Elo method was coined by the physics professor and excellent chess player Arpad Elo. In 1970, FIDE, the World Chess Federation, agreed to adopt the Elo Rating System.
The method works as follows. Suppose that players \(i\) and \(j\) match. Let \(s_{i,j}\) be the actual score of \(i\) in the match against \(j\). We have that:
Notice that the actual score \(s_{j,i}\) of \(j\) in the match against \(i\) is \(1 - s_{i,j}\). Let \(\mu_{i,j}\) be the expected score of \(i\) in the match against \(j\). We have that:
\[ \begin{array}{lll} \mu_{i,j} & = & \frac{1}{1 + 10^{-(r_i - r_j) / \zeta}} = \frac{10^{r_i / \zeta}}{10^{r_i / \zeta} + 10^{r_j / \zeta}} \\\\ \end{array} \]
with \(r_i\) and \(r_j\) the ratings of \(i\) and \(j\) before the match and \(\zeta\) is a constant. Notice that the expected score \(\mu_{j,i}\) of \(j\) in the match against \(i\) is \(1 - \mu_{i,j}\).
We assume that initially all player ratings are equal to 0. When players \(i\) and \(j\) match, the new ratings \(r_i\) of \(i\) and \(r_j\) of \(j\) are modified using the following update rule:
\[ \begin{array}{lll} r_{i} & \leftarrow & r_i + \kappa (s_{i,j} - \mu_{i,j}) \\ r_j & \leftarrow & r_j + \kappa (s_{j,i} - \mu_{j,i}) \end{array} \]
where \(\kappa\) is a constant.
The Elo thesis is:
If a player performs as expected, it gains nothing. If it performs better than expected, it is rewarded, while if it performs poorer than expected, it is penalized.
This challenge is ispired by Chess ratings - Elo versus the Rest of the World Kaggle competition.