Il teorema di Ascoli-Arzelà

Alcuni risultati sugli spazi metrici

Spazi metrici (e topologici) compatti

Richiamiamo le definizioni di compattezza negli spazi metrici. Sia (X, d) una spazio metrico e sia $E \subseteq X$.

Definizione 1 L'insieme E si dice compatto per successioni (o sequenzialmente compatto) se ogni successione $(x_n)_{n\in\mathbb{N}}$ a valori in E ammette una sottosuccessione $(x_{n_k})_{k\in\mathbb{N}}$ convergente ad un punto di E.

L'insieme E si dice relativamente compatto per successioni (o relativamente sequenzialmente compatto) se \overline{E} è compatto per successioni cioè se ogni successione $(x_n)_{n\in\mathbb{N}}$ a valori in E ammette una sottosuccessione $(x_{n_k})_{k\in\mathbb{N}}$ convergente ad un punto di X (non necessariamente di E).

Definizione 2 L'insieme E si dice compatto per ricoprimenti (o, brevemente, compatto) se ogni ricoprimento aperto di E ammette un sottoricoprimento finito, cioè se per ogni famiglia $(A_{\alpha})_{\alpha \in I}$ di aperti di X tale che $E \subseteq \bigcup_{\alpha \in I} A_{\alpha}$ esiste $J \subseteq I$ sottoinsieme finito tale che $E \subseteq \bigcup_{\alpha \in J} A_{\alpha}$. L'insieme E si dice relativamente compatto se la chiusura E è compatta.

Le due precedenti definizioni si applicano anche al caso più generale in cui (X,τ) è uno spazio topologico non necessariamente metrico.

Definizione 3 Lo spazio metrico X si dice completo se ogni successione di Cauchy in X è convergente.

Definizione 4 L'insieme E si dice totalmente limitato se per ogni $\varepsilon > 0$ esistono $x_1, x_2, \ldots, x_N \in E$ tali che $E \subseteq \bigcup_{k=1}^N B(x_k, \varepsilon)$ cioè se per ogni $x \in E$ esiste $k = 1, \ldots, N$ tale che $d(x, x_k) < \varepsilon$. L'insieme $\{x_1, x_2, \ldots, x_N\}$ si dice ε -rete.

Ricordiamo che ogni sottoinsieme E di uno spazio topologico (X,τ) può essere visto come spazio topologico munito della topologia τ_E indotta da τ su E. Si può dimostrare che la proprietà di compattezza di E è indipendente dalla topologia nel senso indicato dal seguente lemma.

Lemma 5 Sia (X, τ) spazio topologico e sia $E \subseteq X$ un sottospazio. Allora (E, τ_E) è uno spazio topologico compatto nella topologia indotta se e solo se E è sottoinsieme compatto di (X, τ) nella topologia di X.

DIMOSTRAZIONE Supponiamo che (E, τ_E) sia spazio topologico compatto. Preso un ricoprimento di E con $(A_{\alpha})_{\alpha \in I}$ aperti di X, per definizione di topologia indotta $(A_{\alpha} \cap E)_{\alpha \in I}$ è un ricoprimento di E con aperti nella topologia indotta. Per compattezza esiste $J \subseteq I$ finito tale che $E = \bigcup_{\alpha \in J} (A_{\alpha} \cap E)$, ma allora $E \subseteq \bigcup_{\alpha \in J} A_{\alpha}$ ed E è sottoinsieme compatto di X.

Viceversa, sia E sottoinsieme compatto di (X,τ) . Sia $(B_{\alpha})_{\alpha\in I}$ un ricoprimento di E con aperti di E. Per definizione di τ_E , per ogni α esiste A_{α} aperto di X tale che $B_{\alpha} = A_{\alpha} \cap E$. Ma allora $(A_{\alpha})_{\alpha\in I}$ è un ricoprimento di E con aperti di X e poiché E è sottoinsieme compatto di X esiste un sottoinsieme finito X di X tale che X conseguenza si ha anche X di X perciò X perciò X esiste un sottoinsieme finito X di X esiste un sottoinsieme finito X esiste

Per un generico spazio topologico le due nozioni di compattezza sono distinte. Nel caso degli spazi metrici vale invece il seguente teorema.

Teorema 6 (di caratterizzazione degli spazi metrici compatti) Sia(X,d) spazio metrico e sia $E \subseteq X$. Sono equivalenti

- 1. E è compatto:
- 2. E è sequenzialmente compatto;
- 3. E è completo e totalmente limitato.

DIMOSTRAZIONE È già noto dai corsi di Analisi Matematica degli anni precedenti che 1. e 2. sono equivalenti e che la compattezza (sequenziale) implica la completezza di E. Verifichiamo che se E è compatto allora è totalmente limitato. Fissato $\varepsilon > 0$ la famiglia $\big(B(x,\varepsilon)\big)_{x\in E}$ è ricoprimento aperto di E. Per compattezza esiste un sottoinsieme finito J di E tale che $E\subseteq \bigcup_{x\in J} B(x,\varepsilon)$. L'insieme J è allora una ε -rete ed E è totalmente limitato.

Viceversa, dimostriamo che 3. implica 2. Fissata (x_n) successione in E dimostriamo che ammette sottosuccessione convergente in E. Fissato $\varepsilon=1$ sia $\{z_1^1,z_2^1,\ldots,z_{N_1}^1\}$ una 1-rete. Allora esiste $z_{k_1}^1$ tale che $B(z_{k_1}^1,1)$ contiene

 x_n per infiniti valori dell'indice n. Sia x_{n_1} un tale elemento. Poiché ogni sottoinsieme di un insieme totalmente limitato è ancora totalmente limitato (verificarlo per esercizio), $E_1 := B(z_{k_1}^1, 1) \cap E \subseteq E$ è totalmente limitato. Sia $\{z_1^2, z_2^2, \dots, z_{N_2}^2\}$ una 1/2-rete di E_1 . Come in precedenza esiste $z_{k_2}^2$ tale che $B(z_{k_2}^2, 1/2)$ contiene x_n per infiniti valori dell'indice $n > n_1$. Sia x_{n_2} un tale elemento. Per induzione si costruisce una sottosuccessione (x_{n_j}) di (x_n) e una successione $(z_{k_j}^j)$ di punti di E tali che $x_{n_h} \in B(z_{k_j}^j, 1/2^{j-1})$ per ogni $h \geq j$. In particolare per la disuguaglianza triangolare si ha che $d(x_{n_i}, x_{n_h}) \leq 1/2^{j-2}$ per ogni $i, h \geq j$ da cui segue facilmente che (x_{n_j}) è di Cauchy. Per la completezza di E tale sottosuccessione converge ad un elemento di E, da cui la tesi.

Spazi metrici (e topologici) separabili

Definizione 7 Uno spazio topologico (X, τ) si dice separabile se esiste un sottoinsieme contabile (cioè finito o al più numerabile) e denso, cioè se esiste $G \subseteq X$ contabile tale che $\overline{G} = X$.

Ad esempio \mathbb{R}^n con l'usuale topologia è separabile, infatti il sottoinsieme \mathbb{Q}^n è denso e numerabile. Più in generale si potrebbe dimostrare che ogni spazio topologico che soddisfa il "secondo assioma di numerabilità" (esiste una base di aperti numerabile) è separabile (per approfondire l'argomento si consulti un libro di topologia).

Esercizio 8 Dimostrare che ogni sottoinsieme aperto A di \mathbb{R}^n è (come sottospazio topologico) separabile. Cosa si può dire dell'insieme $\mathbb{R}^n \setminus \mathbb{Q}^n$ (per facilità considerare il caso n = 1)?

Esercizio 9 Un celebre teorema di approssimazione dovuto a Weierstrass afferma che ogni funzione continua $f:[a,b]\to\mathbb{R}$ può essere approssimata uniformemente in [a,b] con un polinomio, cioè che per ogni $\varepsilon>0$ esiste un polinomio P tale che $||f-P||_{\infty}<\varepsilon$. A partire da questo risultato dimostrare che lo spazio metrico $\left(C([a,b],\mathbb{R}),d_{\infty}\right)$ è separabile.

Teorema 10 (separabilità degli spazi metrici compatti) Ogni spazio metrico compatto è separabile.

DIMOSTRAZIONE Sia (E,d) spazio metrico compatto. Per il teorema 6 E è totalmente limitato, dunque ammette ε -reti per ogni scelta di $\varepsilon > 0$. In particolare, per ogni $n \in \mathbb{N}$ sia \mathcal{R}_n una 1/n-rete. L'insieme $\mathcal{R} = \bigcup_{n \in \mathbb{N}} \mathcal{R}_n$ è (al più) numerabile. Inoltre fissato $x \in E$ ed $\varepsilon > 0$ sia n_{ε} tale che $1/n_{\varepsilon} < \varepsilon$. Poiché $\mathcal{R}_{n_{\varepsilon}}$ è $1/n_{\varepsilon}$ -rete, esiste $x_{\varepsilon} \in \mathcal{R}_{n_{\varepsilon}} \subset \mathcal{R}$ tale che $d(x, x_{\varepsilon}) < 1/n_{\varepsilon} < \varepsilon$, quindi \mathcal{R} è anche denso e in conclusione E è separabile.

Insiemi compatti in $C(E, \mathbb{R})$

In questa sezione caratterizzeremo i sottoinsiemi compatti di $C(E,\mathbb{R})$ dove (E,d) è una spazio metrico compatto. Ricordiamo anzitutto che definiti

$$C(E, \mathbb{R}) := \{ f : E \to \mathbb{R} \text{ continue} \},$$

 $||f||_{\infty} := \max_{x \in E} |f(x)|,$

l'insieme $(C(E,\mathbb{R}),||\cdot||_{\infty})$ è uno spazio normato (dunque metrico) completo. Prima di passare ad enunciare e dimostrare il teorema principale, diamo alcune definizioni che saranno utilizzate nel seguito. Sia (E,d) spazio metrico (non necessariamente compatto).

Definizione 11 Un sottoinsieme $\mathcal{F} \subseteq C(E, \mathbb{R})$ si dice equicontinuo se per ogni fissato $x \in E$ ed $\varepsilon > 0$ esiste $\delta = \delta_{\varepsilon}(x) > 0$ tale che per ogni $y \in E$ con $d(y, x) < \delta$ e per ogni $f \in \mathcal{F}$ si ha $|f(y) - f(x)| < \varepsilon$.

Osserviamo che se f è continua in E allora per ogni fissato $x \in E$ ed $\varepsilon > 0$ esiste $\delta = \delta_{\varepsilon}(x, f) > 0$ tale che per ogni $y \in E$ con $d(y, x) < \delta$ si ha $|f(y) - f(x)| < \varepsilon$. Un insieme \mathcal{F} è dunque equicontinuo se il δ può essere scelto indipendente da $f \in \mathcal{F}$.

In maniera analoga si definisce

Definizione 12 Un sottoinsieme $\mathcal{F} \subseteq C(E, \mathbb{R})$ si dice equiuniformemente continuo se per ogni fissato $\varepsilon > 0$ esiste $\delta = \delta_{\varepsilon} > 0$ tale che per ogni $x, y \in E$ tali che $d(y, x) < \delta$ e per ogni $f \in \mathcal{F}$ si ha $|f(y) - f(x)| < \varepsilon$.

Definizione 13 Un sottoinsieme $\mathcal{F} \subseteq C(E, \mathbb{R})$ si dice puntualmente limitato se per ogni $x \in E$ esiste M > 0 tale che $|f(x)| \leq M$ per ogni $f \in \mathcal{F}$.

Definizione 14 Un sottoinsieme $\mathcal{F} \subseteq C(E, \mathbb{R})$ si dice equilimitato se esiste M > 0 tale che per ogni $x \in E$ ed ogni $f \in \mathcal{F}$ sia $|f(x)| \leq M$, ovvero se $||f||_{\infty} \leq M$. In altre parole \mathcal{F} è equilimitato se e solo se \mathcal{F} è limitato in $C(E, \mathbb{R})$ rispetto alla norma infinito.

Definizione 15 Un sottoinsieme $\mathcal{F} \subseteq C(E, \mathbb{R})$ si dice equilipschitziano se esiste L > 0 tale che per ogni $x_1, x_2 \in E$ ed ogni $f \in \mathcal{F}$ sia

$$|f(x_1) - f(x_2)| \le L d(x_1, x_2).$$

5

Osservazione 16 È facile dimostrare che (farlo per esercizio)

equilipschitzianità \implies equiuniforme continuità \implies equicontinuità

e che in generale non valgono le implicazioni inverse. Se però E è anche compatto allora si ha

equicontinuità
$$\implies$$
 equiuniforme continuità

come viene dimostrato nel seguente teorema che estende quello di Heine-Cantor sull'uniforme continuità delle funzioni continue definite sui compatti.

Teorema 17 Sia (E,d) spazio metrico compatto. Se $\mathcal{F} \subseteq C(E,\mathbb{R})$ è equicontinuo allora è anche equiuniformemente continuo.

DIMOSTRAZIONE Ricordiamo che, essendo metrico, E è anche sequenzialmente compatto. Per assurdo supponiamo che \mathcal{F} non sia equiuniformemente continuo; allora esiste $\varepsilon > 0$ tale che per ogni $\delta > 0$ esistono $x_{\delta}, y_{\delta} \in E$ con $d(x_{\delta}, y_{\delta}) < \delta$ ed esiste $f_{\delta} \in \mathcal{F}$ tale che $|f_{\delta}(x_{\delta}) - f_{\delta}(y_{\delta})| \geq \varepsilon$. in particolare, per ogni $n \in \mathbb{N}$ esistono $x_n, y_n \in E$ con $d(x_n, y_n) < 1/n$ ed esiste $f_n \in \mathcal{F}$ tale che $|f_n(x_n) - f_n(y_n)| \geq \varepsilon$. Per la compattezza sequenziale di E, eventualmente passando a successioni, si ha che $x_n \to \bar{x}$ con $\bar{x} \in E$. Facilmente anche $y_n \to \bar{x}$. In relazione a \bar{x} esiste $\delta_{\varepsilon} = \delta_{\varepsilon}(\bar{x})$ tale che se $d(x, \bar{x}) < \delta_{\varepsilon}$ si ha $|f(x) - f(\bar{x})| < \varepsilon/2$ per ogni $f \in \mathcal{F}$. Definitivamente si avrà $d(x_n, \bar{x}) < \delta_{\varepsilon}$ e $d(y_n, \bar{x}) < \delta_{\varepsilon}$ per cui

$$\varepsilon \leq |f_n(x_n) - f_n(y_n)| \leq |f_n(x_n) - f_n(\bar{x})| + |f_n(\bar{x}) - f_n(y_n)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2},$$
da cui l'assurdo.

Passiamo ora ad enunciare e dimostrare il teorema fondamentale di questa sezione.

Teorema 18 (di Ascoli-Arzelà, di compattezza in $C(E,\mathbb{R})$) Considerato uno spazio metrico compatto (E,d) ed $\mathcal{F} \subseteq C(E,\mathbb{R})$, allora \mathcal{F} è sequenzialmente compatto in $(C(E,\mathbb{R}),d_{\infty})$ se e solo se

- 1. F è chiuso;
- 2. F è puntualmente limitato;
- 3. \mathcal{F} è equicontinuo.

(Inoltre \mathcal{F} è relativamente sequenzialmente compatto sse valgono 2. e 3.)

Osservazione 19 Essendo E compatto, per il teorema 17 se \mathcal{F} è equicontinuo allora è anche equiuniformemente continuo. Si può inoltre dimostrare che se E è compatto ed \mathcal{F} è equicontinuo e puntualmente limitato allora \mathcal{F} è equilimitato (cioè limitato in $C(E,\mathbb{R})$). Infatti \mathcal{F} è equiuniformemente continuo, quindi esiste $\delta > 0$ tale che se $d(x,y) < \delta$ e $f \in \mathcal{F}$ si ha |f(x) - f(y)| < 1. Sia x_1, x_2, \ldots, x_N una δ -rete e sia $M \geq \max\{|f(x_k)|: f \in \mathcal{F}, k = 1, \ldots, N\}$. Per ogni $x \in E$ esiste x_k tale che $d(x, x_k) < \delta$ perciò

$$|f(x)| \le |f(x) - f(x_k)| + |f(x_k)| < 1 + M,$$

per ogni $f \in \mathcal{F}$, da cui l'equilimitatezza.

Di conseguenza le proprietà 1., 2. e 3. possono essere equivalentemente sostituite con

- 1. \mathcal{F} è chiuso;
- $2.' \mathcal{F}$ è limitato;
- $3.' \mathcal{F}$ è equiuniformemente continuo.

DIMOSTRAZIONE (del teorema di Ascoli-Arzelà) Proviamo che se \mathcal{F} è (sequenzialmente) compatto allora valgono 1., 2. e 3. È chiaro che \mathcal{F} è chiuso e limitato in $C(E,\mathbb{R})$ (i compatti in spazi metrici sono chiusi e limitati) quindi equilimitato e puntualmente limitato, dunque valgono 1. e 2. Verifichiamo che vale 3. Fissato $\varepsilon > 0$ sia $\{f_1, f_2, \ldots, f_N\}$ una $\varepsilon/3$ -rete del compatto \mathcal{F} . Le funzioni f_k sono continue sul compatto E quindi, per il teorema di Heine-Cantor, sono uniformemente continue perciò, in relazione all' ε scelto, per ogni $k = 1, \ldots, N$ esiste $\delta_{\varepsilon}(f_k)$ tale che se $x, y \in E$ con $d(x, y) < \delta_{\varepsilon}(f_k)$ si ha $|f_k(x) - f_k(y)| < \varepsilon$. Poniamo $\delta_{\varepsilon} := \min_{k=1,\ldots,N} \delta_{\varepsilon/3}(f_k)$. Presa ora $f \in \mathcal{F}$ in relazione alla $\varepsilon/3$ -rete esiste i tale che $f \in B(f_i, \varepsilon/3)$ ovvero $||f - f_i||_{\infty} < \varepsilon/3$. Se $x, y \in E$ con $d(x, y) < \delta_{\varepsilon}(< \delta_{\varepsilon/3}(f_i))$ si ha

$$|f(x) - f(y)| \le |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f_i(y) - f(y)|$$

$$\le 2||f - f_i||_{\infty} + |f_i(x) - f_i(y)| < 2\frac{\varepsilon}{3} + \frac{\varepsilon}{3}.$$

Poiché ciò vale per ogni $f \in \mathcal{F}$ con δ_{ε} dipendente solo da ε , segue la equiuniforme continuità di \mathcal{F} .

Viceversa, dimostriamo ora che se valgono 1., 2. e 3. allora \mathcal{F} è sequenzialmente compatto in $C(E,\mathbb{R})$. Fissata una successione $\{f_n\}_{n\in\mathbb{N}}$ in \mathcal{F} dobbiamo verificare che ammette una sottosuccessione convergente in $C(E,\mathbb{R})$. Poiché E è spazio metrico compatto per il teorema 10 è separabile. Sia

 $\mathcal{R}:=\cup_{n=1}^{\infty}\mathcal{R}_n$ il sottoinsieme contabile e denso ottenuto dall'unione delle 1/n-reti \mathcal{R}_n , come nella dimostrazione del teorema 6. Ordiniamo i suoi elementi, sia dunque $\mathcal{R}=\{x_1,x_2,\dots\}$. Fissato x_1 , per l'ipotesi 2. esiste $M_1>0$ tale che $|f_n(x_1)|\leq M_1$ per ogni $n\in\mathbb{N}$, quindi la successione $(f_n(x_1))_{n\in\mathbb{N}}$ è limitata in \mathbb{R} e per il teorema di Bolzano-Weierstrass ammette una sottosuccessione $(f_{n_k}(x_1))_{k\in\mathbb{N}}$ convergente. Per facilità di notazione poniamo $f_{1,k}:=f_{n_k}$. Per costruzione si ha che la successione $f_{1,k}$ converge puntualmente in x_1 . Considerato ora il punto x_2 si avrà che esiste $M_2>0$ tale che $|f_{1,k}(x_2)|\leq M_2$ per ogni $k\in\mathbb{N}$, quindi la successione $(f_{1,k}(x_2))_{k\in\mathbb{N}}$ è limitata in \mathbb{R} e a sua volta ammette una sottosuccessione convergente che denotiamo con $(f_{2,k}(x_2))$. Per costruzione si ha che la successione di funzioni $f_{2,k}$ converge puntualmente in x_2 ed essendo sottosuccessione di $f_{1,k}$ converge anche in x_1 . Per induzione, si costruiscono successioni

```
f_{1,1} f_{1,2} \cdots f_{1,k} \cdots sottosuc. di (f_k), convergente in x_1 f_{2,1} f_{2,2} \cdots f_{2,k} \cdots sottosuc. di (f_{1,k}), convergente in x_1, x_2 f_{3,1} f_{3,2} \cdots f_{3,k} \cdots sottosuc. di (f_{2,k}), convergente in x_1, x_2, x_3 \cdots f_{h,1} f_{h,2} \cdots f_{h,k} \cdots sottosuc. di (f_{h-1,k}), convergente in x_1, \dots, x_h \cdots
```

Si noti che tutte le successioni $(f_{h,k})_{k\in\mathbb{N}}$ sono sottosuccessioni di $(f_k)_{k\in\mathbb{N}}$. Consideriamo la successione $(g_k) := (f_{k,k})$ ottenuta col procedimento diagonale, anch'essa sottosuccessione di (f_k) . Mostriamo che tale successione converge in $C(E,\mathbb{R})$; a tal fine utilizzeremo la completezza di $(C(E,\mathbb{R}),d_{\infty})$. Verifichiamo anzitutto che converge puntualmente in tutti gli x_h per $h \geq 1$ (cioè nell'insieme denso \mathcal{R}). Infatti, fissato h se $k \geq h$ per costruzione $(f_{k,k})_{k\geq h}$ è sottosuccessione di $(f_{h,k})_{k\in\mathbb{N}}$ dunque converge in x_1,\ldots,x_h . Per l'arbitrarietà di $h \in \mathbb{N}$ segue la tesi. Verifichiamo che (g_k) converge anche in tutti gli altri punti di E e che tale convergenza è uniforme.

Fissato $x \in E \setminus \mathcal{R}$, osserviamo che se $n, m \in \mathbb{N}$, $x_h \in \mathcal{R}$ si ha

$$|g_n(x) - g_m(x)| \le |g_n(x) - g_n(x_h)| + |g_n(x_h) - g_m(x_h)| + |g_m(x_h) - g_m(x)|.$$

Il primo e il terzo termine sul lato destro possono essere resi piccoli grazie all'equicontinuità di \mathcal{F} , il secondo grazie alla convergenza di (g_n) in x_h . Più precisamente, per l'osservazione 16 \mathcal{F} è anche equiuniformemente continuo perciò fissato $\varepsilon > 0$ esiste $\delta = \delta_{\varepsilon} > 0$ tale che se $x, y \in E$, $d(x, y) < \delta_{\varepsilon}$ e per ogni $f \in \mathcal{F}$ si ha $|f(x) - f(y)| < \varepsilon$. In particolare si ha $|g_n(x) - g_n(y)| < \varepsilon$ per ogni n. Per la densità di \mathcal{R} , fissato $x \in E \setminus \mathcal{R}$ esiste $x_h = x_h(\varepsilon, x) \in \mathcal{R}$

tale che $d(x, x_h) < \delta_{\varepsilon}$ perciò $|g_n(x) - g_n(x_h)| < \varepsilon$ per ogni n. Dalla relazione sopra si ottiene quindi

$$|g_n(x) - g_m(x)| \le \varepsilon + |g_n(x_h) - g_m(x_h)| + \varepsilon.$$

Poiché inoltre $(g_n(x_h))_n$ converge allora è di Cauchy, dunque esiste $\bar{n}_{\varepsilon} = \bar{n}_{\varepsilon}(x_h) = \bar{n}_{\varepsilon}(x)$ tale che se $n, m \geq \bar{n}_{\varepsilon}(x)$ si ha $|g_n(x_h) - g_m(x_h)| < \varepsilon$. In definitiva, fissato $\varepsilon > 0$, se $n, m \geq \bar{n}_{\varepsilon}(x)$ si ottiene

$$|g_n(x) - g_m(x)| \le \varepsilon + \varepsilon + \varepsilon = 3\varepsilon,$$

da cui segue che $(g_n(x))_n$ e di Cauchy in \mathbb{R} quindi converge. Dimostriamo infine che $(g_n)_n$ è di Cauchy in $(C(E,\mathbb{R}),d_\infty)$. Basta riuscire a trovare un $\bar{n}_{\varepsilon}(x)$ indipendente da x. Fissato $\varepsilon > 0$ sia $n^* = n^*(\varepsilon) \in \mathbb{N}$ tale che $1/n^* < \varepsilon$ e consideriamo la $1/n^*$ -rete \mathcal{R}_{n^*} . Per ogni $x \in E$ esiste $x_h \in \mathcal{R}_{n^*}$ tale che $d(x,x_h) < 1/n^* < \varepsilon$. In definitiva, fissati $\varepsilon > 0$ e $x \in E$, è sufficiente prendere x_h all'interno dell'insieme (finito!) \mathcal{R}_{n^*} invece che in tutto \mathcal{R} . Posto quindi $\bar{n}_{\varepsilon} := \max \{\bar{n}_{\varepsilon}(x_h) : x_h \in \mathcal{R}_{n^*}\}$, se $n,m \geq \bar{n}_{\varepsilon}$ si ha $|g_n(x) - g_m(x)| < \varepsilon$ per ogni $x \in E$, ovvero $||g_n - g_m||_{\infty} < \varepsilon$ cioè $(g_n)_n$ è di Cauchy nella norma infinito. Per la completezza di $(C(E,\mathbb{R}),d_\infty)$ la successione g_n (sottosuccessione di f_n) converge uniformemente ad una funzione $f \in C(E,\mathbb{R})$.

Osservazione 20 Il risultato si estende in maniera ovvia al caso di sottoinsiemi dello spazio $C(E, \mathbb{R}^n)$.

Esercizio 21 Sia (E, d) uno spazio metrico. Ricordiamo che una funzione $f: E \to \mathbb{R}$ è Hölderiana di costante $\alpha \in]0, 1]$ se

$$N_{\alpha}(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} < \infty,$$

ovvero se e solo se esiste M>0 tale che $|f(x)-f(y)|\leq M\,d(x,y)^{\alpha}$ per ogni $x,y\in E$ (il numero $N_{\alpha}(f)$ è la più piccola delle costanti M per cui vale la disuguaglianza). Dimostrare che se E è compatto l'insieme definito da $\mathcal{F}:=\left\{f\in C(E,\mathbb{R}):\ ||f||_{\infty}\leq 1,\ N_{\alpha}(f)\leq 1\right\}$ è compatto in $C(E,\mathbb{R})$ nella metrica uniforme.