Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in T.W.M.

Esercizi di Analisi Matematica

Esercizi del 21 gennaio 2005

Esercizio 1. Calcolare approssimatamente, dopo averne verificato l'esistenza, lo zero della funzione $f_1(x) = x^3 + x - 4$ nell'intervallo [1, 2] con un errore inferiore a 1/16.

Esercizio 2. Dimostrare che la funzione $f_2(x) = 4x^4 + x - 1$ ammette uno zero x_0 nell'intervallo [-1,0] e un altro zero x_1 nell'interrvallo [0,1] (si potrebbe anche dimostrare che tali zeri sono unici). Calcolare infine approssimatamente x_0 e x_1 con un errore inferiore a 1/20.

Esercizio 3. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua tale che

$$\left(\lim_{x \to +\infty} f(x)\right) \cdot \left(\lim_{x \to -\infty} f(x)\right) < 0$$

Allora f ammette uno zero.

Esercizio 4. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua tale che

$$\lim_{x \to +\infty} f(x) = +\infty, \qquad \lim_{x \to -\infty} f(x) = -\infty$$

Allora f ammette uno zero.

Esercizio 5. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua tale che

$$\lim_{x \to -\infty} f(x) = L^{-}, \qquad \lim_{x \to +\infty} f(x) = L^{+}$$

con $L^-, L^+ \in \mathbb{R}$, allora f ammette almeno un punto fisso (ovvero un \bar{x} tale che $f(\bar{x}) = \bar{x}$.) (Suggerimento: utilizzare opportunamente l'esercizio 3) alla funzione g(x) = x - f(x).)

Esercizio 6. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua tale che

$$\lim_{x \to \pm \infty} f(x) = 0,$$

e tale che assuma valori di segno opposto, ovvero esistano a, b tale che f(a) > 0 e f(b) < 0. Dimostrare che f possiede minimo e massimo assoluti su tutto \mathbb{R} .