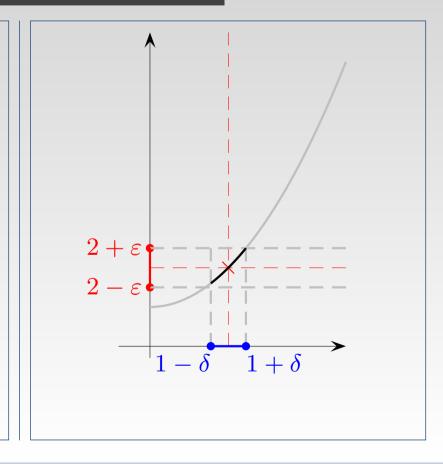
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Questo dev'essere vero per ogni $\varepsilon > 0$!

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Questo dev'essere vero per ogni $\varepsilon > 0$!

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

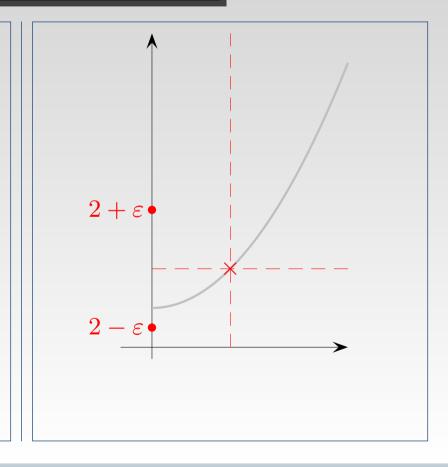
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

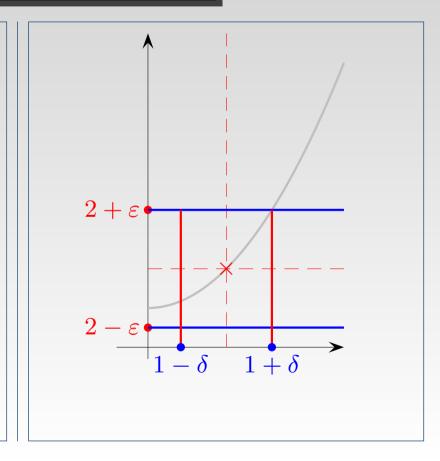
Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Equivalentemente è come richiedere che, dato

$$\varepsilon > 0$$

si riesce a trovare un δ

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

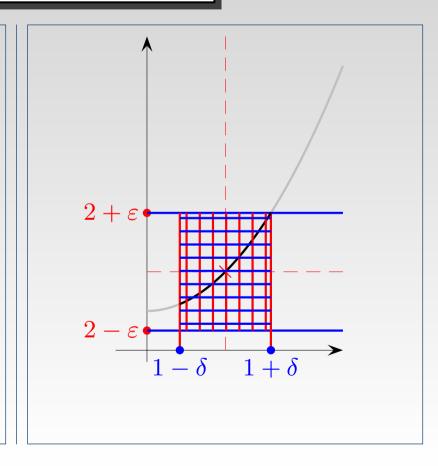
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

si riesce a trovare un δ tale che se $x \neq 1$ e $1 - \delta < x < 1 + \delta$ il grafico della funzione stia tutto nella regione tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \rightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

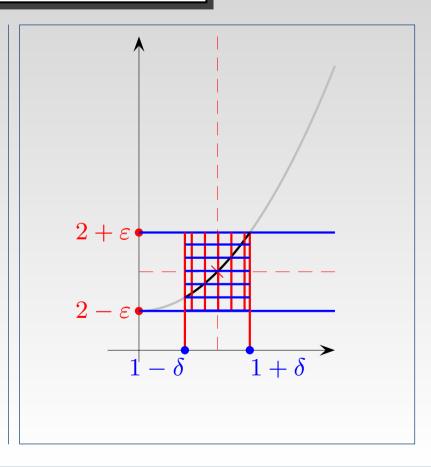
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

si riesce a trovare un δ tale che se $x \neq 1$ e $1 - \delta < x < 1 + \delta$ il grafico della funzione stia tutto nella regione tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

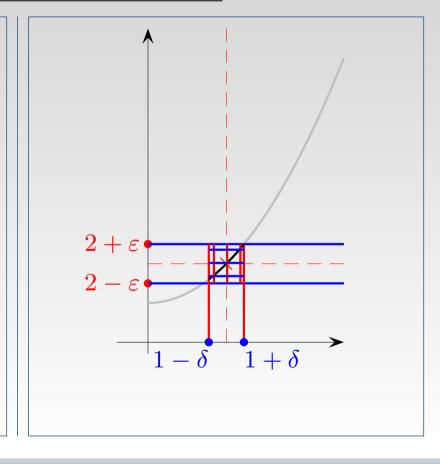
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

si riesce a trovare un δ tale che se $x \neq 1$ e $1 - \delta < x < 1 + \delta$ il grafico della funzione stia tutto nella regione tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

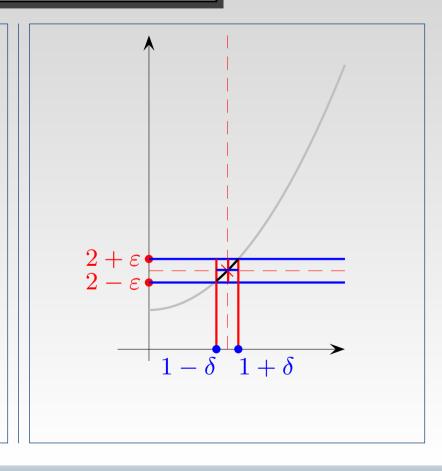
Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Limiti e continuità

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$$

Equivalentemente è come richiedere che, dato $\varepsilon > 0$

si riesce a trovare un δ tale che se $x \neq 1$ e $1 - \delta < x < 1 + \delta$ il grafico della funzione

stia tutto nella regione tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Limiti e continuità

Limite finito per $x \to x_0^{\pm}$

Sia $f:]a, b[\setminus \{x_0\} \to \mathbb{R}$

Si dice che f ha limite $\ell \in \mathbb{R}$ per x tendente a x_0 da sinistra, e si scrive

$$\lim_{x \to x_0^-} f(x) = \ell$$

se per ogni $\varepsilon > 0$ esiste $\delta_{\varepsilon} > 0$ tale che $\ell - \varepsilon < f(x) < \ell + \varepsilon$ per ogni $x \in]a, b[$ tale che $x_0 - \delta_{\varepsilon} < x < x_0]$

Si dice che f ha limite $\ell \in \mathbb{R}$ per x tendente a x_0 da destra, e si scrive

$$\lim_{x \to x_0^+} f(x) = \ell$$

se per ogni $\varepsilon > 0$ esiste $\delta_{\varepsilon} > 0$ tale che $\ell - \varepsilon < f(x) < \ell + \varepsilon$ per ogni $x \in]a,b[$ tale che $x_0 < x < x_0 + \delta_{\varepsilon}$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x \stackrel{\pm}{\Omega}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

$$\lim_{x \to x_0} f(x) = \ell \iff$$

esistono i limiti di f per $x \to x_0$ da destra e da sinistra e sono entrambi uguali ad ℓ

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

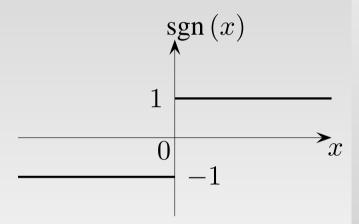
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

$$\lim_{x \to x_0} f(x) = \ell \iff$$

esistono i limiti di f per $x \to x_0$ da destra e da sinistra e sono entrambi uguali ad ℓ

Esempio: la funzione segno

$$\operatorname{sgn}(x) = \begin{cases} 1 & \operatorname{se} x > 0 \\ -1 & \operatorname{se} x < 0 \end{cases}$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

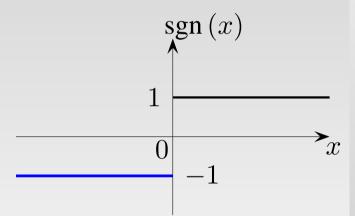
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$ Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Limiti e continuità

$$\lim_{x \to x_0} f(x) = \ell \iff$$

esistono i limiti di f per $x \to x_0$ da destra e da sinistra e sono entrambi uguali ad ℓ

Esempio: la funzione segno

$$\operatorname{sgn}(x) = \begin{cases} 1 & \operatorname{se} x > 0 \\ -1 & \operatorname{se} x < 0 \end{cases}$$

Si ha che

$$\lim_{x \to 0^{-}} \operatorname{sgn}(x) = -1$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

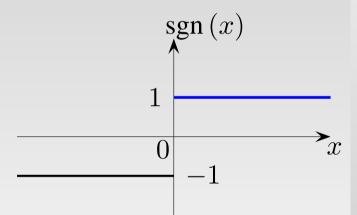
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

$$\lim_{x \to x_0} f(x) = \ell \iff$$

esistono i limiti di f per $x \rightarrow x_0$ da destra e da sinistra e sono entrambi uguali ad ℓ

Esempio: la funzione segno

$$\operatorname{sgn}(x) = \begin{cases} 1 & \operatorname{se} x > 0 \\ -1 & \operatorname{se} x < 0 \end{cases}$$

Si ha che

$$\lim_{x \to 0^{-}} \operatorname{sgn}(x) = -1 \qquad \lim_{x \to 0^{+}} \operatorname{sgn}(x) = 1$$

$$\lim_{x \to 0^+} \operatorname{sgn}(x) = 1$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

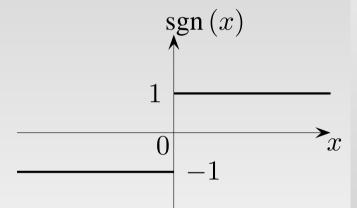
Altri limiti

Limite $+\infty$ per $x \to x \stackrel{\pm}{0}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

$$\lim_{x \to x_0} f(x) = \ell \iff$$

esistono i limiti di f per $x \to x_0$ da destra e da sinistra e sono entrambi uguali ad ℓ

Esempio: la funzione segno

$$\operatorname{sgn}(x) = \begin{cases} 1 & \operatorname{se} x > 0 \\ -1 & \operatorname{se} x < 0 \end{cases}$$

Si ha che

$$\lim_{x \to 0^{-}} \, \mathrm{sgn}\,(x) = -1 \, \neq \, \lim_{x \to 0^{+}} \, \mathrm{sgn}\,(x) = 1$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

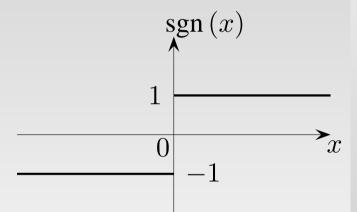
Altri limiti

 $Limite + \infty per x \rightarrow x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

$$\lim_{x \to x_0} f(x) = \ell \iff$$

esistono i limiti di f per $x \to x_0$ da destra e da sinistra e sono entrambi uguali ad ℓ

Esempio: la funzione segno

$$\operatorname{sgn}(x) = \begin{cases} 1 & \operatorname{se} x > 0 \\ -1 & \operatorname{se} x < 0 \end{cases}$$

Si ha che

$$\lim_{x \to 0^{-}} \operatorname{sgn}(x) = -1 \neq \lim_{x \to 0^{+}} \operatorname{sgn}(x) = 1$$

quindi il limite della funzione quando $x \to 0$ non esiste

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \to x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Altri limiti

Analogamente si possono dare le definizioni dei limiti

$$\lim_{x \to x_0} f(x) = +\infty,$$

$$\lim_{x \to x_0^+} f(x) = +\infty,$$

$$\lim_{x \to x_0^+} f(x) = -\infty,$$

 $\lim_{x \to x_0} f(x) = -\infty,$

$$\lim_{x \to x_0^-} f(x) = +\infty,$$

$$\lim_{x \to x_0^-} f(x) = -\infty,$$

ed anche

 $x \rightarrow x_0^+$

$$\lim_{x \to -\infty} f(x) = +\infty, \quad \lim_{x \to -\infty} f(x) = -\infty,$$

$$\lim_{x \to -\infty} f(x) = \ell$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \to x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$ Illustrazione delle definizioni Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Sia $f:]a, b[\setminus \{x_0\} \to \mathbb{R}$

Si dice che f ha limite $+\infty$ per x tendente a x_0 e si scrive

$$\lim_{x \to x_0} f(x) = +\infty$$

se $\forall M \in \mathbb{R} \exists \delta_M > 0 : x \in]a, b[, 0 < |x - x_0| < \delta_M \Longrightarrow f(x) > M$

Si dice che f ha limite $+\infty$ per x tendente a x_0 da destra e si scrive

$$\lim_{x \to x_0^+} f(x) = +\infty$$

se $\forall M \in \mathbb{R} \exists \delta_M > 0 : x \in]a, b[, 0 < x - x_0 < \delta_M \Longrightarrow f(x) > M$

Si dice che f ha limite $+\infty$ per x tendente a x_0 da sinistra e si scrive

$$\lim_{x \to x_0^-} f(x) = +\infty$$

se $\forall M \in \mathbb{R} \ \exists \delta_M > 0 : x \in]a, b[, 0 < x_0 - x < \delta_M \Longrightarrow f(x) > M$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

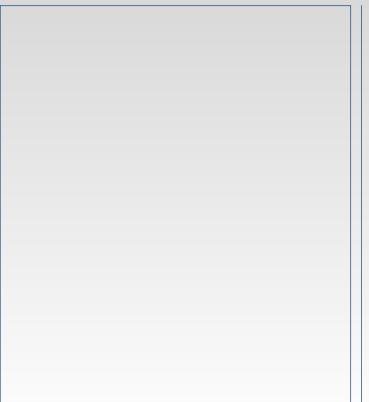
Illustrazione della definizione

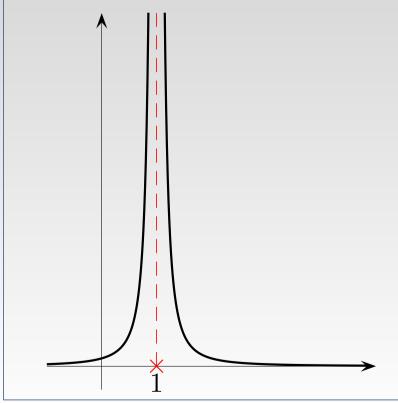
Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$


Illustrazione delle definizioni Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

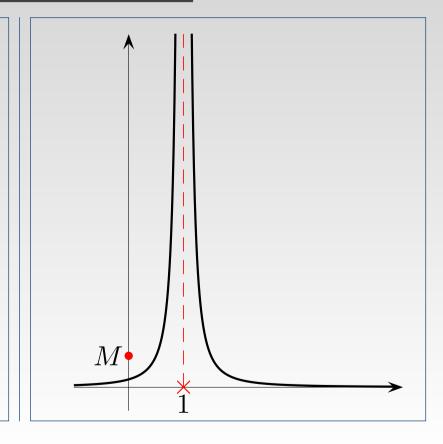
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Dato un valore M

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

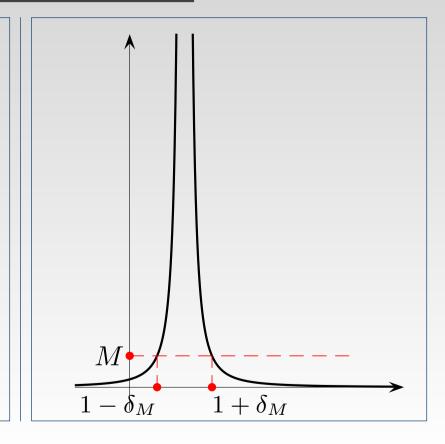
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Dato un valore M esiste $\delta_M > 0$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

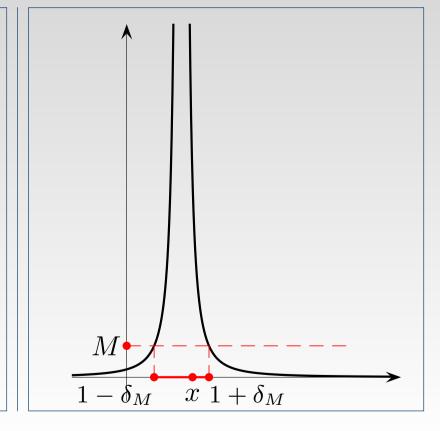
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Dato un valore M esiste $\delta_M > 0$ tale che tutti gli $0 < |x-1| < \delta_M$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

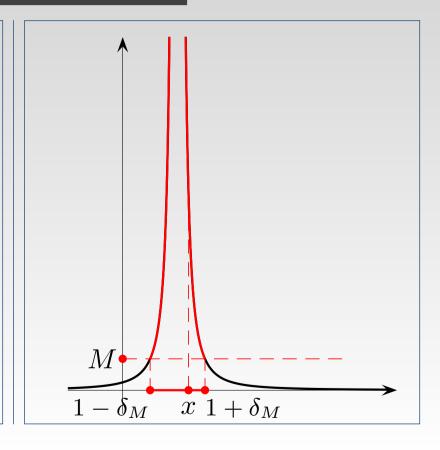
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Dato un valore M esiste $\delta_M > 0$ tale che tutti gli $0 < |x-1| < \delta_M$ hanno valori corrispondenti f(x) > M

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

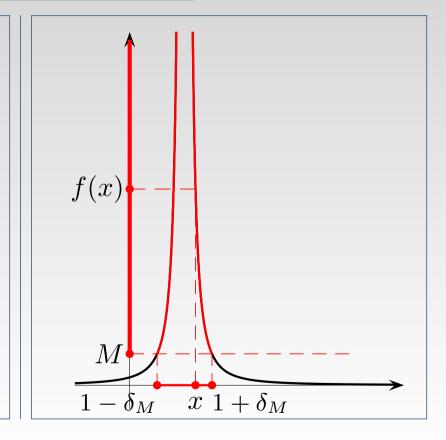
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Dato un valore M esiste $\delta_M > 0$ tale che tutti gli $0 < |x-1| < \delta_M$ hanno valori corrispondenti f(x) > M

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

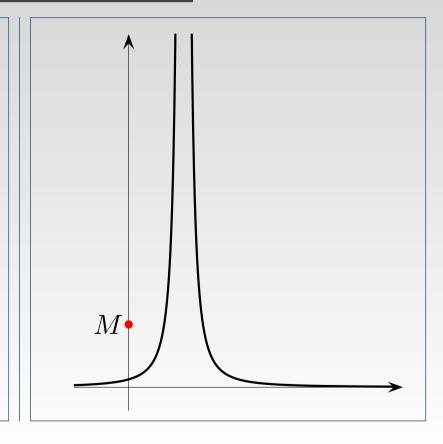
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Cambiando M

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

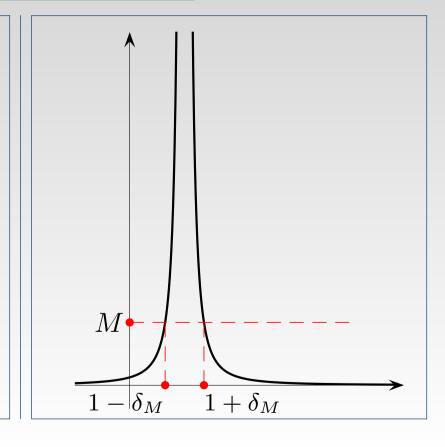
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

0000000

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Cambiando Msi trova un altro corrispondente δ_M

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

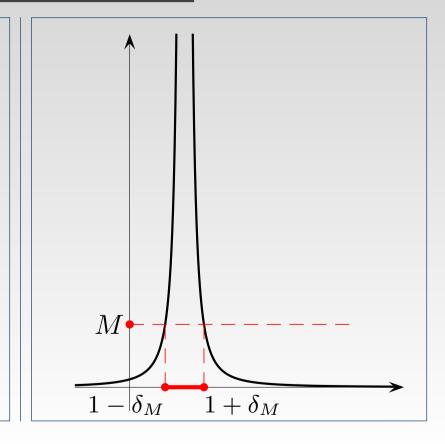
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

00000000

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Cambiando Msi trova un altro corrispondente δ_M con analoghe proprietà

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

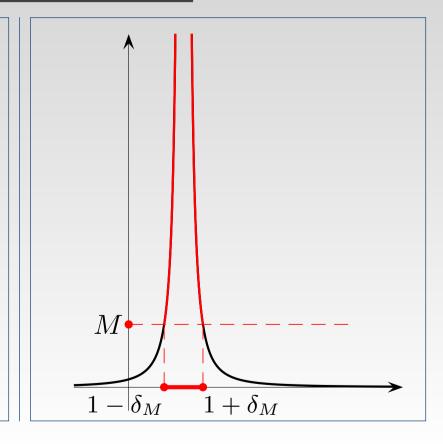
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Cambiando Msi trova un altro corrispondente δ_M con analoghe proprietà

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

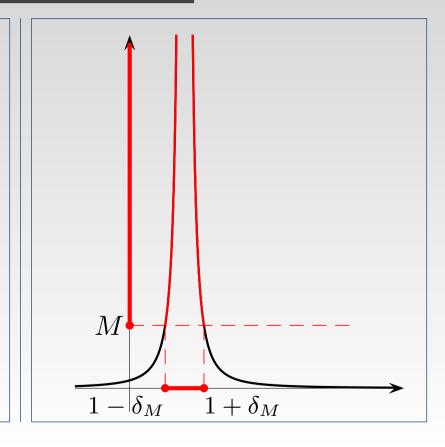
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Cambiando Msi trova un altro corrispondente δ_M con analoghe proprietà

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

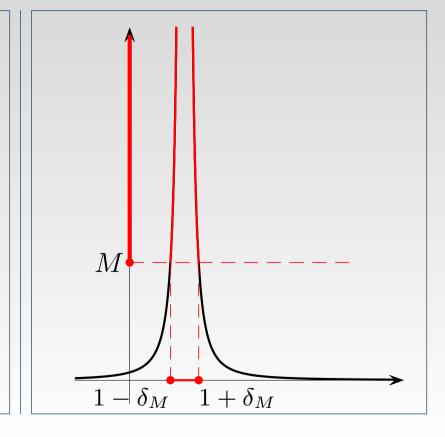
Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti


Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Questo dev'essere vero per ogni M!

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

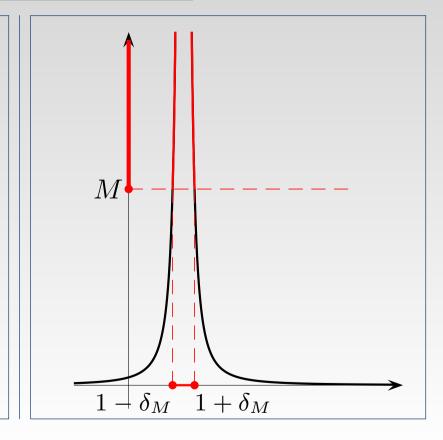
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Questo dev'essere vero per ogni M!

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

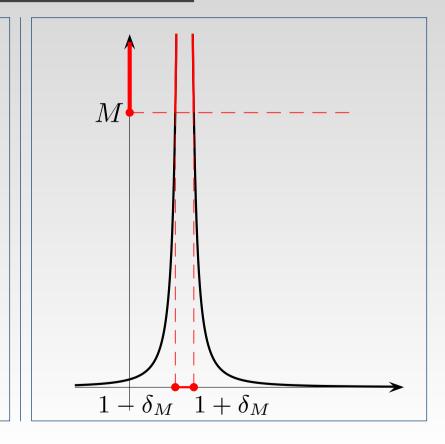
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Questo dev'essere vero per ogni M!

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

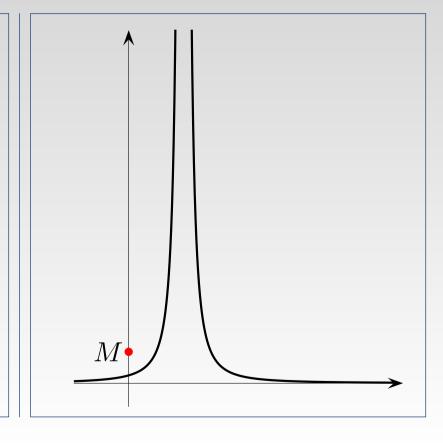
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Equivalentemente è come chiedere che, dato M

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

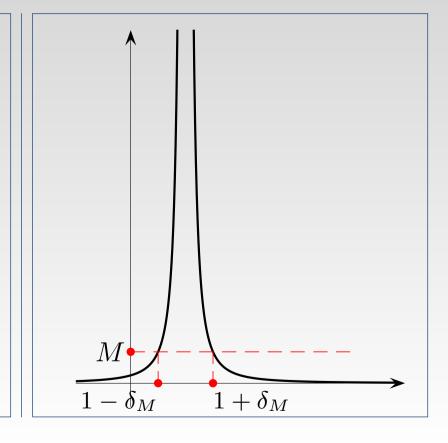
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Equivalentemente è come chiedere che, dato M si riesce a trovare un δ_M

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

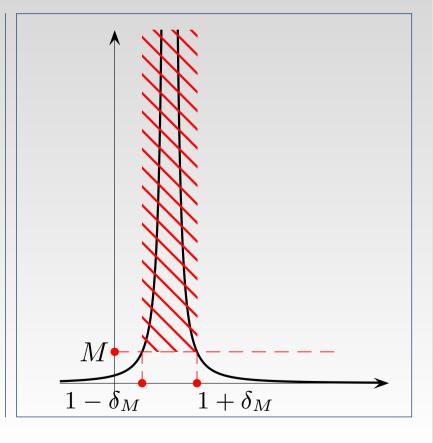
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Equivalentemente è come chiedere che, dato M si riesce a trovare un δ_M tale che il grafico, per $0 < |x-1| < \delta_M$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

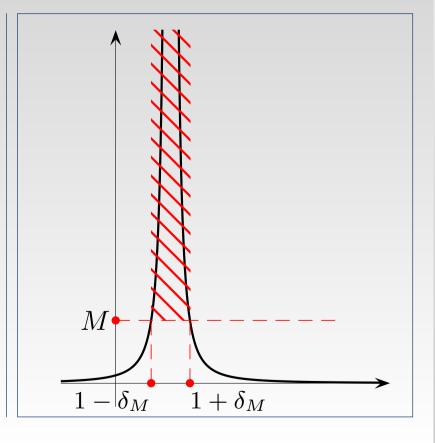
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Equivalentemente è come chiedere che, dato M si riesce a trovare un δ_M tale che il grafico, per $0 < |x-1| < \delta_M$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

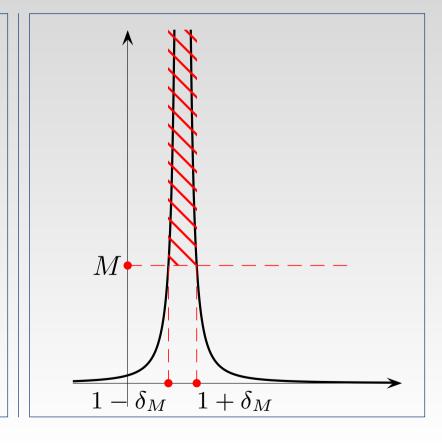
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Equivalentemente è come chiedere che, dato M si riesce a trovare un δ_M tale che il grafico, per $0 < |x-1| < \delta_M$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

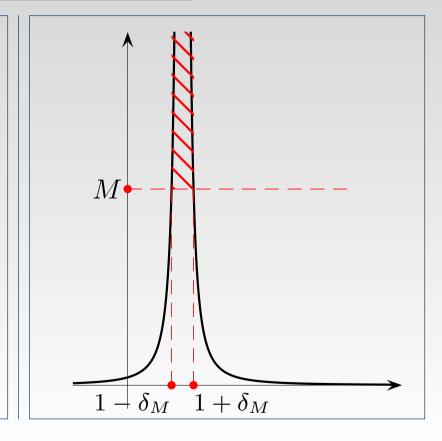
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Equivalentemente è come chiedere che, dato M si riesce a trovare un δ_M tale che il grafico, per $0 < |x-1| < \delta_M$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

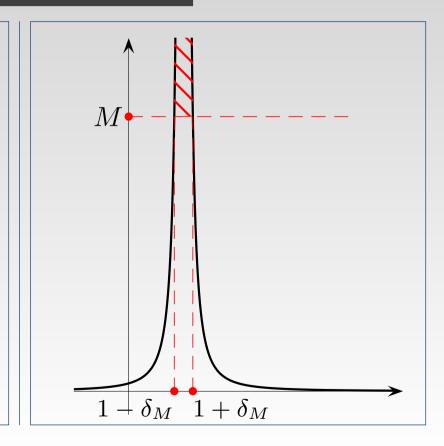
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

Illustriamo la prima definizione col seguente esempio

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$$

Equivalentemente è come chiedere che, dato M si riesce a trovare un δ_M tale che il grafico, per $0 < |x-1| < \delta_M$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

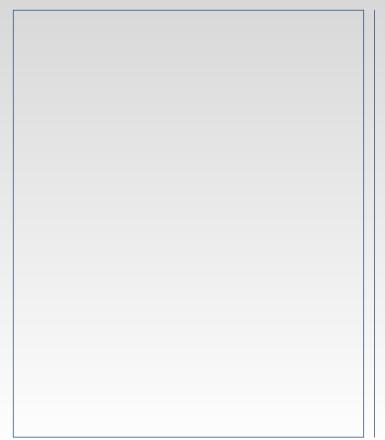
Altri limiti

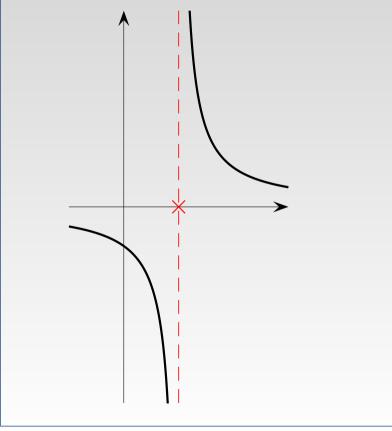
Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti


Limiti e continuità

Illustriamo le altre definizioni con i seguenti esempi

$$\lim_{x \to 1^+} \frac{1}{x - 1} = +\infty$$

$$\lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

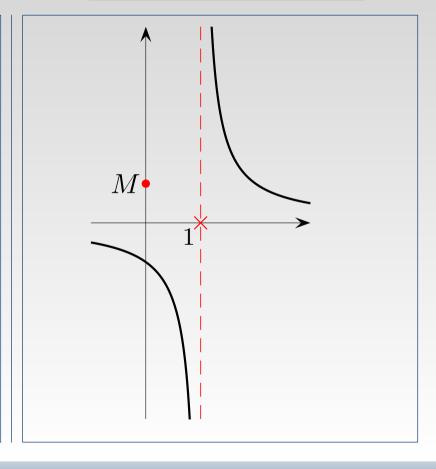
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Illustriamo le altre definizioni con i seguenti esempi

$$\lim_{x \to 1^+} \frac{1}{x - 1} = +\infty$$

Dato un arbitrario M

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x \to x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

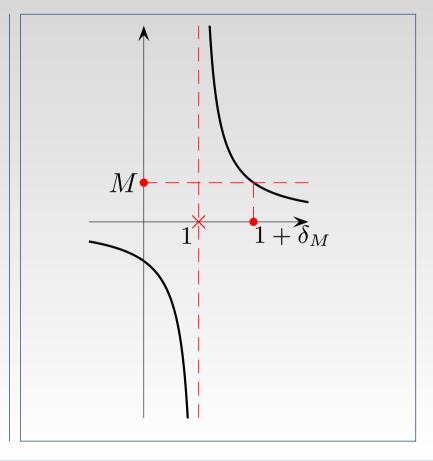
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

$$\lim_{x \to 1^+} \frac{1}{x - 1} = +\infty$$

Dato un arbitrario Msi riesce a trovare un δ_M

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

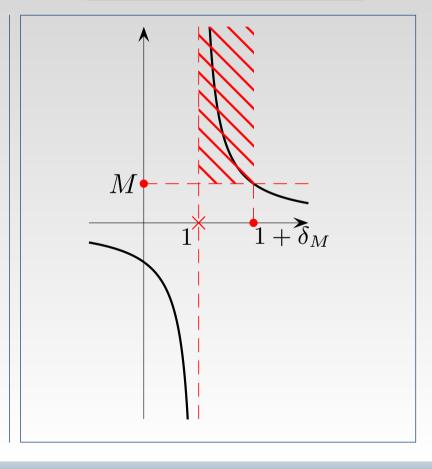
Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione


Verifiche di limite

Operazioni con i limiti

$$\lim_{x \to 1^+} \frac{1}{x - 1} = +\infty$$

Dato un arbitrario M si riesce a trovare un δ_M tale che il grafico, per $1 < x < 1 + \delta_M$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

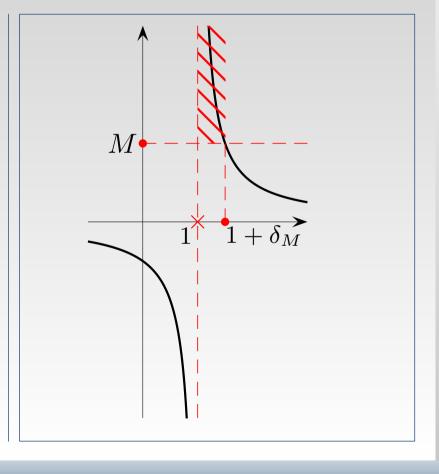
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1^+} \frac{1}{x - 1} = +\infty$$

Dato un arbitrario M si riesce a trovare un δ_M tale che il grafico, per $1 < x < 1 + \delta_M$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \to x_0^{\pm}$

Un'importante osservazione

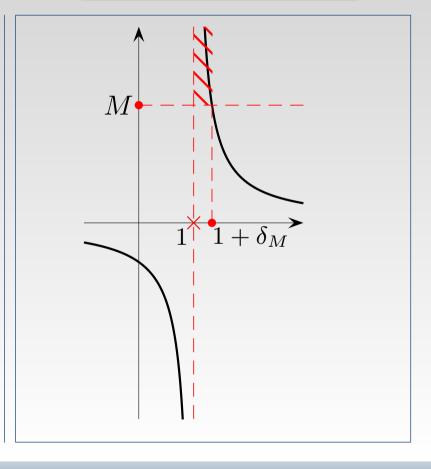
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1^+} \frac{1}{x - 1} = +\infty$$

Dato un arbitrario Msi riesce a trovare un δ_M tale che il grafico, per $1 < x < 1 + \delta_M$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \to x_0^{\pm}$

Un'importante osservazione

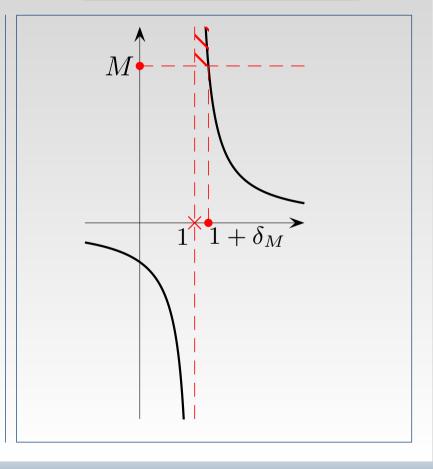
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

000000

$$\lim_{x \to 1^+} \frac{1}{x - 1} = +\infty$$

Dato un arbitrario Msi riesce a trovare un δ_M tale che il grafico, per $1 < x < 1 + \delta_M$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

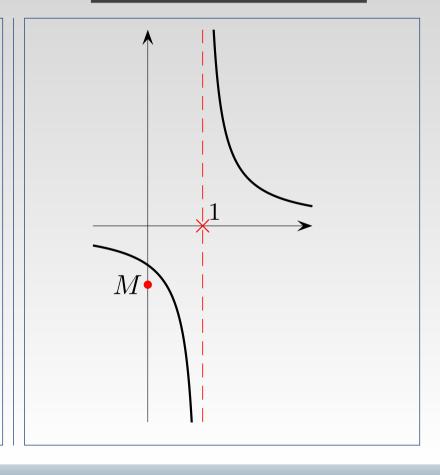
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

0000000

$$\lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

Dato un arbitrario M si riesce a trovare un δ_M tale che il grafico, per $1 - \delta_M < x < 1$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x o x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

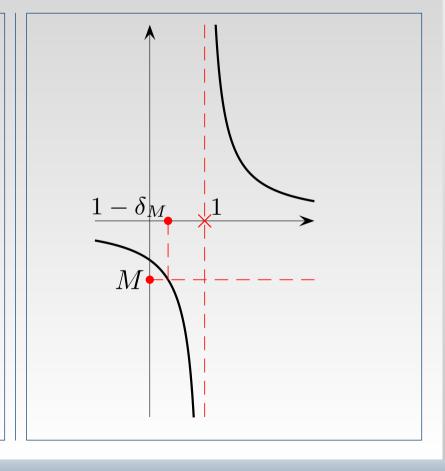
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

00000000

$$\lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

Dato un arbitrario Msi riesce a trovare un δ_M tale che il grafico, per $1 - \delta_M < x < 1$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \to x_0^{\pm}$

Un'importante osservazione

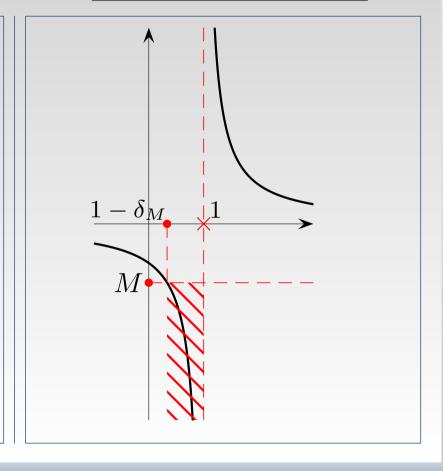
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

Dato un arbitrario M si riesce a trovare un δ_M tale che il grafico, per $1 - \delta_M < x < 1$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

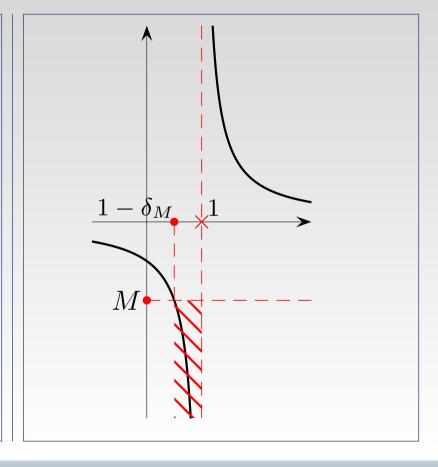
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

Dato un arbitrario M si riesce a trovare un δ_M tale che il grafico, per $1 - \delta_M < x < 1$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

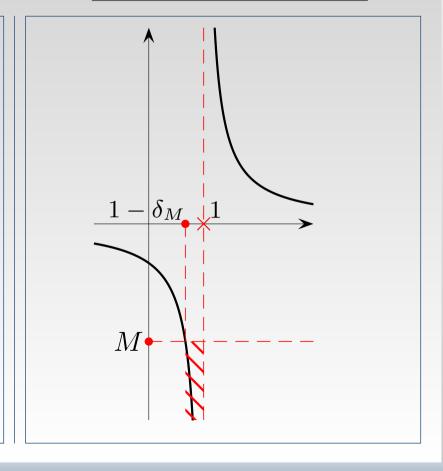
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

Dato un arbitrario M si riesce a trovare un δ_M tale che il grafico, per $1 - \delta_M < x < 1$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \to x_0^{\pm}$

Un'importante osservazione

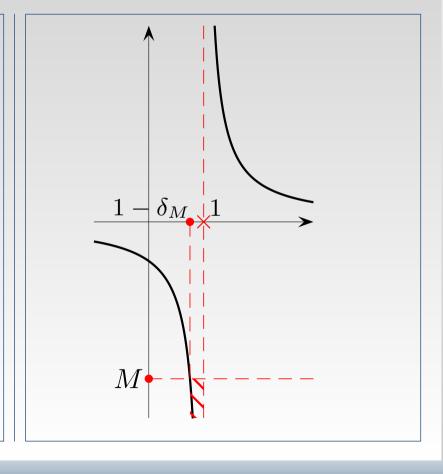
Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite


Operazioni con i limiti

Limiti e continuità

$$\lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

Dato un arbitrario M si riesce a trovare un δ_M tale che il grafico, per $1 - \delta_M < x < 1$, stia tutto nella striscia tratteggiata

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightharpoonup x_0$

Illustrazione della definizione

Limite finito per $x \to x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Ricapitolazione

■ Il limite

$$\lim_{x \to +\infty} f(x)$$

fornisce informazioni sul comportamento della funzione quando x è molto grande

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Limiti e continuità

Ricapitolazione

■ Il limite

$$\lim_{x \to +\infty} f(x)$$

fornisce informazioni sul comportamento della funzione quando x è molto grande

■ Il limite

$$\lim_{x \to x_0} f(x)$$

fornisce informazioni sul comportamento della funzione quando x è vicino a x_0 (ma diverso da x_0)

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Esempio introduttivo

Limite finito per $x
ightarrow x_0$

Illustrazione della definizione

Limite finito per $x \rightarrow x_0^{\pm}$

Un'importante osservazione

Altri limiti

Limite $+\infty$ per $x \to x_0^{\pm}$

Illustrazione delle definizioni

Ricapitolazione

Verifiche di limite

Operazioni con i limiti

Verifiche di limite

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \sin \frac{1}{x} < \varepsilon$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, -\delta < x < \delta \implies -\varepsilon < x \operatorname{sen} \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies \left| x \operatorname{sen} \frac{1}{x} \right| < \varepsilon$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \operatorname{sen} \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies |x \operatorname{sen} \frac{1}{x}| < \varepsilon$$

Prendendo $\delta = \varepsilon$,

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \operatorname{sen} \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies |x \operatorname{sen} \frac{1}{x}| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \operatorname{sen} \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies |x \operatorname{sen} \frac{1}{x}| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right|$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \operatorname{sen} \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies \left| x \operatorname{sen} \frac{1}{x} \right| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right| = |x| \cdot \left| \operatorname{sen} \frac{1}{x} \right|$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \operatorname{sen} \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies \left| x \operatorname{sen} \frac{1}{x} \right| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right| = |x| \cdot \left| \operatorname{sen} \frac{1}{x} \right| \le |x| \cdot 1$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\left| \lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0 \right|$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \operatorname{sen} \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies \left| x \operatorname{sen} \frac{1}{x} \right| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right| = |x| \cdot \left| \operatorname{sen} \frac{1}{x} \right| \le |x| \cdot 1 < \varepsilon$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \operatorname{sen} \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies |x \operatorname{sen} \frac{1}{x}| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right| = |x| \cdot \left| \operatorname{sen} \frac{1}{x} \right| \le |x| \cdot 1 < \varepsilon$$

Ricapitolando

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\left| \lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0 \right|$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \operatorname{sen} \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies |x \operatorname{sen} \frac{1}{x}| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right| = |x| \cdot \left| \operatorname{sen} \frac{1}{x} \right| \le |x| \cdot 1 < \varepsilon$$

Ricapitolando

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\left| \lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0 \right|$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \sin \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies |x \operatorname{sen} \frac{1}{x}| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right| = |x| \cdot \left| \operatorname{sen} \frac{1}{x} \right| \le |x| \cdot 1 < \varepsilon$$

Ricapitolando

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \sin \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies |x \operatorname{sen} \frac{1}{x}| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right| = |x| \cdot \left| \operatorname{sen} \frac{1}{x} \right| \le |x| \cdot 1 < \varepsilon$$

Ricapitolando

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\left| \lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0 \right|$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \sin \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies |x \operatorname{sen} \frac{1}{x}| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right| = |x| \cdot \left| \operatorname{sen} \frac{1}{x} \right| \le |x| \cdot 1 < \varepsilon$$

Ricapitolando

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verifichiamo che

$$\lim_{x \to 0} x \operatorname{sen} \frac{1}{x} = 0$$

Per definizione, fissato un qualunque $\varepsilon > 0$, bisogna trovare un $\delta > 0$ tale che

$$x \neq 0, \ -\delta < x < \delta \implies -\varepsilon < x \sin \frac{1}{x} < \varepsilon$$

ovvero che

$$0 < |x| < \delta \implies |x \operatorname{sen} \frac{1}{x}| < \varepsilon$$

Prendendo $\delta = \varepsilon$, se $0 < |x| < \delta = \varepsilon$, allora

$$\left| x \operatorname{sen} \frac{1}{x} \right| = |x| \cdot \left| \operatorname{sen} \frac{1}{x} \right| \le |x| \cdot 1 < \varepsilon$$

Ricapitolando. Quindi, per definizione

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Si può verificare che

$$\lim_{x \to 1} \frac{3x - 1}{x + 1} = 1$$

Lim	iti (11	tunz.	ion	i real	

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Limiti e continuità

Si può verificare che

$$\left| \lim_{x \to 1} \frac{3x - 1}{x + 1} = 1 \right|$$

Per definizione, dato $\varepsilon > 0$, tutto sta a trovare $\delta_{\varepsilon} > 0$ tale che

$$0 < |x-1| < \delta_{\varepsilon} \text{ implica } \left| \frac{3x-1}{x+1} - 1 \right| < \varepsilon$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Si può verificare che

$$\lim_{x \to 1} \frac{3x - 1}{x + 1} = 1$$

Per definizione, dato $\varepsilon > 0$, tutto sta a trovare $\delta_{\varepsilon} > 0$ tale che

$$0 < |x-1| < \delta_{\varepsilon} \text{ implica } \left| \frac{3x-1}{x+1} - 1 \right| < \varepsilon$$

Per ε < 2 si può prendere

$$\delta_{\varepsilon} = \min \left\{ \frac{2\varepsilon}{2+\varepsilon}, \frac{2\varepsilon}{2-\varepsilon} \right\}$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Si può verificare che

$$\lim_{x \to 1} \frac{3x - 1}{x + 1} = 1$$

Per definizione, dato $\varepsilon > 0$, tutto sta a trovare $\delta_{\varepsilon} > 0$ tale che

$$0 < |x-1| < \delta_{\varepsilon} \text{ implica } \left| \frac{3x-1}{x+1} - 1 \right| < \varepsilon$$

Per ε < 2 si può prendere

$$\delta_{\varepsilon} = \min \left\{ \frac{2\varepsilon}{2 + \varepsilon}, \frac{2\varepsilon}{2 - \varepsilon} \right\}$$

Questa scelta <u>non</u> è evidente (vedi Libro)

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Posto
$$f(x) = \frac{3x-1}{x+1}$$
, osserviamo che $f(1) = 1$ cioè

$$\lim_{x \to 1} f(x) = f(1)$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Posto $f(x) = \frac{3x-1}{x+1}$, osserviamo che f(1) = 1 cioè

$$\lim_{x \to 1} f(x) = f(1)$$

In questo caso il limite di f per $x \to x_0$ si ottiene calcolando il valore $f(x_0)$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Posto $f(x) = \frac{3x-1}{x+1}$, osserviamo che f(1) = 1 cioè

$$\lim_{x \to 1} f(x) = f(1)$$

In questo caso il limite di f per $x \to x_0$ si ottiene calcolando il valore $f(x_0)$

Problema: È una situazione generale?

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verificare il limite mediante la definizione è scomodo e difficile

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Verificare il limite mediante la definizione è scomodo e difficile

Obiettivo: trovare dei metodi più rapidi per il calcolo e la verifica dei limiti

Limiti di funzioni reali
Limiti di successioni
Altri Limiti
Verifiche di limite
Esempio 1 Esempio 2
Problematiche e obiettivi
Operazioni con i limiti
Limiti e continuità

Verificare il limite mediante la definizione è scomodo e difficile

Obiettivo: trovare dei metodi più rapidi per il calcolo e la verifica dei limiti

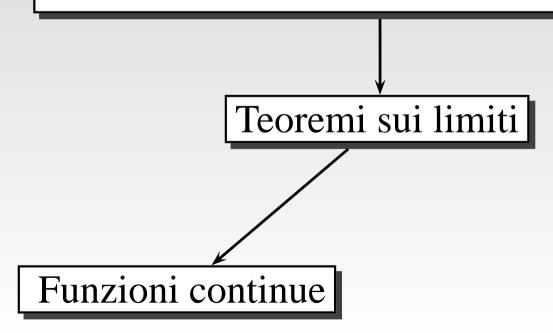
Teoremi sui limiti

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite
Esempio 1
Esempio 2
Problematiche e obiettivi


Operazioni con i limiti

Limiti e continuità

Verificare il limite mediante la definizione è scomodo e difficile

Obiettivo: trovare dei metodi più rapidi per il calcolo e la verifica dei limiti

Limiti di funzioni reali

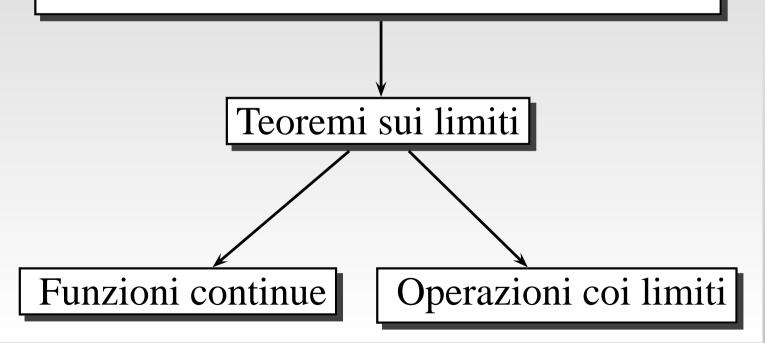
Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2


Problematiche e obiettivi

Operazioni con i limiti

Limiti e continuità

Verificare il limite mediante la definizione è scomodo e difficile

Obiettivo: trovare dei metodi più rapidi per il calcolo e la verifica dei limiti

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Esempio 1

Esempio 2

Problematiche e obiettivi

Operazioni con i limiti

Limiti e continuità

Operazioni con i limiti

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

I numeri reali ampliati

Teorema (operazioni con i limiti)

I numeri reali ampliati

Definiamo

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

Limiti di funzioni reali
Limiti di successioni
Altri Limiti
Verifiche di limite
Operazioni con i limiti
I numeri reali ampliati
Teorema (operazioni con i limiti)
Limiti e continuità

I numeri reali ampliati

Definiamo

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

con le seguenti regole di calcolo:

$$+\infty+c=c+\infty:=+\infty, \quad -\infty+c=c-\infty:=-\infty, \\ +\infty+\infty:=+\infty, \quad -\infty-\infty:=-\infty$$

$$\frac{c}{\pm\infty}:=0 \quad \text{dove } c\in\mathbb{R}$$

$$(\pm\infty)\cdot(\pm\infty):=(\text{prodotto dei segni})\infty$$

$$(\pm\infty)\cdot c:=(\text{prodotto dei segni})\infty \quad \text{dove } c\neq 0$$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

I numeri reali ampliati

Teorema (operazioni con i limiti)

I numeri reali ampliati

Definiamo

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

con le seguenti regole di calcolo:

$$+\infty+c=c+\infty:=+\infty, \quad -\infty+c=c-\infty:=-\infty, \\ +\infty+\infty:=+\infty, \quad -\infty-\infty:=-\infty$$

$$\frac{c}{\pm\infty}:=0 \quad \text{dove } c\in\mathbb{R}$$

$$(\pm\infty)\cdot(\pm\infty):=(\text{prodotto dei segni})\infty$$

$$(\pm\infty)\cdot c:=(\text{prodotto dei segni})\infty \quad \text{dove } c\neq 0$$

Restano indeterminati i risultati delle seguenti operazioni

$$+\infty - \infty$$
 $(\pm \infty) \cdot 0$ $\frac{\pm \infty}{\pm \infty}$ $\frac{0}{0}$ $\frac{\pm \infty}{0}$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

I numeri reali ampliati

Teorema (operazioni con i limiti)

Teorema (operazioni con i limiti)

Teorema. Siano f e g due funzioni con

$$\lim_{x \to x_0} f(x) = \alpha \in \overline{\mathbb{R}}, \quad \lim_{x \to x_0} g(x) = \beta \in \overline{\mathbb{R}}$$

 $\operatorname{con} x_0 \in \overline{\mathbb{R}}.$

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

I numeri reali ampliati

Teorema (operazioni con i limiti)

Limiti e continuità

Teorema (operazioni con i limiti)

Teorema. Siano f e g due funzioni con

$$\lim_{x \to x_0} f(x) = \alpha \in \overline{\mathbb{R}}, \quad \lim_{x \to x_0} g(x) = \beta \in \overline{\mathbb{R}}$$

 $\operatorname{con} x_0 \in \overline{\mathbb{R}}$. Allora si ha

- somma: $\lim_{x \to x_0} \left[f(x) + g(x) \right] = \alpha + \beta$ in tutti i casi in cui $\alpha + \beta$ è definito
- **prodotto:** $\lim_{x \to x_0} \left[f(x) \cdot g(x) \right] = \alpha \cdot \beta$ in tutti i casi in cui $\alpha \cdot \beta$ è definito
- **quoziente:** se $\alpha \neq 0$ e $f(x) \neq 0 \ \forall x$ allora

$$\lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{\alpha}$$

• valore assoluto: $\lim_{x \to x_0} |f(x)| = |\alpha|$

Limiti di funzioni reali
Limiti di successioni
Altri Limiti
Verifiche di limite
Operazioni con i limiti
I numeri reali ampliati
Teorema (operazioni con i limiti)

Limiti e continuità

Limiti e continuità

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limiti e continuità

Definizioni

Teoremi sulla continuità

Continuità e funzioni elementari

Definizioni

Sia I un intervallo di estremi a e b con a < b. Sia $f: I \to \mathbb{R}$ una funzione e $x_0 \in I$

Si dice che f è continua in x_0 se

$$\lim_{x \to x_0} f(x) = f(x_0)$$

intendendo eventualmente il limite da destra o da sinistra se x_0 è estremo di I

Se f non è continua in x_0 si dice che è discontinua in x_0

Si dice che f è continua in I se è continua in ogni punto di I

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limiti e continuità

Definizioni

Teoremi sulla continuità

Continuità e funzioni elementari

Teoremi sulla continuità

Dal Teorema sulle operazioni con i limiti si ha

Teorema. Siano $f, g: I \to \mathbb{R}$ due funzioni continue in $x_0 \in I$. Allora

- f + g è continua in x_0
- $f \cdot g$ è continua in x_0
- f/g è continua in x_0 , se $g(x_0) \neq 0$
- |f| è continua in x_0
- l'inversa di una funzione continua è continua
- la composta di funzioni continue è continua

Limiti di funzioni reali
Limiti di successioni
Altri Limiti
Verifiche di limite
Operazioni con i limiti
Limiti e continuità
Definizioni
Teoremi sulla continuità

Continuità e funzioni elementari

Continuità e funzioni elementari

Teorema. Tutte le funzioni elementari sono funzioni continue sul relativo dominio di definizione

Limiti di funzioni reali	
Limiti di successioni	
Altri Limiti	
Verifiche di limite	
Operazioni con i limiti	
Limiti e continuità	
Definizioni	

Teoremi sulla continuità

Continuità e funzioni elementari

Continuità e funzioni elementari

Teorema. Tutte le funzioni elementari sono funzioni continue sul relativo dominio di definizione

Sono dunque continue le seguenti funzioni:

- funzioni lineari e affini
- potenze e radici *n*-esime
- polinomi
- funzioni razionali
- funzioni esponenziali e logaritmiche
- valore assoluto
- funzioni trigonometriche (sen, cos, tan)
- funzioni trigonometriche inverse

Limiti di funzioni reali

Limiti di successioni

Altri Limiti

Verifiche di limite

Operazioni con i limiti

Limiti e continuità

Definizioni

Teoremi sulla continuità

Continuità e funzioni elementari