Elo method was coined by the physics professor and excellent chess player Arpad Elo. In 1970, FIDE, the World Chess Federation, agreed to adopt the Elo Rating System.
The method works as follows. Suppose that players \(i\) and \(j\) match. Let \(s_{i,j}\) be the actual score of \(i\) in the match against \(j\). We have that:
Notice that the actual score \(s_{j,i}\) of \(j\) in the match against \(i\) is \(1 - s_{i,j}\). Let \(\mu_{i,j}\) be the expected score of \(i\) in the match against \(j\). We have that:
\[ \begin{array}{lll} \mu_{i,j} & = & \frac{1}{1 + 10^{-(r_i - r_j) / \zeta}} = \frac{10^{r_i / \zeta}}{10^{r_i / \zeta} + 10^{r_j / \zeta}} \\\\ \end{array} \]
with \(r_i\) and \(r_j\) the ratings of \(i\) and \(j\) before the match and \(\zeta\) is a constant. Notice that the expected score \(\mu_{j,i}\) of \(j\) in the match against \(i\) is \(1 - \mu_{i,j}\).
We assume that initially all player ratings are equal to 0. When players \(i\) and \(j\) match, the new ratings \(r_i\) of \(i\) and \(r_j\) of \(j\) are modified using the following update rule:
\[ \begin{array}{lll} r_{i} & \leftarrow & r_i + \kappa (s_{i,j} - \mu_{i,j}) \\ r_j & \leftarrow & r_j + \kappa (s_{j,i} - \mu_{j,i}) \end{array} \]
where \(\kappa\) is a constant.
The Elo thesis is:
If a player performs as expected, it gains nothing. If it performs better than expected, it is rewarded, while if it performs poorer than expected, it is penalized.
According to the movie The social network Mark Zuckerberg by David Fincher, it appears that the Elo’s method formed the basis for rating people on Zuckerberg’s Web site Facemash, which was the predecessor of Facebook.
This challenge is ispired by Chess ratings - Elo versus the Rest of the World Kaggle competition.
# Analysis
library(tidyverse)
library(modelr)
games = read_csv("training_data.csv")
After a match between \(i\) and \(j\) the overall increase of rating in the system is:
\[ \kappa (s_{i,j} - \mu_{i,j}) + \kappa (s_{j,i} - \mu_{j,i}) = \kappa (s_{i,j} + s_{j,i}) - \kappa (\mu_{i,j} + \mu_{j,i}) = \kappa - \kappa = 0 \]
ngames = nrow(games)
group_by(games, Score) %>%
summarize(n = n(), pn = n / ngames)
## # A tibble: 3 x 3
## Score n pn
## <dbl> <int> <dbl>
## 1 0 15224 0.234
## 2 0.5 28666 0.441
## 3 1 21163 0.325
# excluding draws
games2 = filter(games, Score != 0.5)
ngames2 = nrow(games2)
group_by(games2, Score) %>%
summarize(n = n(), pn = n / ngames2)
## # A tibble: 2 x 3
## Score n pn
## <dbl> <int> <dbl>
## 1 0 15224 0.418
## 2 1 21163 0.582
ggplot(count(games, Month), aes(x = Month, y = n)) +
geom_line() +
geom_smooth(se = FALSE)
players = sort(unique(c(games$White, games$Black)))
pW = group_by(games, White) %>%
summarise(matchesWhite = n(), pointsWhite = sum(Score))
pB = group_by(games, Black) %>%
summarise(matchesBlack = n(), pointsBlack = sum(1-Score))
rating =
tibble(player = players) %>%
left_join(pW, by = c("player" = "White")) %>%
left_join(pB, by = c("player" = "Black")) %>%
mutate(pointsWhite = ifelse(is.na(pointsWhite), 0, pointsWhite),
pointsBlack = ifelse(is.na(pointsBlack), 0, pointsBlack),
matchesWhite = ifelse(is.na(matchesWhite), 0, matchesWhite),
matchesBlack = ifelse(is.na(matchesBlack), 0, matchesBlack)) %>%
mutate(points = pointsWhite + pointsBlack, matches = matchesWhite + matchesBlack)
ggplot(rating) + geom_histogram(aes(x = points))
## Elo
# INPUT
# games: matches
# zeta: logistic parameter
# k: update factor
# OUTPUT
# r: rating vector
elo = function(games, z = 400, k = 25) {
# number of players
players = unique(c(games$White, games$Black))
n = max(players)
# number of games
m = nrow(games)
# old rating vector
rold = rep(0, n)
# new rating vector
rnew = rep(0, n)
for (i in 1:m) {
# White player
# compute update
score = games[[i, "Score"]]
spread = rold[games[[i, "White"]]] - rold[games[[i, "Black"]]]
mu = 1 / (1 + 10^(-spread / z))
update = k * (score - mu)
# update rating
rnew[games[[i,"White"]]] = rold[games[[i,"White"]]] + update
# Black player
# compute update
score = 1 - games[[i, "Score"]]
spread = rold[games[[i, "Black"]]] - rold[games[[i, "White"]]]
mu = 1 / (1 + 10^(-spread / z))
update = k * (score - mu)
# update rating
rnew[games[[i,"Black"]]] = rold[games[[i,"Black"]]] + update
# update old ratings
rold[games[[i,"White"]]] = rnew[games[[i,"White"]]]
rold[games[[i,"Black"]]] = rnew[games[[i,"Black"]]]
}
return(rnew)
}
e = elo(games)
eloRating = tibble(player = 1:length(e), elo = e)
rating = left_join(rating, eloRating)
# check sum is 0
sum(rating$elo)
## [1] 1.829814e-12
ggplot(rating) + geom_histogram(aes(x = elo), boundary = 0)
count(rating, cut_width(elo, 5, boundary = 0), sort = TRUE)
## # A tibble: 80 x 2
## `cut_width(elo, 5, boundary = 0)` n
## <fct> <int>
## 1 (-15,-10] 1038
## 2 (-5,0] 784
## 3 (10,15] 552
## 4 (-25,-20] 500
## 5 (0,5] 481
## 6 (-10,-5] 330
## 7 (-35,-30] 274
## 8 (-20,-15] 260
## 9 (-30,-25] 258
## 10 (-40,-35] 247
## # … with 70 more rows
summary(rating$elo)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -146.456 -22.873 -6.005 0.000 12.476 326.950
ggplot(rating, aes(x = matches, y = elo)) +
geom_point(alpha = 0.2) +
geom_smooth(se=FALSE) +
theme_bw()
ggplot(rating, aes(x = matches, y = points)) +
geom_point(alpha = 0.2) +
geom_smooth(se=FALSE) +
theme_bw()