
UNIVERSITÀ DEGLI STUDI DI PISA
DIPARTIMENTO DI INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA
Università di Pisa–Genova–Udine

Ph.D. Thesis: TD-7/97

Encoding Logical Theories of Programs

Marino Miculan

Abstract. Nowadays, in many critical situations (such as on-board software), it is manda-
tory to certify programs and systems, that is, to prove formally that they meet their
specifications. To this end, many logics and formal systems have been proposed for rea-
soning rigorously on properties of programs and systems. Their usage on non-trivial cases,
however, is often cumbersome and error-prone; hence, a computerized proof assistant is
required. This thesis is a contribution to the field of computer-aided formal reasoning.

In recent years, Logical Frameworks (LF’s) have been proposed as general metalan-
guages for the description (encoding) of formal systems. LF’s streamline the implementa-
tion of proof systems on a machine; moreover, they allow for conceptual clarification of the
object logics. The encoding methodology of LF’s (based on the judgement as types, proofs
as λ-terms paradigm) has been successfully applied to many logics; however, the encoding
of the many peculiarities presented by formal systems for program logics is problematic.

In this thesis we propose a general methodology for adequately encoding formal systems
for reasoning on programs. We consider Structured and Natural Operational Semantics,
Modal Logics, Dynamic Logics, and the µ-calculus. Each of these systems presents distinc-
tive problematic features; in each case, we propose, discuss and prove correct, alternative
solutions. In many cases, we introduce new presentations of these systems, in Natural
Deduction style, which are suggested by the metalogical analysis induced by the method-
ology. At the metalogical level, we generalize and combine the concept of consequence
relation by Avron and Aczel, in order to handle schematic and multiple consequences.

We focus on a particular Logical Framework, namely the Calculus of Inductive Con-
structions, originated by Coquand and Huet, and its implementation, Coq. Our inves-
tigation shows that this framework is particularly flexible and suited for reasoning on
properties of programs and systems.

Our work could serve as a guide and reference to future users of Logical Frameworks.

Keywords: Computer-aided formal reasoning; Logical Frameworks, CIC, Coq; Formal
methods, Program verification; Axiomatic, operational and natural semantics; Dynamic
Logics, Modal logics, µ-calculus; Consequence relations.

March 1997

Address: Corso Italia 40, 56125 PISA, Italy. Tel:+39-50-887000 – Fax: 887226
mailto:miculan@dimi.uniud.it http://www.dimi.uniud.it/~miculan

ii

c© 1997, by Marino Miculan.

Actual author’s address:

Marino Miculan
Dipartimento di Matematica e Informatica
Università degli Studi di Udine
Via delle Scienze, 206 (loc. Rizzi)
33100 Udine (Italy).

Voice: +39 432 558456; Fax: +39 432 558499.
E-mail: miculan@dimi.uniud.it
WWW: http://www.dimi.uniud.it/~miculan

Copies of this thesis may be obtained by writing to:

Biblioteca
Dipartimento di Informatica
Università degli Studi di Pisa
Corso Italia, 40
56100 Pisa (Italy).

Fax: +39 50 887226.
E-mail: tecrep@di.unipi.it

To the thoughts
Of your heart

The only soughs
They’ll never garth.

iv

Contents

1 Introduction and Motivations 1

1.1 Introduction . 1

1.2 Aims of this thesis . 7

1.3 Motivations . 8

1.4 Synopsis . 9

1.4.1 Part I: General Metatheoretic Issues 10

1.4.2 Part II: The Object Logics . 10

1.4.3 Part III: The Theory of Formal Representation 11

1.4.4 Part IV: Pragmatics . 12

I General Metatheoretic Issues 13

2 A theory of arities 15

3 Consequence Relations 19

3.1 Simple Consequence Relations . 19

3.1.1 Free Consequence Relations from Semantics 20

3.1.2 Effective Consequence Relations . 21

3.1.3 Noteworthy Examples . 22

3.2 Schematic Consequence Relations . 27

3.2.1 Deterministic and Non-Deterministic Substitutions 27

3.2.2 (Free) Schematic Consequence Relations 28

3.2.3 Noteworthy examples . 29

3.3 Heterogeneous Consequences Relations . 33

3.3.1 Judgement Consequence Relations 34

3.3.2 Multiple Consequence Relations . 35

3.4 Natural Deduction-style Proof Systems . 37

II The Object Logics 41

4 Structural and Natural Operational Semantics 43

4.1 Structural Operational Semantics . 44

4.1.1 Consequence Relations for SOS . 44

4.1.2 Analysis of Structural Operational Semantics 46

v

vi CONTENTS

4.2 Natural Operational Semantics . 47

4.2.1 An example: Natural Operational Semantics for LALD 48

4.2.2 The Bookkeeping Technique . 51

4.2.3 Analysis of Natural Operational Semantics 53

4.2.4 Consequence Relations for NOS . 55

4.3 A case study: the language LP . 56

4.3.1 Syntax and Semantics . 56

4.3.2 Natural Operational Semantics . 58

4.3.3 Adequacy . 60

4.4 Some remarks about language design . 62

4.5 Some extensions of LP . 63

4.5.1 Complex Declarations . 63

4.5.2 Structures and signatures . 63

4.5.3 Imperative modules (Abstract Data Types) 64

4.6 Conclusions and Related Work . 65

5 Modal Logics 67

5.1 Syntax and Semantics . 67

5.2 Consequence Relations . 68

5.3 Proof Systems . 69

5.3.1 Proof systems for truth . 70

5.3.2 Proof systems for validity . 71

5.3.3 A proof system for both truth and validity 72

6 Propositional Dynamic Logic 73

6.1 Syntax and Semantics . 73

6.2 Consequence Relations . 74

6.3 Proof Systems . 75

6.3.1 A finitary ND-style system for PDL 75

6.3.2 An infinitary ND-style system for PDL 76

6.4 Proof Theory . 77

7 First-Order Dynamic Logic 79

7.1 Syntax and Semantics . 79

7.2 Consequence Relations . 80

7.3 Proof systems . 81

7.3.1 Finitary ND-style systems for DL . 81

7.3.2 Infinitary ND-style systems for DL 84

7.4 Proof Theory . 85

7.5 Equivalence of programs . 86

7.6 Related Work . 88

8 Hoare Logic 89

8.1 Syntax and Semantics . 89

8.2 Consequence Relations . 90

8.3 Proof Systems . 92

CONTENTS vii

8.4 From ND-Style HL to DL . 94

8.4.1 Proof rules induced by non-interference judgements 94

8.4.2 Preconditions vs. Assumptions. 95

8.4.3 Derivation of (Truth) HL in DL . 96

9 Propositional µ-calculus 97

9.1 Syntax and Semantics . 97

9.2 Consequence Relations . 98

9.3 Proof Systems . 99

9.3.1 A ND-style system for µK . 99

9.3.2 A proof system for the positivity condition 100

III The Theory of Formal Representations 103

10 Logical Frameworks 105

10.1 Pure Type Systems . 106

10.1.1 Natural Deduction-style presentation 107

10.1.2 Gentzen-style Pure Type Systems 109

10.2 The logical framework ELF+ . 115

10.3 The Calculus of Inductive Constructions . 116

10.4 The proof assistant Coq . 118

10.4.1 The metalogical language . 118

10.4.2 The proof assistant . 119

10.5 Paradigmatical Judgement-as-Types encodings 120

11 Encoding of Formal Systems in the Calculus of Inductive Constructions125

11.1 Schematicity induced by HOAS . 127

11.2 Feasibility of Inductive Definitions . 129

11.2.1 First-Order Inductive Abstract Syntax 130

11.2.2 Higher-order inductive abstract syntax 131

11.2.3 Possible solutions when Inductive HOAS fails 132

11.3 Encoding of substitution schemata . 134

11.3.1 The syntax-oriented approach to substitution 135

11.3.2 A semantic-oriented approach to substitution 136

11.4 Other complex situations . 137

11.4.1 Conditioned Grammars . 137

11.4.2 The only solution - so far . 138

11.4.3 A proposal for extending CIC and Coq 139

11.4.4 Subsorting . 141

11.5 Related Work . 142

12 Encoding of Operational Semantics 143

12.1 The basic approach . 143

12.2 Encoding of Natural Operational Semantics 145

12.3 Related work . 147

viii CONTENTS

13 Encoding of Modal Logics 149

13.1 Encoding of the syntax . 149

13.2 Encoding of systems for K . 149

13.2.1 World Parameter . 150

13.2.2 Closed Judgement . 153

13.3 Encodings of special systems for S4 . 154

13.3.1 Boxed Judgement . 154

13.3.2 “Boxed Fringe”-judgement . 156

13.4 Encoding of multiple consequence relation systems 157

13.4.1 Encoding of NK ′ by two judgements 158

13.4.2 Encoding of NK ′′ by three judgements 159

14 Encoding of Dynamic Logics 161

14.1 Encoding of PDL . 161

14.1.1 Encoding of the language . 161

14.1.2 Encoding of the finitary NfPDL . 161

14.1.3 Encoding of NPDL . 161

14.2 Encoding of First Order Dynamic Logic . 162

14.2.1 Encoding the language of DL . 162

14.2.2 The assignment rules . 162

14.2.3 The congruence rules . 164

14.2.4 The ∀-quantifier rules . 166

14.3 Adequacy of the encoding . 166

15 Encoding of µ-calculus 169

15.1 Encoding of the language . 169

15.2 Encoding of proof system . 171

IV Pragmatics 173

16 The Implementation of NfDL and NDL 175

16.1 The signature ΣDL . 175

16.2 Equivalence of while-do and repeat-until 186

16.3 Derivation of Hoare Logic . 188

17 The Implementation of µ-calculus 191

17.1 Implementation of syntax . 191

17.2 Implementation of proof system . 195

17.3 An example of derivation . 197

18 Conclusions and Future Work 199

18.1 A more detailed overview . 200

18.2 Future Work . 201

18.2.1 Other systems and problematic issues 201

18.2.2 Proof theory . 202

18.2.3 Case studies . 202

CONTENTS ix

18.2.4 Front-end interfaces . 202
18.2.5 Denotational Semantics . 202

A Semantics of LP , LD, LMF
, and LMI

205
A.1 Rules for the NOS . 205

A.1.1 NOS of LP . 205
A.1.2 NOS of LD . 207
A.1.3 NOS of LMF

. 208
A.1.4 NOS of LMI

. 209
A.2 Denotational semantics . 210

A.2.1 Denotational semantics of LP . 210
A.2.2 Denotational semantics of LD . 212
A.2.3 Denotational semantics of LMF

. 212
A.2.4 Denotational semantics of LMI

. 213

B Proof of completeness of infinitary systems for Dynamic Logics 215
B.1 Proof of the Model Existence Lemma for First-Order Dynamic Logic 215

C Encoding of Validity FOL 221

D A Methodology Roadmap for Encodings 223
D.1 Are there binding operators? . 223

D.1.1 No: plain inductive definitions . 223
D.1.2 Yes! then, would you like some HOAS? 223

D.2 Need to implement substitution? . 225
D.2.1 Inline (immediate) substitution . 225
D.2.2 Delayed substitution (bookkeeping) 225

x CONTENTS

List of Figures

4.1 SOS and NOS for LALD. 53
4.2 LP , a functional language with commands and procedures. 57
4.3 LMF

, the extension for functional modules. 64
4.4 LMI

, the extension for imperative modules. 64

5.1 NC, a minimal proof system for classical logic. 70
5.2 NK, the ND-style system for minimal modal logic. 70
5.3 ND-style rules and systems for various modal logics. 70
5.4 NS4 and NS4f , two Prawitz’ systems . 71
5.5 NK ′, the ND-style system for minimal validity modal logic, and its extensions. 71
5.6 NK ′′, the ND-style system for minimal truth-validity modal logic, and its

extensions. 72

6.1 LPDL, the language of Propositional Dynamic Logic. 74
6.2 The modal rules of the system NfPDL. 75
6.3 The modal rules of the system NPDL. 76

7.1 LDL, the language of First-Order Dynamic Logic (on Peano Arithmetic). . . 80
7.2 A summary of Proof Systems for Dynamic Logic. 81
7.3 The specific rules for the system NfDL. 82
7.4 The convergence and induction rules. 83

8.1 LHL, the language of Hoare Logic. 90
8.2 Some ND-style rules for procedures in Hoare Logic. 92
8.3 The rules of the system NHL. 94
8.4 The three special rules of NHL′. 95
8.5 Some rules admitted by the system NHL. 95

9.1 The specific rules of the system NµK. 99
9.2 The positivity proof system. 100

10.1 λβ(S,A,R), the Natural Deduction-style typing system for PTS’s. 108
10.2 λGβ (S,A,R), the (Gentzen) sequent-style typing system for PTS’s. 110

10.3 λ−β (S,A,R), the cut-free sequent-style typing system for PTS’s. 111
10.4 (A fragment of) The Gallina specification language. 119

13.1 Σw(NK) and its extensions for NK4,. 150
13.2 ΣCl(NK) and its extensions for NK4, . 154

xi

xii LIST OF FIGURES

13.3 Σ2(NS4). 155
13.4 ΣFr(NS4). 157
13.5 Σ2j(NK

′) and its extensions for NK4′,. 158
13.6 Σ3j(NK

′′) and its extensions for NK4′′,. 159

14.1 Representation of LPDL in Σ(PDL). 162
14.2 Representation of NfPDL in the signature Σ(PDL). 163
14.3 Representation of L(DL) in Σ(DL) (some constructors). 164
14.4 The LF encoding of the rules for assignment. 164
14.5 The rules for auxiliary judgements isin, isnotin of Σ(DL). 165
14.6 The LF encoding of the congruence rules. 166
14.7 The LF encoding of the ∀-I, ∀-E rules. 166

18.1 Some other complex issues not faced in this thesis. 201

B.1 The rules for the 〈·〉 · connective. 216

Acknowledgements

First of all, I wish to thank my supervisor, Furio Honsell, for his helpful suggestions and
discussions along (and before) the years of my PhD courses. This thesis would never have
seen the light of day, without his invaluable effort in keeping my (often diverting) attention
on the subject of Logical Frameworks, resisting to the bewitching siren song of fleeting
research issues.

I took full advantage of the many useful comments of my referee committee. I thank
Eugenio Moggi and Carlo Montangero (and the aforementioned Furio) for their forbearing
spurs and suggestions, which allowed me to find the narrow (and feasible) path in the secret
dark wood of the far too ambitious starting proposal. I wish to thank Joëlle Despeyroux
and Robert Harper, whose careful readings of the preliminary version of the thesis allowed
me to greatly improve the quality of the presentation.

In the fertile environment of the Department of Computer Science of the University
of Pisa, I had deep insights in many important research areas, many of which I not even
skimmed before. Among the people I met there (too many to mention here), I like to thank
the friends Daniela Archieri, Fabio Gadducci, Stefano Guerrini, Francesca Levi, Simone
Martini, Andrea Masini, Angelo Monti, Paola Quaglia, Vladimiro Sassone.

A special regards is devoted to the giant figure of Ennio De Giorgi; the short time I
had to know him then, has been enough to mourn his lack now.

I have completed my PhD course at the Department of Mathematics and Computer
Science of the University of Udine, where I am grateful to Fabio Alessi, Pietro Di Gianan-
tonio, Agostino Dovier, and Stefano Mizzaro for their help and support. In particular,
Fabio’s notes removed many categorical doubts (and tuned us in perfect fifths). Of course,
I cannot forget to thank the local and anonymous TEX guru—with whom I have reached
unfathomable abysses of schizophrenic insanity.

I benefited by a lot of suggestions by colleguas from all around the world. Among the
many others I can’t recall now, I mention Arnon Avron, Stefano Berardi, Peter Dybjer,
Eduardo Gimenez, Frank Pfenning, and the whole TYPES community. I would also thank
the INRIA CROAP group, for giving me the possibility of the exciting but unfortunately
short stay in Sophia-Antipolis, during November 1994.

No pòs dismenteâ la mê famèe, ch’à mi à sostignût, e no dome economicamenti, durant
i ains da universitât e dal dotorât.

Finally, my mind gets ashore to Lise, who learned how to steer my stem through the
stormy tides of my moody sides. From snow-white ski tracks, to brick-red tennis courts,
from sandy sunny beaches to grape-scented hills, she taught me that life has to be lived
twice. At least.

xiii

xiv [

Chapter 1

Introduction and Motivations

1.1 Introduction

Ever since the dawn of the computer era, the activity of programming and system de-
signing has been recognized as particularly difficult. An utmost important task of this
activity is providing certifications, i.e. proving whether the developed program/system
meets its specifications. Ordinary programmers become convinced of the correctness of
their programs through informal arguments, or by testing their behaviour on some sample
input data. This approach is not complete: it cannot ensure the absence of errors under
all circumstances. Often, this is not sufficient, especially in life-critical situations (such
as on-board software, or high environmental risk plants): in these cases, programs and
systems have to be formally proved to meet their specifications, i.e. certified. This can be
achieved—at least theoretically—by using rigorous verification techniques: mathematical
methods are used to prove that a program satisfies some properties, i.e. the specifica-
tions. Practically, however, even rigorous verification can only increase our possibilities
that the program is correct. Not only our metatheory can have a flaw (quite unlikely) but
(more likely) the justification that a set of specifications captures correctly a given “real
environment” cannot be formally proved and ultimately rests on an act of faith.

The formal methods of mathematics have been developed on abstract mathematical en-
tities. Analysts have their Banach spaces and topologies, algebraists have their groups and
rings (very abstract algebraists have their categories and topoi), differential geometricians
have their homological groups, quantum mechanic physicists have their Hilbert spaces, and
so on. These structures are the objects of mathematical reasoning (the models): mathe-
maticians reason on these models by using a rigorous, although informal, language; that
is to say, the proofs that they carry out on these models are in that highly-specialized part
of natural language which is spoken only in mathematical discussions.

Semantics of programming languages. The crucial point of the formal study of
programs and systems is that they can be given a (mathematical) semantics, that is, one
can define a mathematical model on which the formal methods of mathematics can be used
to make a rigorous correctness argument. The purpose of such a mathematical model is
to serve as a basis for understanding and reasoning rigorously about the behaviour of
programs, programming languages, and systems. Almost every programming language in
use has been subject to this kind of analysis. Semantics definition methods are useful both

1

2 Chapter 1. Introduction and Motivations

to implementors and to programmers, for they provide:

1. a precise standard for implementations. The standard can be used as a reference for
implementing the language in the same way on all machines;

2. useful user documentation. Every programmer must figure out the meanings of
program constructors he is going to use, at some level of abstraction and detail. A
formal semantic definition can help a trained programmer to develop his “language
model”; he can read the definition and use it as a reference;

3. a tool for design and analysis. Typically, for studying the pragmatics of a language,
we have to implement it. This is because there are few tools for testing and analyzing
a language. Semantics definitions can suggest efficient and elegant implementations,
just after having defined the syntax of the language. Actually, the designer of a
language should take seriously into account how the meanings of programs will be
best described;

4. input to a compiler generator. A compiler generator maps a semantics definition to
a guaranteed correct implementation for the language. This frees the implementors
from the most risky aspects of implementation.

The development of methods for best describing the semantics of a language is one
of the primary challenges of Computer Science. Since the first ’60s, many kinds of se-
mantics have been introduced, but none has been accounted for the ultimate or best one.
Traditionally, the semantics of a programming language can be given in three fashions:

• the operational semantics method describes the meaning of a programming language
by specifying an abstract machine for the language. The operational semantics of a
program is the evaluation history (i.e. the sequence of configurations) that the ab-
stract machine produces in evaluating it. Operational semantics descriptions specify
either the single transition step of this abstract machine (small-step semantics; see,
e.g., [Plo81]), or the whole “evaluation process” in a single assertion (big-step se-
mantics; see, e.g., [Kah87, Des86, BH90, Han93]);

• the denotational semantics method maps directly a program to its meaning, its
denotation. Denotations are usually mathematical objects belonging to a suitable
domain of meanings. Hence, the denotational semantics is a function from programs
to denotations (see e.g. [Gun92, Sch86]);

• the axiomatic semantics method does not define explicitly meanings of programs.
Instead, a method for deriving properties about programs is given. Usually, this
method consists of a logical system, or calculus, for deriving formulæ which represent
the properties we are concerned with. The meaning of a program could be defined,
therefore, as the set of formulæ we can formally prove in the logical system. The
character of the logical system is determined by the kind of properties that can be
proved (see e.g. [Apt81, Sti92]).

Each of these three styles has its purposes. A clear operational semantics is very useful
in implementation (we just need to realize the abstract machine for obtaining a correct
interpreter), but its low abstraction level does not allow for powerful proof techniques; we
can reason only by induction on the length of computations. A denotational semantics is

1.1. Introduction 3

more abstract than an operational definition, for it does not specify computational steps.
Its high-level, modular structure makes it especially useful to designers and programmers.
However, the underlying mathematical theory may be very complex, and its implementa-
tion is not trivial. Axiomatic definitions are even more abstract than denotational ones,
and can give rise to very elegant proof systems, useful in developing as well as verifying
programs. However, they do not provide insights into the implementation, and even their
expressive power may be not sufficient for characterizing completely the meaning of a pro-
gram: there can be two programs, which behave differently, but the properties formally
proved about them are the same.

Formal versus informal reasoning. It is worthwhile stressing the difference between
a rigorous but informal proof and a formal proof. A rigorous, informal proof is a detailed
and (hopely) clear step-by-step argument written in natural language, although highly
specialized and tailored to a restricted audience of specialists. A formal proof instead is
some syntactic expression, formulated in the syntax of a particular proof system (formal
system) according to its axioms and rules.

Although it is believed that all informal proofs can be converted, more or less easily, into
formal proofs of some logic, such as a higher-order set theory, mathematicians still prefer
the formers in reasoning about their abstract models. The point is that in Mathematics
the models are the primary objects of attention, while formal systems are just tools, not
even essential. Therefore, semantic arguments, based on the abstract properties of models,
are the norm in mathematics, while formal argument are absolutely rare.

On the other hand, since the late ’60s formal methods for proving properties of pro-
grams and programming languages have been given an utmost importance. There are
many reasons for this.

First, the objects of attention of computer science are programs and programming lan-
guages, and programs are themselves formal objects. A formal system can hence reason
directly about programs by embedding the programs themselves in the formulæ. An ex-
ample of this approach are the well-known Hoare logic and proof outlines, where programs
can be “annotated” by assertions which can be used in a step-by-step verification of the
program itself [Apt81, AO91]. Moreover, modern operational semantics use formal sys-
tems to specify either the transition step of an abstract machine (such as in the Structured
Operational Semantics [Plo81]) or more abstractly the “evaluation notions” associated to
the language (e.g. Natural Semantics, Natural Operational Semantics, Extended Natural
Semantics [Kah87, BH90, Mic94, Han93]).

Secondly, many times semantic arguments are not satisfactory because there is no di-
rect connection between the abstract notions of the model, and the properties we would
like to prove on the program. Often, there is even a poor understanding of what a se-
mantics is. The point here is that in Computer Science, differently from Mathematics,
semantical models are no more the central objects of investigation, but just tools for rea-
soning about programs. The definition of a “good” model is therefore committed to the
kind of properties we want to prove. Often, although we know perfectly the kind of prop-
erties we have to deal with, the definition of an adequately expressive model is complex
and very subtle. This is the case, for instance, of many concurrent languages: a plethora
of semantic structures for concurrency have been proposed so far, but no one of them is
considered to be the best and ultimate one. Moreover, the richer is the language, the

4 Chapter 1. Introduction and Motivations

more complex is the mathematical theory on which its semantics relies; programmers and
language designers are seldom familiar with complex mathematical theories. In such cases,
a common way for avoiding the difficulties and subtleties of an obscure or unsatisfactory
model is to drop semantic arguments and to resort to some formal system (proved sound
for the semantics, once and for all) which proves directly the properties we need.

A third motivation is that computer programs get easily large and complicated. Infor-
mal but rigorous proofs of correctness become therefore long and blurred by tedious lists
of cases. The human prover is hence prone to oversights and omissions, and large informal
proof may be difficult and obscure to the reader. Formal systems may provide a means
for managing large proofs: the human prover is urged for more detailed and clear proofs,
and the reader is less likely inclined to misunderstandings.

Computer Aided Formal Reasoning. It should be clear, however, that formal proof
systems are not the panacea in proving properties of programs and programming lan-
guages. The definition of a complete formal system is not always easy; it may be as
difficult as defining a satisfactory semantical model. Usually, more than just one formal
system arise for a given particular programming languages, according to which semanti-
cal properties we focus on (e.g. partial/total correctness, equivalences of programs, etc.).
Even, the same properties can be often described in many different ways, giving raise to
many formal proof systems. Moreover, a formal, syntactic proof is often crammed with
routine details which are often neglected, if not “swept under the rug,” in informal proofs.
Hence, the verification and analysis of properties becomes error-prone and not easily ap-
plicable “by hand,” so that complete rigorous arguments of correctness seldom accompany
large programs.

Unfortunately, due to intrinsic complexity and undecidability limitations, the auto-
matic verification of a condition is seldom feasible. Most of the times, the properties
we face in program verification are not decidable (e.g. the termination problem), or the
complexity of decision procedures is infeasible. Therefore, a completely automatical envi-
ronment, such as a theorem prover, for proving properties on programs in general is not
feasible. Nevertheless, in some restricted cases it is still possible automatize (part of)
derivations of properties, freeing the human from a difficult and unpleasant chore.

Otherwise, the problem can be (partially) overcome by supplying the human verifier
with a valid aid for reasoning with these formal systems. The verification process carried
out by human certifier can be assisted by some semi-automated aids, which support an
interactive development of error-free proofs. What is needed is a computer-aided proof
environment, that is, a system in which we can represent (encode) the formal system,
more or less abstractly: its syntax, axioms, rules and inference mechanisms. After having
supplied the proof environment with a representation of the formal system, the human user
should be able to correctly manipulate (the representations of) the proofs: the environment
should provide tools for

• checking previously hand-made proofs;

• developing interactively, step-by-step, error-free proofs from scratch;

• reusing previously proved properties;

• even, deriving properties automatically, when feasible, freeing the human from most
unpleasant and error-prone steps.

1.1. Introduction 5

As we have pointed out before, usually many formal proof systems arise for a particular
logic. However, the implementation of a proof environment for a specific formal system
is a complex, time-consuming, and daunting task. At the level of abstract syntax, sup-
port has to be provided for the management of variables, binding operators, substitution,
and schemata of formulæ, terms, and rules. At the level of proofs, a representation of
formal proofs must be defined, and mechanisms associated with proof checking and proof
construction must be provided. This includes the means for instantiating rule schemata,
and constructing proofs from rules, checking the associated context-sensitive applicability
conditions. Further effort is needed in order to support automated search: tactic and
tacticals, unification, matching, search startegies have to be implemented. Therefore, a
uniform and reliable alternative is highly desiderable.

A possible approach is to observe that any (program) logic can be translated into a
logic with enough expressive power, such as First Order Logic (FOL), Higher Order Logic
(HOL), or Set Theory (ZF). In these logics, in fact, one can formalize the semantics of the
object logic by axiomatizing the abstract notions about the model. Informal arguments
on the semantics of the object logic can be then carried out as formal proofs of FOL (or
ZF). For instance, we can straightforwardly translate Temporal Logic into FOL just by
introducing in every formula a “temporal variable” which represents the instant in which
the formula holds. Every formula ϕ of Temporal Logic is translated into a corresponding
first-order formula ϕ′(t); in particular, the translation of 2ϕ is (2ϕ)′(t) = ∀t′.(t′ ≥ t ⊃
ϕ′(t′)). Of course, we need to axiomatize the flow of time, by adding suitable assumptions
on the temporal variables.

Hence, one may argue that implementing a proof editor for a single very general logic,
such as FOL, HOL, or ZF, would be enough for encoding any other program logic. This
is true, and indeed this approach is pursued by several projects (see e.g. the Isabelle and
the HOL systems [NP92, Gor88, Gor89]), but we achieve this simplification at the price
of clarity and simplicity. In fact, in these “artificial” encodings one formalizes and focuses
on the semantical notions of the logics, instead of dealing with its formal proof systems.
Hence, the universe of discourse has to be circumscribed with the whole axiomatisation of
the domain, introducing cumbersome hypotheses which have to be dealt with. Although
the analogy is not perfect, FOL or ZF may be compared to an assembler language: we can
express everything within them, but in general in a complicated way. This is the reason
for preferring more specific and “high-level” logics (similarly to “high-level languages”).
These logics are not as general as FOL or ZF, because they are tailored for the specific
case we are facing, but they are much easier to use and understand. Indeed, this is
the main reason for which there are so many different logics: in each of them, we sacrifice
generality for achieving conciseness and simplicity, by focusing on some important notions.
In Temporal Logics, for instance, we make the “temporal variable” more important than
the other individual variables by adopting special formulæ constructors which make the
dependency on the time implicit.

Logical Frameworks. A more promising solution is to develop a general theory of logi-
cal systems, that is, a Logical Framework. A Logical Framework is a metalogical formalism
for the specification of formal systems of logics. This approach differs substantially from
the previous one: while general-purpose logics can be used in specifying semantical no-
tions, Logical Frameworks are formalisms for specifying the syntactic, deductive notions

6 Chapter 1. Introduction and Motivations

of logics. Indeed, a key feature of Logical Frameworks is that they always provide suit-
able means for representing and deal with, in the metalogical formalism, the proofs and
derivations of the object formal system.

As for any other specification language, a Logical Framework should be as simple and
uniform as possible, yet it should provide means for expressing concisely and faithfully the
uniformities of a wide class of formal systems, so that much of the implementation effort
can be expended once and for all. Indeed, the implementation of a Logical Framework
yields a logic-independent proof development environment. Such an environment must be
able to check validity of deductions in a formal system, after it has been provided by the
specification of the system in the formalism of the Logical Framework.

Although we are still at the dawning of the research about Logical Frameworks, sev-
eral different frameworks have been proposed, implemented and applied to many formal
systems. In recent years, type theories have emerged as leading candidates for Logical
Frameworks. Simple typed λ-calculus and minimal intuitionistic propositional logic are
connected by the well-known proposition-as-types paradigm [Chu40, dB80]: with this in-
terpretation, a proposition is viewed as a type whose inhabitants correspond to proof
of this proposition. Stronger type theories, such as the Edinburgh Logical Framework
(ELF) [HHP93, AHMP92], the Calculus of Inductive Constructions (CIC) [CH88, Wer94]
and Martin-Löf ’s type theory (MLTT) [NPS92], were especially designed, or can be fruit-
fully used, as a logical framework. In these frameworks, we can represent faithfully and
uniformly all the relevant concepts of the inference process in a logical system: syn-
tactic categories, terms, assertions, axiom schemata, rule schemata, tactics, etc. via the
judgements-as-types, proofs-as-λ-terms paradigm [HHP93]. The key concept is that of
hypothetico-general judgement [Mar85], which is rendered as a type of the dependent
typed λ-calculus of the Logical Framework.

It is worthwhile noticing that Logical Frameworks based on type theory directly give
rise to proof systems in Natural Deduction style [Gen69, Pra65]. This follows directly from
the fact that the typing systems of the underlying λ-calculi are in Natural Deduction style,
and rules and proofs are faithfully represented by λ-terms, following the judgements-as-
types paradigm [HHP93]. As it is well-known, Natural Deduction style systems are more
suited to the practical usage, since they allow for developing proofs the way mathemati-
cians normally reason.1

These type theories have been implemented in logic-independent systems such as Coq

[CCF+95], LEGO [LPT89], and ALF [MN94] (we recall also the language Elf [Pfe89],
which adds to the type-theoretic approach of the Edinburgh Logical Framework the proof
search machinery of logic programming). These systems can be readily turned into inter-
active proof development environments for a specific logic: we need only to provide the
specification of the formal system (the signature), i.e. a declaration of typed constants cor-
responding to the syntactic categories, term constructors, judgements, and rule schemata
of the logic. It is possible to prove, informally but rigorously, that a formal system is
correctly, adequately represented by its specification in the Logical Framework.

1Indeed, the Natural Deduction style has been introduced by Gentzen because it “reflects as accurately
as possible the actual logical reasoning involved in mathematical proofs” [Gen69].

1.2. Aims of this thesis 7

1.2 Aims of this thesis

As soon as a human program verifier, overwhelmed by lots of tedious and error-prone
details in using formal systems “by hand”, discovers the flexibility and potentialities of
Logical Frameworks, he wonders whether these tools can simplify his task.

A deep investigation of the applicability of Logical Frameworks, both theoretical and
practical, for encoding formal systems of programs is in order. Bearing in mind the prob-
lems we encounter in reasoning about programs, many questions naturally arise, including
(but not limited to) the following:

• can Logical Frameworks be fruitfully applied in reasoning about properties of pro-
grams (such as correctness, termination, equivalences, etc.)?

• how to deal with the problems one will face in encoding a program logic in a Logical
Framework (such as representation of program variables, implementation of non-
standard substitutions, etc.)?

• what can be delegated to the metalanguage, taking advantage of the metalogical
features of Logical Frameworks (e.g., schematicity of formulæ and rules, substitution
via higher-order abstract syntax)?

• among many encoding solutions, what is the best suited for a particular logic? and
on the other hand, what is the “best formulation” (Hilbert-, Natural Deduction-,
sequent-style) for a program logic, for being represented in a Logical Framework?

This thesis aims to address these questions. The main aim is to streamline the process
of encoding logical theories of languages and programs, in type theories (namely, in the
Calculus of Inductive Constructions), understanding how and at what extent we can take
advantage of the features of the metalanguage. Many problems that generally arise in
formalizing program logics in Logical Frameworks will be described, discussing and com-
paring possible solutions.

As for any logic and proof system, in formalizing a formal system for a programming
language, we can isolate two parts. The first is the theory of expressions, that is the (ab-
stract) language of the formal objects which we will deal with: programs, terms, formulæ,
etc. The second part is the theory of proofs, that is the formal systems representing the
semantics of the language.

In the area of formal systems for programs and programming languages, both these
parts often present many idiosyncrasies which clash with the structural properties of the
metalanguage of Logical Frameworks; these include (but are not limited to) negative
formulæ constructors, complex notions of instantiation and substitution, context-sensitive
grammars, typing systems,2 infinitary formulæ, polyadic binding constructors, subsorting,
equivalence theories of expressions, infinitary rules, rules with weird side conditions, and
so on. Most of the times, these anomalies escape the “standard” representation paradigm
of Logical Frameworks.

The solution proposed in this thesis is that in order to get the best result, both aspects
of Logical Frameworks and of formal systems need to be faced. On the hand of Logical

2These conditions are sometime called static semantics.

8 Chapter 1. Introduction and Motivations

Frameworks, we need to develop and investigate new efficient representation techniques.
On the other hand, the metalogical features of Logical Frameworks have a retrospective
effect on the design and development of formal systems themselves. Logical systems given
a priori, without bearing in mind their usage in a proof assistant, may be of difficult
encoding and usage, pratically. Often, a complete reformulation is needed, in order to
simplify the encoding process and the subsequent usage. This reformulation process will
interest both the syntactic and the deduction part of the formal system.

Since generated editors allow the user to reason “under assumptions”, the designer of
a proof editor for a given logic is urged to look for a formulation of the logic which can
take best advantage of the possibility of manipulating assumptions. This study takes us
into truly metatheoretic and encoding-independent issues, such as the investigation of the
crucial concept involved in discussing the notion of assumption for a given logic, i.e. the
notion of consequence relation. Consequence relations are formal representations of logical
dependencies between assumptions and conclusions. They play a crucial rôle in stating
and proving the adequacy of encodings in Logical Frameworks. Usually, a logic gives rise
to more than one consequence relation. Before building an editor for a given logic, the
designer/implementor has to clarify two equally important, apparently orthogonal, issues.

• Which consequence relation is the one to focus on?

• Which style of presentation is best for actually “using” the logic, e.g. Hilbert,
Natural Deduction or Gentzen (sequent) style?

In the methodology of Logical Frameworks, answering the first question amounts to decide
which judgements to encode. Experience shows that Natural Deduction style systems are
best suited for exploiting the reasoning power of assumptions provided by Logical Frame-
works. Therefore, we will emphasize the importance of assumptions by introducing new
proof systems, in Natural Deduction style, for the logics presented in this thesis. These
Natural Deduction-style systems allows us also to introduce another neglected metatheo-
retic issue, that of proof-theory of program logics.

1.3 Motivations

The aims of this thesis are both theoretical and practical.
As we have already pointed out before, an encoding can be immediately embedded in

a proof environment, providing a human verifier/developer of programs of a computerized
interactive proof editor. Even, in the case that decidability and complexity of proof search
is not prohibitive, it is possible to utilize the encoding as a logic program in a type-theory
based theorem prover, such as Elf [Pfe89]. For instance, a specification in the Edinburgh
Logical Framework of an operational semantics yields directly a prototype interpreter for
the specified language [MP91, Mic94].

An objection one may raise to this approach is that proof editors generated by means
of Logical Frameworks are not so efficient as some special-purpose editors, which are those
especially designed and tailored to a specific logic. Nevertheless, Logical Frameworks can
be very useful for many theoretical and practical reasons.

The first, immediate use of Logical Frameworks is as “logic specification languages”, in-
dependently from any practical application. This has several consequences. The encoding

1.4. Synopsis 9

in a Logical Framework often provide the “normative” formalization of the formal system
under consideration. The specification methodology of Logical Frameworks, in fact, forces
the user to make precise all tacit, or informal, conventions, which always accompany any
informal presentation of a logic.

Secondly, Logical Frameworks provide a common medium for integrating different sys-
tems into the same formalism. From a theoretical point of view, this allows for investigating
the connections and similarities between systems which are usually kept disjoint. From a
practical point of view, generated editors rival special-purpose editors when efficiency can
be increased by integrating independent logical systems. This is not possible in special-
purpose editors, since they are not easily extendible by adding other systems beside the
one they implement.

Thirdly, the interactive environments obtained by specifications are natural, in the
sense that they implement the formal system, and not some other presentation, of the
original logic. The same derivations and proofs one can carry out with pencil and paper,
can be carried out in the proof environment, interactively and with no possibility of errors.
A user of the original proof system can transfer immediately to these implementations his
practical experience and “trade tricks.” Therefore, he is not forced upon by the overhead
of unfamiliar or indirect encodings, as would editors derived from, say, FOL editors via an
encoding. As we have already pointed out, these latter editors force the user to deal with
semantics aspects of the logics, and which do not belong to the original formal system.

Moreover, the wide conceptual universe provided by Logical Frameworks allows, on
various occasions, to device genuinely new presentations of formal systems. As we have
pointed out before, one of the main improvement that Logical Frameworks based on Type
Theory directly give rise is the introduction of proof systems in Natural Deduction style.
This yields both theoretical and practical advantages. From the theoretical point of view,
these presentations are interesting independently from their encoding/implementation,
since they give us the possibility of exploring metatheoretic issues of program logics,
which usually are neglected (proof theory, infinitary completeness, multiple consequence
relations, etc.). From the practical point of view, generated editors allow the user to reason
“under assumptions” and go about in developing a proof the way mathematicians normally
reason: using hypotheses, formulating conjectures, storing and retrieving lemmata, often
in top-down, goal-directed fashion.

Beside these practical and theoretical motivations, this work can give insights in the
expressive power of Logical Frameworks. The field of Computer Aided Formal Reasoning
is a very active area, and Logical Frameworks and their implementations are still under
development. This work can elighten strong and weak points of the use of Logical Frame-
works and their implementations (more specifically, of CIC and Coq) in connection with
program logics, giving suggestions for their improvement. A great effort is also put into
the implementation and the development of user friendly interfaces proof editor based on
Logical Frameworks. This thesis can give insights in the pragmatic problems connected
with the use of these environments.

1.4 Synopsis

The thesis consists of four parts.

10 Chapter 1. Introduction and Motivations

1.4.1 Part I: General Metatheoretic Issues

The first part is devoted to the analysis of the basic concept which are involved in defining
the two main components of a logic, i.e. the syntax of the language and the consequence
relation. This analysis will be useful in investigating the properties of the logical system
in view of their implementation/specification (Parts II, III).

In Chapter 2 we recall briefly a general theory of expressions, inspired by Martin-Löf
theory of arities. In particular, we recall the principle of higher-order abstract syntax, which
is a fundamental approach to the treatment of binding operators and bound variables.

In Chapter 3 we provide an introduction to consequence relations as the main metathe-
oretic tool in investigating the entailment relation established by semantics and proof sys-
tems. They are also of great releavance in stating and proving the adequacy of encodings
of proof systems in Logical Frameworks. Classic approaches to consequence relations (e.g.
Avron’ simple consequence relations and Aczel’ schematic consequences [Avr91, Acz94])
do not fit very well to the proof systems of Part II. The logics we deal with, indeed,
present some uncommon features, such as nonstandard notions of substitutions or proof
systems which allow for infinitary derivations and deal with many entailment notion be-
tween formulæ at the same time. In this chapter we introduce the semantical counterpart
of these systems, namely the multiple, infinitary consequence relations. Finally, we will ex-
tend the standard notions of substitution by introducing the nondeterministic substitution
schemata.

1.4.2 Part II: The Object Logics

In this second part, we study the style of Natural Deduction and the possibility of pre-
senting in ND-style the logical systems of a set of paradigmatical logics of programs:

• Structural and Natural Operational Semantics (Chapter 4);

• Modal Logics (Chapter 5);

• Propositional Dynamic Logic (Chapter 6);

• First Order Dynamic Logic (Chapter 7);

• Hoare Logic (Chapter 8);

• µ-calculus (Chapter 9).

The study of the above systems leads us to address problematic issues such as

• the presence of “modal” formula constructors and proof-rules;

• the presence of infinitary proof rules;

• complex notions of instantiations, due to the duality of identifiers used both as
program and logical variables;

• the presence of negative formulæ constructors;

• the presence of context-sensitive conditions on the applicability of syntactic con-
structors.

1.4. Synopsis 11

We will address and discuss solutions to these problems, which arise when facing most
program logics. The solutions we will propose for these problematics are orthogonal, in
the sense that they can be applicable independently from each other.

Many of these issues (such as the definition of Natural Deduction style proof systems,
discussions on various kinds of modalities, on infinitary systems, comparison of several
notions of completeness) are essentially theoretical, and indepented from the fact that we
are going to encode these systems. Therefore, we have preferred to treat them on their
own, keeping apart from the issues related to the encoding paradigm.

In Chapter 4 we will study, from a logical point of view, how to take advantage of the
Natural Deduction style for representing concisely operational semantics. As we will see,
this has both theoretical and practical advantages. This study yields the introduction of
the Natural Operational Semantics style of presentation, and the bookkeeping technique.
We discussion in detail the applicability and expressive power of this technique; we present
a complete case study by examining a functional language extended with truly imperative
features such as assigments and procedures.

Apart from Chapter 4, each of the later chapters of this part is structurated in the
same manner, as follows:

• Definition of syntax and semantics of the logic under consideration;

• Definition of the semantic counterpart of proof systems, that is, the consequence
relations for the logic and the related completeness notions;

• Definition of Natural Deduction style proof systems for representing the introduced
consequence relations, with proofs of their adequacy;

• Related work, proof theory, and applications.

1.4.3 Part III: The Theory of Formal Representation

In the third part, we will discuss in detail the encoding of the systems presented in the
previous part.

We begin the part with an introduction to Logical Frameworks based on type-theory
(Chapter 10). In this chapter, we recall the class of Pure Type Systems, introducing also
a Gentzen-style version of PTS’s (Section 10.1). A paradigmatical Logical Framework is
the Edinburgh Logical Framework, which we present in Section 10.2. In Section 10.3 we
briefly recall the features of the logical framework we will use subsequentally, that is, the
Calculus of Inductive Constructions.

In the following chapters, we will face–in an incremental manner–the problematic is-
sues of encoding program logics. Each chapter will focus on specific problematic issues,
addressing some possible solutions; the techniques and solutions presented at some point
can be used in the following, whenever needed.

We will start from a detailed account of the “judgements-as-types” paradigm (Chapter
11). In particular, we examine the feasibility of higher-order abstract syntax and inductive
definitions. We will see that, although they are usually adopted in paradigmatical encod-
ings, their application in the case of program logics is very limited. We will discuss some
possible solutions. Finally, we briefly discuss other problems which arise in connection
with context-sensitive conditions on languages, and in presence of subsorts.

12 Chapter 1. Introduction and Motivations

In Chapter 12 we will deal with the encoding of operational semantics, in particular
the Natural Operational Semantics paradigm.

In the following chapters we focus on the representation of complex properties of proof
systems in the Calculus of Constructions.

• in encoding Modal Logics we discuss how to represent modalities and proof rules
(Chapter 13);

• in encoding Propositional Dynamic Logics we focus on the representation of infinitary
proof systems (Section 14.1);

• in encoding (First-Order) Dynamic Logics we focus on the problems arised by the
dual nature of identifiers, and the clash between logical and program variables (Sec-
tion 14.2);

• in encoding the µ-calculus, we discuss the problems arised by context-sensitive con-
ditions on formulæ, and negative formula constructors in proof systems (Chapter
15).

In each of these chapters we will present the encoding signature and the related theorems
which prove its adequacy with respect to the represented logic.

A complete, exhaustive discussion of every problem one may encounter in view of the
specification of any program logic is out of the scopes of this thesis; for instance, we will
not treat polyadic bindings, or discuss the logical representation of denotational semantics.
We will briefly recall these and some others possible future works in Chapter 18.

1.4.4 Part IV: Pragmatics

The fourth and final part is devoted to the discussion of some pragmatical issues con-
cerning the experiments carried out in the proof environment Coq. We will describe the
implementation of finitary and infinitary proof systems for Dynamic Logic (Chapter 16)
and the implementation of µ-calculus (Chapter 17). Some examples of derivations carried
out formally in the machine are described. These examples include the derivation of Hoare
Logic in Dynamic Logic, and the proof of equivalence between some simple programs.

Prerequisites.

No particular knowledge is presupposed for Part I.
Some knowledge of the operational and axiomatic semantics of programming languages,

and of the Natural Deduction style, is advisable for reading Part II.
Some knowledge of the theory of typed λ-calculi, of Logical Frameworks and specifically

of the Calculus of Inductive Constructions would be useful in reading Part III.
Finally, Part IV is addressed to whom is concerned by the pragmatic issues of the

specific Coq proof environment. A good knowledge of the Coq system is advisable.

Part I

General Metatheoretic Issues

13

Chapter 2

A theory of arities

In this chapter, we give a general description of the language of an object logic. We follow
Martin-Löf’s theory of arities [NPS90]. It is worthwhile noticing that, from our point of
view, syntactic objects are labelled trees (parsing trees), and not strings of symbols.

Definition 2.1 (Syntactic Sorts and Variables) A set of symbols C is a set of (syn-
tactic) sort constructors if each symbol c ∈ C is associated to a natural number n; we
denote this fact by cn ∈ C. The number n is said the arity of c.

The set Sorts of (syntact) sorts on a set C of sort constructors is defined inductively
as follows:

• 0-ary sorts constructors are syntactic sorts;

• if cn ∈ C and S1, . . . , Sn are sorts, then c(S1, . . . , Sn) is a sort.

A sort S contains variables if it is associated to a set V arS of countably infinite symbols.
Each element x ∈ V arS is called a variable (of sort S), and it is said to range over the
sort S.

Notice that a sort may contain no variables; this is the case, for instance, of the sort of
formulæ in first order logic.

Definition 2.2 (Arities) The set of arities Arit on Sorts and their levels are defined
inductively as follows:

• each sort S ∈ Sorts is an arity; its level is 0;

• for α1, . . . , αn ∈ Arit and S ∈ Sorts, then (α1, . . . , αn) → S is an arity; its level is
1 + max{α1, . . . , αn}.

Definition 2.3 (Expressions) A set of symbols E is a set of expression constructors for
the sorts Sorts if each symbol e ∈ E is associated to an arity α ∈ Arit on Sorts; we denote
this fact by eα.

The set of expressions Expr defined by E for the sorts Sorts, and their arities, is
defined inductively as follows:

• if x is a variable of sort S then x is an expression of arity S.

15

16 Chapter 2. A theory of arities

• for S ∈ Sorts and α1, . . . , αn ∈ Arit if f ∈ E has arity (α1, . . . , αn) → S, and
e1, . . . , en are expressions or arity α1, . . . , αn, respectively, then f(e1, . . . , en) is an
expression with arity S.

• if e is an expression of arity S of level 0, and x1, . . . , xn are variables of ari-
ties S1, . . . , Sn (of level 0) respectively, then (x1, . . . , xn)e is an expression of arity
(S1, . . . , Sn) → S.

In the last clause, any free occurrence of x1, . . . , xn in e is bound. Two expressions which
are equal up to renaming of bound variables are the same expression (α-equivalence).

Let X = {xS1

1 , . . . , xSn
n } a finite sequence of variables. We denote by ExprX the set of

expressions with free variables in X; for S ∈ Sorts, we denote by SX the set of expressions
of arity S with free variables in X.

It is worthwhile noticing that every binding constructor of any object language is
defined formally as an expression constructor of arity greater than 0. This allows us
to take care of many binding constructors uniformly, by delegating every object-level α-
conversions to the only α-equivalence of higher-order arities.

Example 2.1 Consider the following standard first-order language:

Term : t ::= 0 | x | s(t) | t1 + t2

Φ : ϕ ::= ff | t1 = t2 | ¬ϕ | ϕ1 ∨ ϕ2 | ∀xϕ

where x ranges over a set of first-order variables, Var.
This language is composed by two sorts: the sort of terms, which contains variables,

and the sort of formulæ, which does not. Therefore, this language can be fully described
by specifying:

• the sort constructors: S = {Term0,Φ0}. In this case, S = Sorts because there are
no higher-order sort constructors;

• the sorts with variables: V = {Term}. The associated variable set is Var;

• the expression constructors, each with its arity.

Constr. Arity Constr. Arity

0 : Term ff : Φ
s : Term → Term = : (Term,Term) → Φ
+ : (Term,Term) → Term ¬ : Φ → Φ

∨ : (Φ,Φ) → Φ
∀ : (Term → Φ) → Φ

Hence, a formula of the form ∀x.ϕ should be written more formally as “∀((x)ϕ)”,
since (x)ϕ is an expression of arity Term → Φ. Notice that the level of the arity
of “∀” is 1, while the other arities are of level 0. For this reason, “∀” is called a
higher-order constructor.

ut

A complete description of the language of a logic is therefore obtained by specifying
the sort constructors, the sorts with variables and the expressions constructors:

17

Definition 2.4 (Alphabet) The alphabet of a logic is a triple 〈C,V, E〉 where

• C is a set of sort constructors;

• V is a subset of the sorts on C, denoting the sorts containing variables; for each
S ∈ V, let V arS be the set of its variables;

• E is a set of (pairs of) expression constructors on the sorts on C, together with their
arities.

The examples of object languages we shall deal with will be, in general, multi-sorted
and will have higher-order expression constructors. The practice of representing bind-
ing constructors by means of higher-order expression constructors is called higher-order
abstract syntax [PE88, HHP93, NPS90], and plays a fundamental rôle in the formal rep-
resentation of languages (Chapter 10).

18 Chapter 2. A theory of arities

Chapter 3

Consequence Relations

An important notion in the presentation of a logic is that of consequence relation, also
known as “logical consequence”. A Consequence Relation is an abstract representation
of the logical dependencies between assumptions and conclusions. This notion goes back
to Tarski and was taken as the fundamental one by Gentzen [Gen69] and any subsequent
treatment of Logics.

Consequence relations are important in studying proof systems which allow for reason-
ing under assumptions. In fact, these systems naturally provide a “consequence” notion,
namely the one represented by derivability, that is “what follows from what”. Hence, these
systems cannot be completely understood without giving a semantic counterpart to the
syntactic notion of “derivability”.

The aim of this chapter is to give an insight into the main issues concerning consequence
relations. In Section 3.1, we introduce the notion of Simple Consequence Relation; we
discuss how a consequence relation can be defined in an abstract way (e.g. by means of
a semantics, Section 3.1.1) and represented by a proof system (Section 3.1.2). In Section
3.1.3 we provide, as examples, a wide range of consequence relations which can be defined
on Propositional Logic, First-Order Logic and Propositional Modal Logic.

In Section 3.2 we will discuss the notion of schematicity. This notion is particularly
important for two reasons: firstly, logics are usually given by means of schemata (of rules
and axioms), and secondly encodings of logics in type-based Logical Frameworks are built
upon a particular kind of schematicity of rules (Section 11.1.)

In Section 3.3 we will generalize this definition to the notion of Multiple Consequence
Relation. This generalization is needed in order to give an abstract interpretation of
“multi-judgement” proof systems such as those arising in the encoding of many logics (such
as modal logics, Dynamic Logics, operational semantics, etc.) in Logical Frameworks.

Finally, in Section 3.4 we briefly recall the Natural Deduction style of presentation of
proof systems.

3.1 Simple Consequence Relations

We begin with a simple abstract notion of consequence relation, which will then generalize.
Our definitions differ from, although they are inspired by, those of Avron and Aczel [Avr91,
Acz94]. In the following, by “set of formulæ” we mean any r.e. (syntactic) set.

19

20 Chapter 3. Consequence Relations

Definition 3.1 (Simple Consequence Relation) Let Φ be a set of formulæ. A (sim-
ple, single conclusioned) consequence relation (SCR) � on Φ is a monotone, reflexive and
transitive binary relation1

� ⊆ Pre(Φ)× Φ:

reflexivity: ∀A ∈ Φ : {A}�A;

transitivity: for Γ1,Γ2 ∈ Pre(Φ), A,B ∈ Φ, if Γ1 �A and Γ2∪{A}�B then Γ1∪Γ2 �B;

monotonicity: for Γ1,Γ2 ∈ Pre(Φ), A ∈ Φ, if Γ1 �A then Γ1 ∪ Γ2 �A.

In the following, we will drop the “set notation,” and we will write A for {A}, Γ1,Γ2 for
Γ1 ∪ Γ2. . .

Some remarks are in order. Our definition 3.1 is different from both Avron’s and
Aczel’s [Avr91, Acz94]. We consider (possibly infinite) r.e. sets of formulæ as antecedents
and a single formula as consequence, instead of finite multisets on both sides [Avr91], or
finite sets of assumptions [Acz94]; moreover, we require CR’s to be monotone. We make
these choices in view of the structural rules of the Logical Frameworks we focus on. In fact,
as we will see, the structural features of Logical Frameworks based on type theories lead
us to consider systems in Natural Deduction style [Pra65]. These systems are intrinsically
monotone (they admit the “weakening” rule) and treat assumptions as sets. In these
cases, therefore, the definition we have given has enough expressive power, without being
overwhelmed by the treatment of multisets and other even more complex structures. Of
course, there are many other logics (e.g. Girard’s linear logic [Gir87a]) which cannot be
fully understood without a finer treatment of assumptions, such as the one provided by
multisets (or even more by lists, as Gentzen implicitly did [Gen69]). On the other hand,
we allow for infinite sets of assumptions, since some of the systems we will introduce are
infinitary. We require however these sets of assumptions to be recursively enumerable,
and hence images of a primitive recursive function from N to Φ.

3.1.1 Free Consequence Relations from Semantics

There are two principal ways for defining consequence relations over a logic: effectively or
non-effectively. In the first case, we provide a method for checking when a given formula
is a consequence of a given set of assumptions. Typically, these methods are specified by
means of proof systems (see the next subsection for more details.) Here, we focus on the
latter case, that is when CR’s are defined by means of non-effective characterization. Typ-
ical examples are definitions involving abstract mathematical structures, i.e. the models
of the logic. These consequence relations are usually intended as semantic consequences.
By convention, semantic consequence relations are denoted by “double turnstile” symbols,
like “|=.”

In the literature, these consequence relations have been defined semantically in many
different ways. It turns out that most of them can be subsumed in the following general
construction:

Definition 3.2 (Free Consequence Relation) Let 〈D,v〉 be a complete lattice, and

[[·]] : Φ → D a semantics for Φ in D; let [[Γ]]
def
= uA∈Γ[[A]].

1At this point, we prefer the symbol �, since |= and ` will denote particular kinds of consequence
relations (respectively, those defined by means of semantic notions and proof systems).

3.1. Simple Consequence Relations 21

The free consequence relation |= on [[·]] is defined as Γ |= A ⇐⇒ [[Γ]] v [[A]].

It is easy to see that a free consequence relation is a simple consequence relation. Reflex-
ivity and monotonicity are trivial. For transitivity, suppose Γ |= A and Γ, A |= B. Then,
by definition [[Γ]] v [[A]] so [[Γ]] = [[Γ]] u [[A]] = [[Γ, A]] v [[B]] and hence Γ |= B.

We will see that most important consequence relations (such as, for instance, those of
the systems of Part II) are in fact free CR’s.

Remark 1. The adjective “free” is suggested by the categorical viewpoint. Indeed, the
semantics [[·]] induces naturally an axiomatic system 〈Φ, {〈Γ, A〉 | [[Γ]] v [[A]]}〉. The free
consequence relation on [[·]] is then the reflection of this axiomatic system, through the left
adjoint of the inclusion functor of the category of Consequence Relations in the category
of Axiomatic Systems (see [Acz94, Proposition 1], for the definition of these adjoints).
Such reflections are usually called “free constructions” (e.g. free monoids from sets are
reflections of sets in the category of monoids).

Remark 2. The need of complete lattices may be not so evident, at first. In the defini-
tion, instead of complete lattices we could consider meet semilattices just as well; however,
since we need to give a semantics to infinite sets of formulæ, the image of [[·]] has to be a
complete meet semilattice. Now, a complete meet semilattice is always a complete lattice:

just define ⊥
def
= u[[Φ]] and tA

def
= u{x | ∀y ∈ A.y v x}. Therefore, the image of [[·]] has to

be a complete lattice even if D may be not. Now, points of D which are not in the image
of the semantics are not significant; therefore, without loss of generality, we can restrict
our attention to surjective semantics maps and hence to complete lattices.

3.1.2 Effective Consequence Relations

Usually, due to their non-effective nature, semantic CR’s are neither useful for carrying
out derivations, nor representable in a machine. They are just declaring “what follows
from what.” For these reasons, we aim to represent a semantic CR by means of another
consequence relation, which is defined by effective tools.

Definition 3.3 (Representation) Let Φ be a set of formulæ. A representation of a CR
|= on Φ is a method for defining a CR ` on Φ which is

• sound with respect to |=, that is `⊆|=;

• effective, that is, for Γ ∈ Pre(Φ), A ∈ Φ, given an evidence representing the fact that
Γ ` A, then such an evidence can be mechanically checked.

A representation is complete with respect to |= if it is sound and moreover `⊇|=.

These methods are usually defined by means of proof systems or tableaux. Indeed, a
proof system S is nothing but a means for defining a CR which approximates a semantic
consequence relation. Such an “effective” CR is seen as “syntactic”, and it usually is
denoted by a “single turnstile” symbol like “`S”.

22 Chapter 3. Consequence Relations

3.1.3 Noteworthy Examples

We give now some important examples of Consequence Relations. These examples will be
useful later.

Consequence Relations for Propositional Logics

Let Φ be a propositional language, and Φ0 ⊆ Φ the set of atomic propositions (the variables
of Φ). Let Γ range over sets of formulæ. Semantics of Φ is given in terms of propositional

environments: truth assignments to atomic propositions PropEnv
def
= Φ0 → {⊥,>}. A

propositional environment ρ ∈ PropEnv is then compositionally extended to formulæ and
sets of formulæ, in the usual way.

Despite the simplicity of propositional logic and its interpretation, many consequence
relations arise; here we present only those we are interested in. Let Γ ⊆ Φ, and ϕ ∈ Φ, we
define

• let ρ ∈ PropEnv; the (propositional) truth CR with respect to ρ is

Γ |=ρ ϕ ⇐⇒ (ρ(Γ) = > ⇒ ρ(ϕ) = >)

• the (propositional) truth CR is |=
def
=
⋂

ρ∈PropEnv |=ρ; in other words,

Γ |= ϕ ⇐⇒ ∀ρ.ρ(Γ) = > ⇒ ρ(ϕ) = >

• let ρ ∈ PropEnv; the (propositional) validity CR is

Γ ||= ϕ ⇐⇒ (∀ρ.ρ(Γ) = >) ⇒ (∀ρ.ρ(ϕ) = >)

Other consequence relations arise if we restrict quantifications to subsets of PropEnv,
instead of taking care of any environment. For instance, in FOL with equality, the atomic
predicates “t1 = t2” have a precise meaning, and cannot be interpreted freely. From a
propositional point of view, this correspond to limit the range of quantifications to the
environments that correctly interpret “t1 = t2” as an equality statement.

The propositional truth CR’s are at the base of the usual notions of consequence. For
instance, a model for a First-Order Logic is composed by the domain of individuals and
the evaluation of relational symbols. Therefore, the choice of a precise model corresponds
to choose a precise interpretation of atomic formula, which, from a propositional point of
view, play the rôle of atomic propositions. First-order logical consequences in a specific
model are hence truth propositional consequences with respect to a specific propositional
environment. On the other hand, the consequences with respect to the whole class of mod-
els are truth consequences with respect to the whole class of propositional environments.

Propositional validity CR’s are less common. An example is the global consequence
for modal logics [vB83, Definition 2.32]. Let Φ a modal language, and F range over
frames. A formula ϕ is valid in a frame F (F |= ϕ) if for every assignment to propostional
symbols, ϕ holds in every world of the frame. A formula ϕ is a global consequence of Γ if
∀F.F |= Γ ⇒ F |= ϕ.

Actually, propositional truth and validity CR’s can be defined as free consequence
relations of suitable semantics of formulæ.

3.1. Simple Consequence Relations 23

Proposition 3.1 Let Φ a propositional language, and let ρ range over the set PropEnv
of environments for Φ. Then,

• |=ρ is the free CR relative to ρ, in the two-points lattice;

• |= is the free CR relative to the semantics (in the lattice 〈P(PropEnv),⊆〉)

[[·]] : Φ → P(PropEnv)

ϕ 7→ {ρ | ρ(ϕ) = >}

• ||= is the free CR relative to the semantics

[[·]] : Φ → {⊥,>}

ϕ 7→
∧

ρ∈PropEnv

ρ(ϕ)

Consequence Relations for First-Order Logics

In a first-order language L, there are two basic syntactic sorts:

• the terms, T , ranged over by t, u; a particular subset Var ⊂ T of atomic terms are
the (object) variables.

• the formulæ, Φ, ranged over by ϕ,ψ.

Let Γ range over sets of formulæ. Semantics of first order languages is given in terms
of first-order structures. Let M = 〈D, . . .〉 be a first-order structure for Φ, and ρ :
Var → D an environment (a value assignment for variables); then, the interpretations of
terms and formulæ are two functions [[·]]Mρ : T → D and [[·]]Mρ : Φ → {⊥,>}, defined
compositionally on the syntax. Interpretation of formulæ is extended to sets of formulæ
in the obvious way.

From these syntactic and semantic definitions, two main classes of Consequence Rela-
tions arise, accordingly to how we intend the meaning of free variables in formulæ. Even
more choices arise when we restrict our interpretation to only one model, or a class of
structures. We give the following general definitions:

Definition 3.4 Let L = 〈T,Φ〉 a first-order language and [[·]]M its interpretation, as
above. We define

Truth CR’s: a.k.a. local logical consequences:

• the truth CR with respect to M is

Γ |=M ϕ ⇐⇒ (∀ρ.[[Γ]]Mρ = > ⇒ [[ϕ]]Mρ = >)

• let Λ be a set of first-order structures for L; the truth CR with respect to Λ is

Γ |=Λ ϕ ⇐⇒ (∀M ∈ Λ∀ρ.[[Γ]]Mρ = > ⇒ [[ϕ]]Mρ = >)

24 Chapter 3. Consequence Relations

• the truth CR is |=
def
=
⋂

M |=M, where M ranges over all the first-order struc-
tures (of the right signature); in other words,

Γ |= ϕ ⇐⇒ ∀M∀ρ.[[Γ]]Mρ = > ⇒ [[ϕ]]Mρ = >

Validity CR’s: a.k.a. global logical consequences:

• the validity CR with respect to M is

Γ ||=M ϕ ⇐⇒ (∀ρ.[[Γ]]Mρ = >) ⇒ (∀ρ.[[ϕ]]Mρ = >)

• let Λ be a set of first-order structures for L; the validity CR w.r.t. Λ is

Γ ||=Λ ϕ ⇐⇒ ∀M ∈ Λ.(∀ρ.[[Γ]]Mρ = >) ⇒ (∀ρ.[[ϕ]]Mρ = >)

• the validity CR is ||=
def
=

⋂

M ||=M, where M ranges over all the first-order
structures (of the right signature); in other words,

Γ ||= ϕ ⇐⇒ ∀M(∀ρ.[[Γ]]Mρ = >) ⇒ (∀ρ.[[ϕ]]Mρ = >)

As an example of interesting class of structures, consider the class PA of structures
for Peano Arithmetic, or even the only standard model (N).

We may wonder how to represent any of these abstract CR by means of a proof system.
Actually, representations of a truth CR can be very different from those of the correspond-
ing validity CR. For instance, the generalization rule ϕ

∀xϕ is unsound with respect to |=; in
order to represent truth CR’s we need to add the well-known “freshness condition” on x.
Moreover, apparently similar CR’s, such as |=PA and |=N , may yield completely different
proof systems—indeed, there is no finitary proof system complete with respect to |=N , as
Gödel proved.

Both truth and validity consequence relations can be defined as free consequence rela-
tions of suitable semantics of formulæ.

In truth consequence relations, differently from validity CR’s, also assumptions which
does not hold only in every environment, are relevant. In fact, we are interested in the set
of assignments which enforce a formula to hold. The right semantic space for these CR’s
is the powerset of the environment space:

Proposition 3.2 Let M = 〈D, . . .〉 a first order structure for Φ, and EnvM = Var → D

the set of environments on M. Consider the lattice 〈P(EnvM),⊆〉, and define [[ϕ]]′M
def
=

{ρ | [[ϕ]]Mρ = >}. Then, |=M is the free consequence relation on [[·]]M.

Let Λ a set of models; and define DΛ
def
= 〈D,v〉, where

• D
def
=
∏

M∈Λ P(EnvM);

• d1 v d2 ⇐⇒ ∀M ∈ Λ.d1(M) ⊆ d2(M);

• (uA)(M)
def
=
⋂

{d(M) | d ∈ A};

• >(M)
def
= EnvM.

3.1. Simple Consequence Relations 25

Let [[·]]′Λ
def
= {〈M, [[ϕ]]′M〉 | M ∈ Λ}. Then, |=Λ is the free consequence relation on [[·]]′Λ.

In particular, for Λ =the set of all first-order structures, the free consequence relation on
[[·]]′Λ is |=.

On the other hand, validity CR’s have an “all or nothing” flavour. A formula either is
a theorem (it holds in every environment), or it is not. We do not take care of differences
among formulæ which are not theorems: from the validity point of view, “x = 0” and
“false” mean the same. The right semantic space for these CR’s is the two-points lattice:

Proposition 3.3 Let M = 〈D, . . .〉 a first order structure for Φ, and EnvM = Var →
D the set of environments on M. Consider the 2-point lattice 〈{⊥,>},u〉, and define

[[·]]′′M
def
=

{

> if ∀ρ.[[ϕ]]Mρ = >
⊥ otherwise.

Then, ||=M is the free consequence relation on [[·]]′′M.

Let Λ a set of models; and define the lattice DΛ
def
= 〈D,v〉, where

• D
def
= Λ → {⊥,>};

• d1 v d2 ⇐⇒ ∀M ∈ Λ.d1(M) ≤ d2(M);

• (uA)(M)
def
= u{d(M) | d ∈ A};

• >(M)
def
= >.

Let [[·]]′′Λ = {〈M, [[ϕ]]′′M〉 | M ∈ Λ}. Then, ||=Λ is the free consequence relation on [[·]]′′Λ.
In particular, for Λ =the set of all first-order structures, the free consequence relation on
[[·]]′′Λ is ||=.

Consequence Relations for Propositional Modal Logics

In modal logics, two further kinds of CR’s arise, according to whether we consider conse-
quence with respect to worlds or frames.

Let Φ a propositional modal languages, such as ϕ ::= p | ¬ϕ | ϕ ∧ ψ | 2ϕ, where p
ranges over propositional variables Φ0. In terms of arities, this language is defined by the
following alphabet:

S = V = {Φ}

E = {¬Φ→Φ,∧(Φ,Φ)→Φ,2Φ→Φ}

Semantics of modal logics is given on Kripke structures [HC84, vB83]. Let F range over
frames, that is pairs 〈S,R〉 where S is a sets (the states), and R ⊆ S × S is a relation
(the accessibility relation) between states. Let ρ range over environments (functions Φ0 →
P(S)). A model is a pair M = 〈F, ρ〉; the interpretation of a formula ϕ in the model 〈F, ρ〉
is a set of states [[ϕ]]Fρ ⊆ F , defined by induction on the syntax of ϕ. Interpretations are
extended to subsets of Φ:

[[p]]Fρ = ρ(p) [[¬ϕ]]Fρ = S \ [[ϕ]]Fρ [[ϕ ∧ ψ]]Fρ = [[ϕ]]Fρ ∩ [[ψ]]Fρ}

[[2ϕ]]Fρ = {s ∈ S | ∀s′ ∈ S.R(s, s′) ⇒ s′ ∈ [[ϕ]]Fρ} [[Γ]]Fρ =
⋃

ϕ∈Γ

[[ϕ]]Fρ

26 Chapter 3. Consequence Relations

Similarly to what happens with FOL, there are two main classes of Consequence Rela-
tion, truth and validity CR’s, accordingly to whether we require formulæ to hold in every
state or not. (This is not surprising, if we recall how modal logics can be translated in
first order logics.) Even more choices arises when we restrict our interpretation to only
one model, or a class of structures. We give the following general definitions:

Truth CR’s: a.k.a. model local consequences [vB83]:

• the truth CR with respect to M = 〈F, ρ〉 is

Γ |=M ϕ ⇐⇒ ∀w.w ∈ [[Γ]]Fρ⇒ w ∈ [[ϕ]]Fρ

• let Λ be a set of models; the truth CR with respect to Λ is

Γ |=Λ ϕ ⇐⇒ ∀M ∈ Λ.Γ |=M ϕ

• the truth CR is |=
def
=
⋂

M |=M, where M ranges over all modal models.

Validity CR’s: a.k.a. model global consequences [vB83]:

• the validity CR with respect to M = 〈F, ρ〉 is

Γ ||=M ϕ ⇐⇒ [[Γ]]Fρ = S ⇒ [[ϕ]]Fρ = S

• let Λ be a set of models; the validity CR with respect to Λ is

Γ ||=Λ ϕ ⇐⇒ ∀M ∈ Λ.Γ ||=M ϕ

• the validity CR is ||=
def
=
⋂

M ||=M, where M ranges over all modal models.

As an example of interesting class of structures, consider the set of frames whose accessi-
bility relation is transitive, or reflexive, or both. . .

As for previous logics, both truth and validity consequence relations for modal logics
can be defined as free consequence relations of suitable semantics of formulæ. The same
considerations of first-order logics apply, mutatis mutandis.

Proposition 3.4 Let F = 〈S,R〉 a frame, M = 〈F, ρ〉 a modal model for Φ, and [[·]]M
def
=

[[·]]Fρ : Φ → P(S) the semantics of formulæ, defined as above. Then |=M is the free
consequence relation on [[·]]M : Φ → P(S).

Let Λ a set of models; and define DΛ
def
= 〈D,⊆,

⋂

,>〉, where

• D
def
=
∏

M∈Λ P(SM);

• d1 ⊆ d2 ⇐⇒ ∀M ∈ Λ.d1(M) ⊆ d2(M);

• (
⋂

A)(M)
def
=
⋂

{d(M) | d ∈ A};

• >(M)
def
= SM.

3.2. Schematic Consequence Relations 27

Let [[·]]Λ = {〈M, [[ϕ]]M〉 | M ∈ Λ}. Then, |=Λ is the free consequence relation on [[·]]Λ.
In particular, for Λ =the set of all models, the free consequence relation on [[·]]Λ is |=.

Proposition 3.5 Let F = 〈S,R〉 a frame and M = 〈F, ρ〉 a modal model for Φ, and

[[·]]M
def
= [[·]]Fρ : Φ → P(S) the semantics of formulæ, defined as above. Consider the

2-points lattice 〈{⊥,>},u〉, and define [[·]]′M
def
=

{

> if [[ϕ]]M = S
⊥ otherwise.

Then, ||=M is the free

consequence relation on [[·]]′M.

Let Λ a set of models; and define DΛ
def
= 〈D,v,u,>〉, where

• D
def
= Λ → {⊥,>};

• d1 v d2 ⇐⇒ ∀M ∈ Λ.d1(M) v d2(M);

• (uA)(M)
def
= u{d(M) | d ∈ A};

• >(M)
def
= >.

Let [[·]]′Λ = {〈M, [[ϕ]]′M〉 | M ∈ Λ}. Then, ||=Λ is the free consequence relation on [[·]]′Λ. In
particular, for Λ =the set of all models, the free consequence relation on [[·]]′Λ is ||=.

Further consequence relation will be introduced later, in Section 3.2.3, and in Part II.

3.2 Schematic Consequence Relations

Logics are usually described by using axiom and rule schemata; these schemata can be
instantiated in order to get closed (i.e. “particular”) axioms and inference steps. Moreover,
instantiations may themselves be schematic: a derivation composed by schematic rules may
be seen as a derived rule (schemata), which can be further instantiated and applied.

3.2.1 Deterministic and Non-Deterministic Substitutions

We need a syntax-free treatment of instantiation and schematicity. We start from a quite
general approach to substitution, such as Aczel’s [Acz94]:

Definition 3.5 (Deterministic Substitutions) Let Φ be a set of formulæ, and Sub ⊆
ΦΦ. Sub is a set of deterministic substitutions on Φ if it forms a submonoid of 〈ΦΦ, idΦ, ◦〉.
The pair 〈Φ, Sub〉 is called a concrete monoid; the set of concrete monoids is denoted by
CM. For A ∈ Φ, σ ∈ Sub, Aσ is the instance of A under σ.

In this setting we do not commit ourselves to any specific kind of syntax or substitution.
Definition 3.5 is general enough to capture a wide range of usual substitutions (e.g. those
of propositional logics, first-order logics, λ-calculus, Hoare Logic,. . .).

Defining substitutions as functions is a common solution, but it is not always adequate.
Indeed, a substitution function has a deterministic flavour, while, on the contrary, in
many languages and logics substitutions are non-deterministic. For instance, the usual
substitution “ϕ[t/x]” of FOL is nondeterministic, because we require to “rename bound
variables in order to avoid capture,” but we do not specify explicitly how this renaming

28 Chapter 3. Consequence Relations

has to be carried out. Hence, by substituting x for y in ∀x.y we can obtain both ∀z.x and
∀w.x. Of course, each of these formulæ can be seen as the result of applying a specific
substitution function, say [x/y]z and [x/y]w respectively, but in general we do not take
care of these details because they are not relevant at the logical level.

Therefore, we introduce a more general definition of substitution, by defining them as
relations between formulæ:

Definition 3.6 (Substitutions Relations and Schemata) Let Φ be a set of formulæ.
A set Sub ⊆ P(Φ× Φ) is a substitution schema (on Φ) if

• it contains the identity substitution idΦ
def
= {〈A,A〉 | A ∈ Φ} ∈ Sub

• it is closed under relation composition: ∀σ1, σ2 ∈ Sub : (σ1 ◦ σ2) ∈ Sub

We denote by SS the set of pairs 〈Φ, Sub〉.
Each element of a substitution schema is a substitution relation (or simply a substi-

tution).
For A ∈ Φ, σ ∈ Sub, B is the instance of A under σ (written B ∈ Aσ) if AσB.
A substitution is total iff ∀σ ∈ Sub.∀A ∈ Φ : ∃B ∈ Φ.(AσB).
A substitution is deterministic iff ∀A∃!B.AσB. We denote by detSS ⊂ SS the substi-

tution schemata of only deterministic substitution relations.
Substitutions on formulæ can be naturally extended to sets: ∀σ ∈ Sub,∀Γ1,Γ2 ∈ P(Φ),

we define Γ2 ∈ Γ1σ ⇐⇒ ∀B ∈ Γ2∃A ∈ Γ1 : B ∈ Aσ

Notice that each substitution schema is a submonoid of 〈P(Φ × Φ), idΦ, ◦〉, where ◦ is
the usual composition of relations. There is an obvious isomorphism between concrete
monoids and monoids of deterministic substitution relations:

Proposition 3.6 The function

f : CM → detSS
〈Φ, Sub〉 7→ 〈Φ, {{〈A, σ(A)〉 | A ∈ Φ} | σ ∈ Sub}〉

is a monoid isomorphism.

Notation remark. In the following, for sake of simplicity we will write substitution re-
lations in a functional fashion, possibly by composing and nesting inside formulæ. There-
fore, by (Aσ)δ we denote the set of formulæ {B | ∃C ∈ Aσ.B ∈ Cδ}. We will still denote,
however, the set of every possible instance. For instance, in first-order logic we will write
“ϕ[t/x]∧ψ[t/x]” for the set {ϕ′∧ψ′ | ϕ′ ∈ ϕ[t/x], ψ′ ∈ ψ[t/x]}. (In the case of deterministic
substitution schemata, these sets are singletons.)

3.2.2 (Free) Schematic Consequence Relations

We proceed now to formalize the notion of schematicity in consequence relations. A
schematic CR is then simply a CR closed under substitution:

Definition 3.7 (Schematic Consequence Relation) Let Φ be a set of formulæ, and
Sub a substitution schema on Φ. A consequence relation � on Φ is schematic (relatively
to Sub) if it is closed under Sub, i.e. if Γ�A then ∀σ ∈ Sub, ∀Γ′ ∈ Γσ, ∀A′ ∈ Aσ : Γ′�A′.

3.2. Schematic Consequence Relations 29

An interesting case arises when the consequence relation is defined by means of a truth
semantics, via the free construction of Definition 3.2. In this case, schematicity of a free
CR can be reduced to the “monotonicity” of the semantics of substitutions relations with
respect to the order of the semantic lattice.

Definition 3.8 Let [[·]] : Φ → D be a semantics for Φ, and Sub a substitution schema for
Φ.

For σ ∈ Sub, the semantics of σ is the least relation [[σ]] ⊆ D ×D such that ∀ϕ,ψ ∈
Φ : [[ϕ]][[σ]][[ψ]] ⇐⇒ ϕσψ.

The semantics of Sub is the set of relations [[Sub]]
def
= {[[σ]] | σ ∈ Sub} ⊆ D ×D.

Proposition 3.7 Let Φ be a set of formulæ and Sub a substitution schemata on Φ. Let
〈D,v〉 be a lattice, and [[·]] : Φ → D be a semantics of Φ in D. Then, the following are
equivalent:

1. ∀s ∈ [[Sub]]∀d1, d2, e1, e2 ∈ D, if d1se1, d2se2 and d1 v e1, then d2 v d2;

2. the free CR |= on [[·]] is schematic relatively to Sub.

Proof. 1 ⇒ 2. Let Γ |= ϕ and σ ∈ Sub, and let Γ′ ∈ Γσ, ϕ′ ∈ ϕσ; we have to prove
Γ′ |= ϕ′. By definition of [[σ]], [[Γ]][[σ]][[Γ′]] and [[ϕ]][[σ]][[ϕ′]]. By hypothesis 1, we have
[[Γ′]] ⊆ [[ϕ′]], hence the thesis.

2 ⇒ 1. Let |= be schematic relatively to Sub and σ ∈ Sub, and let d1[[σ]]d2 and e1[[σ]]e2.
By definition of [[σ]], there are ϕ1, ϕ2, ψ1, ψ2 ∈ Φ such that [[ϕi]] = di, [[ψi]] = ei for i = 1, 2
(outside the image of [[Φ]], [[σ]] is undefined), and ϕ1σϕ2, ψ1σψ2. Suppose d1 v e1; then,
ϕ1 |= ψ1 and by schematicity of |= we have ϕ2 |= ψ2, that is d2 v e2. ut

Condition (1) above is just a kind of “relational monotonicity.” Indeed, if we consider
deterministic substitution schemata, the condition can be restated as “∀s ∈ [[Sub]]∀d, e :
d v e⇒ s(d) v s(e),” which is nothing but monotonicity of substitution functions.

3.2.3 Noteworthy examples

Most known consequence relations are schematic, in the appropriate sense. In this section
we examine two cases of interest. The first concerns First-Order Logics, where we deal with
the standard notions of schematicity and substitution—this case is particularly relevant,
since most logics feature substitution notions which behave similarly to those of FOL.

In the second case, we deal with First-Order Dynamic Logic. The standard substitution
notions fail for this logic, due to the presence of commands. Nevertheless, we will see how
is it still possible to define a suitable substitution schema.

Schematicity of First-Order Logics

In First-Order Logic, we usually refer to three notions of substitution:

1. substitution of formulæ for propositional variables in formulæ. Actually, this sub-
stitution notion regards the “propositional level” of the logic, and it is common
to every logic in which we speak of “propositional variables” and axiom and rule

30 Chapter 3. Consequence Relations

schemata (see, e.g., the Modus Ponens.) We represent this notion by a deterministic
substitution schema Subp on Φ, which is the least set closed by composition such
that, for each p ∈ Φ0, ϕ ∈ Φ, it contains the substitution function [ϕ/p] : Φ → Φ,
whose definition is as usual.

2. substitution of terms for object variables in terms; it is represented by a deterministic
substitution schema Subi on T , which is the least set closed by composition such
that for each x ∈ Var, t ∈ T , it contains the substitution function [t/x] : T → T ,
whose definition is the usual;

3. substitution of terms for object variables in formulæ; it is represented by a nondeter-
ministic substitution schema Subo on Φ, which is the least set closed by composition
such that for each x ∈ Var, t ∈ T , it contains the simple substitution relation
[t/x] ∈ P(Φ× Φ), defined on the syntax as follows (we list only some cases):

(R(t1, . . . , tn))[t/x] = R(t1[t/x], . . . , tn[t/x])

(ϕ ∧ ψ)[t/x] = ϕ[t/x] ∧ ψ[t/x]

(∀xϕ)[t/x] = {∀xϕ}

(∀yϕ)[t/x] = {∀z.ψ | z 6∈ FV(ϕ, t), ψ ∈ (ϕ[z/y])[t/x]} for x 6= y

where R ranges over relation symbols of the logic.

It is evident that term substitution on formulæ is highly non deterministic: just recall
that, as remarked earlier, substitutions are treated as nondeterministic functions.

Proposition 3.8 (Schematicity of CR’s for FOL) Let 〈T,Φ〉 a FOL; then

1. both truth and validity consequence relations are schematic with respect to Subp.

2. the truth consequence relations are schematic with respect to Subo;

3. If there is a model M and ϕ ∈ Φ, t, x ∈ T such that

∅ 6= [[ϕ]]′M 6= [[ϕ[t/x]]]′M = P(EnvM),

then the free CR ||=M on [[·]]′′M is not schematic with respect to Subo.

Proof. 1. We sketch the case for truth CR (the case for validity CR is the same). Let
Γ |=M ϕ, p ∈ Φ0, ψ ∈ Φ, and e : Φ0 → {⊥,>} a truth assignment to propositional
variables. Then, define

e′(q)
def
=

{

e(ψ) if q ≡ p
e(q) otherwise

By induction on the syntax, it is easy to prove that ∀ϕ ∈ Φ : e(ϕ[ψ/p]) = e′(ϕ). Hence,
[[Γ[ψ/p]]]Me = [[Γ]]Me′ and [[ϕ[ψ/p]]]Me = [[ϕ]]Me′. Therefore, if [[Γ[ψ/p]]]Me = T then
[[Γ]]Me′ = T , so [[ϕ]]Me′ = [[ϕ[ψ/p]]]Me = T .

2. We see the case of |=M; the others follow trivially. Let M be a f.o. model, and Γ |=M ϕ,
x ∈ Var, t ∈ T , and ρ : Var → D an environment in the model M. Then, define

ρ′(y)
def
=

{

ρ(t) if x ≡ y
ρ(y) otherwise

3.2. Schematic Consequence Relations 31

By induction on the syntax, it is easy to prove that ∀ϕ ∈ Φ : ρ(ϕ[t/x]) = ρ′(ϕ). Hence,
[[Γ[t/x]]]Mρ = [[Γ]]Mρ′ and [[ϕ[t/x]]]Mρ = [[ϕ]]Mρ′. Therefore, if [[Γ[t/x]]]Mρ = T then
[[Γ]]Mρ′ = T , so [[ϕ]]Me′ = [[ϕ[ψ/p]]]Me = T ; we conclude therefore that Γ[t/x] |=M ϕ[t/x].

3. Since [[ϕ]]′M 6= P(EnvM), there is ρ ∈ EnvM such that [[ϕ]]Mρ = ⊥. Therefore,
[[ϕ]]′′M = [[∀x.ϕ]] = ⊥ and hence ϕ ||=M ∀x.ϕ holds.

On the other hand, ϕ[t/x] holds in every environment; therefore [[ϕ[t/x]]]′′M = >, and
hence ϕ[t/x] 6||=M ∀xϕ. Since (∀xϕ)[t/x] = ∀xϕ, we have the thesis. ut

An important consequence of the last statement is the following result:

Corollary 3.9 if the logic has the equality, then the validity consequence relations are not
schematic with respect to Subo.

Proof. Take ϕ = (x = y) and a model with at least two elements. We can then define
an environment ρ such that ρ(x) 6= ρ(y); therefore, ρ 6∈ [[x = y]]′. On the other hand,
(x = y)[y/x] is y = y, which holds in every environment. By applying the Proposition,
therefore, we obtain the thesis. ut

Schematicity of Dynamic Logic

There are notions of substitution much more complex than usual ones. An interesting
example is that given by first-order Dynamic Logic [Har79, Har84, KT90].

The language of formulæ of First-Order Dynamic Logic is a first-order language ex-
tended by adding a modal constructor [Har84, KT90]:

Φ = ϕ ::= . . . | ∀xϕ | [c]ϕ

where c ranges over the language of regular programs:

C = c ::= x := t | c1; c2 | b? | c1 + c2 | c
∗

where b ranges over the program- and quantifier-free formulæ. (Syntax and semantics of
Dynamic Logic will be described in detail in Sections 6.1, 7.1. 2)

The problematic substitution arises in relation with the axiom ∀xϕ ⊃ ϕ[t/x] when a
program appears in ϕ. In this case, we cannot apply directly the substitution, since for
instance, ∀x.[x := 0]x = 0 would yield [1 := 0]1 = 0 which is clearly meaningless.

In most systems for Dynamic Logic, this drawback is overcome by replacing every
subformula [c]ϕ, where x occurs on the left-hand sides of some assignment in c, by an
equivalent “special form”, [z := x; c[z/x];x := z]ϕ, where z is fresh [Har79, Har84, KT90].
In these special forms, only the first occurrence of x is considered free, and hence instan-
tiated by a substitution. Therefore, a substitution in Dynamic Logic replaces commands
by their equivalent special forms, wherever required, before performing instantiation.

Let us formalize this notion. Firstly, we need to deal with the substitution of terms
for object variables in commands. Let AV(c) the set of assigned variables of c, that is, the

2Briefly, the informal meaning of some of these constructs is the following: b? =“test b; proceed if true,
fail if false”; c∗ =“execute c a nondeterministically chosen finite number of times”; [c] ϕ =“at the end of
every non-diverging execution of c, ϕ holds”; 〈c〉ϕ =“there is an execution of c such that at its end ϕ

holds”.

32 Chapter 3. Consequence Relations

set of variables which appear on the left-hand side of assignments in c. We cannot replace
assigned variables by generic terms, but we can replace a variable by another variable, and
a non-assigned variable by a term. Hence, we introduce two substitution schemata on C.

The first one, Subcv, is the set of substitutions of variables for variables. These are
of the form “c[y/x]v”, which replaces every occurrence of x in c (also those on l.h.s. of
assignments) by y. This substitution schema is deterministic.

The second one, Subct, is the set of substitutions of terms for non-assigned variables.
These substitutions are of the form “c[t/x]t”, compositionally defined as follows:

(y := t1)[t/x]t=y := (t1[t/x]t) (c1opc2)[t/x]t=(c1[t/x]t)op(c2[t/x]t)
(b?)[t/x]t=(b[t/x]t)? (c∗)[t/x]t=(c[t/x]t)

∗

where op ∈ {+, ; }. Again, this schema is deterministic.
Notice, however, that care has to be taken in applying substitutions of this schema:

in general, they do not preserve the meaning of programs. Consider, for instance, (x :=
x+1;x := x+1)[0/x]t, which is (x := 0+1;x := 0+1), although the intended meanings of
these commands are not the same. However, these substitutions are applied only after a
suitable renaming of assigned variables. In fact, we have to extend the substitution schema
on formulæ we have defined for First-Order Logic (see above). As before substitution of
terms for object variables in formulæ is represented by a nondeterministic substitution
schema Subo on Φ, which is the least set closed by composition such that, for each x ∈ Var,
t ∈ T , it contains the simple substitution relation [t/x] ∈ P(Φ × Φ). The definition of
these “atomic substitutions” is just as the one of FOL, plus the following case for the new
constructor:

. . . (the cases of FOL) . . .

([c]ϕ)[t/x] =

{

[c[t/x]t] (ϕ[t/x]) if x 6∈ AV(c)
{[z := t; c[z/x]v;x := z]ϕ | z 6∈ FV(ϕ, c)} if x ∈ AV(c)

Due to the case analysis on the occurrence of variables, this substitution schema preserves
the meaning of formulæ, although [t/x]t does not.

Although this substitution notion is quite different from the “standard” ones, Sub is
a good substitution schema. There are two sources of nondetermism: α-conversion for
bound variables (like in FOL), and “command conversion” for assigned variables.

We list some examples:

ϕ[t/x] ≡ as usual, if ϕ is program free

([z := t1]ϕ)[t/x] ≡ [z := (t1[t/x])](ϕ[t/x]) for x 6= z

(x+ 1 = y ⊃ [x := x+ 1]x = y)[t/x] ≡ (t+ 1 = y ⊃ [z := t; z := z + 1;x := z]x = y)

Truth and validity consequence relations for Dynamic Logic can be defined by following
Definition 3.4 (see Definition 7.1). By an argument similar to the one of Proposition 3.8,
it is easy to prove that the truth CR for Dynamic Logic is schematic with respect to Sub,
while the validity one is not.

Remark. As we have already said, this treatment of substitution is adopted in most of
the proof systems for DL in the literature. This is acceptable because these proof systems

3.3. Heterogeneous Consequences Relations 33

are Hilbert-style, and they are not supposed to be used interactively in certifying programs.
However, this substitution schema becomes cumbersome and hard to understand as soon
as we aim to a more user-friendly interactive system for DL, possibly in Natural Deduction
style. In fact, replacing programs with equivalent “special forms” yields rapidly weird and
obscure formulæ. In Chapter 7 we propose another solution, easier to understand and to
use, which takes full advantage of the Natural Deduction style.

3.3 Heterogeneous Consequences Relations

As we noticed before (Section 3.1),more than just one consequence relation arises for any
given logic. In FOL, for instance, we have the validity consequence relation and the truth
consequence relation, according to whether we consider free variables in formulæ. In modal
logics two further kinds of CR’s arise, according to whether we consider consequence with
respect to worlds or with respect to frames. Moreover, many more CR’s can be defined
by restricting attention to interesting subclasses of models. Similarly to what happens for
FOL, both validity and truth CR’s arise in program logics.

Usually, in defining a proof system we restrict our attention to one particular conse-
quence relation, disregarding all the others. In FOL, for instance, a Hilbert-style system
for validity CR is unsound for the truth CR (it features, for instance, the generalization
rule ϕ

∀xϕ), and a ND-style system for truth CR is not complete with respect to the validity
CR (it does not derive the generalization rule). In other words, a simple CR deals with
one consequence notion at a time.

This approach corresponds to focus on a single judgement (in the sense of Martin-
Löf [Mar85]) as the main type of assertions expressed by the proof system and hence
embodied the consequence relation. Classically, sequents are built up of multisets of
formulæ, although what we focus on is the meaning of these formulæ. For instance, in
First Order Logic we have (at least) two judgements on the same language and semantic
structures: ϕ is valid and ϕ is true (with respect to a given model and evaluation.) Many
more judgements can be defined on the same language: falsity, satisfability, and so on.
Moreover, in most proof systems, beside the main judgement (say, “provability”), there
are other judgements on formulæ (or other syntactic objects), whose formalization is often
neglected, if not “swept under the rug.” Common examples of these judgements in Logics
and Computer Science include (but are not limited to)

• the eigenvariable conditions of quantifier rules (e.g. in Gentzen’s and Prawitz’ sys-
tems);

• the boxed assumptions conditions of Prawitz’ systems for modal logics;

• non-interference judgements (e.g. in Hoare Logic and Hoare Logic for concurrency
[HM93, AO91]);

• conversions (e.g. in λ-calculi);

• typing and subtyping judgements;

• cells allocation (e.g. in operational and axiomatic semantics of store-base languages
[Plo81, HMST93]);

• occurrence checks in model checking [SW89].

34 Chapter 3. Consequence Relations

In the traditional presentations approach, these notions are seldom formalized by means of
specific proof systems, on a par with the one for the “main” judgement. Even less common
are systems in which several “logical” consequences are formalized simultaneously (e.g.,
systems which deal with both truth and validity of formulæ).

Therefore, it is important to study how to handle more than one judgement at the
same time, and not only more than one “logical” judgements, but also those which are
usually regarded as “auxiliary.” This approach also naturally arises from the ability of
Logical Frameworks of treating more than one judgement at the same time. This can be
used, for instance, in order to treat simultaneously together several logical notions, or to
enforce side conditions such as the forementioned ones.

In the traditional presentations approach, CR’s are homogeneous, that is every formulæ
occurring in (multi)sets take meaning in the same domain. However, it is useful also to
consider non homogeneous (multi)sets of formulæ, where this does not happen (Notice
that formulæ may be of the same language and still being interpreted in different ways).
Examples of heterogeneous systems arise from the above systems when we spell out the
formal conditions for side conditions: side conditions are nothing but a different kind of
formulæ, whose interpretation is not the same as that of the formulæ the system focuses on.
A semantic version of non-homogeneus CR are mixed truth-validity single-conclusioned
consequence relation, such as the following:

� ⊂ (P(Σ)× P(Σ))× Σ

Γ;∆ � ϕ ⇐⇒ ∀M.(∀ρ.ρ |= Γ) ⇒ (∀ρ.ρ |= ∆ ⇒ ρ |= ϕ)

A similar relation will been introduced for Modal Logics in Chapter 5 (see also [AHMP97]).
In order to formalize heterogeneous consequence relations, the notion of simple CR

can be generalized in several ways.

3.3.1 Judgement Consequence Relations

A first approach is to put another layer between syntactic formulæ and Consequence Re-
lations. Since we focus on is the meaning of formulæ, it is natural to take judgements as
components of multisets, instead of simple formulæ. This approach has been exploited by
Martin-Löf in his Theory of Judgements [Mar85]. Assumptions and conclusions of conse-
quence relations are no more formulæ, such as “ϕ”, but assertions such as “ϕ true”, “x not
free in ϕ”, and so on. These assertions form the basic (or atomic) judgements and charac-
terize the logic. Apart from the basic judgements, we can build other judgements, called
higher-order judgements, by combining basic (and derived) judgements in the following
two ways:

• if J1 and J2 are two judgements, then J1 → J2 is an hypothetical judgement. It
expresses a notion of “consequence” of J2 from J1: “J2 is derivable (or provable, or
a consequence) of J1”;

• if J is a judgement involving a variable x ranging over a sort S, then
∧

x∈S J is an
schematic (or general) judgement. It expresses a notion of “generality” of J with
respect to S: “J is derivable (or provable, or holds) for every x in C”.

It is worthwhile noticing that these are metalogical constructions, and not formula con-
structors. For instance, a hypothetical judgement (ϕ true) → (ψ true) should be read

3.3. Heterogeneous Consequences Relations 35

“if we assume ϕ, then we prove ψ”. This is completely different from the meaning of the
basic judgement (ϕ ⊃ ψ) true, which means “the formula (ϕ ⊃ ψ) is provable”.

The encapsulation of formulæ inside judgements let us to consider uniformly hetero-
geneous formulæ. For instance, both “ϕ true,” “ϕ valid” and “x not free in ϕ” are three
basic judgements. It is therefore natural to consider simple consequence relations of basic
judgements, instead of consequence relations of formulæ.

In the following, by “a set of indexes” we mean an initial segment of N , that is an
element I of the set {{i | 1 ≤ i ≤ n} | n ∈ N} (notice that these sets are recursive). We
give then the following definition:

Definition 3.9 (Judgement Consequence Relation) Let I be a set of indexes, (Φi)i
a family of sets of formulæ, for i ∈ I, (possibly with repetitions).

The assertions for I are the elements of the set Φ
def
= Σi∈IΦi = {〈i, A〉 | i ∈ I, A ∈ Φi}.

A pair 〈i, A〉 ∈ Φ is an assertion of judgement i. We write Ji(A) instead of 〈i, A〉.
A judgement (single conclusioned) consequence relation (JCR) � on (Φi)i is a simple

consequence relation on the set of formulæ Φ.

Therefore, in this very general approach we add an extra degree of freedom in designing
a consequence relation.

3.3.2 Multiple Consequence Relations

Another (and strictly related) approach is to consider “bidimensional consequence rela-
tions,” that is sequents whose antecedents and consequents are families of (multi)sets of
formulæ. These sequents can be arranged in a bidimensional fashion, as follows

Γ1
...

Γn
...

�

A1
...
An
...

or “linearized”, separating each set by means of a semicolon:

Γ1; . . . ; Γn; . . .�A1; . . . ;An; . . .

Each level/set corresponds to a different judgement, or a different consequence relation.
Let us formalize these notions. We begin with a definition of multiple Consequence

Relation, which generalizes directly the notion of simple Consequence Relation.

Definition 3.10 (Multiple Consequence Relation) Let I a set of indexes, and (Φi)i
a family of sets of formulæ, for i ∈ I, (possibly with repetitions). A multiple (single
conclusioned) consequence relation (MCR) � on (Φi)i is a family (�i)i of relations �i ⊆
(

∏

j∈I Pre(Φj)
)

× Φi such that each relation �i satisfies the following:

reflexivity: ∀Γj ∈ Pre(Φj), j 6= i, and ∀A ∈ Φi: (Γj)j<i;A; (Γj)j>i �i A;

(cross) transitivity: ∀Γj ,Γ
′
j ∈ Pre(Φj), j ∈ I, and ∀A ∈ Φk, k 6= i, and B ∈ Φi: if

(Γj)j �k A and (Γ′j)j<k; Γ
′
k, A; (Γ′j)j>k �i B then (Γj ,Γ

′
j)j �i B;

36 Chapter 3. Consequence Relations

monotonicity: ∀Γj ∈ Pre(Φj), j ∈ I, and ∀A ∈ Φi,∀B ∈ Φk,
if (Γj)j �i A then (Γj)j<k; Γk, B; (Γj)j>k �i A.

Although monotonicity and reflexivity are straightforward, transitivity deserves some ex-
planations. It can be seen as a “cut” between possible different consequence relations;
in fact, we cannot restrict ourselves to componentwise transitivity, because in deriving a
certain consequence, we may make use of a lemma obtained on a different CR. Notice that
each component of a MCR is a SCR on its own.

We do not investigate possible extensions of this definition, such as adopting multisets
instead of sets of formulæ, or multiple-conclusion multiple consequence relations.

This approach is strictly related to the “judgements” approach. In fact, the following
result holds:

Proposition 3.10 Let I set of indexes, and Φi set for i ∈ I. Then,
∏

i∈I Pre(Φi) is
isomorphic to Pre(Σi∈IΦi).

Proof. It is easy to see that the maps

f :
∏

i∈I Pre(Φi)→Pre(Σi∈IΦi)
(Γi)i∈I 7→{〈i, A〉 | i ∈ I, A ∈ Γi}

h : Pre(Σi∈IΦi)→
∏

i∈I Pre(Φi)
∆7→({A | 〈i, A〉 ∈ ∆})i∈I

are computable bijections (since I is recusive). ut

Due to this result, we can see a multiple consequence relation on a family (Φi)i just as
a simple consequence relation on a set of “tagged formulæ” {〈i, A〉 | i ∈ I, A ∈ Φi}.
Each index i can be seen, therefore, as a judgement, and 〈i, A〉 can be written Ji(A) as
well. Therefore, the multiple consequence relations and judgement consequence relation
approaches are substantially equivalent, as shown by the following proposition:

Proposition 3.11 Let I a set of indexes, and (Φi)i a family of sets of formulæ, for
i ∈ I. For each multiple consequence relation there is an equivalent judgement consequence
relations, and vice versa.

Proof. Let (�i)i be a MCR; then define the JCR � associated as ∆ � Ji(A) ⇐⇒
h(∆) �i A, where h is the function defined in Proposition 3.10. It is easy to see that � is
a JCR, that is, it is reflexive, transitive and monotone on the set of assertions

On the other hand, if � is a JCR, define the MCR (�i)i associated as (Γi)i �i A ⇐⇒
f((Γi)i)�Ji(A), where f is the function defined in Proposition 3.10. It is easy to see that
(�i)i is a MCR, that is, it is reflexive and monotone componentwise, and enjoys cross
transitivity. ut

Schematicity is easily generalized to multiple consequence relations:

Definition 3.11 Let (Φi)i∈I a family of formulæ sets, and Subi a substitution schema on
Φi for each i ∈ I. Let (�i)i on (Φi)i∈I be a multiple consequence relation.

We say that (�i)i is

• schematic relatively to Subj if, when (Γi)i �j A then ∀(σi)i such that σi ∈ Subi :
(Γiσi)i �j Aσj.

• schematic relatively to (Subi)i if it is schematic relatively to Subi for all i ∈ I.

3.4. Natural Deduction-style Proof Systems 37

Truth-validity MCR for FOL

As an example, we examine a multiple consequence relation for First-Order Logic (for
definitions, see Section 3.1.3.) Our MCR will be composed by two relations over the same
set of formulæ, namely the language of first-order formulæ Φ. These relations are defined
as follows:

Γ1; Γ2 |=1 ϕ ⇐⇒ ∀M.(∀ρ.[[Γ1]]Mρ = T) ⇒ (∀ρ.[[ϕ]]Mρ = T)

Γ1; Γ2 |=2 ϕ ⇐⇒ ∀M.(∀ρ.[[Γ1]]Mρ = T) ⇒ (∀ρ.[[Γ2]]Mρ = T ⇒ [[ϕ]]Mρ = T)

The first relation, |=1, acts as “validity” CR. From its point of view, assumptions have to
be intended only as “theorems”, valid for all environments; hence, it does not take care
of “local assumptions.” The second one, instead, discriminates between “theorems” and
“local assumptions.” We can indeed redefine the truth and validity consequence relations
of Section 3.1.3 in terms of |=2:

Γ ||= ϕ ⇐⇒ Γ;∆ |=1 ϕ

⇐⇒ Γ; ∅ |=2 ϕ

Γ |= ϕ ⇐⇒ ∅; Γ |=2 ϕ

Monotonicity and reflexivity of each component is straightforward. Due to the cross-
transitivity, there are four cases:

• “if Γ1; Γ2 |=1 ϕ and Γ′1, ϕ; Γ′2 |=1 ψ, then Γ1,Γ
′
1; Γ2,Γ

′
2 |=1 ψ.”

This is simply the transitivity of ||=.

• “if Γ1; Γ2 |=2 ϕ and Γ′1; Γ
′
2, ϕ |=2 ψ, then Γ1,Γ

′
1; Γ2,Γ

′
2 |=2 ψ.”

This is simply the transitivity of |=.

• “if Γ1; Γ2 |=1 ϕ and Γ′1, ϕ; Γ′2 |=2 ψ, then Γ1,Γ
′
1; Γ2,Γ

′
2 |=2 ψ.”

It is easy to see that this statement holds.

• “if Γ1; Γ2 |=2 ϕ and Γ′1; Γ
′
2, ϕ |=1 ψ, then Γ1,Γ

′
1; Γ2,Γ

′
2 |=1 ψ.”

This statement holds trivially, since |=1 does not consider formulæ in Γ2,Γ
′
2.

3.4 Natural Deduction-style Proof Systems

In this section we briefly recall the Natural Deduction style of presentation of proof sys-
tems.

Before building an editor for a given logic, one of the paramount issues that the de-
signer/implementor has to clarify is which style of presentation is best for actually “using”
the logic, e.g. Hilbert, Natural Deduction (ND) or Gentzen (sequent) style?

From a practical point of view, Natural Deduction style systems are more suited to the
practical usage — actually, they have been introduced by Gentzen because they “reflects
as accurately as possible the actual logical reasoning involved in mathematical proofs”
[Gen69]. These proof systems allow the user to reason “under assumptions” and go about

38 Chapter 3. Consequence Relations

in developing a proof the way mathematicians normally reason: using hypotheses, for-
mulating conjectures, storing and retrieving lemmata, often in top-down, goal-directed
fashion. Moreover, Logical Frameworks based on Type Theory directly give arise to proof
systems in Natural Deduction style. This follows directly from the “judgement-as-types”
paradigm, and the fact that the typing systems of the underlying λ-calculi are in Natural
Deduction style.

We write Natural Deduction rules and proofs in the linearized notation, hence “π : Γ `
ϕ” denotes a proof tree π whose premises and conclusion are Γ and ϕ respectively.

Following [Avr91], systems in Natural Deduction style can be defined as follows:

Definition 3.12 (Natural Deduction style) A Natural Deduction style system in the
language Φ is an axiomatic system for deriving sequents of the form Γ ` ϕ, for Γ ⊆ Φ, ϕ ∈
Φ, such that

1. For all ϕ ∈ Φ, ϕ ` ϕ is an axiom of the system;

2. For every rule of the system, the set of assumptions of the conclusion is a subset of
the union of the assumptions of the premises. More formally, if a rule has Γ1 ` ϕ1,
. . . , Γn ` ϕn as premises, and Γ ` ϕ as conclusion, then Γ ⊆

⋃n
i=1 Γi.

Usually, rules in ND-style calculi are defined by general rule schemata (figures, in
Gentzen’s terminology [Gen69]) of the form

∀Γ1, . . . ,Γn
Γ1,∆1 ` ϕ1 . . .Γn,∆n ` ϕn

Γ1, . . . ,Γn ` ϕ
C

which is usually written in the so-called “vertical form”:

(∆1) . . . (∆n)
...

...
ϕ1 . . . ϕn

ϕ

where C is a possible side condition, that is a restriction on the applicability of the
schemata. In the latter form, the “entailment” symbol disappears, and the universal
quantification is made implicit; however, it should be clear that the intended meaning is
always the former.

The Natural Deduction-style can be extended also to infinitary proof systems; it is suf-
ficient allow for infinite rules. It should be clear, however, that a (Natural Deduction-style)
proof, finite or infinite, is always a well-founded proof of sequents, labelled accordingly to
the rules of the system. That is to say, every path leading out from the root (the con-
clusion) is finite (hence it ends with an assumption), although there may be an infinite
number of paths. For instance, the Natural Deduction style ω-rule of ω-logic [Gir87b]

ϕ[0/x] ϕ[1/x] . . . ϕ[n/x] . . .

∀xϕ

has to be intended as

Γ ` ϕ[0/x] Γ ` ϕ[1/x] . . . Γ ` ϕ[n/x] . . .

Γ ` ∀xϕ

3.4. Natural Deduction-style Proof Systems 39

In this way we can separate the finiteness of proofs from the finiteness of assumptions. We
can define an infinitary system, complete with respect to the finitary truth consequence
relation of first order logic |=N ∩(P<ω(Φ)×ϕ), by requiring that every sequent in (possibly
infinitary) proofs are finite.

A rule with a side condition is said impure. Often, the “linearized” version is needed
in order to state clearly the side conditions. Two classic examples are the following ∀-
introduction rule for FOL [Gen69] and 2-introduction rule for S4 [Pra65]:

∀-I ϕ
∀xϕ

x does not appear free in any
assumption on which the deriva-
tion of ϕ depends.

2-I ϕ
2ϕ

every formulæ on which ϕ de-
pends, is boxed.

In this simple formulation, the side conditions are stated in an informal natural language.
The linearize version allow us for spelling out precisely these conditions, as follows:

∀-I
Γ ` ϕ

Γ ` ∀xϕ
x 6∈ FV(Γ)

2-I
Γ ` ϕ

Γ ` 2ϕ
∀ψ ∈ Γ∃ψ′.ψ = 2ψ′

However, not every side condition can be described rigorously by the linearized form. In
fact, Avron identifies three degrees of impurity, listed here by increasing complexity:

1. Conditions on the structure of the sets of assumptions. Rules with this kind of
conditions are also called proof rules. The best known example is the necessitation
rule,

2
′-I

Γ ` ϕ

Γ ` 2ϕ
Γ = ∅

2. Conditions on the structure of the assumed formulæ. An example of this kind of
impurity is the above-mentioned 2-introduction rule of Prawitz’ system S4, where
every assumption is required to be boxed.

3. Conditions on the structure of the proofs themselves, that is, conditions on how
the premises have been derived. An example of this kind of impurity is the 2-
introduction rule of Prawitz’s “third version” system for S4:

2
′-I

Γ ` ϕ

Γ ` 2ϕ
(∗)

where the requirement (∗) is “the derivation of ϕ from Γ contains a fringe of boxed
formulæ”, that is, “every path from ϕ to the assumptions contains a boxed formula”.

Conditions of the third level are not local, in the sense that they cannot be decided only by
looking at the sequents: we need to examine inside the whole proofs. Hence, a complete
formalization of these side conditions needs of a formalism for representing the proofs
themselves.

Another property usually enjoyed by ND-style calculi is an internal “symmetry”: for
each logical constructor, there is a (set of) introduction rules and a (induced) elimination
rule; see [Pra65].

40 Chapter 3. Consequence Relations

Part II

The Object Logics

41

Chapter 4

Structural and Natural
Operational Semantics

In order to establish formally properties of programs, we have to represent formally their
operational semantics. Several ways for presenting operational semantics of languages
have been developed. An intuitive model of the way a program is executed is to think of
a machine state, that is, a pair 〈M,σ〉 composed by a control part M and a data part σ.
Computation is then represented by a sequence of these pairs. This approach is simple and
intuitive; however, its low abstraction level does not allow for powerful proof techniques;
we can reason only by induction on the length of computations. A detailed description
of the various styles of presentation of operational semantics is beyond the scope of this
thesis; see e.g. [Gun92, Win93, Plo81] for more details.

In this chapter, we aim to understand, from a logical point of view, how to take advan-
tage of the Natural Deduction style for representing concisely operational semantics. This
will lead us to the introduction of the Natural Operational Semantics (NOS) presentations.
This style has both theoretical and practical advantages. Firstly, Natural Deduction style
systems are interesting on their own. Moreover, Logical Frameworks naturally allow the
user to reason “under assumptions” and go about in developing a proof in Natural De-
duction fashion. Therefore, Natural Deduction presentations of logics are easier to encode
faithfully in logical frameworks.1

Structure of the Chapter. This chapter is structured as follows. In Section 4.1 we
recall and analyze the SOS paradigm from a logical point of view. In Section 4.1.1, we
introduce the semantic counterpart of SOS proof systems in terms of consequence relations;
in Section 4.1.2, we discuss the general features of the SOS paradigm. This discussion will
yield the introduction of the Natural Operational Semantics (NOS) style of presentation
(Section 4.2). In particular, the bookkeeping technique, which is at the base of NOS
presentations, is introduced in Section 4.2.2.

A complete case study will follow: in Section 4.3 we examine a functional language
which includes some imperative features (such as assignments) and whose semantics can
been successfully described by using the NOS paradigm.

1Some of the results of this chapter have been previously presented in [Mic94].

43

44 Chapter 4. Structural and Natural Operational Semantics

A running Example. Along this chapter, we will often refer to a simple functional
language LALD, which is a language of arithmetic expressions with local declaration. It
is composed by two syntactic classes: Expr, the class of expressions ranged over by M,m,
and Var, the class of identifiers (ranged over by x, y), the former including the latter.

Var x ::= i0 | i1 | . . .

Expr M ::= 0 | 1 |M +N | x | let x = M in N

Despite the extreme simplicity of this language, the comparision between the SOS and
the NOS specifications for this language will be an elightening starting point for the
understanding of the principles of the NOS style of presentation.

4.1 Structural Operational Semantics

A very successful style of presenting operational semantics is the one introduced by Gor-
don Plotkin and known as Structural Operational Semantics (SOS) [Plo81], and further
improved by Gilles Kahn and his coworkers [Kah87, CDDK86, Des86]. The idea behind
this approach is that all computational elaboration and evaluation processes can be con-
strued as logical processes and hence can be reduced to the sole process of formal logical
derivation within a formal system.

Example 4.1 The SOS for LALD, as for any functional language, is a formal system
for inferring assertions of the form E(ρ,M,m), where m is the value of the expression
M , and ρ is the environment in which the evaluation is performed—usually a finitary
function mapping identifiers to values. The intended meaning of this proposition is “in
the environment ρ, the evaluation of M gives m.” Here we give some sample rules:

E(ρ, x, ρ(x))

E(ρ,N1, n1) E(ρ,N2, n2)

E(ρ, (N1 +N2), n)
n = n1 + n2

E(ρ,M,m) E([x 7→ n]ρ,N, n)

E(ρ, (let x = M in N), n)

Usually, the assertion “E(ρ,M,m)” is written as “ρ `M → m”, but the intended meaning
of “`” is not that of a Consequence Relation. In the SOS paradigm, the “turnstile” is
used for keeping apart the environmental informations (i.e. what does not change during
computation) from data structures which are modified by the computational process. ut

4.1.1 Consequence Relations for SOS

From a logical point of view, a SOS specification is nothing but a proof systems for
deriving assertions of the evaluation judgement, such as, say, “E(ρ,M,m).” However, in
these derivations we usually keep a “theoremhood” approach: we do not take into account
derivations from assumptions, but only derivations from the empty set. So, instead of
“∅ ` E(ρ,M,m)”, which means that “E(ρ,M,m) can be inferred from the empty set”, we
write “ρ `M → m holds.” It is clear that the intended meaning of “`” is not the same.

We may wonder, then, which is the semantic consequence relation represented by a
SOS specification. This CR should be given in terms of a reference semantics, usually
the denotational one, of the language. Such a denotational semantics would be a truth
function [[·]], which provides each evaluation assertion its truth value. For instance, in

4.1. Structural Operational Semantics 45

the case of a while language, [[E(C, σ, σ′)]] = > if and only if [[C]]σ = σ′, where [[C]] is a
suitable denotational semantics of C (see, e.g., [Gun92, Win93, Sch86, Sch94]).

The immediate, näıve way for defining a CR is just to choose the least CR which allows
for evaluation assertions also on the left-hand side of `. This is exactly the free CR on
the semantics of assertions (see Definition 3.2):

Proposition 4.1 Let S be a SOS specification, and let Φ be the class of its evaluation
assertions, ranged over by A. Let [[·]] : Φ → {⊥,>} a (denotational) semantics for Φ,
sound and complete for S (i.e., `S A ⇐⇒ [[A]] = >). Then, S represents the free CR on
[[S]].

Example 4.2 As we have seen in Example 4.1, the language LALD can be given an
SOS specification, which is a system S for deriving evaluation assertions of the form
“E(ρ,M,m)”, where ρ ranges over Env, the set of finite functions from Var to close
expressions (i.e. values) of Expr. This system features rules such as those of Example 4.1.

The evaluation judgement can be given a semantics in terms of the denotational se-
mantics of the language. Let [[·]]D : Expr → (Var → D) → D a denotational semantics for
Expr, in a domain D. We define:

[[E(ρ,M,m)]]
def
=

{

> if [[M]]Dρ
∗ = [[m]]Dρ

∗

⊥ otherwise

where ρ∗ : Var → D is just ρ∗(x)
def
= [[ρ(x)]]ρ∗. The free CR |=D on [[·]]D is the following:

E(ρ1,M1,m1), . . . , E(ρn,Mn,mn) |=D E(ρ,M,m) ⇐⇒

((∀i = 1 . . . n : [[Mi]]ρ
∗
i = [[mi]]ρ

∗
i) ⇒ [[M]]ρ∗ = [[m]]ρ∗)

However, assumptions are not relevant, since usually only theorems are considered. Indeed,
adequacy of ` w.r.t. |=D restricted to theorems is just adequacy of operational semantics
w.r.t. denotational one; in fact, (`) ∩ ({∅} × Φ) = (|=D) ∩ ({∅} × Φ) holds iff ∀ρ,M,m :
∅ ` E(ρ,M,m) ⇐⇒ [[M]]ρ = [[m]]ρ. ut

The assumptions of a free consequence relation, such as |=D can be fruitfully used in
dealing with “incomplete” computations. A derivation of the evaluation judgement from
assumptions can be seen as a “partial computation”, where the assumptions represent
the computations to be still performed, or performed by some external agent (i.e., linked
libraries). In particular, the rules themselves can be given a direct meaning in terms of
this semantic consequence relation, since a rule ϕ1,...,ϕn

ϕ
is sound with respect to a CR |=

iff ϕ1, . . . , ϕn |= ϕ.

For instance, the “+” rule above-mentioned (Example 1) is sound w.r.t. |=D since

∀ρ,M1,M2,m1,m2 : [[E(ρ,M1,m2)]]D = > ∧ [[E(ρ,M2,m2))]]D = >

⇒ [[E(ρ, (M1 +M2), plus(m1,m2))]]D = >

Nevertheless, we will see next that assumptions in consequence relation can be used for
carrying more information than the one in this case.

46 Chapter 4. Structural and Natural Operational Semantics

4.1.2 Analysis of Structural Operational Semantics

The SOS style of specification does not have many of the defects of other formalisms (such
as automata and definitional interpreters), since it is syntax-directed, abstract and easy to
understand. It has been proved to be very successful in various areas of theoretical com-
puter science. It was studied in depth by Kahn, Despeyroux and many of their coworkers
[Kah87, Des86, CDDK86], who improved further this formalism introducing the Natural
Semantics. Even further improvements have been recently carried out in the Extended
Natural Semantics by Hannan [Han93, MP91, HP92]. It has been used by Harper, Milner
and Tofte with the name of Relational Semantics to give the operational semantics of ML
[MTH90]. Operational semantics of most languages can be handled successfully in this
way; see Plotkin’s work for an extensive account [Plo81].

Of course, the more complex is the semantics of the language, the richer and more
detailed are the data structures to be dealt with by the evaluation judgement. Evaluation
of very simple languages, such as arithmetic expressions, do not need of any auxiliary
structure. On the other hand, a complex language such as Pascal or C, featuring local
variables, pointers, aliasing, recursive procedures and jumps, needs several auxiliary data
structure in order to keep track of informations along the computations. In the SOS ap-
proach, these data structures are very close to those we adopt in defining the denotational
semantics—if not the same:

• environment functions: functions from identifiers to denotable values; these can be
values such as integers, reals, or locations, but also functions and procedures as well;

• stores: functions from locations to storable values;

By combining these data structures, we can give the SOS of several languages. The
evaluation judgement has to be adapted accordingly, in order to take care of the extra
informations. Here we list some of these judgements:

• E(M,m), written “M → m,” for simple expression languages, with no variables;

• E(ρ,M,m), written “ρ `M → m,” for pure functional language;

• E(C, σ, σ′), written 〈C, σ〉 → σ′ for simple imperative languages with no procedures,
pointers and other sources of aliasing; σ, σ′ are stores;

• E(ρ,C, σ, σ′), written ρ ` 〈C, σ〉 → σ′ for imperative languages with aliasing;

• E(ρ, ψ,C, σ, σ′), written ρ, ψ ` 〈C, σ〉 → σ′ for imperative languages with procedure
declarations; ψ is the procedural environment ;

• E(ρ,M, σ,m, σ′), written ρ ` 〈M,σ〉 → 〈m,σ′〉, for functional languages with imper-
ative features, such as ML, or imperative languages like C, whose commands return
a value.

There are two main drawbacks in the SOS specification paradigm. The first one is
about the explicit presence of environmental structures and stores in evaluation assertions.

• the abstraction power is limited: a function which maps identifiers to values amounts
to von Neumann’s computer’s memory.

4.2. Natural Operational Semantics 47

• Modularity is limited. Modularity of semantic descriptions is an ongoing area of
research—see e.g. [Mog93, WF91, Cen94]. As we have said before, in considering
extensions of the language we may be forced to change the evaluation judgement
itself. For instance, by adding to the simple language LALD some imperative features
(such as references), we ought to change the judgement into the form ρ ` 〈M,σ〉 →
〈m,σ′〉. Hence, previous rules and derivations are not any more compatible with
the new assertion. Rules have to be rephrased, and derivations have to be carried
out again, even if they do not deal with any of the added structures. A simple
and common extension which causes such problems is the introduction of new kinds
of identifiers and denotable objects. Consider, for example, the introduction of
procedure identifiers and procedures, in the simple while language. In this case,
the evaluation judgement becomes ψ ` 〈C, σ〉 → σ′, in place of 〈C, σ〉 → σ′, for
which rules previously introduced are useless. In general, any new class of denotable
objects yields the introduction of a new environmental structure, and hence previous
rules are no more appliable.

• The system lacks conciseness: environments appear in all rules but are seldom used.
For instance, in the “+” rule, ρ plays no rôle: it is merely transferred from conclusion
to premises (in a top-down proof development). The environment is effectively used
only when we are dealing with identifiers, that is when we either declare an identifier
or evaluate it, e.g. in the let and the variable-evaluation rules.

• In order to reason formally about properties of operational semantics, it is neces-
sary to encode the formal system into some proof-editor/checker. However, in most
proof assistants, representation of functions (such as the environments) can be rather
cumbersome, and mechanized reasoning about these encodings can be very hard.

The second remark is that since we usually do not care of “partial evaluations,” the
free consequence relation which arises from denotational semantics is not useful—the as-
sumptions carry no information during evaluations. In other words, as far as theorems are
concerned, the essence of consequence is not exploited: in fact, assumptions play no rôle.

Therefore, one may wonder whether it is possible to take full advantage of the extra
degree of expressiveness given by the assumptions. Can it be used in overcoming some of
the drawbacks of environmental structures?

A possible answer to this question is the Natural Operational Semantics, which is
presented in the next section.

4.2 Natural Operational Semantics

The Natural Operational Semantics formalism (NOS) has been introduced by Burstall and
Honsell in [BH90], as a refinement of the Natural Semantics originally proposed by Kahn
and his coworkers [Des86, Kah87]. This formalism arises if we take seriously the possibility
of deriving under assumptions assertions in Natural Semantics, i.e. using hypothetico-
general judgements in the sense of Martin-Löf [NPS92, NPS90]. It is based in fact on
Gentzen’s Natural Deduction style of proof [Gen69, Pra65]: hypothetical premises are
used to make assumptions about the values of variables. Thus, instead of evaluating an
expression within a given environment, we compute its value under a set of assumptions

48 Chapter 4. Structural and Natural Operational Semantics

on the values of its free variables. In other words, we replace explicit environments with
implicit contextual structures, that is, the hypothetical premises in Natural Deduction.

We proceed as follows. In section 4.2.1 we present the NOS for LALD. In section 4.2.2
we will generalize this approach introducing the bookkeeping technique. In section 4.2.3
we will analyse the main features of the NOS paradigm; finally, in section 4.2.4 we will
give a semantical interpretation of NOS specifications by means of multiple consequence
relations.

4.2.1 An example: Natural Operational Semantics for LALD

Let us consider the functional language with two syntactic classes, Expr and Var of Ex-
ample 4.1. We have seen that the SOS of this language is a system for deriving ternary
judgements of the form E(ρ,M,m), written simply ρ ` M → m. Instead, in the NOS
paradigm the judgements can be simplified to those of the form M ⇒ m, whose reading is
“the value of expression M is m”. There are no more contextual structures: the predicate
is ⇒⊂ Expr× Expr.

These assertions can be inferred using a Natural Deduction style proof system. The
evaluation of the expression M to the value m can be represented by the following deriva-
tion in N.D. style:

Γ = {x1 ⇒ n1, . . . , xk ⇒ nk}

�
�

�

@
@

@ π

M ⇒ m

written π : Γ `M ⇒ m

where the hypotheses Γ = {x1 ⇒ n1, . . . , xk ⇒ nk} (k ≥ 0) can be interpreted as a
set of variable bindings: the value of the variables involved in the evaluation of M . This
derivation can be read as “in every environment which satisfies the assumptions in Γ, M is
evaluated to m.” This means that, given an environment ρ s.t. ∀(x⇒ m) ∈ Γ : ρ(x) = m,
there is a derivation of ρ `M → m in the corresponding SOS proof system. An assumption
about the value of a variable can be discharged when it is valid locally to a subcomputation.
For instance, in the case of local declarations, in order to evaluate let x = N in M , we can
evaluate M assuming that the value of x is the same as that of N . This extra assumption
is not necessary for evaluating let x = N in M , so it can be discharged. Therefore, the
rules of Example 4.1 are changed as follows:

(x′ ⇒ n)
...

N ⇒ n M ′ ⇒ m′

let x = N in M ⇒ m
EC(x,M,m)

N1 ⇒ n1 N2 ⇒ n2

N1 +N2 ⇒ n
n = n1 + n2

where EC(x,M,m) is a typographic abbreviation for the Eigenvariable Condition:

EC(x,M,m) ≡
“M ′,m′ are obtained from M,m respectively by replacing all the
occurrences of x with x′, which appears neither in x, M , m nor in
any live assumption different from (x′ ⇒ n)”.

4.2. Natural Operational Semantics 49

where by “live assumptions” we mean the assumptions which are not discharged from the
proof context.2

Actually, in the simple case of LALD, there is no need of replacing variables in m,
since it is always a numeral. This will not hold in richer languages, which allow for more
complex values such as closures (see Section 4.3.)

This truly N.D. approach has the benefit that all the rules which do not refer directly
to identifiers appear in a simpler form than those in SOS style: no environment appears
(see the “+” rule). Moreover there is no specific rule for the evaluation of identifiers.

The let rule is the rule in which the whole power of the ND style appears whose reading
is “if n is the value of N and, assuming the value of x is n then m is the value of M , then
the value of let x = N in M is m.” The renaming of the local variable is necessary since
in the following näıve rule for let

(x⇒ n)
...

N ⇒ n M ⇒ m

let x = N in M ⇒ m

the local assumption can clash with a previous assumption on x which is valid globally,
yielding incorrect derivations such as the following:

0 ⇒ 0

1 ⇒ 1 (x⇒ 0)(1)

let x = 1 in x⇒ 0

let x = 0 in let x = 1 in x⇒ 0
(1)

The difficulty of avoiding the capturing of local variables can be overcome by making
explicit the textual substitution of variables in local evaluations [BH90]. This is similar
to Gentzen’s notion of Eigenvariable [Gen69]. Recall the ∃-Elim rule:

(A′)
...

∃x.A B

B

A′ is obtained fromA by replacing all the occurrences
of x with x′, where x′ does not occur neither in any
of A, x,B, nor in any assumption different from A′.

Similarly, in evaluating let x = N in M , we have to replace all the occurrences of x in M
with a new identifier never used before, say x′, which will be bound to the value of n.

Why not using higher-order abstract syntax?

Another attempt to overcome the capturing of local variables could be that of using
higher-order abstract syntax à la Church (see Chapter 2). For example, the construct
let x = N in M could be “compiled” to let N (λx.M), where let : Expr → (Expr →

2This terminology is due to J.-Y. Girard and his co-workers.

50 Chapter 4. Structural and Natural Operational Semantics

Expr) → Expr. In this case, the evaluation rule can be stated as follows:

(x⇒ n)
...

N ⇒ n M ⇒ m

let x = N in M ⇒ m
x does not appear free in any live hypothesis

It should be noticed, however, that the applicability of this rule relies upon an implicit
α-conversion of bound variables: we need to assume that

let x = N in M ≡ let y = N in M [y/x]

for y 6∈ FV(M) \ {x}; otherwise, without this assumption we cannot deal with nested
declarations of the same variable, such as in the evaluation of let x = 0 in let x =
1 in x. The α-conversion of bound variables is obtained “for free” if the let expressions
are represented by using higher-order abstract syntax, because

(let x = N in M) = (let N λx.M) ≡ (let N λy.M [y/x]) = (let y = N in M [y/x])

As we will see in Chapters 10, 11, this technique has been proved to work extremely
well for purely functional languages. In fact, the resulting paradigm, called Extended
Natural Semantics (ENS) [Han93], is commonly adopted in representing the semantics of
functional languages (see [AHMP92] for a treatment of this in the context of λ-calculus
and [Han88, MP91, HP92] of more general functional languages). However, the HOAS
approach cannot be applied directly in the case of languages with imperative features. In
fact, it easily yields semantic inconsistencies, since it treats identifiers as placeholders for
expressions. This is correct in pure functional languages, but does not hold in imperative
languages, as we are going to see (cf. also the discusssion about Dynamic Logic, in Section
3.2.3).

Suppose there is a sort Comm of commands (such as the minimal while language),
and a new expression constructor [·]· : Comm×Expr → Expr , which applies commands to
expressions (see Section 4.3.1, and [BH90]); [C]M intuitively means “execute C and then
evaluate M”. An assignment command x := M can be seen as an explicit substitution;
hence, one is tempted to adopt HOAS and to translate an expression like [x := N ;C]M
into let N λx.[C]M . However, this approach is doomed to fail because there is no direct
representation of loops: in order to translate an expression of the form

[while b do x := N ;C]M,

we should unfold statically the while as many times as we are going to repeat the loop,
which is impossible. Hence, in presence of commands we need to keep assignments (explict
substitutions) in expressions, delaying their evaluation at the run-time.

The use of higher-order abstract syntax raises other problems, beside the one presented
here. We just recall the lacking of induction principles (see [DFH95] and Chapter 11); we
refer also to [AHMP92] for more difficulties in handling Hoare logic.

4.2. Natural Operational Semantics 51

4.2.2 The Bookkeeping Technique

In this section, we introduce the bookkeeping technique, as a generalization of the previous
example.

The treatment of local variables we have seen in the case of a simple functional language
in the previous section can be actually generalized to any kind of local binding. Let us
consider again the enlightening let rule:

(x′ ⇒ n)
...

N ⇒ n M ′ ⇒ m′

let x = N in M ⇒ m
EC(x,M,m)

where EC(x,M,m) is as before. This treatment of local variables correctly obeys the
standard stack discipline of languages with static scoping: when we have to define a local
variable, we allocate a new cell (represented by x′, a new variable) where we store the
local value (this is achieved by assuming x′ ⇒ n). This allocation is active only during the
evaluation of M (the derivation tree of M ′ ⇒ m′); then, the cell is disposed of (x′ does
not occur in any other place).

Any static-scope declaration can be represented by means of a specific rule, following
the pattern of the let rule above. That is, informations we usually put in the left-hand
side of SOS judgements, such as the ρ, ψ of “ρ ` M → m” and “ρ, ψ ` 〈C, σ〉 → σ′”, can
always be bookkept in the proof context of a Natural Deduction proof in NOS.

In some cases, this bookkeeping can be implemented by means of the same evaluation
judgement, as in the case of the simple functional language we have seen above. More
generally, however, it is easier to adopt an ad hoc judgement for each environmental
information we need to keep during evaluation.

Definition 4.1 (Bookkeeping judgement) Let L be a language, and let Φ a sort of
L, and Var the sort of identifiers for Φ. A bookkeeping judgement for Φ is a judgement
7→: Var× Φ. An assertion x 7→ A is called a binding.

The only purpose a bookkeeping judgement is used for is to keep the link between a
variable and the associated value in the proof context. There is indeed a strict relation
between environment maps of SOS and sets of bindings:

Definition 4.2 (Valid Contexts and Representation) Let L be a language, and I an
index family; for i ∈ I, let

• Φi be a syntactic sort of L and Vari the sort of variables for Φi;

• ρi : Vari → Φi be an environment (finite map) for Φi;

• 7→i: Vari × Φi be a bookkeeping judgement for Φi.

Let Γ be a set of bindings for (Φi)i, that is a set of assertions of the form “x 7→i m”. We
say that Γ is a valid context if ∀(x 7→i m), (x′ 7→i m

′) ∈ Γ if x = x′ then m = m′.
A valid context Γ represents the environments (ρi)i if ∀i ∈ I∀x ∈ dom(ρ).∃(x 7→i m) ∈

Γ.ρi(x) = m.
We say that the environments (ρi)i satisfy a valid context Γ (written (ρi)i ` Γ), if

∀(x 7→i m) ∈ Γ.ρi(x) = m.

52 Chapter 4. Structural and Natural Operational Semantics

Notice that there are no introduction rules for bookkeeping judgements: bindings are

• assumed in (or, in a bottom-up approach, discharged from) the context of a sub-
derivation when we need to evaluate a local definition;

• premises of rules, where identifiers have to be evaluated.

Care has to be taken in hypothesis-discharging rules, in order to preserve validity of
contexts. We have to ensure that at every time, no more than one value is associated to
every variable. This can be obtained by adapting the eigenvariable condition: the local
binding is assumed on a new variable (locally introduced), and renaming accordingly the
variables occurring in the evaluation judgement.

In fact, following these guidelines any SOS system can be turned into a NOS specifi-
cation, as it is stated by the following bookkeeping principle:

Bookkeeping Principle

Any SOS system S induces an equivalent NOS system S ′ which is obtained by

• dropping environmental structures from evaluation judgements;

• introducing a bookkeeping judgement for each environmental structure;

• in every rule,

– premises whose environments are obtained by extending the environ-
ment of conclusion, are turned into binding-discharging subderiva-
tions;

– evaluation on an environment structure are replaced by the corre-
sponding binding.

The resulting system is equivalent, in the sense that there is a bijection between
proofs π of SOS and derivations in NOS whose proof context represents the
environment structures of the derived judgement of π.

Remark 1. So far, we have not faced explicitly the case of higher-order languages,
which allow for functions as result values. In such cases, particular care has to be taken in
evaluating λ-abstractions: the corresponding results should be closures, i.e. an expression
representing the function together with the contextual information for their evaluation.
As we will see in Section 4.3, NOS can easily and efficently deal with closures, by using
an auxiliary judgement.

Remark 2. The way a SOS specification is turned into the equivalent NOS one resembles
very closely a well-known transformation of Proof Theory: the construction of a Natural
Deduction style system from a single-conclusion sequent style system. In fact, the logical
analogy between these two syles of semantics and logical paradigms can be stated as

Single-Conclusion Sequent Calculus

Natural Deduction
=

Structural Operational Semantics

Natural Operational Semantics

4.2. Natural Operational Semantics 53

SOS NOS

ρ ` x→ ρ(x)

x 7→ m

x⇒ m

ρ ` N1 → n1) ρ ` N2 → n2

ρ ` (N1 +N2) → n
n = n1 + n2

N1 ⇒ n1 N2 ⇒ n2

N1 +N2 ⇒ n
n = n1 + n2

ρ `M → m [x 7→ n]ρ ` N → n

ρ ` (let x = M in N) → n

(x′ 7→ n)
...

N ⇒ n M ′ ⇒ m′

let x = N in M ⇒ m
(∗)

(∗) = “M ′,m′ are obtained from M,m respectively by replacing all the occurrences of x
by x′, which does not appears neither in x, M , m nor in any live assumption different
from (x′ 7→ n)”.

Figure 4.1: SOS and NOS for LALD.

Example 4.3 Following this technique, we can turn the SOS semantics of LALD into the
equivalent NOS one by introducing the bookkeeping judgement 7→: Var×Expr. Both the
SOS and the induce NOS specification are presented in Figure 4.1.

It is easy to see that these specifications are strictly equivalent:

Proposition 4.2 Let ρ : Var → Expr be an environment and Γ a context representing ρ.
Then, ρ `SOS M → m iff Γ `NOS M ⇒ m. Moreover, this correspondence is bijective,
that is, there exists a bijective function

f : {π | π : ρ `SOS M → m} → {π′ | π′ : Γ `NOS M ⇒ m}

from proofs in SOS to derivations in NOS.

ut

4.2.3 Analysis of Natural Operational Semantics

It is easy to see that the NOS paradigm overcomes many of the drawbacks of Structural
Operational Semantics, still retaining all the advantages.

Advantages

Indeed, a NOS specification is syntax-directed, abstract and easy to understand at least
as much as the corresponding SOS specification. Moreover, the NOS paradigm improves
SOS since environment structures are cancelled from evaluation judgements by taking
full advantage of assumptions and of the assumption-discharging mechanism of Natural
Deduction. This has mainly two consequences.

Firstly, rules are more concise, because rules do not deal any more with environmental
data, unless they are either declaration or evaluation rules. This frees the user of the
burden of handling with growing structures all along the derivation.

54 Chapter 4. Structural and Natural Operational Semantics

Secondly, modularity is improved: if we add a new declaration construct, that is a new
kind of binding, we need simply to add the bookkeeping judgement and the evaluation
rule concerning the new construct. Previous rules and derivations are still valid in the
extended system.

Another important advantage of NOS specifications is that, as any Natural Deduction-
style system, they are easier to encode in Logical Frameworks based on Type Theory. We
will face this problem in Chapter 12.

Bookkeeping and Tennent’s Principles of Abstraction and Qualification

There is a strict relation between the bookkeeping technique, which is at the base of
Natural Operational Semantics, and two of the main principles of programming languages
design, due to Tennent [Ten81, Sch94]:

Abstraction: Phrases of any semantically meaningful syntactic class may be named.

Qualification: Any semantically meaningful syntactic class may admit local definitions.

These principles are strictly related to our techniques. The first one states substantially
that every meanigful class can be denoted by a name; the second states that every phrase
can be subject to a local declaration, e.g. can occur inside of the scope of a let.

Schmidt has reduced the Abstraction principle to the more general principle of

Record Introduction: Phrases of any semantically meaningful syntactic class may be
components of records.

where by record we mean a set of bindings [Sch94, p.66]. Indeed, a valid environment is
nothing but a record, and the bookkeeping technique correctly implements the introduction
of new bindings. In other words,

the technique of bookkeeping is the implementation (in Natural Deduction
form) of Tennent’s Abstraction and Qualification Principles.

Therefore, the operational semantics of a program constructor designed accordingly to
these principles can be correctly represented in NOS by means of a bookkeeping judgement
and relative binding-discharging and evaluating rules.

Limitations

Not every auxiliary data structure of SOS can be represented by means of assumptions
in the NOS, as well as not every Sequent Calculus system can be translated neatly in
Natural Deduction style. The structural rules implicit in Natural Deduction-style systems
of monotonicity of hypothesis imply that only informations which can be dealt with using
a static scoping discipline can be reduced to assumptions. In particular, a side-effect
assignment of pointers which induces variables aliasing (or sharing) is difficult to encode.
In fact, we cannot retrace from the context all the bindings which are involved on a set of
shared variables whenever one of them changes its value.

In fact, informations which change during the evaluation process is usually kept in
“stores”. Stores are closer to a type of computation result than to an environment in

4.2. Natural Operational Semantics 55

which computations take place. In the SOS paradigm, this is exhibit by putting stores
on the right-hand side of “`”, like in the case ρ ` 〈C, σ〉 → σ′. Similarly, in the NOS
paradigm, stores have to be kept in the evaluation judgement. For instance, in the case
of imperative languages the evaluation judgement would be ⇒: Stores× Comm× Stores.
Of course, this difficulty rises again the modularity problems we have overcome in the
case of environment; for instance, if we extend a pure functional language by adding some
sharing constructor (such as locations and references), previous NOS specifications and
derivations are no longer valid.

In languages which do not allow sharing, however, assignments can be reduced to def-
initions of new variables [Don77]. Therefore, we focus on this kind of languages. Namely,
those whose semantics can be defined without using both environment and store. These
comprise all purely functional languages, but also some interesting extensions of these
which have genuinely imperative features. This is in fact our thesis: only languages whose
denotational semantics is definable by using only the notion of environment can be con-
veniently handled using NOS. In the following we describe some of these languages.

4.2.4 Consequence Relations for NOS

In this section we give a semantical interpretation of NOS systems.
As we have described before, in a NOS derivation of Γ ` ϕ the formulæ in Γ are

usually of a different sort from the one of ϕ. Indeed, ϕ is an evaluation judgement while
Γ is composed only of bindings, which can be seen as constraints on the environmental
structures we will use in the evaluation. In this setting, “`” is not a consequence relation
in the sense of Definition 3.1, since it lacks both reflexivity and transitivity.

Anyhow, we can define an appropriate Multiple Consequence Relation for NOS. We
split the unique context Γ in several subcontexts, one for each bookkeeping judgement.
So, Γi will be composed only by the bindings of the i-th bookkeeping judgement. Each
of these contexts will represent a different environment, or better, each environment will
satisfy a different context, as follows:

Definition 4.3 (MCR for NOS) Let S be a NOS systems dealing with n bookkeeping
judgements 7→i, and m evaluation judgements. Let each evaluation judgement be given a
truth semantics which takes n environments, as follows:

[[·]]j : Env1 → . . .→ Envn → {⊥,>} j = 1, . . . ,m

We then define the MCR (|=k)k∈{1,...,m+n} for S as follows:
for i = 1 . . . n:

Γ1; . . . ; Γn;∆1; . . . ;∆m |=i (x 7→i n) ⇐⇒ (x 7→i n) ∈ Γi

for j = 1 . . .m:

Γ1; . . . ; Γn;∆1; . . . ;∆m |=n+j ϕ ⇐⇒ ∀(ρi)i.

(∀i = 1, . . . , n : ρi |= Γi) ⇒

(∀j = 1, . . . ,m : [[∆j]]jρ1 . . . ρn = >) ⇒

[[ϕ]]jρ1 . . . ρn = >

56 Chapter 4. Structural and Natural Operational Semantics

It is easy to prove that this family of relations form a MCR. It is worthwhile noticing
that, beside the n contexts for the n bookkeeping judgements, there are m new contexts,
namely the ∆’s. The j-th context ∆j contains the assumptions the j-th evaluation judge-
ment. From the point of view of operational semantics, these assumptions correspond to
external or system calls: the only thing we care of these computations is their result, no
matter how they are performed.

In the case of LALD, by applying the above definition, we obtain

Γ;∆ |=1 x 7→ t ⇐⇒ (x 7→ t) ∈ Γ

Γ;∆ |=2 (M ⇒ m) ⇐⇒ ∀ρ.(ρ |= Γ) ⇒

(∀(N ⇒ n) ∈ ∆.[[N]]ρ = [[n]]ρ) ⇒ [[M]]ρ = [[m]]ρ

which is usually applied with ∆ = ∅; in this case, we recover the intended semantics of `:

Γ; ∅ `M ⇒ m ⇐⇒ (∀(x 7→ t) ∈ Γ : ρ(x) = t) ⇒ [[M]]ρ = [[m]]ρ

4.3 A case study: the language LP

In this section, we examine a functional language extended with imperative features as as-
signments which give it an imperative flavor. Its semantics can been successfully described
by using the NOS paradigm. We give its syntax, its NOS and denotational semantics (see
Appendix A) and we prove that the former is adequate w.r.t. the latter. Finally, we will
discuss the relation between the NOS and a SOS description.

There are mainly two reasons for this study. Firstly, this study aim also to investigate
the features of a language whose semantics can be successfully described by means of the
NOS paradigm, without introducing cumbersome datastructures for representing stores.

Secondly, we will see that the NOS paradigm is in general feasible, but in practice,
developing a NOS specification for a nontrivial language may be quite cumbersome. In fact,
the language may be affected by peculiar idiosyncrasies, which yield slight modifications
of the standard bookkeeping rules introduced in Section 4.2.2. For instance, a common
variation is the introduction of extra judgements and extra datastructures, beside those
of the language, in order to record the informations in the environment. This process will
be explained in detail.

4.3.1 Syntax and Semantics

LP is an untyped λ-calculus extended by a set of structured commands (Figure 4.2). These
commands are embedded into expressions using the “modal” operator [on · do ·]·. The
expression

[on x1 = M1; . . . ;xk = Mk do C]M

can be read as:

execute C in the environment formed only by the bindings x1 = M1; . . . ;xk =
Mk; use resulting values of these identifiers to extend the global environment
in which M has to be evaluated, obtaining the value of the entire expression.

4.3. A case study: the language LP 57

Id x ::= i0 | i1 | i2 | i3 | . . .

Expr M ::= 0 | succ | plus | true | false |≤| nil |M :: N | hd | tl

| x | lambda x.M |MN | let x = M in N

| letrec f(x) = M in N | [on R do C]M

ProcId P ::= p1 | p2 | p3 | . . .

Decl R ::= 〈〉 | x = M ;R

Commands C ::= nop | x := M | C;D

| if M then C else D | while M do C

| begin new x = M ; C end

| procedure P (x, y) = C in D | P (x,M)

Figure 4.2: LP , a functional language with commands and procedures.

The command C cannot have access to “external” variables other than x1 . . . xk, so
all possible side effects are concerned with only these variables. Moreover, the entire on-
do expression above does not have any side effect: all environment changes due to C’s
execution are local to M .

LP allows us to declare and use procedures. For the sake of simplicity, but without
loss of generality, these procedures will take exactly two arguments. The first argument
is passed by value/result, the second by value [Plo81]. Furthermore, the body of a pro-
cedure cannot access global variables, but only its formal parameters (and locally defined
identifiers, of course). This means that when P (x,M) is executed within the scope of the
declaration procedure P (y, z) = C in D, C is executed in the environment formed by
only two bindings: {y ⇒ n, z ⇒ m}, where n,m are the values of x,M respectively. After
C’s execution, the new value of y is copied back into x. So, P (x,M) can affect only x.

The restriction on global access forbids sharing of identifiers, so there is no need for
a store. This does not drastically reduce the expressiveness of the imperative language.
Donahue has shown that in this case, the call-by-value/result is a “good” simulation of
the usual call-by-reference [Don77].

In [BH90] a different definition of procedure is given. There, procedures parameters
are passed only by value, but procedures can have access to global variables. However,
there is a problem with this approach, since the Natural Deduction-style treatment of
procedures does not immediately lend itself to support side effects on global variables.
In fact, procedure executions may have not the intuitive meaning, in that approach; for
instance, the expression

[on x = 0 do procedure P (z) = (x := z) in x := 1;P (nil)]x

would be evaluated to 1 instead of nil, which is clearly counter-intuitive. This is due
to the fact that the assignment made by P (nil) on the global variable x is local to the
environment of the procedure itself. In fact, executions of such procedures leave the global
environment unchanged.

58 Chapter 4. Structural and Natural Operational Semantics

In Section A.2.1 we give the denotational semantics for the language LP . Domains are
introduced to represent all the entities we have defined. This semantics is self-explanatory.
We follow the usual syntax [Gun92, Sch86, Win93]; λ denotes the strict abstraction: for
each meta-expression M with free variable x on pointed domain D, (λx.M)⊥ = ⊥. Fur-
thermore, λ is the double-strict abstraction: for each meta-expression M 6= ⊥ with free
variable x on pointed domain D with both ⊥ and >, (λx.M)⊥ = ⊥, (λx.M)> = >. The >
element represents the “run-time error” condition (i.e. an unimplemented trap, a division
by 0, an array index out of range, etc.).

We use the standard domains. The domains used are Unit (the set composed by only
one point), Truth (the boolean set composed by two points, true and false), N (the set of
natural numbers).

4.3.2 Natural Operational Semantics

The complete NOS formal system for LP consists of 67 rules; see Appendix A.1.1.

In order to deal with λ-closures, command checking and execution, procedure checking
and bookkeeping, we need to introduce some new constructors besides those of Section
4.3.1 and new predicates besides ⇒. As in [BH90], the use of these new constructors is
reserved: a programmer cannot directly utilize these constructors to write down a program.
Below we list the constructors and predicates, and we briefly describe the most important
ones. For their formal meaning, see Theorem 4.3.

Constructor Functionality

[/] : Expr× Id× Expr →Expr
· : Expr× Expr →Expr

[|] : Decl× Commands× Expr →Expr
[/]c : Commands× Id× Commands→Commands
lambda : Id× Id× Commands →Proc
[/]pe : Proc× ProcId× Expr →Expr
[/]pc : Proc× ProcId× Commands →Commands

Judgement Type

⇒ ⊂ Expr× Expr
value ⊂ Expr
closed ⊂ Expr
closedp ⊂ ProcId

Judgement Type

⇒p ⊂ ProcId× Proc
freee ⊂ Expr× IdSet
freec ⊂ Commands× IdSet
� ⊂ Decl× IdSet

where Proc is a new syntactic class defined as q ::= lambdax, y.C, and IdSet is the subset
of Expr defined as l ::= nil | x | l1 :: l2

The intuitive meaning of [n/x]M is “the expression obtained from M by replacing all
free occurrences of x with n.” Just as for the let discussed in Section 4.2.2, in order to
evaluate [n/x]M we have to evaluate M under the assumption that the value of x is n,
and hence any previous assumption on x must be ignored. This is implemented by the
substitution rule, A.1, which is similar to the let rule of Section 4.2.2. This rule is the core
of the evaluation system. Many other evaluation rules, e.g. the one for let, are reduced to
evaluation of a substitution (see e.g. the rule A.3). In NOS, to each sort of identifiers and

4.3. A case study: the language LP 59

substitution operators (e.g. Id and [/] , ProcId and [/]pe , Id and [/]c , etc.) there
corresponds a specific substitution rule, similar in shape to rule A.1. In fact, as we have
seen in Section 4.2.2, bookkeepings can be fruitfully used whenever one has to deal with
standard static scoping. One can even think of these rules as a polymorphic variant of
the same set of rules. Of course, minor adjustments have to be accounted for (rules A.24,
A.33, A.29).

The intuitive meaning of [R|C]M is the same as of [on R do C]M . This expression
is introduced in order to apply the declaration R until it is empty (rule A.16); then, the
command C is executed.

The judgement value encodes the assertion that an expression is a value, and so it
cannot be further reduced nor its meaning is affected by a substitution.

The judgements free, freec,� are used to check that command expressions, that is of
the form [on D do C]M , and procedures do not access global variable. Informally, we can
infer Γ ` free M l if and only if all the free variables of M appear at the leaves of the tree
l (see Theorem 4.3). On the other hand, � collects the variables defined by a declaration
D into a set (represented by a tree of identifiers).

The judgement ⇒p is used for bookkeeping the bindings between procedure identifiers
and procedural abstraction (see rules A.28, A.30).

The evaluation of λ-abstractions

It is worthwhile examining in detail how λ-abstractions are evaluated; this methodology
is quite general, and it can be applied whenever one faces the evaluation of abstractions
in a static-scoping language.

This mechanism makes use of an auxiliary judgement for each sort with variables, in
order to determine the bindings that we have to record in the closure. In the case of LP , we
introduce two judgements closed, closed p. These judgements belong to static semantics:
their derivation rules do not use evaluation rules. Informally, we can derive closed M if
and only if M has no free variables; more precisely, Γ ` closed M iff for every x ∈ FV(M),
there is an assumption (closed x) ∈ Γ (see Lemma 4.3 below).

Let us consider the rules for abstractions evaluation:

(closed x)
...

closed M

lambda x.M ⇒ lambda x.M
(A.4)

(closed y)
...

y ⇒ n lambda x.M ⇒ m

lambda x.M ⇒ [n/y]m
(A.5)

In order to apply rule (A.4), we need a closed assumption for each free variable of M but x.
These assumptions are introduced only by the (A.5) rule, which at the same time extends
the environment of the resulting closure by adding the corresponding binding (here, the
constructor [/] is used to record local environments). Therefore, an expression like
lambda x.M is evaluated into [n1/x1] . . . [nk/xk]lambdax.M, where x1, . . . , xk are all
the free identifiers of M but x, and n1, . . . , nk are their respective values. Application of
closures should be self-explicative.

Notice that NOS is more efficient than SOS in building closures: bindings on variables
which do not occurr free in lambda x.M are not necessarly recorded. This does not hold
for SOS, where a closure contains the whole definition environment [Plo81].

60 Chapter 4. Structural and Natural Operational Semantics

4.3.3 Adequacy

In this section we will show that the NOS description of LP appearing in appendix A.1.1
is adequate w.r.t. the denotational semantics; that is, we will give soundness and com-
pleteness results of one semantics w.r.t. the other.

Definition 4.4 A set of formulæ Γ is a canonical hypothesis if

• it contains only formulæ like “x⇒ n, P ⇒p q, closed(x), closedp(P)”;

• if x⇒ n, x⇒ m ∈ Γ then m and n are syntactically the same expression;

• if P ⇒p q, P ⇒p q
′ ∈ Γ then q and q′ are syntactically the same procedure;

where x ∈ Id, P ∈ ProcId and m,n ∈ Expr, q, q′ ∈ Proc.

In the rest of section, Γ will denote a generic canonical hypothesis; therefore, we will
not take into account “partial evaluations”, that is assumptions of the form M ⇒ m where
M is not an identifier.

Definition 4.5 Let M ∈ Expr, R ∈ Decl and Γ be a canonical hypothesis; then

1. the set of free identifiers of M is denoted by FV(M) ⊂ Id ∪ ProcId. FV is naturally
extended to Commands, bearing in mind that FV(x := M) = FV(M);

2. the set of variables defined by R is DV(M) ⊂ Id, defined as

DV(x1 = M1; . . . ;xk = Mk) = {x1, . . . , xk};

3. the set of Γ-closed identifiers C(Γ) is

C(Γ)
def
= {x ∈ Id | closed(x) ∈ Γ} ∪ {P ∈ ProcId | closed p(P) ∈ Γ};

4. the closure of Γ is

Γ
def
= Γ∪{closed(x)|(y ⇒ n) ∈ Γ, x ∈ FV(n)}∪{closed p(P)|(y ⇒ n) ∈ Γ, P ∈ FV(n)};

5. Γ is a well-formed hypothesis, wfh, if Γ = Γ.

Lemma 4.3 (Free Vars Lemma for NOS) ∀Γ,∀M,m ∈ Expr,∀C ∈ Commands,∀l ∈
IdSet :

1. Γ ` closed M ⇐⇒ FV(M) ⊆ C(Γ)
2. Γ ` free m l ⇐⇒ FV(m) ∩ Id ⊆ leaves(l) ∧ FV(m) ∩ ProcId ⊆ C(Γ)

Γ ` free C l ⇐⇒ FV(C) ∩ Id ⊆ leaves(l) ∧ FV(C) ∩ ProcId ⊆ C(Γ)
where leaves(nil) = ∅, leaves(x) = {x}, leaves(l1 :: l2) = leaves(l1) ∪ leaves(l2)

3. Γ ` value m =⇒ Γ ` closed m

Proof. By induction on the derivations and on the syntax of M,m,C. ut

Note that not all closed expressions are values; e.g., ((lambda x.x) 0).

4.3. A case study: the language LP 61

Definition 4.6 Let I ⊆ Id ∪ ProcId and let ρ, ρ′ ∈ Env. We say that ρ and ρ′ agree
on I (ρ ≡I ρ

′) if ∀x ∈ I ∩ Id : (access [[x]] ρ = access [[x]] ρ′) and ∀P ∈ I ∩ ProcId :
(procaccess [[P]] ρ = procaccess [[P]] ρ′).

Note that all ρ, ρ′ agree on the empty set, that is ∀ρ, ρ′ ∈ Env : ρ ≡∅ ρ
′.

Proposition 4.4 ∀m ∈ Expr,∀R ∈ Decl,∀ρ, ρ′ ∈ Env :
1. ρ ≡FV(m) ρ

′ ⇒ E [[m]]ρ = E [[m]]ρ′

2. ρ ≡FV(C) ρ
′ ⇒ C[[C]]ρ = C[[C]]ρ′

3. ρ ≡FV(R) ρ
′ ⇒ D[[R]]ρ = D[[R]]ρ′

Proof. By simultaneous induction on the syntax of m,C,R. ut

Proposition 4.5 ∀Γ,∀ρ, ρ′ ∈ Env,∀m ∈ Expr,∀l ∈ IdSet :
1. ρ ≡C(Γ) ρ

′ ∧ Γ ` closed m =⇒ E [[m]]ρ = E [[m]]ρ′

2. ρ ≡leaves(l) ρ
′ ∧ Γ ` free C l =⇒ C[[C]]ρ = C[[C]]ρ′

3. ρ ≡C(Γ) ρ
′ ∧ Γ ` value m =⇒ E [[m]]ρ = E [[m]]ρ′

Proof. Follows from Lemma 4.3 and Proposition 4.4. ut

Corollary 4.6 Γ ` value m ∧ C(Γ) = ∅ =⇒ ∀ρ, ρ′ ∈ Env : E [[m]]ρ = E [[m]]ρ′

Definition 4.7 We say that ρ ∈ Env satisfies Γ (ρ |= Γ) if ∀(x⇒ n) ∈ Γ : access [[x]] ρ =
E [[n]]ρ, and ∀(P ⇒ q) ∈ Γ : procaccess [[x]] ρ = Q[[q]]ρ.

This is another place where the conciseness of the N.D. formalism comes into play. The
domain of environments satisfying a given Γ can be much larger than the set of variables
which occur on the left of assumptions in Γ.

Theorem 4.7 ∀M,m,∀Γ wfh,∀ρ : ρ |= Γ ∧ Γ `M ⇒ m =⇒ E [[M]]ρ = E [[m]]ρ

Proof. By induction on the structure of derivation, using the previous results. ut

Corollary 4.8 (Soundness) ∀M,m ∈ Expr : ∅ `M ⇒ m =⇒ E [[M]] = E [[m]].

Proof. Put Γ = ∅ in Theorem 4.7, and notice that ∅ is a wfh and ∀ρ ∈ Env : ρ |= ∅. ut

Completeness. A completeness result is something like an “inverse” of Corollary 4.8.
However, a literal converse of Corollary 4.8 cannot hold: for M = m = (lambdax.x0) it
is E [[M]] = E [[m]] but of course 6` M ⇒ m. In fact, only some expressions can appear as
values (see Lemma 4.3). We need a new definition:

Definition 4.8 Let M ∈ Expr. An hypothesis Γ is suitable for M (written M -suit(Γ)),
if ∀x, P ∈ FV(M)∃(x⇒ n), (P ⇒p q) ∈ Γ such that FV(n),FV(q) ⊆ C(Γ).

A hypothesis is suitable for M if it contains enough bindings to evaluate M . Therefore, we
can state the completeness of Natural Operational Semantics with respect to Denotational
Semantics as follows:

62 Chapter 4. Structural and Natural Operational Semantics

(Completeness of NOS wrt DS)∀M ∈ Expr,∀Γ well-formed hypothesis,
∀ρ ∈ Env: if E [[M]]ρ 6= ⊥,>, and M -suit(Γ), and ρ |= Γ, then ∃m ∈ Expr :
Γ `M ⇒ m.

The difficulty in the proof is this: given an expression M whose meaning, in a given
environment, is a proper point of V, and a suitable hypothesis Γ, we have to build up a
deduction Γ ` M ⇒ m, for some m.3 This cannot be done by induction on the syntactic
structure of M , since our language is higher order; in fact, the evaluation of M can use
M itself, and not only its subterms (see e.g. rule A.21). Nevertheless, the theorem can
be proved by using the technique of inclusive predicates, developed by Milner and Plotkin
[Plo85, Gun92, Win93].

Adequacy w.r.t. the Structural Operational Semantics. An easier way for proving
completeness of Natural Operational Semantics is to refer to a Structural Operational
Semantics formulation of the semantics (à la Plotkin, [Plo81]). One can define a complete
“input-output” SOS system for LP , that is a system as those described in Section 4.1.
Such a system would deal with two evaluation judgements: evaluation of expressions,
ρ `SOS M → m, and execution of commands, ρ `SOS C → ρ′ where ρ, ρ′ are finite
environments, i.e. they are defined on a finite number of identifiers, and m is a value. In
the literature, there are many SOS specifications for languages similar to LP , which have
been proved complete with respect to their denotational semantics [Plo81, Gun92, Win93].

It is an easy task prove that such a SOS specification is equivalent to the NOS one,
that is, ∀ρ finite environment, ∀Γ,∀M,m ∈ Expr:

1. if ∀(x⇒ n) ∈ Γ : ρ(x) = n and Γ `M ⇒ m, then ρ `SOS M → m;

2. if ρ `SOS M → m and ∀x ∈ FV(M) : (x⇒ ρ(x)) ∈ Γ, then Γ `M ⇒ m.

This is provable by induction on the derivations, using techniques similar to those adopted
previously in this subsection. In particular, the completeness part (2) does not require the
technique of inclusive predicates, but only a simpler structural induction on the derivation
ρ `SOS M → m.

4.4 Some remarks about language design

LP is quite different from the language considered in [BH90]. There are several reasons for
these changes. In some cases these are motivated by the desire to have a natural soundness
result (see Section 4.3.1 for remarks concerning procedures).

Another difference is that in LP , commands are embedded into expressions by the
on-do construct. A simpler formalism for applying directly commands to expressions is
used in [BH90], i.e. the “modal” operator [] : Commands × Expr → Expr. Informally,
the value of [C]M is the value of M after the execution of C. The execution of C can
affect any variable which is defined before its execution, but only locally to M : as any
expression, the evaluation of [C]M does not change the global environment any more than
evaluating 0 or nil. We preferred to emphasize this point, by introducing the construct
[on x1 = M1; . . . ;xk = Mk do C]M : here, we immediately know that only the “interface
variables” x1 . . . xk, whose scope is limited to C and M , are accessible by C.

3By Theorem 4.7, this m has the same meaning as M

4.5. Some extensions of LP 63

4.5 Some extensions of LP

In this section we briefly describe some further extensions of LP concerning complex dec-
larations, structures and imperative modules. Their semantics can be expressed without
stores because there is no variable sharing. See A.2 for their NOS and DS specifications.
We deal with each extension by itself, by simply adding new rules to the formal system
without altering the previous ones. This illustrates the modularity of NOS which allows
us to add new rules for new constructs without changing the previous ones. For each
extension, one can prove adequacy of NOS w.r.t. the denotational semantics, by simply
discussing only the new cases due to the extra rules.

4.5.1 Complex Declarations

The language LD is obtained from LP by adding expressions of the form let R in M
where R is a complex declaration like in Standard ML [MTH90]:

Expr M ::= . . . | let R in M

Decl R ::= . . . | R;S | R andS

In spite of the syntactic simplicity of these extensions, it appears to be unavoidable to de-
fine an entire evaluation system for declarations (rules A.72–A.88). The value of complex
declarations are finite sets of bindings, represented by expressions called syntactic envi-
ronments; they are trees whose leaves are of the form x 7→ n where 7→: Id×Expr → Expr
is a new local constructor. We need to introduce furthermore several constructors and
a judgement for applying such syntactic environments to expressions and declarations
({ } , { }d) and for inferring expression closures (〈 〉 ,�). Informally, one can derive
Γ ` R� I iff all expressions contained in R are closed in Γ and I is the set of identifiers
defined by R. On the other hand, Γ ` closed 〈I〉M iff all free variables in M but the
ones in I are closed in Γ. Once the rules will be laid down, these fact will be formally
provable. Using this set of rules, we can define precisely when a complex let is closed
without using any evaluation, since closed is a property belonging to static semantics. An
adequacy theorem similar to Theorem 4.3 can be proved for the system given in Section
A.1.2. In [BH90] there is a simpler approach; it uses the complex declaration evaluation
in order to determine the set of defined identifiers. This approach is not complete: there
are closed expression whose closed property cannot be inferred in [BH90]’s system (e.g.
let o = (lambda x.xx); z = (oo) in z).

4.5.2 Structures and signatures

The language LMF
(Figure 4.3) extends LP by adding a module system like that of Stan-

dard ML [MTH90], where a module is “an environment turned into a manipulable object”.
Like SML, a module (here called structure) has a signature, and we can do signature match-
ing in order to “cast” structures. However, there are some differences between SML and
LMF

. First, in LMF
structures and signatures are indeed expressions. Therefore, they may

be associated to identifiers with simple lets, without using special constructs. These lets
can appear anywhere in expressions, not only at top level. Structures and signatures can

64 Chapter 4. Structural and Natural Operational Semantics

LongId u ::= x | u.x

Commands C ::= . . . | u := M

Expr M ::= . . . | sig x1 . . . xk end | struct x1 = M1; . . . ;xk = Mk end

|M : N | open u in M

Figure 4.3: LMF
, the extension for functional modules.

ModId T ::= t1 | t2 | t3 | . . .

Expr M ::= . . . | T.f

Commands C ::= . . . | module T is x = M ; proc P (y) = C; func f = N in D

| T.P (M)

Figure 4.4: LMI
, the extension for imperative modules.

be manipulated by common functions; however, there are not functors since the sharing
specification is not implemented. The NOS should be self-explanatory.

4.5.3 Imperative modules (Abstract Data Types)

The extension LMI
(see Figure 4.4) introduces modules à la Morris [Mor73]. In this

formulation, a module is very close to an Abstract Data Type: it contains

1. a set of local variables, recording the state of the module; they are not accessible
from outside the module;

2. some code for the initialization of the local variables above;

3. a set of procedures and functions which operate on these local variables and are the
only part accessible from outside the module (the interface).

From outside a module we can only evaluate its functions, which do not produce side-
effects, and execute its procedures, which can modify the state of the module (the value
of local variables). In order to illustrate the idea, but w.l.o.g., we discuss only modules
with exactly one local variable, one procedure with one argument (passed by value) and
one function.

As for the previous languages, we do not need a representation of the store in defining
the semantics of this kind of module [Don77]. The rules for the specification of the imper-
ative modules are certainly the most complex of those discussed in this thesis. They are
based on the principle of distributing as much as possible under the form of hypothetical
assumption in deductions. In a module there are three informations: the state, the proce-
dure and the function. Actually, only the state is subject to changes upon execution of the

4.6. Conclusions and Related Work 65

module procedure. We split these three informations and record them using three different
judgements (see rule A.114). The predicates of these assumptions are the following:

⇒m ⊂ ModId× (Expr×ModId)

⇒mp ⊂ (ModId× ProcId)×Q

⇒mf ⊂ (ModId× Id)× Expr

We use a lot of syntactic sugar; for instance, we write T.P ⇒mp λx, y.C instead of ⇒mp

((T, P), lambda x, y.C).
When the state of a module changes (by executing its procedure), we have to substitute

only the assumption involving ⇒m; the other two remain the same. Thus, while the
procedure and the function are left associated to the original module identifier, the state
becomes associated to a new ModId, and this substitution affects a part of the declaration
to be evaluated (see rules A.116 A.115). The link between the new state and the procedures
is maintained by the module identifier which appears on right of ⇒m assumption: it is
merely copied from the old assumption into the new one (rule A.116).

When a module procedure has to be executed (T.P (M)), first we look for the state of
the module T , by requiring T ⇒m (p, T ′). Here we find the original module identifier, T ′.
The invoked procedure is then associated to this identifier in the assumption T ′.P ⇒mp

lambda x, y.C. After having bound x and y respectively to module variable value (p)
and actual parameter (m), we execute C and get back the new value of the state variable.
Finally, we substitute T with the new module state.

Function evaluation is similar to procedure call, but simpler (rule A.117).

4.6 Conclusions and Related Work

After its introduction [Kah87], Natural Semantics have been adopted by many researchers
in specifying operational behaviours of programs; see e.g. [CDDK86, Des86, Ter95]. This
formalism has been enriched by introducing higher-order abstract syntax [MP91, HP92,
Han93]: the resulting paradigm, called Extended Natural Semantics, has been proved very
suited for manipulating pure functional languages. In this chapter, we have seen how NS
can be extended in order to deal also with imperative features.

We have seen that NOS handles successfully languages which do not allow variable
aliasing, or sharing, We have shown some of these languages: functional languages ex-
tended with a restricted form of commands and procedures, blocks, complex declarations,
modules à la ML (structures and signatures) and modules à la Morris. Exception handling
should be added to LMF

quite easily, along the line of [BH90].
Unfortunately, we are not able to express concisely the semantics of a truly imperative

language using this formalism. It seems that one cannot represent simultaneously both the
store and the environment by means of assumptions. Without encoding a store we cannot
describe usual imperative phenomena like side-effects with aliasing, argument passage of
parameters by-reference and so on. Therefore, this formalism seems not general enough to
deal with expressions with side-effects, functions with local state variables or memoization,
Pascal procedures (procedures with global variables and call-by-reference). For instance,
we can try to model a bank account defining a function withdraw which takes the amount
to be withdrawn (an example taken from [AS85]):

66 Chapter 4. Structural and Natural Operational Semantics

let cash = 100; withdraw = lambda a.[on bal=cash do bal:=bal-a]bal

in let remaining = (withdraw 50)

in (withdraw 30)

This program would be evaluated to 70 instead 20: the first withdraw has no effect.
The reason is that in the closure of withdraw, cash is bound to 100, and this binding
is reapplied to the local environment whenever withdraw is applied; this “reinitializes”
bal to 100 each time (see rules A.5, A.6, A.8). Therefore, a withdraw cannot affect any
following application.

We can successfully implement this bank account by using the imperative modules
(Section 4.5.3), e.g. as follows:

module account is

bal = 100;

proc withdraw(amount) = bal := bal - amount;

func balance = bal

in ...

Now we can withdraw an amount A by executing account.withdraw(A), and know how
much money we have left by evaluating account.balance.

However, even this notion of module is too weak to adequately model “functions with
local state” as are necessary, for instance, in realizing memoized functions. In fact, as
soon as an instance of a module is packaged within a λ-abstraction, its connection with
its parent (definition) is severed.

The real lack of our languages with respect to Standard ML is the absence of the
store: due to its imperative feature ML is a store-based language [MTH90]. Therefore, in
order to capture fully the semantics of ML by a NOS specification we have to find some
representation of the store.

Ideally, we would like to extend the formalism as much as is needed to describe the
semantics of an untyped λ-calculus extended by primitives for manipulating side-effects,
like ML’s ref, ! and := [Har89, MTH90]. The NOS of this language should be easily
extended to that of ML. The only solution, so far, is to represent stores by means of
linear datastructures, such as lists of “location-value” pairs. These lists would be part of
the evaluation judgement, which would become of the form 〈M,σ〉 ⇒ 〈m,σ′〉. Therefore,
these structures would be carried along the whole derivation, even if we never access to
the store. This arises again the problematics we have discussed in Section 4.1.2.

Recently, some new approaches in the treatment of linear datatypes have been sug-
gested by the application of Linear Logic [Gir87a]. Miller proposed a representation of
imperative languages in Forum [Mil94]; however, its approach still embodies the whole
store in every step of the derivations. A different, and more promising, approach is fol-
lowed in the forthcoming Linear Logical Framework [Cer96].

Chapter 5

Modal Logics

Although Modal Logics are not properly program logics, many of their features have a
bearing on the “modally flavoured” operators of many program logics, such as 2,3,©
of Temporal Logics [Sti92, Lam91, MP81], the “relativized” modal operators [·] ·, 〈·〉 · of
Propositional Dynamic Logic, First-Order Dynamic Logic, Hennessy-Milner logics [KT90,
Har84, Har79, HM85], and even the µ, ν operators of µ-calculus [Koz83, Sti92] and Hoare
triples [Hoa69, Apt81]. Hence, this study is preliminary to that of proper program logics.1

5.1 Syntax and Semantics

The formulæ of the basic modal propositional language Φ are defined by the following
abstract syntax:

Φ : ϕ ::= p | ¬ϕ | ϕ ⊃ ψ | 2ϕ

where p ranges over the set of atomic proposition, denoted by Φ0. The constant ff ∈ Φ0

denotes the falsum. Given ϕ ∈ Φ, we denote by FV(ϕ) the set of (free) atomic predicate
variables, defined as usual; the notion of FV is extended to sets of formulæ: FV(Γ) =
∪ϕ∈ΓFV(ϕ). By ϕ[x1, . . . , xn] we denote a formula ϕ such that FV(ϕ) ⊆ {x1, . . . , xn}; we

define ΦX
def
= {ϕ ∈ Φ | FV(ϕ) ⊆ X}. Finally, we take 3ϕ as a syntactic shorthand for

¬2¬ϕ.
Semantics of modal logics is given on Kripke structures [HC84, vB83]. Let F range

over frames, that is pairs 〈S,R〉 where S is a sets (the states), and R ⊆ S×S is a relation
(the accessibility relation) between states. Let ρ range over Env, the environments (that
is, functions Φ0 → P(S)). A model is a pair M = 〈F, ρ〉; the interpretation of a formula
ϕ in the model 〈F, ρ〉 is a set of states [[ϕ]]Fρ ⊆ F , defined by induction on the syntax of
ϕ. Interpretations are extended to subsets of Φ:

[[·]]F : Φ → Env → P(S)

[[p]]Fρ = ρ(p)

[[¬ϕ]]Fρ = S \ [[ϕ]]Fρ

[[ϕ ∧ ψ]]Fρ = [[ϕ]]Fρ ∩ [[ψ]]Fρ

[[2ϕ]]Fρ = {s ∈ S | ∀s′ ∈ S.R(s, s′) ⇒ s′ ∈ [[ϕ]]Fρ}

1Some of the results of this chapter will appear in [AHMP97].

67

68 Chapter 5. Modal Logics

[[Γ]]Fρ =
⋂

ϕ∈Γ

[[ϕ]]Fρ

Given a formula ϕ, a model M = 〈F, ρ〉 and a state s, we define when ϕ is true in s
just as membership: s |=M ϕ ⇐⇒ s ∈ [[ϕ]]Fρ. In particular, s |=M 2ϕ ⇐⇒ ∀s′.s →
s′ ⇒ s′ |=M ϕ. If ϕ is true in every state of a model M, we say that ϕ is valid in M
(written |=M ϕ). Hence, ϕ is valid in a model 〈S,R, ρ〉 iff [[ϕ]]〈S,R〉ρ = S.

5.2 Consequence Relations

As we have already observed in Section 3.1, there are two main classes of Consequence
Relation for Modal Logics, truth and validity CR’s, accordingly to whether we require
formulæ to hold in every state or not. Even more choices arises when we restrict our
interpretation to only one model, or a class of structures. For definiteness, we recall here
some definitions given in Section 3.1.

Definition 5.1 (Consequence Relations for Modal Logics) Let M range over mo-
dal models, ϕ over formulæ and Γ over sets of formulæ.

Truth CR’s: (a.k.a. model local consequences [vB83])

• the truth CR with respect to M = 〈F, ρ〉 is

Γ |=M ϕ ⇐⇒ ∀w.w ∈ [[Γ]]Fρ⇒ w ∈ [[ϕ]]Fρ

we say that ϕ is true in Γ with respect to M if Γ |=M ϕ;

• let Λ be a set of models; the truth CR with respect to Λ is

Γ |=Λ ϕ ⇐⇒ ∀M ∈ Λ.Γ |=M ϕ

we say that ϕ is true in Γ with respect to Λ if Γ |=Λ ϕ;

• the (absolute) truth CR is |=
def
=
⋂

M |=M, where M ranges over all modal
models. We say that ϕ is true in Γ if Γ |= ϕ.

Validity CR’s: (a.k.a. model global consequences [vB83])

• the validity CR with respect to M = 〈F, ρ〉 is

Γ ||=M ϕ ⇐⇒ [[Γ]]Fρ = S ⇒ [[ϕ]]Fρ = S

we say that ϕ is valid in Γ with respect to M if Γ ||=M ϕ;

• let Λ be a set of models; the validity CR with respect to Λ is

Γ ||=Λ ϕ ⇐⇒ ∀M ∈ Λ.Γ ||=M ϕ

we say that ϕ is valid in Γ with respect to Λ if Γ ||=Λ ϕ;

• the validity CR is ||=
def
=
⋂

M ||=M, where M ranges over all modal models. We
say that ϕ is valid in Γ if Γ ||=M ϕ.

5.3. Proof Systems 69

As an example of interesting class of structures, consider the set of frames whose accessi-
bility relation is transitive, or reflexive, or both. . .

These CR’s correspond to the (model) global relation and the (model) local relation of
[vB83], respectively. They differ on the releavance given to assumptions: in the validity
CR, formulæ of Γ are seen as theorems, true in every state, while in the truth CR they
are assumptions, locally true in each state we consider. This difference is made apparant

in the following result, where 2
0ϕ

def
= ϕ, 2

n+1ϕ
def
= 22

nϕ:

Theorem 5.1 ([vB83]) For Γ ⊆ Φ, ϕ ∈ Φ: Γ ||= ϕ ⇐⇒ {2nψ | ψ ∈ Γ, n ∈ N} |= ϕ.

Moreover, the usual “deduction theorem” (“Γ, ϕ |= ψ ⇐⇒ Γ |= ϕ ⊃ ψ”) holds only for
the true CR’s: it is easy to see that p ||= 2p, but of course 6||= p ⊃ 2p.

Beside these simple consequence relations for Modal Logics, it is useful to introduce a
Multiple Consequence Relation. In fact, there are proof systems which represent simul-
taneously both truth and validity consequence, lead us to consider the following MCR in
place of SCR.

Definition 5.2 (Multiple Consequence Relation for Modal Logics) Let M range
over modal models, ϕ over formulæ and Γ over sets of formulæ.

• the MCR with respect to M = 〈F, ρ〉 is (|=1
M, |=2

M) where the two components
|=i
M⊂ P(Φ)× P(Φ)× Φ are defined as follows:

Γ;∆ |=1
M ϕ ⇐⇒ (∀s.s |=M Γ) ⇒ (∀s.s |=M ∆ ⇒ s |=M ϕ)

Γ;∆ |=2
M ϕ ⇐⇒ (∀s.s |=M Γ) ⇒ (∀s.s |=M ϕ)

• let Λ be a set of models; the MCR with respect to Λ is composed by the following
two relations:

Γ;∆ |=i
Λ ϕ ⇐⇒ ∀M ∈ Λ.Γ;∆ |=i

M ϕ

for i = 1, 2.

• the (absolute) MCR consists of the relations |=idef
=
⋂

M |=i
M, (i = 1, 2) where M

ranges over all modal models.

It is clear that the simple consequence relations of Definition 5.1 can be defined as
particular cases of the multiple consequence relation:

Proposition 5.2 Let ϕ formula, and Γ,∆ sets of formulæ. Then, the following hold:

∆ |=M ϕ ⇐⇒ ∅;∆ |=1
M ϕ

Γ ||=M ϕ ⇐⇒ Γ;∆ |=2
M ϕ

5.3 Proof Systems

In this section we present some proof systems, in Natural Deduction style, for Modal
Logics. These systems will extend any known ND-style system for classical logic, such as
the one presented in Figure 5.1.

70 Chapter 5. Modal Logics

NC =

Γ, ϕ ` ϕ Raa
Γ,¬ϕ ` ff

Γ ` ϕ

⊃-I
Γ, ϕ ` ψ

Γ ` ϕ ⊃ ψ
⊃-E

Γ ` ϕ ⊃ ψ Γ ` ϕ

Γ ` ψ

ff-I
Γ ` ϕ Γ ` ¬ϕ

Γ ` ff
ff-E

Γ ` ff

Γ ` ϕ

Figure 5.1: NC, a minimal proof system for classical logic.

NK = NC + ⊃2-E
Γ ` 2(ϕ ⊃ ψ) Γ ` 2ϕ

Γ ` 2ψ
2
′-I

∅ ` ϕ

∅ ` 2ϕ

Figure 5.2: NK, the ND-style system for minimal modal logic.

5.3.1 Proof systems for truth

In Figure 5.2 we present NK, a system for representing the truth consequence relation
of modal logics. This system can be easily extended in order to represent stronger logics
(such as KT , K4, KL, . . .), by adding other rules corresponding to the usual axioms of
Hilbert-style systems (Figure 5.3).

Notice that this system features a impure rule, namely 2
′-I, which is the usual neces-

sitation rule for truth proof systems.

Proposition 5.3 In NK: Γ ` ϕ ⇐⇒ Γ |= ϕ

Proof. (Sketch) The rules are sound; moreover, the rules and axioms of a Hilbert-style
systems for the truth for K (see e.g. [HC84]) are derivable. ut

This result can be easily extended to the other systems.

Prawitz’ systems for S4

In Figure 5.4 we recall two well-known systems for S4 of Prawitz’, namely the “first” and
the “third” version of [Pra65]. Notice that these systems are impure, due to the weird
side-conditions on the 2-introduction rules.

2-E
Γ ` 2ϕ

Γ ` ϕ
22-I

Γ ` 2ϕ

Γ ` 22ϕ

23-I
Γ ` 3ϕ

Γ ` 23ϕ
2⊃-I

Γ ` 2(2ϕ ⊃ ϕ)

Γ ` 2ϕ

NKT = NK + 2-E

NK4 = NK + 22-I

NKT4 = NKT + 22-I

NKT45 = NKT4 + 23-I

NKL = NK + 2⊃-I

Figure 5.3: ND-style rules and systems for various modal logics.

5.3. Proof Systems 71

NS4 = NC + 2-I
Γ ` ϕ

Γ ` 2ϕ
(∗) 2-E

Γ ` 2ϕ

Γ ` ϕ

NS4f = NC + 2f -I
Γ ` ϕ

Γ ` 2ϕ
(∗∗) 2-E

Γ ` 2ϕ

Γ ` ϕ

(∗) = the formulæ in Γ are boxed.

(∗∗) = the proof of the premise has a fringe of modal formulæ.

Figure 5.4: NS4 and NS4f , two Prawitz’ systems

NK ′ = NC +

2
′′-I

Γ ` ϕ

Γ `̀ 2ϕ
⊃′′-E

Γ ` ϕ ⊃ ψ Γ `̀ ϕ

Γ `̀ ψ

2
′′′-I

Γ `̀ ϕ

Γ `̀ 2ϕ
⊃′′′-E

Γ `̀ ϕ ⊃ ψ Γ ` ϕ

Γ `̀ ψ

⊃′-E
Γ `̀ ϕ ⊃ ψ Γ `̀ ϕ

Γ `̀ ψ
⊃2-E

Γ ` 2(ϕ ⊃ ψ) Γ ` 2ϕ

Γ ` 2ψ

NKT ′ = NK ′ + 2-E NK4′ = NK ′ + 22-I

NKT4′ = NKT ′ + 22-I NKT45′ = NKT4′ + 23-I

NKL′ = NK ′ + 2⊃-I

Figure 5.5: NK ′, the ND-style system for minimal validity modal logic, and its extensions.

Proposition 5.4 ([Pra65]) The systems NS4, NS4f are sound and complete with re-
spect to the class of transitive and reflexive models.

5.3.2 Proof systems for validity

In Figure 5.5 we present NK ′, a system for representing the validity consequence relation
of modal logics. This system can be easily extended in order to represent stronger logics
(such as KT , K4, KL, . . .), by adding other rules corresponding to the usual axioms of
Hilbert-style systems.

Notice that this system deals with two consequence relations at once: the first one, `,
is defined by the sole classical system NC and derives the pure propositional tautologies.
The other relation, `̀ , represents the valid consequences of the minimal modal logic, K.
It is worthwhile noticing that the system NK ′ is pure, that is none of its rules has side-
conditions.

Proposition 5.5 In NK ′: Γ `̀ ϕ ⇐⇒ Γ ||= ϕ

Proof. (Sketch) Rules are sound; moreover, the rules and axioms of an Hilbert-style
systems for the validity for K (see e.g. [HC84]) are derivable. ut

This result can be easily extended to the other systems.

72 Chapter 5. Modal Logics

NK ′′ def
= NK ′ +

Γ, ϕ `̀̀ ϕ Embed’
`̀ ϕ

`̀̀ ϕ
RaaT

Γ,¬ϕ `̀̀ ff

Γ `̀̀ ϕ

⊃T -I
Γ, ϕ `̀̀ ψ

Γ `̀̀ ϕ ⊃ ψ
⊃T -E

Γ `̀̀ ϕ ⊃ ψ Γ `̀̀ ϕ

Γ `̀̀ ψ

ff T -I
Γ `̀̀ ϕ Γ `̀̀ ¬ϕ

Γ `̀̀ ff
ff T -E

Γ `̀̀ ff

Γ `̀̀ ϕ

NKT ′′ = NK ′′ + 2-E NK4′′ = NK ′′ + 22-I

NKT4′′ = NKT ′′ + 22-I NKT45′′ = NKT4′′ + 23-I

NKL′′ = NK ′′ + 2⊃-I

Figure 5.6: NK ′′, the ND-style system for minimal truth-validity modal logic, and its
extensions.

5.3.3 A proof system for both truth and validity

We can introduce ND-style systems for truth consequences, based on the multiple CR
ND-style system NK’ for validity. We need only to add a third consequence relation,
namely `̀̀ , with exactly the same rules as `, and in addition the rule Embed’. The whole
system, NK ′′, is shown in Figure 5.6.

This system deals with three consequence relations at once: as for NK ′, ` derives the
pure propositional tautologies, while `̀ represents the valid consequences of the minimal
modal logic, K. The new relation `̀̀ derives instead the true consequences of the minimal
modal logic. It is worthwhile noticing that the system NK ′′ is pure, that is none of its
rules has side-conditions.

It is therefore natural to see this system as a representation of both the truth and the
validity consequence relation; therefore, we give the following adequacy result with respect
to the multiple consequence relation of Definition 5.2:

Proposition 5.6 In NK ′′, we have

∅;∆ |=1 ϕ ⇐⇒ Γ `̀̀ ϕ

Γ;∆ |=1 ϕ ⇐⇒ Γ `̀
∧

∆ ⊃ ϕ

Proof. (Sketch) Rules are sound; moreover, the rules and axioms of an Hilbert-style
systems for the validity forK (see e.g. [HC84]) are derivable at the level of `̀ . Completeness
follows from the fact that ϕ1, . . . , ϕn |= ϕ iff ϕ1 ⊃ . . . ⊃ ϕn ⊃ ϕ is valid, and `̀ ϕ1 ⊃
. . . ⊃ ϕn ⊃ ϕ. By applying the Embed’ rule, we obtain `̀̀ ϕ1 ⊃ . . . ⊃ ϕn ⊃ ϕ; the thesis
follows by n applications of rule ⊃T -I. ut

This system can be easily extended in order to represent stronger logics (such as KT ,
K4, KL, . . .), by adding other rules corresponding to the usual axioms of Hilbert-style
systems.

Chapter 6

Propositional Dynamic Logic

Propositional Dynamic Logic is one of the first modal logics for dealing with programs
and processes. The adjective “propositional” is due to the fact that in PDL one focus on
the structure of programs, by abstracting on the particular effect of atomic actions.

6.1 Syntax and Semantics

Let Act be a set of atomic command symbols, ranged over by a; the language LPDL

of Propositional Dynamic Logic is obtained by extending a propositional language with
Kleene’s algebra of regular programs Prog on Act and the modal formula constructor [·] ·
(Figure 6.1). Here, p, q range over atomic propositional symbols, and a ranges over atomic
command symbols. The construct 〈·〉 · is defined as a shorthand for ¬ [·]¬·. The informal
meaning of some of these constructs is the following:

b? = “test b; proceed if true, fail if false”

c∗ = “execute c a nondeterministically chosen finite number of times”

[c]ϕ = “at the end of every non-diverging execution of c, ϕ holds”

〈c〉ϕ = “there is an execution of c such that at its end ϕ holds”

Despite its simplicity, the class of regular programs is very expressive; for instance, the
usual while language, and many other constructs such as Dijkstra’s guarded commands,
can be defined in terms of regular programs [KT90, p.794]:

if b then c1 else c2
def
= (b?; c1) + (¬b?; c2)

while b do c
def
= (b?; c)∗;¬b?

do b1 → c1 [] . . . [] bn → cn od
def
= (b1?; c1 + . . .+ bn?; cn)

∗; (¬b1 ∧ . . . ∧ ¬bn)?

The formal interpretation of PDL comes from Modal Logic. A Kripke model for PDL is
a pair M = 〈S, [[·]]M〉 where S is a (generic) set of abstract states (the carrier), ranged over
by s and [[·]]M is the interpretation of atomic propositional and command symbols: for all

73

74 Chapter 6. Propositional Dynamic Logic

Command-free Formulæ B : b ::= q | b ⊃ b | b ∧ b | ¬b
Regular Programs Prog : c ::= a | b? | c; c | c+ c | c∗

Formulæ Φ : ϕ ::= p | ϕ ⊃ ψ | ϕ ∧ ψ | ¬ϕ | [c]ψ

Figure 6.1: LPDL, the language of Propositional Dynamic Logic.

p, a, we have [[p]]M ⊂ S and [[a]]M : S → P(S).1 The interpretation is then compositionally
extended to all formulæ and programs:

[[ϕ ⊃ ψ]]
def
= (S \ [[ϕ]]) ∪ [[ψ]]

[[¬ϕ]]
def
= S \ [[ϕ]]

[[b?]]
def
= λs.[[b]] ∩ {s}

[[c1 + c2]]
def
= [[c1]] ∪ [[c2]]

[[ϕ ∧ ψ]]
def
= [[ϕ]] ∩ [[ψ]]

[[[c]ϕ]]
def
= {s ∈ S | [[c]]s ⊆ [[ϕ]]}

[[c1; c2]]
def
= [[c2]] ◦ [[c1]]

[[c∗]]
def
= [[c]]∗ = λs. ∪n∈ω [[c]]ns

6.2 Consequence Relations

In this section, we introduce some consequence relations for PDL. We will see that, beside
the usual truth and validity CR’s, another distinction arise in connection with finiteness
of assumptions. In fact, we are naturally lead to consider infinitary proof systems. Hence
we will consider both a finitary and a infinitary proof system for PDL.

Definition 6.1 (Consequence Relations for PDL) Let M be a model for PDL and
[[·]]M be the relative interpretation in M of atomic propositional symbols, extended com-
positionally to all formulæ and commands. The truth and the validity CR’s for PDL wrt
M are two relations |=M, ||=M⊆ P(Φ)× Φ, defined as follows:

Γ |=M ϕ ⇐⇒ [[Γ]]M ⊆ [[ϕ]]M

Γ ||=M ϕ ⇐⇒ [[Γ]]M = S ⇒ [[ϕ]]M = S

The (absolute) truth and validity CR’s for PDL are defined as follows:

Γ |= ϕ ⇐⇒ ∀M.Γ |=M ϕ

Γ ||= ϕ ⇐⇒ ∀M.Γ ||=M ϕ

The finitary truth consequence relations with respect to a model M is the restriction
of |=M to finite sets:

Γ |=fMϕ ⇐⇒ ∃∆ ⊆ Γ, finite.∆ |=M ϕ

Γ |=fϕ ⇐⇒ ∃∆ ⊆ Γ, finite.∆ |= ϕ

It is well-known that PDL lacks compactness. In fact, the CR’s |=, ||=, |=M, ||=M above
may involve infinite sets of assumptions, where all assumptions are essential:

1These models are also known as transition systems; see for instance [Sti92].

6.3. Proof Systems 75

;-I
[c1] [c2]ϕ

[c1; c2]ϕ
;-E

[c1; c2]ϕ

[c1] [c2]ϕ

?-I

(b)
ϕ

[b?]ϕ
?-E

[b?]ϕ b

ϕ

+-I
[c1]ϕ [c2]ϕ

[c1 + c2]ϕ
+-E

[c1 + c2]ϕ

[ci]ϕ

∗
f -I

Γ ` ϕ ϕ ` [c]ϕ

Γ ` [c∗]ϕ
∗-E

[c∗]ϕ

[c]n ϕ
n ∈ N

where [c]0 ϕ
def
= ϕ [c]n+1 ϕ

def
= [c] [c]n ϕ

sc

[Γ]
[c] Γ ϕ

[c]ϕ
Unf

[c∗]ϕ

[c] [c∗]ϕ

Figure 6.2: The modal rules of the system NfPDL.

Proposition 6.1 There is an infinite set Γ, ϕ formula such that Γ |= ϕ, but for all ∆ ⊆ Γ,
∆ finite: ∆ 6|= ϕ.

Proof. See [Har84, Theorem 2.15]. Take e.g. {
[

x := x−̇1
]n
x 6= 0 | n ∈ N} |=

[

(x := x−̇1)∗
]

x 6= 0. ut

If we are interested in sound finitary system for reasoning about |=, we can content
ourselves with just having completeness wrt |=f ,

6.3 Proof Systems

We present both a finitary proof system, complete with respect to the finitary truth CR,
and an infinitary proof system, which we prove complete with respect to the infinitary
consequence relation |=.

6.3.1 A finitary ND-style system for PDL

In Figure 6.2 we introduce a finitary proof systems for PDL. This system has a strong
modal flavour. The rule sc is the Natural Deduction-style version of Scott’s rule; moreover,
the rule ∗

f -I is submitted to a “proof condition” on the right subderivation. Indeed, the
same rule could be written as follows:

Γ ` ϕ ∅ ` ϕ ⊃ [c]ϕ

Γ ` [c∗]ϕ

which makes the condition more explicit.
NfPDL is a sound and complete representation of |=f .

Proposition 6.2 ∀Γ finite, ϕ formula: Γ `NfPDL ϕ ⇐⇒ Γ |=fϕ.

76 Chapter 6. Propositional Dynamic Logic

;-I
[c1] [c2]ϕ

[c1; c2]ϕ
;-E

[c1; c2]ϕ

[c1] [c2]ϕ

?-I

(b)
ϕ

[b?]ϕ
?-E

[b?]ϕ b

ϕ

+-I
[c1]ϕ [c2]ϕ

[c1 + c2]ϕ
+-E

[c1 + c2]ϕ

[ci]ϕ

∗-I
ϕ [c]ϕ . . . [c]nϕ . . .

c∗ϕ
∗-E

[c∗]ϕ

[c]n ϕ
n ∈ N

where [c]0 ϕ
def
= ϕ

[c]n+1 ϕ
def
= [c] [c]n ϕ

sc

[Γ]
[c] Γ ϕ

[c]ϕ

Figure 6.3: The modal rules of the system NPDL.

Proof. (Sketch) The rules are sound; on the other hand, it is easy to prove that the axioms
and rules of a complete Hilbert-style proof system for PDL (see e.g. [Har84, KT90]) are
derivable. ut

However, due to well-known compactness problems, a finitary proof system cannot be
complete with respect to the whole relation |=:

Proposition 6.3 NfPDL is incomplete with respect to |=.

Proof. This is a standard compactness argument. Let Γ |= ϕ the true consequence of
Proposition 6.1, and suppose that Γ `NfPDL ϕ. Since any proof in NfPDL can take into
account only a finite set of assumptions, there is a finite set ∆ ⊆ Γ such that ∆ `NfPDL ϕ.
By the Proposition, we know that ∆ 6|= ϕ, hence NfPDL is unsound—a contradiction. ut

For this reason, in the next section we will examine an infinitary proof system which
will overcome this problem.

6.3.2 An infinitary ND-style system for PDL

We introduce a ND-style infinitary system for the truth CR, namely NPDL, which we
prove to be sound and complete wrt |=. The system NPDL is obtained by adding the
rules appearing in Figure 6.3 to the usual ND-style system for propositional logic [Pra65],
such as NC (Figure 5.1). Notice that the rule ∗-I is infinitary; in sequent form it appears
as follows:

∗-I
{Γ ` [c]n ϕ | n ∈ N}

Γ ` [c∗]ϕ
.

Despite there is no more the rule ∗
f -I, the system NPDL has to be accounted for a modal

system, due to the presence of the characteristic sc rule.
In the system NPDL we have exactly one introduction rule for each program construc-

tor and the elimination rules are induced by the former. Moreover, there is no need of the
“spurious” unfolding rule Unf.

6.4. Proof Theory 77

NPDL is a sound and strongly complete representation of |=:

Theorem 6.4 (Infinitary Completeness) ∀Γ, ϕ : Γ `NPDL ϕ ⇐⇒ Γ |= ϕ.

Proof. (Hint) Soundness is straightforward; just prove that each rule is sound. Strong
completeness can be shown by generalizing the proof given by Harel [Har84, Theorem
3.15] for the (finitary) completeness of the Hilbert-style calculus for PDL. The basic idea
is to follow the proof of Fischer-Ladner, by adapting suitably the notion of subformula
and by using, as atoms, infinite sets of formulæ instead of finite conjunctions. A similar
(and more complex) proof will be carried out for First-Order Dynamic Logic; see Theorem
7.4. ut

6.4 Proof Theory

Consider the following “reduced” modality rule:

sc0

[Γ]
[a] Γ ϕ

[a]ϕ
that is sc0

{∆ ` 2aψ | ψ ∈ Γ} Γ ` ϕ

∆ ` [a]ϕ
a ∈ Act

It is just the sc rule, restricted to atomic commands. Despite this restriction, this rule is
enough for deriving the more general sc rule.

Theorem 6.5 The rule sc is admissible in the system (NPDL− sc) + sc0.

Proof. (Sketch) Let Γ ` ϕ; then we have to prove that for all c ∈ Prog, we prove also
[c]Γ ` [c]ϕ. This can be proved by induction on the syntax of the command c. ut

This proof have been carried out formally in the system Coq.

78 Chapter 6. Propositional Dynamic Logic

Chapter 7

First-Order Dynamic Logic

Dynamic Logic has been thoroughly investigated from the model theoretic point of view.
Not as much attention, however, has been payed to its proof theory or to the possibility
of representing consequence relations different from that of validity. The relevant concept
being that of theoremhood, the proof systems considered have been mainly Hilbert-style
systems [Har79, Har84, KT90, Sti92]. There is only one remarkable exception, albeit
unpublished, of ND-style System for Deterministic DL due to C. Stirling [Sti85] (see
Section 7.6).1

7.1 Syntax and Semantics

First-Order Dynamic Logic differs from Propositional Dynamic Logic because we choose
assignments as atomic commands. The language LDL is defined by extending any first-
order language by a new formula constructor “[·]·” and by introducing the new syntactic
domains, of command-free formulæ and of regular programs, as appears in Figure 7.1
(where, for definiteness, we focus on the first-order language of Peano Arithmetic, LPA).

The semantics of DL is given by extending the interpretation of first-order logic to the
domain Prog. In the style of Denotational Semantics, we define the interpretation of terms
and formulæ by choosing a model M for the underlying first-order logic and defining a
(polymorphic) interpretation function [[·]]M for terms and formulæ:

M
def
= 〈D, 0, 1,+, ∗, <〉 EnvM

def
= Var → D

[[·]]M : Term → EnvM → D [[·]]M : Φ → P(EnvM)

EnvM is the domain of environments (or states, assignments) and it is ranged over by
s, s1, s2. The meaning of a term is a function from environments to elements in the
domain D; the meaning of a formula is the set of environments which satisfy it. These
two functions are compositionally defined on the syntax of phrases in the obvious way;

the extra case is dealt by taking [[[c] p]]M
def
= {s ∈ EnvM | [[c]]Ms ⊆ [[p]]M}.

The function [[·]]M : Prog → EnvM → P(EnvM) arises from the interpretation of PDL
(Section 6.1), as soon as we choose the set of environments Env as carrier of the dynamic

1Some of the results of this chapter appeared also in [HM96].

79

80 Chapter 7. First-Order Dynamic Logic

Identifiers Var : x ::= i0 | i1 | i2 | i3 | . . .
Terms Term : t ::= 0 | 1 | x | t+ t | t ∗ t
Propositional Formulæ B : b ::= t = t | t < t | b ⊃ b | b ∧ b | ¬b
Command-free Formulæ Form : ϕ ::= t = t | t < t | ϕ ⊃ ϕ | ϕ ∧ ϕ | ¬ϕ | ∀xϕ
Regular Programs Prog : c ::= x := t | b? | c; c | c+ c | c∗

Formulæ Φ : ϕ ::= t = t | t < t | ϕ ⊃ ϕ | ϕ ∧ ϕ | ¬ϕ | ∀xϕ | [c]ϕ

Figure 7.1: LDL, the language of First-Order Dynamic Logic (on Peano Arithmetic).

model. Hence, the semantics of programs is as follows:

[[x := t]]M
def
= λs.{s[x 7→ [[t]]Ms]} [[c1; c2]]

def
= [[c2]] ◦ [[c1]]

[[c∗]]
def
= λs. ∪n∈ω [[c]]ns [[b?]]

def
= λs.[[b]] ∩ {s}

[[c1 + c2]]
def
= [[c1]] ∪ [[c2]]

where the composition operator is extended to sets in the obvious way.
An alternative way for defining the semantics of regular programs is to give relations

between states in place of functions from states to sets of states. That is, we can define
[[·]]M : Prog → P(EnvM×EnvM) as well. It is clear that the two approaches are equivalent;
we preferred the functional one because it is closer in spirit to the denotational paradigm.
Nevertheless, viewing commands as relations between states is customary in the logical
tradition (see e.g. [KT90, Har84]); therefore, we will denote by [[c]]M both the function of
arity EnvM → P(EnvM) and the equivalent relation, subset of EnvM × EnvM.

7.2 Consequence Relations

Besides absolute validity and absolute truth, various CR’s can be introduced according to
the class of models that one focuses on. Since in this chapter we focus on the language
of Peano Arithmetic (PA), we consider two classes of models: the class of all first-order
structures which are models of PA, and that consisting only of the standard model (denoted
by N). Truth CR’s for DL are defined by suitably specializing the general definition of
consequence relations on first-order structures (Definition 3.4).

Definition 7.1 Let L = 〈T,Φ〉 a first-order language and [[·]]M its interpretation, as
above. We define

• the truth CR with respect to M is

Γ |=M ϕ ⇐⇒ (∀ρ.ρ ∈ [[Γ]]M ⇒ ρ ∈ [[ϕ]]M)

• let Λ be a set of first-order structures for L; the truth CR with respect to Λ is

Γ |=Λ ϕ ⇐⇒ (∀M ∈ Λ∀ρ.ρ ∈ [[Γ]]M ⇒ ρ ∈ [[ϕ]]M)

• the truth CR is |=
def
=
⋂

M |=M, where M ranges over all the first-order structures
(of the right signature); in other words,

Γ |= ϕ ⇐⇒ ∀M∀ρ.ρ ∈ [[Γ]]M ⇒ ρ ∈ [[ϕ]]M

7.3. Proof systems 81

System Composition Finitary Features Completeness

NfDL NFOL+NfPDL
+Figure 7.3

Yes no symmetry,
proof rules

wrt termination
assertions

Na
fDL NfDL+Conver Yes no symmetry,

proof rules
arithmetical

NDL NFOL+NPDL
+Figure 7.3

No symmetry absolute

NDL+∆ NDL+∆ No symmetry, proper
axioms

wrt models of ∆

NaDL NDL+∆PA+
Conver

No symmetry, proper
axioms, proof-rules

wrt the only N

Figure 7.2: A summary of Proof Systems for Dynamic Logic.

The correctness consequences with respect to a model M are all the true consequences
of the form Γ |=M [c]ϕ, for Γ, ϕ command and quantifier free. The termination conse-
quences with respect to a model M are all the true consequences of the form Γ |=M 〈c〉ϕ,
for Γ, ϕ command and quantifier free.

7.3 Proof systems

In this section we will give

• a finitary ND-style proof system for the uninterpreted Dynamic Logic, that is a
system complete w.r.t. the termination assertions of DL;

• a finitary ND-style proof system for the interpreted Dynamic Logic, that is a proof
system arithmetically complete w.r.t. the finite |= (See [KT90, Har84] or Section
7.3.1 for definitions).

• an infinitary ND-style proof system for the uninterpreted Dynamic Logic, that is a
proof system complete w.r.t. the whole |=.

• an infinitary ND-style proof system for the Dynamic Logic interpreted on naturals,
that is a proof system complete w.r.t. the finite |=N .

The whole situation is summarized in Figure 7.2.

7.3.1 Finitary ND-style systems for DL

In this section we present NfDL, a finitary ND-style system for Dynamic Logic. This
system is obtained by adding to the usual ND-style system for Peano Arithmetic [Pra65]
the finitary rules for Propositional Dynamic Logic (Figure 6.2) and the rules in Figure 7.3.

The system NfDL is indeed a ND-style system, since there are introduction rules
for each program constructor and the corresponding elimination rules are induced by the
introduction rules. The rules for equality and the quantifier are more involved than the

82 Chapter 7. First-Order Dynamic Logic

:=-I
Γ, y = t ` ϕ[y/x]

Γ ` [x := t]ϕ
y 6∈ FV(Γ, ϕ, t)

:=-E
Γ1 ` [x := t]ϕ Γ2, ϕ[y/x], y = t ` ψ

Γ1,Γ2 ` ψ
y 6∈ FV(Γ2, ϕ, ψ, t)

∀-I
Γ ` ϕ

Γ ` ∀xϕ
x 6∈ FV(Γ)

∀-E
Γ1 ` ∀xϕ Γ2, ϕ[y/x], y = t ` ψ

Γ1,Γ2 ` ψ
y 6∈ FV(Γ2,∀xϕ, t, ψ)

CongrId
Γ1 ` ϕ Γ2 ` x = y

Γ1,Γ2 ` ϕ[y/x]
y 6∈ FV(ϕ)

Congr
Γ1 ` ϕ[t1/x] Γ2 ` t1 = t2

Γ1,Γ2 ` ϕ[t2/x]
ϕ is command-free

Figure 7.3: The specific rules for the system NfDL.

usual ones for FOL, due to the presence of commands. Reflexivity of equality can be
encoded immediately, but the usual rules of congruence, i.e.

ϕ[t1/x] t1 = t2
ϕ[t2/x]

have to be rephrased with care: derivations like

[x := 0] (x = 0) x = 1

[x := 0] (1 = 0)

have to be prevented. To this end, we introduce two rules: Congr and CongrId. Congr

can be applied only to command-free formulæ, i.e. formulæ where no command appears.
CongrId, can be applied to any formula, since it merely replaces all occurrences of an
identifier with a new identifier.

The non traditional form of ∀-elimination is due to the fact that, in general, the
quantified formula ϕ may contain commands, and therefore not all occurrences of a bound
variable can be replaced by a term. For instance, ∀x. [x := 0] (x = 0) holds, but its näıve
instantiation [1 := 0] (1 = 0) is clearly meaningless. A correct formulation of instantiation
of quantified variables is in fact one of the most difficult technical issues to deal with in
encoding DL. As we have already seen in Section 3.2.3, in Hilbert systems this is usually
achieved by replacing, whenever required, any program c with the equivalent “normal
form” z1 := x1; . . . ; zn := xn; c

′;x1 := z1; . . . ;xn := zn where the xi’s are all the identifiers
appearing in c, the zi’s are fresh and c′ is obtained from c by replacing the xi’s with zi’s
(see [Har84]). This solution is clearly cumbersome if we want to use practically the formal
system. The problematic nature of instantiation of quantifiers lies, as in the case of the
congruence rules, in the different nature of pure logical identifiers and program variables.
In fact, the property “s ∈ [[ϕ[t/x]]] ⇐⇒ s[x 7→ [[t]]s] ∈ [[ϕ]]” does not hold for DL.

Instead, the following holds:

Lemma 7.1 (Substitution Lemma for DL) For all models M:

7.3. Proof systems 83

Conver
∅ ` p[x+ 1/x] ⊃ 〈c〉 p Γ ` p[t/x]

Γ ` 〈c∗〉 p[0/x]
x 6∈ FV(c)

Induc
∅ ` [c] p ⊃ p[x+ 1/x] Γ ` [c∗] p[0/x]

Γ ` p[t/x]
x 6∈ FV(c)

Figure 7.4: The convergence and induction rules.

1. ∀x ∈ Var,∀t, u ∈ Term,∀s ∈ EnvM : [[t[u/x]]]s = [[t]](s[x 7→ [[u]]s])

2. ∀x ∈ Var,∀t ∈ Term,∀b ∈ B,∀s ∈ EnvM : s ∈ [[b[t/x]]] ⇐⇒ s[x 7→ s(t)] ∈ [[b]]

3. ∀x, y ∈ Var,∀ϕ ∈ Φ,∀s ∈ EnvM : s ∈ [[ϕ[y/x]]] ⇐⇒ s[x 7→ s(y)] ∈ [[ϕ]]

Our solution to the instantiation problem is to replace the bound variable x with a
fresh variable y, and to assume y = t in the minor premise. The usual ∀-elimination rule
is derivable in the case of command-free predicates.

The system NDL is sound and complete with respect to the termination consequences:

Theorem 7.2 For all Γ finite set of command-free formulæ, ϕ command-free formula, c
command:

Γ `NfDL 〈c〉ϕ ⇐⇒ Γ |= 〈c〉ϕ.

Proof. (Sketch) The rules are sound; on the other hand, it is easy to prove that the
axioms and rules of a complete Hilbert-style proof system for termination assertions of DL
(see e.g. [Har84, Section 3.4.1]) are derivable. ut

Arithmetical Completeness

It is well known that, even for programming languages less expressive than regular pro-
grams, there is no complete finitary axiomatization of their Hoare or Dynamic Logic with
respect to a sufficiently expressive model. The usual approach adopted in these case is to
“translate” formulæ of DL into (semantically) equivalent f.o. formulæ, and then to add an
oracle for the first-order theory of a specific model. This translation is however possible
only if the specific model has enough expressive power. These models, called arithmetical
(also called acceptable, expressive) [Har84, KT90, Apt81], include (a first-order definable
copy of) N , and first-order definable gödelization functions for the encoding/decoding of
arbitrary finite sequences of elements of the domain, into (the copy of) N. For instance,
N and most datastructures arising in computer science (lists, trees,. . .) are arithmetical.

Like for Hilbert-style systems, we can obtain an arithmetically complete proof system
Na
fDL by adding either the convergence rule or the equivalent dual induction principle

rule (Figure 7.4). Both these rules are “impure” in the sense of Avron [Avr91], and are
proof-rules, since the first premise has to be a theorem.

Let us denote by Na
fDL the system obtained by adding either Conver or Induc

to NfDL. This system is still a finitary system. Like for Hilbert-style systems, we can
introduce an infinitary degree of power by adding an oracle for the first-order theory of a
specific model. Let Th(M) be the set of first-order theorems of a model M (in general,

84 Chapter 7. First-Order Dynamic Logic

this set is not r.e.), and denote by Γ,Th(M) `Na
f
DL ϕ the derivability of ϕ in Na

fDL from

the assumptions Γ and the set Th(M).

Theorem 7.3 (Arithmetical Completeness) Let Γ be a set of formulæ, ϕ a formula,
M a model; then,

Γ,Th(M) `Na
f
DL ϕ ⇐⇒ Γ |=fMϕ

Proof. (Sketch) The axioms and rules of an arithmetical complete Hilbert-style proof
system for DL (see e.g. [Har84, Section 3.5.2]) are derivable. ut

7.3.2 Infinitary ND-style systems for DL

In order to represent the infinitary |=, in this section we present NDL, an infinitary ND-
style system for Dynamic Logic.

The basic system NDL is obtained by adding to the usual ND-style system NFOL
for First-Order Logic [Pra65] the infinitary rules for Propositional Dynamic Logic (Figure
6.3) and the rules in Figure 7.3 for assignment, quantification and congruence.

This system can be extended by adding specific axioms for a specific class of models.
For instance, let ∆PA be the set of axioms of Peano Arithmetic; then NDL + ∆PA is the
system obtained by adding ∆PA as proper axioms to NDL. For ∆ a set of f.o. formulæ,

let Λ(∆) be the class of f.o. models for ∆, that is Λ(∆)
def
= {M | ∀ϕ ∈ ∆. |=M ϕ}. Then,

the following main theorem holds.

Theorem 7.4 (Infinitary Completeness) Let Γ a set of formulæ, ϕ a formula, ∆ a
set of f.o. formulæ. Then,

Γ `NDL+∆ ϕ ⇐⇒ Γ |=Λ(∆) ϕ.

Proof. Soundness is easy. Completeness is proved by modifying suitably the proof of
Theorem 3.15 in [Har84]. This is a standard Henkin argument, adapted to the peculiarities
of Dynamic Logic. Let Γ 6`NDL+∆ ϕ; then, Γ,∆,¬ϕ is consistent, that is, Γ,∆,¬ϕ 6`NDL

ff . By the following Model Existence Lemma (Lemma 7.5), there is a model M which
satisfies Γ,∆,¬ϕ, which is equivalent to say that Γ,∆ 6|=M ϕ; hence, a fortiori, Γ 6|=M ϕ.
Since M satisfies ∆, it is that M∈ Λ(∆), from which we have the thesis. ut

Lemma 7.5 (Model Existence Lemma) For A set of formulæ, if A 6` ff then A is
satisfiable.

Proof. See Appendix B.1. ut

Corollary 7.6 Let Γ a set of formulæ, ϕ a formula. Then

Γ `NDL ϕ ⇐⇒ Γ |= ϕ

Γ `NDL+∆PA
ϕ ⇐⇒ Γ |=PA ϕ

where |=PA is the consequence relation on the class of models for Peano Arithmetic.

7.4. Proof Theory 85

Notice that the completeness result in the case of Peano Arithmetic is different from
the arithmetical completeness of finitary proof systems.

Focusing on consequences true in all models of Peano Arithmetic, the system NDL +
∆PA rules out many interesting consequences which are true when reasoning about real

programs which utilize as datatype the real integers. For instance, the formula ϕ
def
=

〈(x := x− 1)∗〉 (x = 0) is not valid: take any nonstandard model N ∗, and consider the
state s such that s(x) = ν, ν a nonstandard integer; then, s 6∈ [[ϕ]]N ∗ . The same happens
with the while-termination formula 〈while x > 0 do x := x− 1〉 (x = 0). This is the
reason for focusing on the sole standard model of arithmetic and the associated CR |=N .

In order to represent |=N , we extend the system NDL + ∆PA to the new system
NaDL, by adding either the convergence rule or the equivalent dual induction principle
rule (Figure 7.4). That is, we define

NaDL
def
= NDL + ∆PA + Conver

One can easily see that

`NaDL 〈(x := x− 1)∗〉 (x = 0)

`NaDL 〈while x > 0 do x := x− 1〉 (x = 0)

It is interesting to notice that the rule ∗-I is enough to recover the full power of the
ω-rule of infinitary first order logic:

Theorem 7.7 Let p be any command-free formula; then, the ω-rule

{Γ ` ϕ[n/x] | n ∈ ω}

Γ ` ∀xϕ

is derivable in NaDL.

Proof. (Sketch) The proof relies upon the fact that command iteration is nondeterminis-
tic, hence ∀xϕ is equivalent to y = 0 ⊃ [y := y + 1∗]ϕ[y/x] (y fresh). Each premise ϕ[n/x]
in the ω-rule can be rendered by means of the formula y = 0 ⊃ [y := y + 1]n ϕ[y/x] (y
fresh); applications of ∗-I and Induc yield the ω-rule. ut

NaDL is sound and complete with respect to the standard model of integers.

Theorem 7.8 ∀Γ, ϕ : Γ `NaDL ϕ ⇐⇒ Γ |=N ϕ.

Proof. Follows from Theorems 7.4, 7.7. ut

Here again, this form of completeness is different from the arithmetical one of finitary
proof systems.

7.4 Proof Theory

Proposition 7.9 The usual ∀-elimination rule of first order logic,

Γ ` ∀xϕ

Γ ` ϕ[t/x]
ϕ command free

is derivable in NfDL, NDL.

86 Chapter 7. First-Order Dynamic Logic

Proof. Consider the following derivation of the ∀-elimination rule:

∀xϕ

(ϕ[y/x])1 (y = t)1

ϕ[t/x]
†

p[t/x]
(1)

where † is a sound application of Congr since p is command-free. ut

Proposition 7.10 The useful, albeit “impure”, [·]-intro rule

∅ ` ϕ

∅ ` [c]ϕ

and the rule Sc are admissible for NDL

Proof. (Sketch) By induction on the proofs. ut

Instead of introducing proof rules, we could have used alternatively non-interference
judgements à la Reynolds [Rey78] as side conditions of the rules. These are judgements
which generalize side-conditions such as x 6∈ FV(A), allowing for a finer control of interfer-
ence between formulæ and commands. A deeper discussion on the use of non-interference
judgements in proof systems for program logics can be found in Section 8.3.

7.5 Equivalence of programs

An interesting application of the proof systems for Dynamic Logic (and hence of the proof
editor generated from the signature Σ(DL) using Coq, Section 14.2) is the possibility of
proving formally the equivalences of programs, in the style of Meyer and Halpern [MH82].

Definition 7.2 (Equivalence of programs) Two programs c, d ∈ Prog are said to be
equivalent ([[c]] = [[d]]) iff ∀M : [[c]]M = [[d]]M.

In other words, two programs are equivalent iff there is no model in which they can
be distinguished one from the other. The encodings of NDL could be particularly suited
for computer-assisted proofs of equivalence of programs, based on higher-order logic, since
they naturally provide metalogical facilities such as quantifications on predicates (i.e.
second-order quantifications) and proofs by induction on the structure of predicates.

In the following, we denote by CClauses and DClauses the following sets of disjunctive
and conjunctive clauses:

DClauses
def
= {x1 6= y1 ∨ . . . ∨ xn 6= yn | n ∈ N}

CClauses
def
= {x1 = y1 ∧ . . . ∧ xn = yn | n ∈ N}

The following result is an adaptation of [MH82, Lemma 4.3].

Lemma 7.11 Let c1, c2 ∈ Prog be two programs and M a model such that [[c1]]M\[[c2]]M 6=
∅. Then, there is ϕ ∈ DClauses such that [c2]ϕ 6|=M [c1]ϕ

7.5. Equivalence of programs 87

Proof. Let X
def
= FV(c1, c2) = {x1, . . . , xn} the set of variables occurring in c1, c2, and let

(s, r) ∈ [[c1]]M \ [[c2]]M; this is equivalent to

∀r′ ∈ [[c2]]Ms : ∃xm ∈ X.r′(xm) 6= r(xm). (7.1)

Let then X ′ def
= {x′1, . . . , x

′
n} be n new variables; we define then an environment s′ and a

formula ϕ as follows:

s′(x)
def
=

s(xi) if x ≡ xi for some xi ∈ X
r(xi) if x ≡ x′i for some x′i ∈ X

′

undefined otherwise

ϕ
def
= x1 6= x′1 ∨ . . . ∨ xn 6= x′n

We show that s′ |=M [c2]ϕ. Let r′ ∈ [[c2]]Ms′; we prove that r′ |= ϕ. Since s and
s′ take the same value on X, by (7.1) there is xm ∈ X such that r′(xm) 6= r(xm). By
definition, we know that s′(x′m) = r(xm), and s′(x′m) = r′(x′m) because x′m 6∈ X and hence
it cannot be modified by c2. We have thence r′(xm) 6= r′(x′m), so r′ |= xm 6= x′m and then
r′ |= ϕ.

We show now that s′ 6|=M [c1]ϕ, that is, there is r′ ∈ [[c1]]Ms′ such that ∀i.r′(xi) =
r′(x′i). Let us define r′ as follows:

r′(x)
def
=

{

r(xi) if x ≡ xi for some xi ∈ X
s′(x) otherwhise

Clearly, r′ ∈ [[c1]]Ms′ because r ∈ [[c1]]Ms (that is, (s, r) ∈ [[c1]]M) and on the variables
which are not modified by c1, r

′ is equivalent to s′. Then, r′(xi) = r(xi) = s′(x′i) = r′(x′i),
hence ∀i.r′(xi) = r′(x′i), which is the thesis. ut

Proposition 7.12 Let c1, c2 be programs; then, the following are equivalent:

1. [[c1]] = [[c2]];

2. ∀ϕ ∈ DClauses : [c1]ϕ |= [c2]ϕ and [c2]ϕ |= [c1]ϕ.

Proof. (1 ⇒ 2): trivial.
(2 ⇒ 1): By contraposition: if [[c1]] 6= [[c2]], then there is a model M such that [[c1]]M \
[[c2]]M 6= ∅ or [[c2]]M \ [[c1]]M 6= ∅; then, by Lemma 7.11, there is ϕ ∈ DClauses such that
[c2]ϕ 6|= [c1]ϕ or [c1]ϕ 6|= [c2]ϕ. ut

Theorem 7.13 ∀c, d programs, the following are equivalent:

1. [[c]] = [[d]]

2. ∀ϕ ∈ DClauses : [c]ϕ `NfDL [d]ϕ and [d]ϕ `NfDL [c]ϕ;

3. ∀ϕ ∈ CClauses : 〈c〉ϕ `NfDL 〈d〉ϕ and 〈d〉ϕ `NfDL 〈c〉ϕ;

Proof. (1 ⇐⇒ 2): by Proposition 7.12 and finitary completeness of NfDL (Th. 7.2).
(2 ⇐⇒ 3): by propositional reasoning, the following equivalence is easily proved

[c] (x1 6= x′1 ∨ . . . xn 6= x′n) ≡ [c]¬(x1 = x′1 ∧ . . . xn ∧ x
′
n)

≡ ¬〈c〉 (x1 = x′1 ∧ . . . xn ∧ x
′
n)

and by propositional completeness, ¬ 〈c2〉ϕ ` ¬ 〈c1〉ϕ iff 〈c1〉ϕ ` 〈c2〉ϕ. ut

88 Chapter 7. First-Order Dynamic Logic

Remark 1. The result holds also for the infinitary system NDL, of course, but the
finitary version suffices because we never need an infinite set of assumptions. This is not
surprising, because only a finite number of variables can appear in a regular command,
and hence we need a finitary amount of information for distinguish two regular programs.

Remark 2. The comparision of Theorem 7.13 with the corresponding [MH82, Theorem
6.1, Corollary 6.2] is insightful of the extra power provided by a system which permits
the elimination of boxed fomulæ. Meyer and Halpern focused on Hilbert-style systems for
Hoare-like assertions as a tool for deriving “observations” on the programs, that is pairs
“precondition-postcondition”. In fact, the following is a consequence of Lemma 7.11:

Corollary 7.14 Let c1, c2 ∈ Prog be two programs and M a model such that [[c1]]M \
[[c2]]M 6= ∅. Then, there are two first order formulæ ϕ,ψ such that |= ϕ ⊃ 〈c1〉ψ and
6|= ϕ ⊃ 〈c2〉ψ.

The proof of this Lemma relies on the existence of a f.o. formula, namely ϕ, which repre-
sents the input-output relation of c1 and whose construction is not trivial—it involves a
gödelization of the formula [c1]ψ, possibly extending the model with a copy of the ring of
integers (see [MH82, Lemma 4.2]). This complication is due to the fact that in Hoare-like
logics most of the logical manipulation is delegated to the underlying first-order calculus
(see e.g. Cook’s completeness, or arithmetical completeness [Har79]). This drawback is
solved by adopting a finitary complete system, where we can deal directly with formulæ
such as [c1]ψ, on a par with first-order formulæ; in fact, the consequence [c1]ψ |= [c2]ψ is
a shorter form for |= ϕ ⊃ [c2]ψ, where ϕ is the weakest precondition of c1, ψ. The use of
Natural Deduction style system NfDL, moreover, allows us for using “elimination” rules
for commands, differently from Hilbert-style systems.

7.6 Related Work

Our approach was inspired by the unpublished handwritten notes [Sti85] by Colin Stirling.
A ND-style system for Deterministic Dynamic Logic is sketched there. The fundamental
idea of Stirling’s approach is to “divorce the notion of free occurrence of a variable from
that of substitution”. The system deals with assertions of the form pθ, where θ is called
(explicit) substitution: θ ::= ε | (txθ). A phrase of the form t1

x1
. . .tnxn

represents a sequence
of “delayed” substitutions. Substitutions are not performed until the formula on which
they are applied is box-free. This idea is inspiring but it is clearly impractical. NDL
retains this, while overcomes the explicit substitution problem in the assignment rules,
by taking full advantage of assumptions, i.e. distributing the substitution in the proof
context (see rules := -I, := -E). Of course, this is sound only with respect to the truth
consequence relation.

The technique of treating substitutions by means of sets of assumptions can be seen
as a particular case of the bookkeeping approach, described in Section 4.2.2.

Chapter 8

Hoare Logic

As for Dynamic Logic, in most of the researches about Hoare Logic very little attention has
been payed to the underlying consequence relations [Apt81, AO91, Cou90, LS88]. In this
chapter, we introduce and compare truth and validity CR’s which arise over Hoare triples
applying Definition 3.4 to HL(Section 8.2). In Section 8.3, we will introduce a family of
Natural Deduction-style proof systems for Hoare Logic; we will prove their adequacy with
respect to the truth CR’s. In Section 8.4, we will see that Natural Deduction style systems
for truth Hoare Logic are strictly tied to proof systems for Dynamic Logics; indeed, a proof
system for HL will be derived in NDL.

8.1 Syntax and Semantics

A syntax for Hoare Logic is defined starting from a given first-order language with equality
(without quantifiers), by adding constructors for a nondeterministic while language and
Hoare triples [Apt81]. Here we focus on an extension of the language for (quantifier free)
Peano Arithmetic, PAqf . We introduce the syntactic classes of nondeterministic while

programs, Hoare triples and assertions listed in Figure 8.1. Let ϕ range over f.o. formulæ,
c over Prog ; h over HT; a over Φ; Γ,∆ range over finite sets of formulæ Φ.

Each new syntactic class is interpreted by extending the semantic function [[·]]:

[[·]]M : Prog → EnvM → P(EnvM) [[·]]M : HT → P(EnvM) [[·]]M : Φ → P(EnvM)

Since we deal with nondeterministic programs, more than one environment can be the
result of a command execution. The meaning of programs can be defined in several ways,
depending on the kind of semantics we want to examine. Denotational models can be used

as well as operational ones: in the latter case one defines [[c]]s
def
= {s′ | 〈c, s〉

∗
→ 〈ε, s′〉}

where
∗
→ is the transitive closure of the transition relation defined by the operational

model. We do not insist on the definition of [[·]]M — see e.g. [Sch86, Sti92].

Hoare triples are interpreted as usual: [[{ϕ}c{ψ}]]M
def
= {s ∈ EnvM | s ∈ [[ϕ]]M ⇒

[[c]]Ms ⊆ [[ψ]]M}. This definition reflects the partial correctness of Hoare Logic. A Hoare
triple is always satisfied by an environment which leads the command to diverge, since
divergence is represented by the empty set.

89

90 Chapter 8. Hoare Logic

Prog : c ::= x := t | c; c | c+ c | if b then c else c | while b do c

HT : h ::= {ϕ}C{ψ}

Φ : a ::= ϕ | h

Figure 8.1: LHL, the language of Hoare Logic.

8.2 Consequence Relations

Like for First Order Logics, we can define (at least) two consequence relations for Hoare
Logic, just by tailoring the general Definition 3.4.

Definition 8.1 Let M range over f.o. structures and [[·]]M the interpretation of Hoare
Logic, as above. We define the truth consequence relations as follows:

• the truth CR with respect to M is

Γ |=M a ⇐⇒ (∀ρ.[[Γ]]Mρ = > ⇒ [[a]]Mρ = >)

• let Λ be a set of first-order structures for HL; the truth CR with respect to Λ is

Γ |=Λ a ⇐⇒ (∀M ∈ Λ∀ρ.[[Γ]]Mρ = > ⇒ [[a]]Mρ = >)

• the truth CR is |=
def
=
⋂

M |=M, where M ranges over all the first-order structures
for HL; in other words,

Γ |= a ⇐⇒ ∀M∀ρ.[[Γ]]Mρ = > ⇒ [[a]]Mρ = >

We define the validity consequence relations as follows:

• the validity CR with respect to M is

Γ ||=M a ⇐⇒ (∀ρ.[[Γ]]Mρ = >) ⇒ (∀ρ.[[a]]Mρ = >)

• let Λ be a set of first-order structures for HL; the validity CR w.r.t. Λ is

Γ ||=Λ a ⇐⇒ ∀M ∈ Λ.(∀ρ.[[Γ]]Mρ = >) ⇒ (∀ρ.[[a]]Mρ = >)

• the validity CR is ||=
def
=
⋂

M ||=M, where M ranges over all the first-order structures
for HL; in other words,

Γ ||= a ⇐⇒ ∀M(∀ρ.[[Γ]]Mρ = >) ⇒ (∀ρ.[[a]]Mρ = >)

Our terminology is slightly different from the standard one. In fact, the truth interpre-
tation defined in [Apt81, LS88, AO91, Cou90] corresponds to our validity interpretation.
In [Apt81, LS88, AO91, Cou90], a triple {ϕ}c{ψ} is said to be true (under a model M) if
for all assignments s, s′ ∈ EnvM, if s |=M ϕ and [[c]]s = s′, then s′ |= ψ. Furthermore, in

8.2. Consequence Relations 91

[LS88] a triple h is called a “logical consequence” of a set Γ of formulæ if [[h]]M = EnvM
for all models M of Γ. That is, given a model M, if every assumption of Γ is true for all
environments, then also h is true for all environments. This is exactly what we call the
validity consequence relation, ||=.

A natural question arises: which is the most expressive CR for Hoare Logic? Consider
Γ, h such that Γ ||= h. This asserts that if all formulæ in Γ are true for all environments,
then for all environment h is true. If one of the assumptions is not true for all environments,
then we can take as h any triple and still get a correct consequence. Therefore, if we want
to have non-trivial consequences, Γ has to be true for all environments. This has several
consequences.

• the only meaningful conclusions are theorems, that is the assertions a s.t. ∅ ||= a. In
fact, since ||= is transitive (the cut rule is admissible), if Γ ||= a and ||= Γ then ||= a.

• a sort of “deduction theorem” for HL fails, that is if Γ, ϕ ||= {ϕ′}c{ψ} we cannot say
that Γ ||= {ϕ ∧ ϕ′}c{ψ}.

• in the LF internalization [AHMP92, Section 6.1], we can prove the goal

`o (x = 0) →`h ({x+ 1 = 1}x := x+ 1{x = 0})

whose näıve meaning is “if x equals zero, then after adding 1 to x still x equals zero”,
which is clearly strange.1

On the other hand, the truth CR does not share these problems. If Γ |= a, then for
every environment, if Γ holds then a holds. The hypotheses can be viewed as expressing
conditions on the environment in which we want to infer the conclusion. In particular, if
Γ |= {ϕ}c{ψ}, all the assumptions of Γ play the same rôle of ϕ. The intuitive meaning is:
for all environments, if Γ and ϕ are satisfied before the execution of c, then ψ is satisfied
after the execution of c (if it terminates). The “deduction theorem” holds for |=:

Proposition 8.1 For ϕ,ϕ′, ψ f.o. formulæ, Γ set of f.o. formulæand c command:
Γ, ϕ |= {ϕ′}c{ψ} ⇐⇒ Γ |= {ϕ ∧ ϕ′}c{ψ}

Therefore, like preconditions, assumptions can be viewed as constraints on environments;
unlike preconditions, however, assumptions give environmental informations which are true
in a whole (sub)derivation, not only in a single assertion. Hence, assumptions are more
flexible than preconditions. This can be exploited in ND-style calculi where environmental
information can be put in form of assumptions. This is in fact a general principle in ND
calculi, and it applies to every kind of contextual information. For instance, Figure 8.2
shows three rules for dealing with procedures declaration and execution with both call-by-
value and call-by-value/result argument passing [Plo81]. These rules are sound only with
respect to the truth CR, and not with respect to the validity.

From a theoremhood point of view, the two classes of CR of Definition 8.1 are identical,
i.e. ∀M :|=M a ⇐⇒ ||=M a.

1Actually, in [AHMP92, Section 6.2] an alternative signature for HL with a finite set of location is
presented, which does not suffer of this drawback.

92 Chapter 8. Hoare Logic

ProcDecl

(P ′(x) = c)
...

{ϕ}d[P ′/P]{ψ}

{ϕ}procedure P (x) = c in d{ψ}
P ′ is a new procedure identifier

Call By Value

(x′ = t)
...

P (x) = c {ϕ}c[x′/x]{ψ}

{ϕ}P (t){ψ}
x′ is a new identifier

Call By ValResult

(x′ = t)
...

P (x) = c {ϕ}c[x′/x];x := x′{ψ}

{ϕ}P (t){ψ}
x′ is a new identifier

D[P ′/P] (c[x′/x]) denotes the metalinguistic substitution of P with P ′ (x with x′)

Figure 8.2: Some ND-style rules for procedures in Hoare Logic.

8.3 Proof Systems

In the literature there is a well-known Hilbert-style proof system for Hoare Logic, [Apt81,
AO91, LS88]; let `HSHL be the CR defined by this system. Similarly to the case of
finitary systems for Dynamic Logic (Section 7.3.1), it is well-known that completeness
in the sense of Definition 3.3 cannot be achieved; the completeness notion adopted in
this case is the arithmetical (or relative) completeness (called also Cook’s Completeness):
completeness with respect to arithmetical models is achieved by extending the system
with an oracle for the theory of the set of assumptions (see [Apt81, AO91, Har84], and
Section 7.3.1). More formally, let A (capital α) be the class of arithmetical models, and

Th(Γ, |=)
def
= {ϕ ∈ Form | Γ |= ϕ}, where |= is a generic CR. Then

Proposition 8.2 For all Γ ⊂ Φ, a ∈ Φ:

1. Γ `HSHL a =⇒ Γ ||= a;

2. ∀M ∈ A : Γ ||=M a =⇒ Γ `HSHL+Th(Γ,||=M) a.

Proof. An immediate extension of the usual proof of [Apt81]. ut

The näıve attempt to define a ND-style system for |= just by adding to the classical
N.D. calculus for the FOL NPAqf the rules for Hoare Logic fails. In fact, the usual rules
for composition, consequence and while are not sound with respect to |=. For instance,
the following näıve composition rule

Γ ` {ϕ}c1{θ} Γ ` {θ}c2{ψ}

Γ ` {ϕ}c1; c2{ψ}

8.3. Proof Systems 93

allows us for derivations which are not sound w.r.t. the truth consequence relations, such
as the following sequent:

{x+ 1 = 1}x := x+ 1{true} {true}x := x{x = 0}

{x+ 1 = 1}x := x+ 1;x := x{x = 0}

every s such that s(x) = 0 satisfies the premises but not the conclusion. The problem is
that the execution of the first command produces an environment which does not preserve
the truth of the second assumption.

What we need is a condition ensuring that the execution of a program preserves the
satisfaction of “following” assumptions. This is achieved by adopting a relation similar to
Reynolds’ non-interference judgement [Rey78]:

Definition 8.2 (Non Interference Judgements) A relation] ⊆ Prog×P(Φ) is a non-
interference judgement if

1. it is syntactically detectable (it is decidable);

2. ∀c ∈ Prog,∀Γ ∈ P(Φ) : c]Γ ⇒ [[c]]([[Γ]]) ⊆ [[Γ]];

3. ∀c ∈ Prog : c]∅.

It is important to notice that this kind of relations has a fail-safe character: there may be
a c ∈ Prog which does not interfere with a Γ ⊆ Φ, but c]Γ does not hold. There are many
possible non-interference judgement; actually, “there is a probably endless sequence of
satisfactory definitions which come ever closer to the semantic relation of non-interference
at the expense of increasing complexity” [Rey78]. Here we list some of these:

c]0Γ ⇐⇒ false
c]1Γ ⇐⇒ Γ = ∅
c]2Γ ⇐⇒ V(c) ∩V(Γ) = ∅

c]3Γ ⇐⇒ FV(c) ∩ FV(Γ) = ∅
c]4Γ ⇐⇒ AV(c) ∩ FV(Γ) = ∅
c]ωΓ ⇐⇒ [[c]]([[Γ]]) ⊆ [[Γ]]

where V is the set of all variables, FV is the set of free variables, AV is the set of assignable
variables (those appearing on the l.h.s. of assignments). These judgements are listed in
increasing order of expressive power, since ∀i ≤ j < 3 :]i ⊆]j . (Actually, the first and
the last ones are not proper non-interference judgements, since c]0∅ does not hold, and]ω
is not decidable. Indeed,]ω is exactly what we want to approximate; see Definition 8.2).

Let NHL be the ND-style system obtained by extending NPA with the rules Ass,
AssComp’, If, While’, Or, Cons’ (Figure 8.3). NHL is sound and relative complete
with respect to |=

Proposition 8.3 For all Γ ⊂ Φ, a ∈ Φ:

1. Γ `NHL a =⇒ Γ |= a;

2. ∀M ∈ E : Γ |=M a =⇒ Γ `NHL+Th(Γ,|=M) a.

Proof. (1. Soundness) it is easy to prove that Comp’, While’, Cons’ are sound, by
virtue of the side-conditions. We examine only the Comp’ case. Let M be a model for
HL, and suppose that

H1 : Γ1 |=M {ϕ}c1{θ}, that is [[Γ1]]M ⊆ [[{ϕ}c1{θ}]]M;
H2 : Γ2 |=M {θ}c2{ψ}, that is [[Γ2]]M ⊆ [[{θ}c2{ψ}]]M;
H3 : c1]Γ2.

94 Chapter 8. Hoare Logic

Ass
Γ ` {ϕ[t/x]}x := t{ϕ}

If
Γ ` {ϕ ∧ b}c1{ψ} Γ ` {ϕ ∧ ¬b}c2{ψ}

Γ{ϕ}if b then c1 else c2{ψ}

Or
{ϕ}c1{ψ} {ϕ}c2{ψ}

{ϕ}c1 + c2{ψ}

Cons’
Γ1 ` ϕ ⊃ ϕ1 Γ2 ` {ϕ1}c{ψ1} Γ3 ` ψ1 ⊃ ψ

Γ1,Γ2,Γ3 ` {ϕ}c{ψ}
c]Γ3

While’
Γ ` {ϕ ∧ b}c{ϕ}

Γ ` {ϕ}while b do c{ϕ ∧ ¬b}
c]Γ

Comp’
Γ1 ` {ϕ}c1{θ} Γ2 ` {θ}c2{ψ}

Γ1,Γ2 ` {ϕ}c1; c2{ψ}
c1]Γ2

Figure 8.3: The rules of the system NHL.

We have to prove that Γ1,Γ2 |=M {ϕ}c1; c2{ψ}. Let s be an environment such that
H4 : s ∈ [[Γ1,Γ2]]M and H5 : s ∈ [[ϕ]]M; now, the goal is [[c1; c2]]Ms ⊆ [[ψ]]M. From H1 and
H4 follows that s ∈ [[{ϕ}C1{θ}]]M. From H5, then, it is that [[c1]]Ms ⊆ [[θ]]M.

Now, from H4 we know that s ∈ [[Γ2]]M; since c1 does not interfere with Γ2 (for H3,
the side condition), we have that [[c1]]Ms ⊆ [[Γ2]]M.

Hence, for H2 we have [[c2]]M([[c1]]Ms) ⊆ [[ψ]]M, that is, [[c1; c2]]Ms ⊆ [[ψ]]M.
(2.) Relative completeness is proved by induction on the syntax of the command

involved in the Hoare triple, adapting one of the proofs for HSHL (see e.g. [Apt81]) to
the ND-style calculus NHL. ut

8.4 From ND-Style HL to DL

As we are going to explain in this section, the truth Hoare Logic can be seen as the link
between Hoare Logic and Dynamic Logic.

8.4.1 Proof rules induced by non-interference judgements

Actually, the system NHL is parametric in], and the completeness result (Proposition
8.3) holds for every non-interference judgement we adopt. However, if we want to encode
effectively this system we do have to choose a definition for]. Among many choices,
the definition]1 is “minimal” in the sense that it is exactly what is needed in the proof
of soundness and completeness (Proposition 8.3). More complex definitions are “more
expressive”, that is they perform a finer check of non-interference and therefore they
allow for more general derivations. (Of course, definitions even more expressive than]4
can be given, e.g. based on data-flow analysis.) However, the more expressive is the side
condition, the more cumbersome is its formalization and implementation, specially in type-
theory based logical frameworks such as CIC or LF. We explored the case of]1. Let NHL′

8.4. From ND-Style HL to DL 95

Comp”
Γ ` {ϕ}C1{θ} ` {θ}c2{ψ}

Γ ` {ϕ}c1; c2{ψ}

While”
` {ϕ ∧ b}c{ϕ}

` {ϕ}while b do c{ϕ ∧ ¬b}

Cons”
Γ1 ` ϕ ⊃ ϕ1 Γ2 ` {ϕ1}c{ψ1} ` ψ1 ⊃ ψ

Γ1,Γ2 ` {ϕ}c{ψ}

Figure 8.4: The three special rules of NHL′.

⊃ -E

(ϕ)
...
ψ {ϕ ⊃ ψ}c{θ}

{true}c{θ}
∧-I

(ψ)
...

{ϕ}c{θ}

{ϕ ∧ ψ}c{θ}

⊃ -I
ϕ {ψ}c{θ}

{ϕ ⊃ ψ}c{θ}
∧-El

{ϕ ∧ ψ}c{θ} ϕ

{ψ}c{θ}
∧-Er

{ϕ ∧ ψ}c{θ} ψ

{ϕ}c{θ}

∨-I
{ϕ}c{θ} {ψ}c{θ}

{ϕ ∨ ψ}c{θ}
∨-El

{ϕ ∨ ψ}c{θ} ϕ

{true}c{θ}
∨-Er

{ϕ ∨ ψ}c{θ} ψ

{true}c{θ}

Figure 8.5: Some rules admitted by the system NHL.

be the system obtained from NHL by choosing] =]1 (Figure 8.4); the three impure rules
take the form of “proof rules,” similar to the box-introduction rule 2

′-I of Modal Logic
(Figure 5.2). Therefore, in encoding NHL′ we have to represent modal features which are
common to Modal Logic, and more specifically to Dynamic Logic; the techniques we will
use in this venture will be the same of those developed for Modal Logics and adopted in
the case of Dynamic Logic. Actually, an encoding of NHL′ is derivable from the encoding
of Dynamic Logic (see also Proposition 8.4).

8.4.2 Preconditions vs. Assumptions.

The calculus for |= suggests several admissible rules; see e.g. Figure 8.5. All these rules
are easily proved to be sound with respect to |=. Notice that ∧-I and ⊃ -E are not sound
with respect to ||=; actually, ∧-I is nothing but the “deduction theorem” above-mentioned.

In this way we can merge the ND calculus for FOL and the rules for Hoare triples.
This points out again that there is no conceptual difference between preconditions and
assumptions, as it is suggested by the admissible rule

(ϕ)
...

{true}c{ψ}
{ϕ}c{ψ}

which resembles the ⊃-intro rule

(ϕ)
...
ψ

ϕ ⊃ ψ

The equivalence between preconditions and assumptions is also suggested by the semantic

96 Chapter 8. Hoare Logic

equality [[{ϕ}c{ψ}]] = [[ϕ ⊃ [c]ψ]], and by the fact that implications are both “equivalent”
to assumptions, in a logic of truth (but they aren’t, in a logic of validity). Hence, it is
semantically natural to drop the notion of precondition altogether, and to adopt a one-
place connective for commands; this takes us into the language of Dynamic Logic.

8.4.3 Derivation of (Truth) HL in DL

In fact, the system for the truth Hoare Logic is easily derived in NDLqf , the quantifier-free
fragment of NDL.

Theorem 8.4 The rules Comp”, Cons”, Or, If, While” are derivable in NPDL; The
rule Ass is derivable in NDLqf ; the rule

While Termin
` ϕ(n+ 1) ⊃ b [ϕ(n+ 1)]c[ϕ(n)] ` ϕ(0) ⊃ ¬b

[ϕ(n)]while b do c[ϕ(0)]
n 6∈ FV(c)

is derivable in NaDLqf .

Proof. We examine only the case of While” (Figure 8.3). Recall that while b do c
def
=

(b?; c)∗;¬b?, and suppose that πh :` ϕ ∧ b ⊃ [c]ϕ. Then, for all n ∈ N , we have ϕ `

[b?; c]n ϕ, since π0
def
= ϕ ` ϕ and πn+1 is as follows:

(p)2
πn

[b?; c]n ϕ

∅
ϕ (b)1 Dh
ϕ ∧ b ϕ ∧ b ⊃ [c]ϕ

[c]ϕ

[c] [b?; c]n ϕ
(2); †

[b?] [c] [b?; c]n ϕ
(1)

[b?; c] [b?; c]n ϕ

where † is an application of Sc where Γ = {ϕ}. Then, the following derivation is a proof
of While” in NPDL.

(ϕ)2 (¬b)3

ϕ ∧ ¬b

[¬b?] (ϕ ∧ ¬b)
(3)

(ϕ)1
πn n ∈ N

[b?; c]n ϕ

[(b?; c)∗]ϕ
†

[(b?; c)∗] [¬b?] (ϕ ∧ ¬b)
(2); ‡

[(b?; c)∗;¬b?] (ϕ ∧ ¬b)

ϕ ⊃ [(b?; c)∗;¬b?] (ϕ ∧ ¬b)
(1)

where †, ‡ are sound applications of ∗-I and Sc respectively. ut

Actually, all these derivations have been carried out formally in the Coq environment; see
Section 16.3.

Chapter 9

Propositional µ-calculus

The expressive power of Kozen’s propositional modal µ-calculus [Koz83], often referred
to as µK, subsumes many modal and temporal logics. In fact, many process logics such
as PDL, CTL, CTL∗, ECTL are strictly less expressive than µK. Despite its expressive
power, µK enjoys nice properties such as decidability and the finite model property. The
long-standing open problem of axiomatizability of µK has been solved by Walukiewicz
[Wal95a], who has proved the completeness of Kozen’s original system given in [Koz83].
We refer the interested reader to [Koz83, Wal95a, Wal95b].

Beside its expressive power and importance in the theory and verification of processes,
the µ-calculus is interesting also for its syntactic and proof theoretic peculiarities, which we
have not faced in the previous logics. These idiosyncrasies are mainly due to the negative
formulæ constructor “µ”, which resembles the “λ” of λ-calculus, and to context-sensitive
production rules.

9.1 Syntax and Semantics

The language of µK is an extension of the syntax of Propositional Dynamic Logic (see
Section 6.1). Let Act be a set of actions (ranged over by a, b, c), Φ0 a set of atomic
propositional letters (ranged over p, q), and Var a set of propositional variables (ranged
over by x, y, z). Then, the syntax of the µ-calculus on Act is as follows:

Φ : ϕ ::= ff | p | ¬ϕ | ϕ ∧ ψ | ϕ ⊃ ψ | [a]ϕ | x | µxϕ

where ff is a distinguished propositional letter and the formation of µx.ϕ is subject to the
positivity condition: every occurrence of x in ϕ has to appear inside an even number of
negations (In the following we will spell out this condition more in detail). The variable
x is bound in µxϕ; the usual conventions about α-equivalence apply. We write νxϕ as a
shorthand for ¬µx(¬ϕ[¬x/x]).

Similarly to PDL, the interpretation of µ-calculus comes from Modal Logic. A model
for the µ-calculus is a transition system, that is, a pairM = 〈S, [[·]]M〉 where S is a (generic)
nonempty set of (abstract) states, ranged over by s, t, r, and [[·]]M is the interpretation of
atomic propositional and command symbols: for all p, a, we have [[p]]M ⊂ S and [[a]]M :
S → P(S).

97

98 Chapter 9. Propositional µ-calculus

Differently from PDL and DL, formulæ of µ-calculus may have free propositional vari-
ables; therefore, we need to introduce environments, which are functions assigning sets of

states to propositional variables: Env
def
= Var → P(S). Given a model M = 〈S, [[·]]〉 and

an environment ρ, the semantics of a formula is the set of states in which it holds, and it
is defined by extending [[·]] compositionally, as follows:

[[p]]Mρ
def
= [[p]]

[[ff]]Mρ
def
= ∅

[[x]]Mρ
def
= ρ(x)

[[¬ϕ]]Mρ
def
= S \ [[ϕ]]Mρ

[[ϕ ∧ ψ]]Mρ
def
= [[ϕ]]Mρ ∩ [[ψ]]Mρ

[[ϕ ⊃ ϕ]]Mρ
def
= (S \ [[ϕ]]Mρ) ∪ [[ψ]]Mρ

[[[a]ϕ]]Mρ
def
= {s ∈ S | ∀r ∈ [[a]]s : r ∈ [[ϕ]]Mρ}

[[µxϕ]]Mρ
def
=
⋂

{T ⊆ S | [[ϕ]]Mρ[x 7→ T] ⊆ T}

It is customary to view a formula ϕ with a free variable x as defining a function ϕρx,
as follows:

ϕρx(S) : P(S) → P(S)

U 7→ [[ϕ]]Mρ[x 7→ U]

The intuitive interpretation of µxϕ is then the least fixed point of ϕρx. The condition on
the formation of µxϕ ensures the existence of the lfp:

Proposition 9.1 Let ϕ a formula and x a variable occurring only positively in ϕ. Then,
in every environment ρ, ϕρx has both the least and the greatest fixed point. In particular,
the lfp of ϕρx is [[µxϕ]]ρ.

Proof. (Sketch) It is easy to show, by induction on the syntax of ϕ, that ϕρx is monotone;
the result thence follows from Knaster-Tarski’s theorem. ut

Notice that this result does not hold if we drop the condition on the formation of µxϕ: for
instance, the formula ¬x identifies the function (¬x)ρx(T) = S \ T , which is not monotone
and has no least fixed point.

9.2 Consequence Relations

The consequence relations we introduce here are extensions of the truth and validity CR’s
of propositional dynamic logic (Definition 6.1).

Definition 9.1 (Consequence Relations for µK) Let M be a model for µK and [[·]]M
be the relative interpretation in M. The truth and the validity CR’s for µK wrt M are
two relations |=M, ||=M⊆ P(Φ)× Φ, defined as follows:

Γ |=M ϕ ⇐⇒ ∀ρ.[[Γ]]Mρ ⊆ [[ϕ]]Mρ

Γ ||=M ϕ ⇐⇒ ∀ρ.[[Γ]]Mρ = S ⇒ [[ϕ]]Mρ = S

The (absolute) truth and validity CR’s for µK are defined as follows:

Γ |= ϕ ⇐⇒ ∀M.Γ |=M ϕ

Γ ||= ϕ ⇐⇒ ∀M.Γ ||=M ϕ

9.3. Proof Systems 99

ND-style sequent style

µ-I
ϕ[(µx.ϕ)/x]

µx.ϕ

Γ ` ϕ[(µx.ϕ)/x]

Γ ` µx.ϕ

µ-E

[ϕ[ψ/x]]
...

µx.ϕ ψ

ψ

Γ ` µx.ϕ ϕ[ψ/x] ` ψ

Γ ` ψ

Figure 9.1: The specific rules of the system NµK.

The finitary truth consequence relations with respect to a model M is the restriction
of |=M to finite sets:

Γ |=fMϕ ⇐⇒ ∃∆ ⊆ Γ, finite.∆ |=M ϕ

Γ |=fϕ ⇐⇒ ∃∆ ⊆ Γ, finite.∆ |= ϕ

In the following, we will focus on the finitary truth consequence relation. For sake of
simplicity, we will drop the f , denoting by |= the finitary truth CR |=f .

9.3 Proof Systems

9.3.1 A ND-style system for µK

Usually, systems for µ-calculus are given in Hilbert style [Koz83, Sti92, And93]. Here we
present a Natural Deduction style system for µK, namely NµK. This system is composed
by

• the system for classical propositional logic, NC (Figure 5.1);

• the rules for NK (Figure 5.2)

• the new two rules (introduction and elimination) for the new constructor µ, as
presented in Figure 9.1.

These rules have a direct semantic interpretation.

• the introduction rule states that (the meaning of) µxϕ is a prefixed point of ϕρx;

• the elimination rule states that (the meaning of) µxϕ implies, and then “is less
that”, any prefixed point of ϕρx.

Therefore, these rules state that (the meaning of) µxϕ is the minimum prefixed point, i.e.
the least fixed point, of ϕρx. Notice that the µ-elimination rule is a “proof rule”: in fact,
it can be stated equivalently as follows:

Γ ` µx.ϕ ∅ ` ϕ[ψ/x] ⊃ ψ

Γ ` ψ

100 Chapter 9. Propositional µ-calculus

PosinP
p ∈ Φ0

posin(x, p)
NeginP

p ∈ Φ0

negin(x, p)

PosinY
y ∈ Var

posin(x, y)
NeginY

y 6= x

negin(x, y)

PosinImp
negin(x, ϕ) posin(x, ψ)

posin(x, ϕ ⊃ ψ)
NeginImp

posin(x, ϕ) negin(x, ψ)

negin(x, ϕ ⊃ ψ)

PosinNeg
negin(x, ϕ)

posin(x,¬ϕ)
NeginNeg

posin(x, ϕ)

negin(x,¬ϕ)

PosinAnd
posin(x, ϕ) posin(x, ψ)

posin(x, ϕ ∧ ψ)
NeginAnd

negin(x, ϕ) negin(x, ψ)

negin(x, ϕ ∧ ψ)

PosinBox
posin(x, ϕ)

posin(x, [a]ϕ)
NeginBox

negin(x, ϕ)

negin(x, [a]ϕ)

PosinMu
for z 6= x : posin(x, ϕ[z/y])

posin(x, µxϕ)
NeginMu

for z 6= x : negin(x, ϕ[z/y])

negin(x, µxϕ)

Figure 9.2: The positivity proof system.

Here, the left subderivation has to depend on no assumptions, like to the necessitation
rule of modal logic (rule 2

′-I, Figure 5.2).
The resulting system is then sound and complete with respect to the (finitary) truth

consequence relation:

Theorem 9.2 For Γ finite set of formulæ, ϕ formula: Γ ` ϕ ⇐⇒ Γ |= ϕ.

Proof. (Sketch) Soundness is proved by showing that each rule is sound. Completeness
can be proved as follows. Since Γ is finite, Γ |= ϕ ⇐⇒ |=

∧

Γ ⊃ ϕ. By completeness of
Kozen’s axiomatization [Wal95a, Wal95b], there is an Hilbert-style derivation of

∧

Γ ⊃ ϕ.
Therefore, it is sufficient to prove that Kozen’s axioms and rules (e.g. those presented in
[Sti92]) are derivable in NµK. ut

9.3.2 A proof system for the positivity condition

Since we aim to encode the µ-calculus in some logical framework, we need to enforce the
context-sensitive condition on the formation of formulæ of the form µxϕ. That is, we ought
to specify in detail the condition of “occurring positively in a formula” for a variable. This
notion can be represented by two new judgements on formulæ and variables, posin and
negin, which are derived by means of the rules in Figure 9.2. Roughly, posin(x, ϕ) holds
iff all occurrences of x in ϕ are positively; dually, negin(x, ϕ) holds iff all occurrences of x
in ϕ are negative. Notice that if x does not occur in ϕ, then it occurs both positively and
negatively.

Let us formalize better the meaning of these auxiliary judgements. The notions they
capture are the following:

Definition 9.2 (Monotonicity and Antimonotonicity) Let ϕ be a formula and x a
variable. We say that

9.3. Proof Systems 101

• ϕ is monotone on x (written Monx(ϕ)) iff

∀M∀ρ∀U, V ⊆ S : U ⊆ V ⇒ ϕρx(U) ⊆ ϕρx(V);

• ϕ is antimonotone on x (written AntiMonx(ϕ)) iff

∀M∀ρ∀U, V ⊆ S : U ⊆ V ⇒ ϕρx(U) ⊇ ϕρx(V).

These notions refer directly to the semantic structures in which formulæ take meaning. The
following result proves that the syntactic condition of positivity (respectively, negativity)
captures correctly the semantic condition of monotonicity (respectively, antimonotonicity).

Proposition 9.3 Let ϕ be a formula and x a variable. Then,

1. ` posin(x, ϕ) ⇒ Monx(ϕ);

2. ` negin(x, ϕ) ⇒ AntiMonx(ϕ).

Proof. By expliciting the definitions of Mon and AntiMon, the thesis is equivalent to the
following statement:

given M model, ρ environment in M, the following holds:

` posin(x, ϕ) ⇒ ∀U ⊂ V.ϕρx(U) ⊆ ϕρx(V)

` negin(x, ϕ) ⇒ ∀U ⊂ V.ϕρx(U) ⊇ ϕρx(V).

We prove this by simultaneous induction on the syntax of ϕ (which is equivalent to an
induction on the proofs of ` posin(x, ϕ), ` negin(x, ϕ)).
Base case: If ` posin(x, ϕ) has height=0, then there are three subcases:

• ϕ = p ∈ Φ0: then, for U ⊆ V : ϕρx(U) = [[p]] = ϕρx(V).

• ϕ = y different from x: then, for U ⊆ V : ϕρx(U) = ρ(y) = ϕρx(V).

• ϕ = x: then for U ⊆ V : xρx(U) = U ⊆ V = xρx(V).

If ` negin(x, ϕ) has heigth=0, we proceed as above, but without the last case.
Inductive step: We see only two significant cases, the others being similar.

Let ϕ = ϕ1 ⊃ ϕ2. If ` posin(x, ϕ1 ⊃ ϕ2), then there are two derivations ` negin(x, ϕ1),
` posin(x, ϕ2). By IH, we have AntiMonx(ϕ1) and Monx(ϕ2), hence if U ⊆ V then

(ϕ1 ⊃ ϕ2)
ρ
x(U) = (S \ ϕρ1x(U)) ∪ ϕρ2x(U) ⊆ (S \ ϕρ1x(V)) ∪ ϕρ2x(V) = (ϕ1 ⊃ ϕ2)

ρ
x(U)

If ` negin(x, ϕ1 ⊃ ϕ2), then there are two derivations ` posin(x, ϕ1), ` negin(x, ϕ2). By
IH, we have Monx(ϕ1) and AntiMonx(ϕ2), hence if U ⊆ V then

(ϕ1 ⊃ ϕ2)
ρ
x(U) = (S \ ϕρ1x(U)) ∪ ϕρ2x(U) ⊇ (S \ ϕρ1x(V)) ∪ ϕρ2x(V) = (ϕ1 ⊃ ϕ2)

ρ
x(U)

Let us consider the most complex case. If ` posin(x, µzϕ), then w.l.o.g. we can suppose
z different from x, and that there is a derivations ` posin(x, ϕ). Since

(ϕρ[z 7→W]
x)(U) = [[ϕ]]ρ[z 7→W,x 7→ U]

102 Chapter 9. Propositional µ-calculus

we have (µzϕ)ρx(U) =
⋂

A(U), where

A(U)
def
= {W | (ϕρ[z 7→W]

x)(U) ⊆W}

Let U ⊆ V , and W ∈ A(V); then, (ϕ
ρ[z 7→W]
x)(V) ⊆W . By IH,

(ϕρ[z 7→W]
x)(U) ⊆ (ϕρ[z 7→W]

x)(V) ⊆W

and therefore W ∈ A(U). Hence, A(V) ⊆ A(U), therefore

(µzϕ)ρx(U) =
⋂

A(U) ⊆
⋂

A(V) = (µzϕ)ρx(V)

hence the thesis.
If we prove ` negin(x, µxϕ), we proceed as before, but, by antimonotonicity, A(V) ⊇

A(U), therefore
(µzϕ)ρx(U) =

⋂

A(U) ⊇
⋂

A(V) = (µzϕ)ρx(V)

hence the thesis. ut

Notice that the converse of Proposition 9.3 does not hold. Consider e.g. ϕ
def
= (x ⊃ x):

clearly, [[ϕ]]ρM = S always, and hence (x ⊃ x)ρx is both monotone and antimonotone.
However, x does not occur only positively nor only negatively in ϕ. Correspondingly,
we cannot derive ` posin(x, (x ⊃ x)) nor ` negin(x, (x ⊃ x)): by inspection of the
proof system, the only rule for deriving posin(x, (x ⊃ x) is PosinImp; hence, we should
derive negin(x, x), which is not possible (rule NeginY). A similar argument applies for
negin(x, (x ⊃ x)).

This result can be generalized in the following limitation property:

Proposition 9.4 If x ∈ FV(ϕ) occurs both positively and negatively in ϕ then neither
posin(x, ψ) nor negin(x, ψ) are derivable.

Proof. (Sketch) By induction on the syntax of ϕ. ut

Part III

The Theory of Formal
Representations

103

Chapter 10

Logical Frameworks

Type Theories, such as the Edinburgh Logical Framework [HHP93, AHMP92] or the
Calculus of Inductive Constructions [CH88, Wer94] were especially designed, or can be
fruitfully used, as a general logic specification language, i.e. as a Logical Framework (LF).
In an LF, we can represent faithfully and uniformly all the relevant concepts of the inference
process in a logical system: syntactic categories, terms, assertions, axiom schemata, rule
schemata, tactics, etc. via the “judgements-as-types proofs-as-λ-terms” paradigm. The key
concept is that of hypothetico-general judgement [Mar85], which is rendered as a type of the
dependent typed λ-calculus of the Logical Framework. It allows to represent directly the
assertions which occur in consequence relations (see Chapter 3) and to enforce immediately
reflexivity, transitivity and monotonicity. Moreover, the λ-calculus metalanguage of an
LF supports higher order syntax. Similarly to Martin-Löf’s theory of arities (Chapter
2), every binding constructor of the object language can be represented by the only λ-
abstraction of the metalanguage of the framework. Variables of the object language are
hence identified with the variables of the metalanguage. As a result, α-conversion of
bound variables is taken care of uniformly by the metalanguage. Moreover, “standard”
substitution schemata, that is those like the one of λ-calculus, or the one of first-order logic,
can be immediately delegated to the metalanguage, without the need of reimplementing
them case-by-case. In this case, instatiation of both axioms and rule schemata can be
delegated to the metalanguage; therefore, standard schematicities of consequence relations
are immediately recovered from the schematicity of the metalanguage.

Logical Frameworks allow also for higher-order judgements, accordingly to Martin-
Löf’s theory of judgements. Hence, we can treat on a par axioms and rules, theorems and
derived rules.

Encodings in LF’s often provide the “normative” formalization of logic under consid-
eration. The specification methodology of LF’s, in fact, forces the user to make precise all
tacit, or informal, conventions, which always accompany any presentation of a logic.

Any interactive proof development environment for the type theoretic metalanguage
of an LF (e.g. Coq[CCF+95], LEGO [LPT89]), can be readily turned into one for a specific
logic. We need only to fix a suitable environment (the signature), i.e. a declaration of typed
constants corresponding to the syntactic sorts and term constructors with their arities, and
the judgements and rule schemata of the logic (Chapters 2, 3). Such an LF-generated edi-
tor allows the user to reason “under assumptions” and go about in developing a proof the
way mathematicians normally reason: using hypotheses, formulating conjectures, storing
and retrieving lemmata, often in top-down, goal-directed fashion.

105

106 Chapter 10. Logical Frameworks

Moreover, Logical Frameworks provide a common medium for integrating different
systems. Hence LF-derived editors rival special purpose editors when efficiency can be
increased by integrating independent logical systems. LF-generated editors are natural.
A user of the original logic can transfer immediately to them his practical experience
and “trade tricks.” The LF-derived editors do not force upon the user the overhead of
unfamiliar indirect encodings, as would editors, say derived from FOL editors, via an
encoding.

However, the wide conceptual universe provided by LF allows, on various occasions,
to device genuinely new presentations of the logics. This has been the case for some of the
Logics presented in this thesis. In particular, we shall capitalize on the feature of LF’s of
treating simultaneously different judgements and of treating proofs as first-class objects.

Structure of this Chapter. In Section 10.1 we will recall the main features of Pure
Type Systems. The standard Natural-Deduction style presentation of the typing system,
and the main properties of PTS’s, will be given in Section 10.1.1. In Section 10.1.2 we
introduce an alternative, Gentzen’ sequent-style typing system for PTS’s; this system is
appealing for its proof-theoretic properties.

In Section 10.2 we present briefly the main concepts of the ELF+ logical framework,
which has been precisely designed in order to investigate the general notions of repre-
sentation (encoding) of logics and proof systems. This section can be skipped without
compromising the readibility of the rest of the thesis.

Sections 10.3 is devoted to one of the most important and common logical frameworks,
the Calculus of Inductive Constructions. This logical framework will be adopted in the
following chapters, in encoding the logics we have introduced in Part II. In Section 10.4,
we will briefly recall the Coq system, which is the most common implementation of CIC.

In Section 10.5 we formalize the notion of “good representation” for both the syntac-
tic and the deductive part of a formal system, accordingly to the “judgement-as-types”
paradigm. We will present both the “proof-irrelevant” (adequate) and the “proof-relevant”
(natural) notions of adequate representation of a proof system. Differently from the stan-
dard approach, we will focus on the representation of (multiple) consequence relations,
instead of judgements. We will define a notion of adequate representation both for the
language and the consequence relations of a logic. In the next chapter, we will see that the
structural properties of PTS’s and metatheoretic properties on logics to be represented
are strictly tied up.

10.1 Pure Type Systems

In this section, we recall briefly the properties of Pure Type Systems.
The basic language is that of preterms:

Definition 10.1 (Preterms) Let S a set of constant symbols, ranged over by s, and Var
a set of variable symbols, ranged over by x, y, z. The set of pre-λ-terms ΛS , ranged over
by M,N,A,B,C, is defined by the following abstract syntax:

ΛS M ::= s | x |MN | λx:A.M | Πx:A.B

where the variable x is bound in λx:A.M and Πx:A.B.

10.1. Pure Type Systems 107

For M a preterm, the set of free variables FV(M) is defined as usual. Terms differing
only on the name of bound variables are identified (α-equivalence).

Definition 10.2 (Precontexts and Typing Judgements) The precontexts for ΛS are
all and only the following lists of pairs:

• the empty context ∅ is a precontext; its domain is dom(∅) = ∅.

• if Γ is a precontext, x is a variable such that x 6∈ dom(Γ) and A is a preterm, then
〈Γ, x : A〉 is a precontext; its domain is dom(〈Γ, (x,A)〉) = dom(Γ) ∪ {x}

We will write “x1 : A1, . . . , xn : An” instead of “〈. . . 〈∅, (x1, A1)〉, . . . , (xn, An)〉”.
A typing judgement is a triple 〈Γ,M,A〉, written Γ ` M : A, where Γ is a precontext

and M,A are preterms.

10.1.1 Natural Deduction-style presentation

Following the traditional approach, the typing system we give in Definition 10.3 is in
linearized Natural Deduction style.

Definition 10.3 (PTS) A Pure Type System with β-conversion is specified by a triple
〈S,A,R〉, where S is a set, A ⊆ S × S and R ⊆ S × S × S. The PTS that is given by
a triple 〈S,A,R〉 is denoted by λβ(S,A,R) and it is the λ-calculus ΛS and typing rules
appearing in Figure 10.1.

If π is a derivation in λβ(S,A,R) of the judgement Γ `M :A, we write π : (Γ `M :A).

A Pure Type System with βη-conversion is a PTS, where the equality condition1 of
the conver rule is A =βη B.

Since Church’ seminal work [Chu40], the theory of typed λ-calculi and PTS’s has been
thoroughly investigated. For the sake of completeness, here we recall some of the main
properties. The interested reader can find an extensive treatment of the metatheoretic
properties of PTS’s in [Bar92, Ber90, Geu93]. Detailed accounts for specific PTS’s, often
with different structural properties, can be found also in [Chu40, CH88, dB80, HHP93,
Gar92]. In the rest of the section, we will consider only PTS with β-conversion.

Theorem 10.1 (Basic Properties of PTS’s) In any PTS λβ(S,A,R), the following
hold:

Free Variables: If Γ `M : A then FV(M) ∪ FV(A) ⊆ dom(Γ);

Transitivity: If (∀(x : A) ∈ ∆.Γ ` x : A), and ∆ `M : B, then Γ `M : B;

Substitution Lemma: If Γ, x : A,∆ `M : C and Γ ` N : A then Γ,∆[N/x] `M [N/x] :
C[N/x];

Thinning Lemma: If Γ `M : A and Γ ⊆ ∆ then ∆ `M : A;

1in this case, however, some care has to be taken in the formulation of the rules for the equality
judgement. We do not discuss these syntoms here; the reader can find more details in [HHP93, Gar92].

108 Chapter 10. Logical Frameworks

Charateristic Rules

sort ∅ ` s1 : s2 (s1, s2) ∈ A

prod
Γ ` A : s1 Γ, x : A `M : s2

Γ ` Πx:A.M : s3
(s1, s2, s3) ∈ R

Structural Rules

start
Γ ` A : s

Γ, x : A ` x : A
x 6∈ Γ

weak
Γ ` A : s Γ `M : C

Γ, x : A `M : C
x 6∈ Γ

Logical Rules

app
Γ ` N : A Γ `M : Πx:A.B

Γ ` (MN) : B[N/x]

abs
Γ, x : A `M : B Γ ` Πx:A.B : s

Γ ` λx:A.M : Πx:A.B

Conversion Rule

conver
Γ `M : A Γ ` B : s

Γ `M : B
A =β B

Figure 10.1: λβ(S,A,R), the Natural Deduction-style typing system for PTS’s.

Inversion Lemma: 2 For Γ a context, C a term:

1. Γ ` c : C ⇒ ∃s ∈ S.(C =β s ∧ (c, s) ∈ A)

2. Γ ` x : C ⇒ ∃s ∈ S,∃B,∃Γ1,Γ2.(B =β C ∧ Γ = Γ1, x : B,Γ2 ∧ Γ1 ` B : s)

3. Γ ` (Πx:A.B) : C ⇒ ∃(s1, s2, s3) ∈ R.(Γ ` A : s1 ∧ Γ, x : A ` B : s2 ∧ C =β s3)

4. Γ ` (λx:A.M) : C ⇒ ∃s ∈ S,∃B.(Γ ` Πx:A.B : s ∧ Γ, x : A ` M : B ∧ C =β

Πx:A.B)

5. Γ ` (MN) : C ⇒ ∃A,B.(Γ `M : Πx:A.B ∧ Γ ` N : A ∧ C =β B[N/x])

Uniqueness of types: If Γ `M : A and Γ `M : B, then A =β B.

Subject Reduction: If Γ ` M : A and M →β N , then Γ ` N : B; if Γ ` M : A and
Γ →β ∆, then ∆ ` N : B;

Strenghtening: If Γ, x : A,∆ `M : B and x 6∈ FV(∆,M,B), then Γ1,Γ2 `M : B;

Permutation: If Γ, x:A, y:B,∆ `M : A and x 6∈ FV(B) then Γ, y:B, x:A,∆ `M : A;

For the proofs of these properties, see [Bar92, Geu93].
Particularly interesting cases arise when we consider only two sorts, that is S = {∗,2},

indented respectively as the sort of terms and the sort of types, and the only axiom
A = {(∗ : 2)}. For each combination s1, s2 ∈ S, there is a different production rule

2Also known as generation lemma [Bar92], stripping lemma [Geu93], weak generation [Gar92],. . .

10.1. Pure Type Systems 109

(s1, s2, s2), which we denote simply by (s1, s2). Apart from the basic (∗, ∗) (which allows
us to abstract terms over terms), each of these rules can be admitted or not, giving rise
to eight different systems. These systems form the so-called “λ-cube”; their properties
have been thoroughly investigated in recent years (we refer to [Bar92, Geu93] for an
comprehensive account). Their most noteworthy property is the strong normalization:

Theorem 10.2 (Strong Normalization for the λ-cube) For every system in the λ--
cube, if Γ `M : A then M , A are strong normalizing.

Since the metatheory of PTS’s in this form is well-known, we do not dwell further in
these details. Instead, in the next section we introduce an alternative, and probably less
known, presentations of PTS’s, which turns to be interesting in view of the proof-theoretic
use of Logical Frameworks as editors for top-down proof search.

10.1.2 Gentzen-style Pure Type Systems

In Figure 10.2, we present an alternative form for the typing systems of PTS’s. This
presentation is close to Gentzen’ systems of sequents [Gen69]; in fact, there is a strict
relation between these typing rules and the rules of sequent calculus, as shown in the
following table:

Typing System Sequent Calculus

start reflexivity
weak monotonicity
subst cut, instantiation
app’ left-introduction of implica-

tion and universal quantifier
abs right-introduction of implica-

tion and universal quantifier

Two particular cases of app’ are illuminating: if z does not appear free in C, the rule
becomes

∏

-l
Γ ` t : A Γ, z : B[t/x] `M : C Γ ` Πx:A.B : s

Γ, y : Πx:A.B `M [(yN)/z] : C
y 6∈ Γ, z 6∈ FV(C)

If we take the “proof irrelevance” version of the rule, by erasing the inhabitating terms, and
replace Π by the universal quantificator, we obtain exactly Gentzen’s ∀-left introduction:

∀-l
Γ, B[t/x] ` C

Γ,∀x:A.B ` C

We can go a step further: if x does not appear free in B, the product reduces to
“implication”, hence the rule becomes

→-l
Γ ` N : A Γ, z : B `M : C Γ ` A→ B : s

Γ, y : A→ B `M [(yN)/z] : C
y 6∈ Γ, z 6∈ FV(C)

By erasing the inhabitating terms and sort checkings, we obtain exactly Gentzen’s ⊃-left
introduction:

⊃-l
Γ ` A Γ, B ` C

Γ, A ⊃ B ` C

110 Chapter 10. Logical Frameworks

Characteristic Rules

sort ∅ ` s1 : s2 (s1, s2) ∈ A

prod
Γ ` A : s1 Γ, x : A `M : s2

Γ ` Πx:A.M : s3
(s1, s2, s3) ∈ R

Structural Rules

start
Γ ` A : s

Γ, x : A ` x : A
x 6∈ Γ

weak
Γ ` A : s Γ `M : C

Γ, x : A `M : C
x 6∈ Γ

subst
Γ `M : A Γ, x : A ` N : B

Γ ` N [M/x] : B[M/x]

Logical Rules

app’
Γ ` N : A Γ, z : B[N/x] `M : C Γ ` Πx:A.B : s

Γ, y : Πx:A.B `M [(yN)/z] : C[(yN)/z]
y 6∈ Γ

abs
Γ, x : A `M : B Γ ` Πx:A.B : s

Γ ` λx:A.M : Πx:A.B

Conversion Rule

conver
Γ `M : A Γ ` B : s

Γ `M : B
A =β B

Figure 10.2: λGβ (S,A,R), the (Gentzen) sequent-style typing system for PTS’s.

This presentation is closer in spirit to the activity of top-down proof searching. As we
will see, if we disallow the subst rule Gentzen’ style systems will type only canonical terms,
that is terms in head normal form. Let us denote by λ−β (S,A,R) the PTS λGβ (S,A,R)

without the subst rule (see Figure 10.3). Alternatively, λ−β (S,A,R) can be seen as
λβ(S,A,R) where the rule app has been replaced by app’.

It is well-known that the absence of “cut” rules and the restriction to the sole head
normal forms reduces drastically the search space. A similar approach has been adopted
by Pym and Wallen for the Edinburgh LF in investigating the proof search strategies for
that framework [PW90]. Moreover, since the activity of proof search is goal-driven, the
elementary proof tactics of most proof assistants normally correspond to an “inversion”
of the rules (e.g. the Apply and Intro of Coq).

Similarly to what happens in sequent calculus, the subst rule allow us to derive also
terms which are not in canonical form. Indeeed, the two presentations λβ(S,A,R) and
λGβ (S,A,R) are equivalent, as we are going to prove.

We proceed as follows. Lemma 10.3 and Lemma 10.4 are two technical results needed
in the following propositions. Proposition 10.5 proves that sequent style PTS’s subsume
those in ND-style, since the app rule is admissible. On the other hand, ND-style PTS’s
subsume those in sequent style, since both the app’ and the subst rules are admissible in
any λβ(S,A,R) (Proposition 10.6). Therefore, the two versions are equivalent, as far as
every term, also those not in normal form, are concerned (Theorem 10.7).

10.1. Pure Type Systems 111

Characteristic Rules

sort ∅ ` s1 : s2 (s1, s2) ∈ A

prod
Γ ` A : s1 Γ, x : A `M : s2

Γ ` Πx:A.M : s3
(s1, s2, s3) ∈ R

Structural Rules

start
Γ ` A : s

Γ, x : A ` x : A
x 6∈ Γ

weak
Γ ` A : s Γ `M : C

Γ, x : A `M : C
x 6∈ Γ

Logical Rules

app’
Γ ` N : A Γ, z : B[N/x] `M : C Γ ` Πx:A.B : s

Γ, y : Πx:A.B `M [(yN)/z] : C[(yN)/z]
y 6∈ Γ

abs
Γ, x : A `M : B Γ ` Πx:A.B : s

Γ ` λx:A.M : Πx:A.B

Conversion Rule

conver
Γ `M : A Γ ` B : s

Γ `M : B
A =β B

Figure 10.3: λ−β (S,A,R), the cut-free sequent-style typing system for PTS’s.

Lemma 10.3 In λGβ (S,A,R), if π : (Γ ` M : Πx:A.B) then there is C such that C =β

Πx:A.B, and π′ : (Γ ` C : s) for some s ∈ S.

Proof. By induction on the height of π.
Base Case: π cannot be an axiom, hence the base case is vacuously true.
Inductive Case: by cases on the last rule applied.

Rules abs,start,conver: trivially, π′ is one of the subderivation.
Rule app’: then, there are y, z, w,M ′, N,A′, B′, C,D,Γ′ such that M = M ′[(yN)/z],

A = A′[(yN)/z], B = B′[(yN)/z], and there are three derivations π1, π2, π3 as follows:

π = app’

π1

Γ′ ` N : C

π2

Γ′, z : D[N/w] `M ′ : Πx:A′.B′

π3

Γ′ ` Πw:C.D : s′

Γ′, y : Πw:C.D `M ′[(yN)/w] : Πx:A′[(yN)/w].B′[(yN)/w]

Then, by inductive hypothesis, there is π′2 : (Γ′, z : D[N/w] ` Πx:A′.B′ : s) for some s ∈ S.
Now, s[N/w] = s, hence π′ is as follows:

π′ = app’

π1

Γ′ ` N : C

π′2
Γ′, z : D[N/w] ` Πx:A′.B′ : s

π3

Γ′ ` Πw:C.D : s′

Γ′, y : Πw:C.D ` Πx:A.B : s

Rule subst: then, there are y,M ′, N,A′, B′, C such that M = M ′[N/z], A = A′[N/z],
B = B′[N/z], and there are three derivations π1, π2, π3 as follows:

π = subst

π1

Γ ` N : C

π2

Γ, y : C `M ′ : Πx:A′.B′

Γ `M ′[N/y] : Πx:A′[N/y].B′[N/y]

112 Chapter 10. Logical Frameworks

Then, by inductive hypothesis, there is π′2 : (Γ, y : C ` M ′ : Πx:A′.B′) for some s ∈ S.
Now, s[N/y] = s, hence π′ is as follows:

π′ = subst

π1

Γ ` N : C

π′2
Γ, y : C ` Πx:A′.B′ : s

Γ ` Πx:A.B : s

ut

Lemma 10.4 In λGβ (S,A,R), let π : (Γ `M : Πx:A.B : s). Then, there is (s1, s2, s) ∈ R
such that

1. there are two derivations π1 : Γ ` A : s1 and Γ, x : A ` B : s2;

2. if Γ ` N : A, then Γ ` B[N/x] : s2.

Proof. 1. Straightforward induction on π.

2. Apply subst to the proof of Γ, x : A ` B : s2 obtained in the previous point. ut

The Natural-Deduction style version is subsumed by the sequent-style one:

Proposition 10.5 The rule app is admissible in λGβ (S,A,R).

Proof. Let π1 : (Γ `M : Πx:A.B) and π2 : (Γ ` N : A). Then, the following is a proof of
Γ ` (MN) : B[N/x]:

π1

Γ `M : Πx:A.B
app’

π2

Γ ` N : A

π3

Γ ` B[N/x] : s′

Γ, z : B[N/x] ` z : B[N/x]

π4

Γ ` Πx:A.B : s

Γ, y : Πx:A.B ` (yN) : B[N/x]

Γ ` (MN) : B[N/x]

where the last rule applied is subst, and π3 and π4 are obtained by Lemmata 10.4, 10.3
respectively. The variable y does not appear free in B[N/x], because FV(B[N/x]) =
FV(Πx:A.B) ∪ FV(N) ⊆ dom(Γ) (the last inclusion holds for Γ ` N : A and Γ ` Πx:A.B :
s), and y is chosen so that y 6∈ Γ. ut

On the other hand, λβ(S,A,R) subsumes λGβ (S,A,R):

Proposition 10.6 The rules app’ and subst are admissible in λβ(S,A,R).

Proof. We have to prove that for every derivation in λGβ (S,A,R) whose last rule applied is
either subst or app’, th is a corresponding derivation in λβ(S,A,R). The proof proceeds
by induction on the height of derivations. The base steps are vacuously verified.

Inductive steps: if the last rule applied is subst, then it is an application of the
Substitution Lemma (Proposition 10.1).

Let us consider the app case. Let π1 : (Γ ` N : A), π2 : (Γ, z : B[N/x] ` M : C) and
π3 : (Γ ` Πx:A.B : s) proofs in λβ(S,A,R); we have to prove that there is a derivation of
Γ, y : Πx:A.B `M [(yN)/z] : B[(yN)/z].

10.1. Pure Type Systems 113

From π2 and π3, there is a proof π′2 : (Γ, y : Πx:A.B, z : B[N/x] ` M : C): we simply
follow π2, and just before the start rules for z we introduce y by means of weakenings.
Moreover, let π4 be the following derivation:

π4
def
= app

start

π3

Γ ` Πx:A.B : s
Γ, y : Πx:A.B ` y : Πx:A.B

weak

π1

Γ ` N : A

π3

Γ ` Πx:A.B : s
Γ, y : Πx:A.B ` N : A

Γ, y : Πx:A.B ` (yN) : B[N/x]

Then, by applying the Substitution Lemma of PTS’s (Proposition 10.1) to π4 and to π′2,
we obtain the derivation of Γ, y : Πx:A.B `M [(yN)/z] : B[(yN)/z]. ut

Theorem 10.7 (Equivalence between ND- and sequent-style systems) For any
PTS specification 〈S,A,R〉, λβ(S,A,R) is equivalent to λGβ (S,A,R), in the sense that for

each derivation π : (Γ ` M : A) in λβ(S,A,R), there is π′ : (Γ ` M : A) in λGβ (S,A,R),
and vice versa.

Proof. Immediate from Propositions 10.5, 10.6. ut

As we have point out before, particularly interesting is the subst-free versions of
sequent-style PTS. We will prove now that the derivations which can be carried out in
these systems regard all and only terms in head normal form.

Lemma 10.8 (Left Conversion) In λβ(S,A,R), λGβ (S,A,R), λ−β (S,A,R), the follow-
ing rule is admissible.

conv-l
Γ, x : A `M : B Γ ` C : s

Γ, x : C `M : B
A =β C

Proof. Let π1, π2 such that π1 : (Γ, x : A ` M : B) and π2 : (Γ ` C : s). We can trace
back the derivation π1 until we reach the instances of start which introduce (x : A) in
the context. These instances appear always as the last rule of a subderivation π3 of π1 as
follows:

π3

π4

Γ ` A : s′

Γ, x : A ` x : A

Now, we can carry out the following derivation π′3 : (Γ, x : C ` x : A):

conver

start

π2

Γ ` C : s
Γ, x : C ` x : C

π4

Γ ` A : s′

Γ, x : C ` x : A

Finally, we obtain the proof of Γ, x : C ` M : B by replacing all the subderivations π3 in
π1 by π′3. ut

The following theorem shows that the three versions of PTS are equivalent, as far as
only terms in head normal form are concerned.

114 Chapter 10. Logical Frameworks

Theorem 10.9 Let 〈S,A,R〉 a PTS, Γ a context, and M,A terms. Then, the following
are equivalent:

1. Γ `M : A in λ−β (S,A,R);

2. Γ `M : A in λGβ (S,A,R) and M is in head normal form;

3. Γ `M : A in λβ(S,A,R) and M is in head normal form.

Proof. 1 ⇒ 2. Easy induction; just notice that the head of applications is always a
variable (see the app’ rule), and then the final term is in head normal form.

2 ⇒ 3. By Proposition 10.6.

3 ⇒ 1. Let π : (Γ ` M : A) in λβ(S,A,R), and let M be in head normal form. We
have to prove that there is a derivation π′ : (Γ ` M : A) in λ−β (S,A,R). We proceed by
induction on π.
Base case. If π is an instance of sort, then π′

def
= π.

Inductive step. By cases on the last rule applied. All but one cases are trivial; we
discuss the only interesting one. Let app be the last rule applied; the derivation appers
as follows:

app

π1

Γ ` N : C

π2

Γ `M ′ : Πx:C.B
Γ ` (M ′N) : B[N/x]

We cannot replace directly this rule by appling Proposition 10.5, because this would
introduce an instance of subst, which is not available in λ−β (S,A,R). However, since M
is in hnf, also M ′ and N are in hnf; moreover, M ′ cannot be an abstraction, otherwise
M ′N would be reducible. Therefore, M ′ is of the form (yN1 . . . Nk), k ≥ 0, for some
N1, . . . , Nk terms in hnf. The whole derivation π appears as follows:

app

π1

Γ ` N : C

π2

Γ ` (yN1 . . . Nk) : Πx:C.B

Γ ` (yN1 . . . NkN) : B[N/x]

By the Inversion Lemma, there are k subderivations such that for δi : Γi ` Ni : Ci, and
a subderivation δ0 : Γ0 ` y : Πx1:C1 . . .Πxk:Ck.B0, where Γ0, . . . ,Γk are initial segments
of Γ, and Πx:C.B = B0[N1/x1] . . . [Nk/xk]. (These derivations δi are subderivations of
π2.) By inductive hypothesis, each of these derivations can be turned into a corresponding
derivation in λ−β (S,A,R); then, by applying k + 1 times the app’ rule we obtain the
thesis. ut

Notice that this result does not imply any kind of normalization; in fact, Theorem 10.9
deals only with normal forms, and does not state anything about the other terms. In our
“logical” setting, normalization corresponds to the elimination of the subst rule. Hence,
it can be stated as follows:

Theorem 10.10 (Cut Elimination) For 〈S,A,R〉 a PTS specification, the following
are equivalent:

• 〈S,A,R〉 is strongly normalizing;

• if π : (Γ ` M : A) in λGβ (S,A,R), then for all M ′, A′ hnf such that M →β M ′,

A→β A
′, there is π′ in λ−β (S,A,R) such that π′ : (Γ `M ′ : A′).

10.2. The logical framework ELF+ 115

10.2 The logical framework ELF+

An important advance in the area of logical frameworks is represented by the Edinburgh
Logical Framework, designed in the late ’80s by Harper, Honsell and Plotkin [HHP93]. This
framework has been influenced by de Bruijn’s AUTOMATH project [dB80] and Martin-Löf
type theory [NPS92].

We present briefly a similar framework, namely Gardner’s ELF+ [Gar92, Gar93], which
has been precisely designed in order to investigate general notions of representation (en-
coding) of logics and proof systems. Here we present only the type structure and the
intended meaning of the sorts of ELF+, since the judgement-as-types paradigm and the
related notions of encodings will be presented in detail in Section 10.5. Therefore, this
section can be skipped without compromising the readibility of the rest of the thesis.

ELF+, as ELF, is a PTS with βη-equality and signatures [HHP93, Ber90, Gar92]. A
signature is a set of constants whose types specify the encoded logic. Although signatures
can be roughly seen as “contexts whose variables cannot be discharged”, their formation
rules are stronger than those of contexts. Indeed, there is an universe (Kind) which can be
inhabitated by constants but not by variables; in other words, we can declare in a signature
that a constant c has type Kind, but we cannot assume that a variable x inhabits Kind.
Further details are in [HHP93, Gar92]. Hence, a PTS with signature is specified by a
quadruple 〈S,V,A,R〉 where S, A, R are as in the case of simple PTS’s (Definition
10.3); the new set V is a subset of S and specifies the sorts which can be inhabitated by
context variables (see [Gar92, Gar93]).

The type theory of ELF+ is a variant of the Edinburgh Logical Framework as presented
in [HHP93]. ELF+ differs from ELF on the universe structure: in place of the unique
universe Type of the ELF, ELF+ has three universes called Sort, Extra and Judge.

Definition 10.4 (ELF+) The framework ELF+ is the PTS with βη-conversion and sig-
natures specified by 〈S,V,A,R〉 where

S = {Sort,Extra, Judge,Kind}

V = {Sort,Extra, Judge}

A = {(Sort : Kind), (Extra : Kind), (Judge : Kind)}

R = {(Sort,Kind,Kind), (Extra,Kind,Kind), (Judge, Judge,Extra)} ∪

∪{(s1, s2,Extra) | s1, s2 ∈ {Sort,Extra}}

Each basic sort has a precise meaning:

• inhabitants of Sort represent the syntact sorts of the object language. In encoding a
language, for each syntactic sort S, we declare a constant TS : Sort; each expression
of sort S is therefore represented by a term of type TS .

• inhabitants of Judge represent the basic judgements of the object logic, and hence
its consequence relations. Each judgement A of the logic will be represented by a
specific constant JA : θ; θ is a type which ends with Judge and reflects the arity
of A. For instance, the “derivability” judgement T on a first-order language S is
represented by a constant JT : TS → Judge.

116 Chapter 10. Logical Frameworks

• The extra universe Extra is used as a “scratch area”, for defining terms which have
no immediate correspondence with the object logic. It is important to notice that Π-
abstractions of sorts, extra types and judgements all inhabit Extra. This is because
Π-abstraction is viewed as a part of the machinery of the metalanguage, rather than
of the object language.

The introduction of an additional universe for Π-abstractions reduces drastically the class
of terms which can represent expressions and proofs of the object logic. For instance,
terms of type Sort → Sort (that is, “schematic terms”, terms with holes), do not represent
any object expression, because the kind of Sort → Sort is Extra.

10.3 The Calculus of Inductive Constructions

In this section we will present briefly the Calculus of (Inductive) Constructions (CIC for
short). A complete and detailed exposition of this framework is out of the scopes of
this thesis; we refer hence the interested reader to the extensive literature [CH88, CP90,
CCF+95, Hue92, Hue94, Pau93, Tay88, Wer94].

CIC as a PTS

In its original formulation, Coquand and Huet’s Calculus of Constructions (CC) [CH88]
can be defined as the PTS λC of Barendregt’s λ-cube, that is

λC
def
=

S = {?,2}
A = {? : 2}
R = S2

Actually, the type structure of CIC is much more complex than the one of λC. In place of
sort ?, CIC have two basic sorts, namely Prop and Set, which play a rôle similar to Judge

and Sort in ELF+, respectively.
The sort Prop is supposed to be the type of logical proposition, predicates, or judge-

ments. Accordingly to the proposition-as-types, proofs-as-terms paradigm, if A has type
Prop then it represents a logical proposition; the fact that A is inhabited by a term M
represents the fact that A holds. Each term M inhabiting A represents a proof of A.

On the other hand, the sort Set is supposed to be the type of datatypes, such as
naturals, lists, trees, booleans, etc. These types differ from those inhabiting Prop for their
constructive contents, as we will see later.

Like any other term, also Prop and Set have to be given a type. Due to well-known
consistency problems, we cannot inhabit an universe by itself, since this would yield Gi-
rard’s paradox: every type would be inhabited, hence every proposition would be prov-
able [Bar92]. Therefore, in CIC there are infinitely many other sorts, namely Type(i)
and Typeset(i) for any integer i. These form two hierarchies of universes: Prop inhab-
its Type(0) which inhabits Type(1) which inhabits Type(2) and so on; similarly for Set.
Indeed, CIC can be presented as the PTS identified by the following triple:

CIC
def
=

S = {Prop,Set} ∪ {Type(i),Typeset(i) | i ∈ N}
A = {Prop:Type(0),Set:Typeset(0)}∪

∪{(Type(i):Type(i+ 1)), (Typeset(i):Typeset(i+ 1) | i ∈ N}
R = {Prop,Set}2 ∪ {(t(i), t′(j)) | t, t′ ∈ {Type,Typeset}, i, j ∈ N , i ≤ j}

10.3. The Calculus of Inductive Constructions 117

Remark 1. It is important to notice that the reasons for introducing more than one
basic type in CIC are different from those of ELF+. As we have already observed in
Section 10.2, the main reason for introducing three basic sorts in ELF+ is to give an
accurate formalization of the judgement-as-types paradigm. On the other hand, the ex-
istence of two distinct hierarchies of types in CIC is motivated by a peculiar feature of
the Coq implementation, namely the extraction of programs from proofs, that is, the com-
putational interpretation of proof objects, accordingly to the Curry-Howard isomorphism
and Christine Paulin-Mohring’s realizability interpretation. However, a proof may have no
computational content; therefore, the two hierarchies are introduced in order to keep apart
the constructive universes from those non constructive. No program will be extracted from
a term inhabiting a sort of the Prop hierarchy; instead, any object A : Set is interpreted
as a specification, and any term M : A is interpreted as a program which meets the spec-
ification A. Coq implements a mechanism for extracting a (function) program from this
object, in an effective way. We will do not dwell further on this topic, since it is out of
the scopes of this thesis; we refer the interested reader to [CCF+95, Pau89, PW93].

Remark 2. In the Coq implementation, the user does not need to specify the indexes of
the type hierarchy. One only write “Type” or “Typeset”, without any index. The system
itself generates consistently a new internal index for each instance of these types, and
checks that soundness is preserved. Hence, from the point of view of a Coq user, it is
Type : Type and Typeset : Typeset, although these occurrences denote internally different
sorts.

Inductive Definitions

An important feature of CIC is the possibility of defining types inductively ; for instance,
it is possible defining a set (e.g. a type inhabiting Set) by declaring that is the least set
closed under the application of a given family of constructors. Actually, any extension of
the second-order PTS λ2, such as Girard’s F [GLT90], allows for inductive definitions by
means of higher-order (impredicative) quantifications, but these representations are not
always satisfactory (see [Pau93] for a discussion). A way for overcoming this problem
has been introduced in the Calculus of Inductive Constructions by Thierry Coquand and
Christine Paulin-Mohring [CP90, Pau93]. The idea is to extend the language of typed
λ-terms by adding some special constants which represent the definition, introduction and
elimination of inductive types. Therefore, the language of pre-λ-terms ΛS of Definition
10.1 is extended by adding the following term constructors:

ΛS : M ::= . . . | Ind(x:A){A1, . . . , An} | Constr(i, A) | Elim(M,A){M1, . . . ,Mn}

where i ranges over integers. The intuitive meaning of these new terms is the following:

• Ind(x:A){A1, . . . , An} is an inductive type of sort A, denoted by x; A1, . . . , An are
the constructors of x;

• if I = Ind(x:A){A1, . . . , An}, then Constr(i, I) is a term inhabiting the inductive
type I, and it is defined by the ith constructor of I;

• Elim(c, P){M1, . . . ,Mn} is a term defined by an induction/recursion schema over an
inductively defined type.

118 Chapter 10. Logical Frameworks

Of course, since we have extended the language, we have to extend the typing sys-
tem accordingly. Beside the rules for typing the new terms, we need to introduce rules
for stating the equivalence between these terms. Moreover, we need to represent the
computational content of inductively defined datatypes: in fact, since we need to define
functions by recursion, we need also a way for performing computation with these func-
tions. Therefore, a new term reduction rule, called ι-reduction, is introduced beside the
usual β-reduction. We do not insist further on this topic; we refer the interested reader
to [CCF+95, Pau93, CP90].

10.4 The proof assistant Coq

One of the most common implementations of the Calculus of Inductive Constructions is
the Coq proof assistant. A detailed presentation of Coq is outside the aims of this thesis;
we refer the reader to the reference manual for a complete description and an extensive
bibliography [CCF+95].

Coq is the result of about ten years of research of the Coq project, developed jointly
by Gérard Huet’s group at INRIA-Rocquencourt and Christine Paulin-Mohring’s group
at the ENS in Lyon. Roughly, it can be seen ad composed by three parts: the logical
(meta)language, the proof assistant and the program extractor. We will not describe the
latter one, since it is related to an issue which is not relevant to this thesis (the synthesis
of computer programs from specifications declared in the logical language).

10.4.1 The metalogical language

The metalogical language of Coq, in which we describe the object logic, is the Calculus
of Inductive Constructions (CIC), presented in Section 10.3. Of course, the reduced set
of symbols available on textual terminals forces us to some changes to the usual notation
of typed λ-calculi. The resulting language, called Gallina, is (partially) described by the
BNF rules in Figure 10.4. By convention, phrases in Gallina are written in verbatim.

Some explanation about the meaning of each constructor is in order.

• The meaning of a phrase

(term0 term1 . . . termn)

is that of a function term0 applied to the arguments term1, . . . , termn.

• (binder)term means the λ-abstractions, and [binder]term means the Π dependend
product. These constructions are extended to lists of variables.

If x does not occurr free in B, the term (x:A)B can be written as A->B.

• The Case represents a case analysis over a term of an inductive type.

• The syntax Fix is used for the internal representation of fixpoints.

The object logic is encoded by declaring in Coq its language and proof rule. A decla-
ration is the association between an ident and a term. A declaration is accepted by Coq

iff this term is a well-typed specification in the current context of the declaration, and

10.4. The proof assistant Coq 119

term ::= ident | sort | (binder)term | [binder]term |

(terms) | <term> Case term of terms end

Fix ident {fixdecls}

ident ::= (a..z | A..Z | | $){a..z | A..Z | | $ |′}+

terms ::= term | term terms

binder ::= lident : term

lident ::= ident | ident , lident

sort ::= Prop | Set | Type

fixdecls ::= fixdecl | fixdecl with fixdecls

fixdecl ::= ident / num : term

Figure 10.4: (A fragment of) The Gallina specification language.

ident is not previously declared. The two principal means for declaring an identifiers are
the following:

Axiom ident : term.

Variable ident : term.

In both cases, the term is taken to be the type of ident.
Inductive types are declared by the syntax

Inductive ident : term := ident1 : term1

| . . .

| identn : termn.

The name ident is the name of the inductively defined object, and term is its type. The
names ident1, . . . , identn are the names of its constructors and term1, . . . , termn their
respective types. The types of the constructors, as in CIC, have to sarisfy a positivity
condition (see [CCF+95, section 6.5.3]).

10.4.2 The proof assistant

After having declared the object logic, the user can carry out formally proofs.
At each stage of a proof development, Coq mantains a list of goals to prove. Initially,

the list consists only in the theorem itself, which can be declared by the command Theorem

ident : term. This command switches Coq in proof editing mode, and sets term as the
original goal. At each stage, each goal is provided by a number of available hypothesis
which form the local proof context of the goal. Initially, this context is empty; it is enriched
by the use of introduction tactics. Of course, assumptions can be used in proving a goal.

In Coq’s proof editing mode, the user has access to specialized commands (tactics)
dealing with proof development. There are three levels of tactics. The simplest one

120 Chapter 10. Logical Frameworks

implements the basic rules of the logical framework, such as Intro which implement the
Abs rule of PTS’s. The second level is the one of derived rules, which are built by
combination of other tactics; several conversion rules belong to this level. The third level
is the one of heuristic or decision procedures for building a complete proof of a goal (see
e.g. the Auto tactic).

When a proof is achieved, the message Subtree proved! is displayed. One can then
store this proof as a defined constant in the environment. The theorem can be used later
on in other proof developments.

Remark. In the next chapters, we will use CIC in several examples and occasions. We
will use both a pretty-printed version of the pre-λ-terms and the real language used in the
Coq implementation of CIC. The last one will be written in verbatim.

10.5 Paradigmatical Judgement-as-Types encodings

In this section, we formalize the notion of “adequate” and “natural” encoding of a formal
system. We are inspired by [HHP93, Gar92, Gar93].

We begin with the formalization of a “good representation” of a language:

Definition 10.5 (Encoding of a language) Let L be a language and let Sorts, Expr
the sorts and expressions of L, respectively. Let X,Y range over finite lists of (sorted)
variables of the language, that is sets of the form {xS1

1 , . . . , xSn
n }.

An encoding of L in CIC is a triple (Σ, η, ε) where Σ is a signature, η : Sorts → Λ
is a function such that ∀S ∈ Sorts : ∅ `Σ η(S) : Set and η(S) is in canonical form; ε
is a family of functions indexed by lists of variables, εX : ExprX → Λ, such that for
X = {xS1

1 , . . . , xSn
n }, we have:

1. for xS ∈ X, let εX(x) = x where the right-hand side “x” is a variable of CIC of sort
η(S); let then

Ξ(X)
def
= 〈εX(x1) : η(S1), . . . , εX(xn) : η(Sn)〉

2. for each sort S ∈ Sorts and expression e ∈ SX , we have Ξ(X) `Σ εX(e) : η(S), and
εX(e) is in canonical form;

3. εX is compositional, that is for every e1, . . . , em ∈ ExprX , and for every set of fresh
variables Y = {y1, . . . , ym}, for every expression e ∈ ExprX,Y :

εX(e[e1/y1, . . . , em/ym]) = (εX,Y (e)) [εX(e1)/εY (y1), . . . , εX(em)/εY (ym)]

The encoding is adequate if the maps are bijections onto the sets of canonical forms:

1. the function η : Sorts → {A | ∅ `Σ A : Sort, A canonical} is a bijection;

2. for X = {xS1

1 , . . . , xSn
n } and for S ∈ Sorts, the function εX : SX → {M | Ξ(X) `Σ

M : η(S),M canonical} is a bijection.

Now we turn to the representation of proof systems. Differently from other approaches
[HHP93, Gar92, Gar93], we focus on multiple consequence relations with possibly infinite
assumptions.

10.5. Paradigmatical Judgement-as-Types encodings 121

Proof-irrelevant encodings

There are (at least) two notions of “satisfying representation” of proof system. The first
approach is to take the approach of proof irrelevance: we do not care of reflecting faithfully
the derivations of the proof systems in the signature; instead, we just require the existence
of a witness for each derivation [Gar93]. In other words, what we represent is simply the
(multiple) consequence relation defined by the proof system.

Definition 10.6 (Proof-irrelevant encoding) Let L be a language, and (Σ, η, ε) its
encoding. Let (�i)i∈I a multiple consequence relation on L. The (proof-irrelevant) encod-
ing of (�i)i∈I is a pair (Σ′, J) where

• Σ′ is a signature extending Σ, and

• J is a family of preterms (Ji)i∈I ,

such that, if Γ1; . . . ; Γn �i ϕ with variables in X then

1. Ξ(X) `Σ′ (Ji εX(ϕ)) : Prop and it is in canonical form;

2. let γiX(Γi) the encoding of Γi, defined as follows:

• if Γi is finite, then

γiX(∅)
def
= ∅

γiX(Γ, ψ)
def
= γiX(Γ), a : (Ji εX(ψ))

where the variable a is fresh.

• otherwise, let Γi be infinite (but still r.e.); let ϕn for n ∈ N an enumeration
of Γi. Then there is a λ-term G such that ∀n ∈ N : (G n̄) = εX(ϕn). Then,

γiX(Γi)
def
= (a : Πn:nat.(Ji (G n))).

3. exists M such that Ξ(X), γ1
X(Γ1), . . . , γ

n
X(Γn) `Σ′ M : (Ji εX(ϕ)).

The encoding is adequate if the interpretation is complete, in the following sense:
for X = {xS1

1 , . . . , xSn
n }, (Γi)i∈I family of contexts and ϕ formula with free variables in

X, if there exists M such that Ξ(X), γ1
X(Γ1), . . . , γ

n
X(Γn) `Σ,Σ′ M : (Ji εX(ϕ)), then

Γ1; . . . ; Γn �i ϕ.

Remark. In the above definition, the representation of infinite sets of assumptions relies
on the existence of a λ-term enumerating an infinite (but r.e.) set. This is not ensured
in every Logical Framework, because the underlying typed λ-calculus may have not a
sufficient expressive power. This is the case, for instance, of the Edinburg LF and ELF+

[HHP93, Gar92]. Instead, any typed λ-calculi extending Girard’s F [GLT90] (such as the
Calculus of Inductive Constructions) admit this construction.

Of course, finite contexts could be represented also by “infinitary” tools:

122 Chapter 10. Logical Frameworks

Proposition 10.11 Let Γ = {ϕ0, . . . , ϕn} be a non-empty finite set of formulæ with vari-
ables in X. Then, there is a λ-term G such that

∀i = 0, . . . , n : (G ī) = εX(ϕi)

∀i > n : (G ī) = εX(ϕn)

Proof. Just consider that Γ can be described as the sequence {ϕ1, . . . , ϕn, . . .}, where for
j ≥ n : ϕj = ϕn.

Of course, in the case of finitary contexts, the finitary representation (that is, by means
of a constant for each assumption) is easier to handle and clearer than the infinitary one.

From a proof-irrelevant perspective, therefore, a logic can be viewed as a language
together with a multiple consequence relation; hence, the encoding of a logic is just the
encoding of the language together with the encoding of the MCR:

Definition 10.7 (Proof-Irrelevant Encoding of a Logic) Let LOG = (L,�) be a
logic. An encoding of LOG is a quadruple 〈Σ, η, ε, J〉 such that

• Σ is a signature;

• 〈Σ, η, ε〉 is an encoding for L;

• 〈Σ, J〉 is an encoding for �.

Natural encodings

Let us consider the case in which we require also a “good” representation of the proof
systems. Following the judgement-as-types, proof-as-λ-terms paradigm, we usually require
also a correspondence between proofs of a consequence relation, and terms inhabiting the
corresponding judgement. Therefore, we extend the previous definition of encoding, in
order to capture also this correspondence.

Some notational remarks. In the following, for typographical reason, we will denote
by Γ a family of sets of assumptions (Γi)i, and by γX(Γ) its encoding γ1

X(Γ1), . . . , γ
n
X(Γn).

Moreover, we denote by π : Γ `i ϕ a proof π (in a given system S) that ϕ is an ith
consequence of the (family of) set of assumptions Γ (We suppose that these proofs are
represented in some finitary way, e.g. by labelled trees or proof expressions [HHP93]).

For π : (Γ `i ϕ) in X, e an expression and x ∈ X, we denote by π[e/x] the proof
obtained from π by the standard substitution of e for x (and hence, it is π[e/x] : (Γ[e/x] `i
ϕ[e/x])). Moreover, if σ is a proof on Γ, ϕ, we denote by σ[π/ϕ] the proof obtained by
componing the proof π on σ in the assumption ϕ (i.e. a “plugging” in the style of Natural
Deduction).

We define then ProofsiX,Γ,ϕ
def
= {π | π : (Γ `i ϕ),FV(π) ⊆ X}.

Definition 10.8 (Natural encoding) Let L be a language, and (Σ, η, ε) its encoding.
Let S be a proof system on L, defining the (possibly) multiple consequence relation (`i)i.

A natural encoding of S is a triple (Σ′, J, ξ) where (Σ′, J) is a proof-irrelevant encoding
of (`i)i and ξ is a family of functions, such that for all X, Γ, ϕ:

ξiX,Γ,ϕ : ProofsiX,Γ,ϕ → Λ

and the following properties hold:

10.5. Paradigmatical Judgement-as-Types encodings 123

1. if π : Γ1; . . . ; Γn `i ϕ with variables in X, then

Ξ(X), γ1
X(Γ1), . . . , γ

n
X(Γn) `Σ′ ξ

i
X,Γ,ϕ(π) : (Ji εX(ϕ))

2. let π : Γ1; . . . ; Γn `i ϕ be a trivial proof of an assumption ϕ ∈ Γj. If Γj is finite,

then ξiX,Γ,ϕ(π) is a variable in dom(γjX(Γj)). Otherwise, let ϕ be the nth formula in

the enumeration of Γj; then, ξiX,Γ,ϕ(π) is (a n̄), where a ∈ dom(γiX(Γ))

3. each component of ξ is compositional on expressions; that is, for each sort S, list of
variables (X,xS), expression e ∈ SX , if π : Γ `i ϕ is a proof in (X,x); then

ξiX,Γ,ϕ(π[e/x]) = (ξi(X,xS),Γ,ϕ(π))[εX(e)/x]]

4. each component of ξ is compositional on proofs; that is, for each Γ = (Γi)i and
Γ′ = (Γj)j<i; Γi, ϕ; (Γj)j>i, if π : Γ `i ϕ and σ : Γ′ `k ψ in X, then

ξkX,Γ,ψ(σ[π/ϕ]) = (ξkX,Γ′,ψ(σ))[ξiX,Γ,ϕ(π)/ξiX,Γ,ϕ(ϕ)]

The encoding is adequate if ξ is complete, in the sense that the restriction

ξiX,Γ,ϕ : ProofsiX,Γ,ϕ → {t | Ξ(X), γ(Γ) ` t : (Ji εX(ϕ)), t canonical}

is a bijection, such that for every proof π:

Ξ(X), γ(Γ) ` ξiX,Γ,ϕ : (Ji εX(ϕ)) ⇒ π : Γ `i π

Finally, we can give the definition of an adequate and natural encoding of a proof
system:

Definition 10.9 (Encoding of a proof system) Let L be a language, and S a proof
system on L. An adequate encoding of S is a 5-tuple 〈Σ, η, ε, J, ξ〉 such that

• Σ is a signature;

• 〈Σ, η, ε〉 is an encoding of L;

• 〈Σ, J, ξ〉 is an adequate encoding of S.

The encoding is natural if ξ is complete.

It is worthwhile stressing that the encoding maps are fundamental components of any
encoding. The activity of encoding a logic can be summarized in the following general
schema [HHP93, Gar92]:

Judgements-As-Types Encoding Paradigm

1. define a signature for the encoding of the syntax; for each sort introduce
a distinct type, and for each expression constructor a distinct constant
of the right type, obtained by “currying” the arity of the expression con-
structor.

124 Chapter 10. Logical Frameworks

2. define the encoding maps η, ε;

3. prove their adequacy (i.e. prove the adequacy theorem for syntax, corre-
sponding to [HHP93, Theorem 3.1.1]);

4. define a signature for the encoding of the system; for each consequence
relation introduce a distinct judgement, and for each inference rule intro-
duce a distinct constant of the right type.

5. define the encoding map for proofs, ξ;

6. prove its adequacy (i.e. prove the adequacy theorem for proofs correspond-
ing to [HHP93, Theorem 4.1.1]).

Chapter 11

Encoding of Formal Systems in
the Calculus of Inductive
Constructions

The standard “judgement-as-types” paradigm of representation presented in the previ-
ous chapter, is strictly related to Martin-Löf’s theory of arities and judgements. It has
been designed for taking full advantages of the metalogical features offered by the Logical
Framework, delegating as much as possible to the metalanguage [HHP93, AHMP92]. The
methodology can be summarized in three steps:

• each syntactic sort is represented by a type inhabiting Set;

• variables of a syntactic sort are represented by variables of the corresponding type
(higher-order abstract syntax);

• each basic judgement is represented by a type inhabiting Prop.

The multi-sorted, higher-order abstract syntax paradigm is a clean and successful approach
to the representation of formal systems. Adopting this technique, we delegate to the
metalanguage many complex features of the object language:

• type-checking is delegated to the typing system of the metalanguage;

• object variables are represented by metalogical variables;

• α-conversion is enforced by the α-conversion of the metalanguage;

• substitution is delegated to the substitution of the metalanguage;

However, this approach is not always feasible. Representing object variables with vari-
able of the metalanguage yields precise connections between the metalogical properties of
object logic and the structural properties of the metalanguage. As we will see in Section
11.1, in the case of type-theory based Logical Frameworks this means that precise closure
properties of the language and schematicity of the proof system are required, in order
to have an adequate HOAS representations. Unfortunately, most languages and program

125

126 Chapter 11. Encoding of Formal Systems in the Calculus of Inductive Constructions

logics do not enjoy these properties (e.g. Dynamic Logic (cf. Section 3.2.3), Hoare Logic,
etc.); in these cases, a direct HOAS is not feasible.

Another source of complication is the need of inductions principles on the language.
Most proofs on programs are carried out by induction on the syntax of programs, terms,
expressions and other syntactic objects; hence, induction principles are highly advisable.
One of the reasons for adopting the Calculus of Inductive Construction is that it can pro-
vide, automatically, powerful induction/recursion principles (see Section 10.3). However,
the inductive definitions of CIC are not feasible in presence of syntactic constructors of
negative arity. This is the case, indeed, of many program languages and logics, such as
the λ-calculus and the µ-calculus.

Therefore, in implementing a program logic, one has to face several design choices in
order to reach a good trade-off between the possibility of delegating complex features to
the metalanguage, and brute force encodings. This is the object of this chapter.

It turns out that α-conversion is always delegable to the metalanguage, while the
substitution may need to be implemented “by hand”. This is not so surprising, indeed,
since the theory of arities offers an uniform treatment only for the α-conversion, and
nothing is said about substitution (see Chapter 2).

In this chapter, we discuss these nonparadigmatical situations. We streamline some of
the techniques and “tricks” appearing in the literature [BH90, AHMP92, HHP93, DH94,
Mic94, DFH95, Ter95].

We proceed as follows. In Sections 11.1 and 11.2, we will examine two general situation
in which the HOAS clashes with metalogical properties of the system we are encoding. In
Section 11.1 we examine in detail the metalogical properties the object logic has to enjoy
in order to be adequately encodable.

In Section 11.2 we investigate the applicability of the inductive definitions offered by
CIC. We will examine both first-order and higher-order definitions (Section 11.2.1, 11.2.2).
Despite their generality, the former are not always satisfactory, e.g. when we deal with
binding constructors; on the other hand, unfortunately, higher-order inductive abstract
syntax definitions are not always feasible. In these unfortunate cases, one may choose
among three possible solutions, which we outline in Section 11.2.3.

The probably most promising solution is to delegate only the α-conversion to the
metalanguage, and to encode the substitution mechanism “by hand”. Therefore, an in-
vestigation of efficient encodings of substitutions is in order. This investigation is carried
out in Section 11.3, where we discuss two main different approaches to the implementa-
tion of substitution. The first is to implement faithfully the textual, syntactic notion of
substitution (adopted e.g. in [DFH95]); the second is to adopt an approach closer to the
“semantical” meaning of substitution, implementing the bookkeeping technique presented
in Section 4.2.2.

Finally, in Section 11.4 we briefly discuss two further situations which are still difficultly
dealt with by the presented encoding paradigm in actual Logical Frameworks. These
situations are when there are “context-sensitive” conditions on the syntactic constructors
(such as in context-sensitive grammars), and when there are subsorts. In the former
case, we propose also an extension of the Calculus of Inductive Constructions, in order to
augment its applicability range.

In this chapter we do not focus on advanced techniques for representing peculiarities
of proof systems, such as modalites, proof rules, infinitary rules and so on. These features

11.1. Schematicity induced by HOAS 127

will be discussed in the following chapters.
We refer also to Appendix D, where we summarize the main results of this chapter in

a “roadmap”, which should guide the choice of the right methodology for encoding the
language of a given formal system.

11.1 Schematicity induced by HOAS

Intuitively, it is clear that in order to obtain an adequate encoding of a given logic, the
metatheory of the logic has to be compatible with the metatheory of the metalanguage.

As we have seen, object-logic variables ranging over a sort S are represented by means of
metalogical variables of the type corresponding to S. These meta-logical variables behave
accordingly to the rules of the typed λ-calculus adopted as LF. In particular, a variable acts
as a placeholder for terms of the same type. Hence, an adequate representation reflects this
property of metalogical variables in the object-logic, leading to precise closure properties
of both the syntax and logical systems. In other words, an adequate represention is feasible
only if the logic enjoys some closure properties, as shown in the following results.

Lemma 11.1 Let L be a language, adequately represented by 〈Σ, η, ε〉.
Let X = {xS1

1 , . . . , xSn
n } be a set of variables, xi ranging over sort Si. Let S0 be a

syntactic sort, represented by the kind η(S0) = θ0 and a compositional bijection ε0X :
S0X → {M | Ξ(X) ` M : θ}; let δ0X be the inverse of ε0X . Let xS0 6∈ X be a variable
ranging over S0.

Let S be a sort (which can depend on X,x), represented by a type θ and a compositional
bijection εX,x : SX,x → {M | Ξ(X), x : θ0 `M : θ}.

Then, for all e ∈ SX,x and r canonical such that Ξ(X) ` r : θ0, we have e[δ0X(r)/x] ∈
S[δ0X(r)/x](X).

Proof. Let e, r be as in the hypothesis; then, Ξ(X), x : θ0 ` εX,x(e) : θ. By the Substitu-
tion Lemma (Theorem 10.1), we have Ξ(X) ` εX,x(e)[r/x] : θ1[r/x]. By compositionality
of ε, ε0, this is equivalent to Ξ(X) ` εX(e[δ0X(r)/x]) : θ1[r/x], where the substitution
e[δ0X(r)/x] exists for the composition bijectivity of εX . By bijectivity, this means also that
e[δ0X(r)/x] ∈ S[δ0

X(r)/x](X). ut

This lemma has two main implications. The first concerns the representation of the
syntax. Roughly, if a language is adequately represented in a Logical Framework, then
it is closed under instantiation of the variables. The second is a similar closure of the
inference system of the logic. Roughly, if the language is adequately represented and we
can deduce a judgement J from a set of assumptions Γ, then for every free variable x
in Γ, J , we can deduce also J [t/x] from Γ[t/x]. These statements are formalized by the
following result.

Theorem 11.2 Let (L,�) be a logic adequately represented by 〈Σ, η, ε, J〉. Let X =
{xS1

1 , . . . , xSn
n } be a set of variables, xi ranging over the sort Si; let S0 a syntactic sort,

represented by a type θ0 and a compositional bijection ε0X : S0X → {t | Ξ(X) ` t : θ0}. Let
xS0 6∈ X be a variable ranging over S0, and e0 ∈ S0X .

1. Let S be a syntactic sort represented by a type θ : Sort and a compositional bijection
εY : SY → {t | Ξ(Y) ` t : θ}. Then, for all e ∈ SX,x : e[e0/x] ∈ SX .

128 Chapter 11. Encoding of Formal Systems in the Calculus of Inductive Constructions

2. Let Γ1; . . . ; Γn �i ϕ be a consequence with variables in X,x. Then,
Γ1[e0/x]; . . . ; Γn[e0/x] �i ϕ[e0/x] holds.

Proof. The first statement is a straightforward consequence of Lemma 11.1; just take

r
def
= ε0X(e0). The second is similar: if Γ1; . . . ; Γn �i ϕ then there is a term M such that

Ξ(X,x), γ1
X,x(Γ1), . . . , γ

n
X,x(Γn) `Σ M : (Ji εX,x(ϕ)).

By abstracting over the variables representing the assumptions, we obtain

Ξ(X), x : θ0 ` λa1:γX,x(Γ1) . . . λan:γX,x(Γn).M

: Πa1:γX,x(Γ1) . . .Πan:γX,x(Γn).(Ji εX,x(ϕ))

and hence, for the lemma,

Ξ(X) ` (λa1:γX,x(Γ1) . . . λan:γX,x(Γn).M) [ε0X(e0)/x]

: (Πa1:γX,x(Γ1) . . .Πan:γX,x(Γn).(Ji εX,x(ϕ))) [ε0X(e0)/x] .

Introducing the variables back in the context, we obtain

Ξ(X), γ1
X(Γ1)[ε0X(e0)/x], . . . , γ

n
X(Γn)[ε0X(e0)/x] `Σ M [ε0X(e0)/x]

: (Ji εX(ϕ)[ε0X(e0)/x]).

By the adequacy of representation, the existence of the term M [ε0X(e0)/x] corresponds
to the validity of Γ1[e0/x], . . . ,Γn[e0/x] �i ϕ[e0/x], which is the thesis. ut

The second statement of the theorem can be restated as the admissibility of the sub-
stitution rule:

Γ1; . . . ; Γn �i ϕ

Γ1[e0/x]; . . . ; Γn[e0/x] �i ϕ[e0/x]
i ∈ I

that is, the multiple consequence relation (�i)i∈I has to be schematic with respect to the
standard substitution (nondeterministic) schema of instantiation of free variables (Section
3.2).

Corollary 11.3 Adequately represented languages are closed under substitution.
Adequately represented proof systems admit the substitution rule.

Therefore, logics which do not satisfy these schematicity are incompatible with the
structural properties of the metalanguage, and hence cannot be näıvely represented by
HOAS. These logics are not so rare as one may think.

Example 11.1 In Section 3.2.3 we have already seen a language which is not closed under
standard substitution, namely the language of Dynamic Logic (Chapter 7). For instance,
we cannot replace x by 1 in [x := 0](x = 0), because we would obtain [1 := 0](x = 0)
which is not a formula of Dynamic Logic.

This problem arises whenever we face program logics with “program” variables which
are used also as logical variables (See also the encoding of Hoare Logic in [AHMP92]).
The encoding of Dynamic Logic will be discussed in Chapter 14. ut

11.2. Feasibility of Inductive Definitions 129

Example 11.2 We show a logic whose language is closed under standard substitution, but
it proof systems does not admit the substitution rule. Consider any proof system for the
FOL of validity, that is, a proof system representing the ||= defined in Definition 3.4 (such
a system is, for instance, the usual Hilbert-style system with the generalization rule).

Obviously, for every ϕ, t and x, ϕ[t/x] is a formula of FOL. However, validity FOL
does not admit the substitution rule, since the sequent x = 0 ` ∀x.x = 0 is valid while
0 = 0 ` ∀x.x = 0 is not. Hence, the substitution notion in validity FOL cannot be
delegated by means of HOAS to the metalanguage. (See App.C for some Coq code). ut

Our conjecture is that this condition is also sufficient.

Conjecture 11.1 Let (L,�) be a logic,1 S a sort with variables. Variables of S can be
represented by metalogical variables iff

• each sort of L is closed with respect to standard substitution;

• the (multiple) consequence relation � admits the substitution rule over S.

In the case the logic does not satisfy these closure condition, we can still delegate to the
metalanguage the α-conversion of bound variables, but we cannot delegate the substitution
mechanism. This can be achieved by introducing a specific set for the variables, and
changing the arity of the binding constructor accordingly, as follows.

Let S a sort with variables, such that one of the above conditions fails (for instance,
there is e ∈ ExprX,x but for t ∈ SX it is e[t/x] 6∈ ExprX). Then,

1. we introduce a new sort, say V , with variables and no other constructor;

2. we add a new expression constructor v of arity V → S (called coercion), which
embeds V in S.

3. in the arity of every constructor which binds a variable of S, we replace the bound
occurrence S by V ; e.g., the arity of c : (S → S1) → S becomes (V → S1) → S.

After this transformation, the α-conversion of bound variables is still delegate to the
metalanguage, but we cannot freely replace a variable of V by means of an expression of
S. Therefore, we have to take care of implementing the “right” substitution schema “by
hand”, accordingly to the metatheoretic properties of the object logic. In Section 11.3 we
will see some approaches to the implementation of substitution.

11.2 Feasibility of Inductive Definitions

One of the main reasons for adopting CIC as Logical Framework, is its capability of
provides automatically (under certain conditions) powerful induction principles on sets
and propositions 10.3. In the case of the encoding of the language, this is particular
important, since many proofs of properties of programs are carried by structural induction
on the syntax [Plo81]. In this section we investigate the applicability of the inductive
definitions offered by CIC. We will examine both first-order and higher-order definitions
(Section 11.2.1, 11.2.2). Despite their generality, the former are not always satisfactory,

1The consequence relation can be defined by a proof system, as well.

130 Chapter 11. Encoding of Formal Systems in the Calculus of Inductive Constructions

e.g. when we deal with binding constructors; on the other hand, unfortunately, higher-
order inductive abstract syntax definitions are not always feasible. In these unfortunate
cases, one may choose among three possible solutions, which are outlined in Section 11.2.3.

11.2.1 First-Order Inductive Abstract Syntax

Let us begin with the most simple case, that is, when the language have no binding
constructors. In this case, we apply directly the standard encoding paradigm for declaring
an inductive tupe, as follows.

Let S ∈ Sorts be a sort, and ci, for i = 1, . . . ,m, the constructors of sort S, whose
arities are (Si1, . . . , Sini

) → S respectively. Then, the sort S can be represented in CIC
by the following definition:

Inductive Set S :=

c1 : S11 → . . .→ S1m1
→ S

...

| cn : Sn1 → . . .→ Snmn → S.

This definition automatically provides the induction and recursion principles. The case
of mutually inductive languages is treated similarly, by virtue of the Mutual Inductive

definitions of Coq.
In many cases, this solution is perfect – for instance, lists, trees, forests, numerals,

propositional logic and every free algebra. Induction and recursion principles are auto-
matically defined and proved by the system. Encoding bijections are easily defined by
induction on the syntax.

Example 11.3 The language of lists of numerals:

nat : n ::= 0 | Sn

list : l ::= 〈〉 | n.l

is represented in Coq as follows:

Inductive nat : Set :=

O : nat

| S : nat -> nat.

Inductive list : Set :=

empty : list

| cons : nat -> list -> list.

ut

This solution is adequate and successful only if the language we encode has no binding
operators. In fact, a näıve, first-order implementation of binding operators is very unsatis-
factory. We do not delegate variables and α-conversion to the metalanguage, by adopting
the higher-order abstract syntax; instead, we “flatten” the arity of every constructor, and
then we define a free algebra.

Example 11.4 A trivial implementation of the λ-calculus.

11.2. Feasibility of Inductive Definitions 131

Parameter var : Set.

Inductive L : Set :=

ref : var -> L

| lam : var -> L -> L

| app : L -> L -> L.

Although λx.x ≡ λy.y, the terms (lam x (ref x)) and (lam y (ref y)) are completely
different. We need to implement all the equational theory of terms. ut

Of course, this approach is very unsatisfactory: it yields a too fine-grained representa-
tion, and it forces us to implement all the machinery of α-conversion and substitution.

In the next subsection we describe a more feasible approach.

11.2.2 Higher-order inductive abstract syntax

An advisable idea would be to follow the HOAS approach for defining inductive data
types. Unfortunately, this is not always feasible. Due to consistency problems of the
typing system of CIC, only strictly positive constructors are allowed by CIC in inductive
definitions [CCF+95, Pau93]. Hence, if the sort S of the language we are encoding has
a non-positive constructor, we cannot adopt the higher-order abstract syntax for defining
an inductive type. Two examples are the λ-calculus and the µ-calculus.

Example 11.5 The following definitions of the syntax of λ-calculus and of the (pre)syntax
of µ-calculus are rejected by Coq:

Inductive Set L :=

app : L -> L -> L

| lambda : (L -> L) -> L.

Inductive Set o :=

ff : o

| And : o -> o -> o

| mu : (o -> o) -> o.

ut

In the favourable situation there are no negative constructors, we can indeed apply the
HOAS in an inductive definition.

Example 11.6 The encoding of First Order Logic.

Inductive Set i :=

zero : i

| succ : i -> i

| plus : i -> i -> i.

Inductive Set o :=

equal : i -> i -> o

| And : o -> o -> o

| Forall : (i -> o) -> o.

ut

132 Chapter 11. Encoding of Formal Systems in the Calculus of Inductive Constructions

Exotic Terms

The use of HOAS over inductive sets gives rise to another problem: the existence of extra
terms which are not the representation of any expression of the object language, although
they are in normal form and well-typed. The terms are called exotic, after [DFH95]. For
instance, in the above representation of FOL, the term

(Forall [x:i](Eq zero

<i>Case x of

(* zero *) zero

(* succ *) [y:i](succ i)

(* plus *) [y:i][z:i](plus y z)

end)

is in head normal form and has type o, although it is not the encoding of any formula of
FOL, although it is extensionally equivalent to the encoding of ∀x.(0 = x). Beside these
“extensionally acceptable” terms, there are also terms which are not even extensionally
equivalent to any representation of formulæ, such as the following:

(Forall [x:i](Eq zero

<i>Case x of

(* zero *) zero

(* succ *) [y:i]zero

(* plus *) [y:i][z:i](plus y z)

end)

Exotic terms arise when there is a higher-order constructor (e.g. the forall above) which
abstracts over an inductive type (e.g. the type of individuals above). In this situation,
we can use a Case construction over an abstract variable, obtaining a head-normal form
which do not correspond to any term.

These terms can be ruled out by introducing a “validity” judgement, which holds
exactly on the Case-free terms. The definition of this judgement follows straightforwardly
the syntax of terms2. We do not face here this problem; see [DH94, DFH95].

11.2.3 Possible solutions when Inductive HOAS fails

We have seen that the HOAS paradigm is not always compatible with inductive definitions.
In this case, there are three solutions. The first idea is to drop the inductive definitions,
and to apply the HOAS paradigm directly. On the opposite, we can look for a first-order
formulation of the language, so that we can apply directly the inductive definitions without
introducing higher-order construct. The third possibility is to try to combine HOAS and
Inductive definitions.

Dropping the inductive definitions

We can always adopt the HOAS, dropping the induction principles. For instance, the
λ-calculus can be defined as follows

2Some complications arise if we need to accept also exotic terms which are extensionally equivalent to
valid ones; see [DFH95]

11.2. Feasibility of Inductive Definitions 133

Parameter L : Set.

Parameter app : L -> L -> L.

Parameter lambda : (L -> L) -> L.

but, of course, we lack any induction principle. This solution is a good alternative if we are
not interested in the induction principles (or in frameworks which do not offer inductive
definitions, such as the Edinburgh Logical Framework), but in the encoding of languages
it is usually avoided.

Finding better first-order implementation: de Bruijn Notation

A well-known solution to the problem of α-conversion is the so-called de Bruijn notation.
Using de Bruijn indexes there is no more α-conversion, hence we can adopt a straightfor-
ward first-order encoding of a free algebra. Indeed, in this setting the theory of λ-calculus
becomes a theory of diadic trees of naturals.

This is de Bruijn representation of λ-terms [Hue92, DH94]:

Inductive lambda : Set :=

Ref : nat -> lambda

| Abs : lambda -> lambda

| App : lambda -> lambda -> lambda.

There are no higher-order constructors: terms of type lambda are simple trees, whose
leaves are labelled by naturals and internal nodes are labelled either by Abs or by App.

Hence, as far as the plain terms are concerned, a representation of binding operators by
means of de Bruijn notation is faithful. Moreover, α-equivalence is immediately recovered.
The drawback is that we cannot delegate substitution to the metalanguage: it has to
implemented on its own. A complete formalization of the λ-calculus and the λσ-calculus
(λ-calculus with substitutions) has been carried out in Coq adopting this approach [Hue92,
Hue94, Säı96].

In this setting, there are no exotic terms of type lambda, because we cannot create
a object of type lambda containing a Case on an abstracted variable of type lambda
[DFH95]. It is still possible create exotic terms at the level of contexts, that is λ-terms
with holes. Contexts are represented by terms of type lambda → lambda, and hence we
can perform a Case on the abstracted variable:

Definition exotic1 : lambda -> lambda :=

[x:lambda]<lambda>Case x of

[n:nat](Ref n)

[y:lambda](Abs y)

[y:lambda][z:lambda](App y z)

end.

Definition exotic2 : lambda -> lambda :=

[x:lambda]<lambda>Case x of

[n:nat](Ref (S n))

[y:lambda](Abs y)

[y:lambda][z:lambda](App y z)

end.

134 Chapter 11. Encoding of Formal Systems in the Calculus of Inductive Constructions

The first term is extensionally equivalent to the “hole” context, (·), but not equal:

(* exotic1 and [x:lambda]x are extensionally equivalent,

but they are not equal *)

Lemma exten_exotic1 : (y:lambda)(([x:lambda]x) y)=(exotic1 y).

Intro; Elim y; Intros; Reflexivity.

Qed.

On the other hand, exot2 does not correspond to any context.

Combining Inductive Definition and HOAS

One, however, may try to delegating as much as possible by HOAS, still retaining the
inductive definitions. Actually, the challence of combining HOAS and inductive principles
is an ongoing area of research [DH94, DFH95, PW95, DPS96]. So far, the only solution
feasible in CIC is to develop some special technique in order to eliminate the presence of
negative constructors. A simple way for achieving this is to introduce a specific type for
the identifiers.

Example 11.7 Acceptable definitions of λ-calculus and µ-calculus:

Parameter Var : Set.

(* here some axioms on Var *)

Inductive Set L :=

app : L -> L -> L

| var : Var -> L

| lambda: (Var -> L) -> L.

Inductive Set o :=

ff : o

| And : o -> o -> o

| var : Var -> o

| mu : (Var -> o) -> o.

ut

Therefore, in this way we can always delegate the α-conversion to the metalanguage,
still obtaining an inductive definition. The unavoidable drawback of this approach is that
the substitution is not delegated to the metalanguage, and hence it has to be implement
“by hand”. This is the subject of next section (Section 11.3).

11.3 Encoding of substitution schemata

Let us consider a case in which we cannot delegate the substitution to the metalanguage;
as we have seen, this can be due to two reasons.

1. the clash between structural properties of the logic and those of the metalanguage
(Section 11.1)

11.3. Encoding of substitution schemata 135

2. the presence of negative constructors and the need of inductive definitions (Section
11.2.2).

In both cases, there are two main ways for implementing substitution.

11.3.1 The syntax-oriented approach to substitution

The first approach is to implement an inline substitution, closely to the syntactic notion
of substitution: a formalization of “textual replacement” of phrases for identifiers. This
solution is feasible only when such a replacement makes sense (this is not the case, for
instance, in DL and operational semantics; see Section 11.3.2 below).

This can be done by defining a judgement substb : t1 → (V ar → t2) → t3 for each
binding operator b : (V ar → t2) → t3, where t1 is the type representing the sort bound
identifiers are supposed to range over. The intended meaning of (subst A [x : V ar]B C)
is “C is obtained by replacing every occurrence of x in B by A”. Rules of this judgement
have to be introduced accordingly to the notion of instantiation we need. This approach
has been studied in [DFH95, HM96].

Automated substitution and exotic terms

A natural question is: can subst be automated, defining it as a function t1 → (V ar →
t2) → t3, instead of a judgement as above? The answer is no, since it is defined by cases
on the structure of B and the function space V ar → t2 has no inductive structure, and
hence no recursion principle is available on it.

The substitution can be automated if we define subst of type t1 → V ar → t2 → t3;
the meaning of (subst A x B) is “the term obtained by replacing all free occurrences of
x in B by A. In this case, we can apply the recursion principle on t2 for defining subst,
but intrisically we require here a recursive procedure for deciding when two identifiers are
equal. This can be achieved only by instantiating V ar over a particular recursive set,
e.g. nat. In this case, we actually can define subst recursively as a function, but other
problems arise about the existence of exotic terms (terms which are not representation of
any real phrase), built by using the Case constructor over V ar.

Example 11.8 An exotic term in the encoding of λ-calculus

Definition var := nat.

Inductive L : Set :=

Var : var -> L

| App : L -> L -> L

| Lam : (var->L) -> L.

(* the following term does not represent a lambda term

Lam [x:var](<L>Case x of

(* 0 *) (Var O)

(* Sn *) [n:var](Var n)

end)

*)

136 Chapter 11. Encoding of Formal Systems in the Calculus of Inductive Constructions

Suppose that there is a λ-term M corresponding to the above exotic term, and the nth
identifiers in is represented by the nth numeral. Then (M i0) � i0, while (M in+1) � in,
and this is absurd in the theory of λ-calculus. ut

The solution is to specify a “validity” property, which holds only for “well-behaving”
terms, ruling out the others. This judgement can be defined inductively on the structure
of terms; see [DFH95] for more details.

11.3.2 A semantic-oriented approach to substitution

Substitution can be implemented also by the bookkeeping technique, described in Section
4.2.2. This takes full advantage of Natural deduction features of CIC (and more generally
of type-theory based LF’s). This approach is closer to the semantic notion of substitution
and evaluation, and it can be applied also when a “standard” substitution is not feasible
(such as in the case of program logics).

The basic idea is to do not perform the substitution; instead, the binding between
the identifier and the substituting term is kept in the derivation context. The binding is
mantained by an ad-hoc judgement. Recall the let evaluation rule of Section 4.2.2:

(x′ 7→ n)
...

N ⇒ n M ′ ⇒ m′

let x = N in M ⇒ m
EC(x,M,m)

where EC(x,M,m) means “M ′,m′ are obtained from M,m respectively by replacing all
the occurrences of x with x′, which does not appears neither in x, M , m nor in any
assumption different from (x′ ⇒ n)”.

The main difficulty in the implementation of bookkeepings is the enforcing of the side
condition. Indeed, we need to implement the occur-checking of variables, by introducing
two auxiliary judgements. This approach has been adopted, for instance, in the case of
Natural Operational Semantics and Dynamic Logic [Mic94, HM96]; see Chapters 12, 14.

An alternative and interesting way for implementing the bookkeeping technique is to
to take andvantage of the Leibnitz equality. This solution is particularly suitable when
the object-level instantiation mechanism is the same of the metalevel one, but it cannot be
delegated due to, say, negative binding constructors in inductive definitions (e.g. theory
of λ-calculus, µ-calculus, recursive processes, etc.). Indeed, we can take advantage of the
elimination principle of Leibnitz equality in an impredicative setting:

eq ind :
∏

A:Set

∏

x:A

∏

P :A→Prop

(P x) →
∏

y:A

x = y → (P y)

This allows us to replace the occurrences of the bound variable with the passed expression.
In Coq, applications of this principle are implemented by a simple tactic, Rewrite, which
textually replaces terms for terms, accordingly to rules of the call-by-name λ-calculus.

Example 11.9 The encoding of untyped λ-calculus in Coq:

Parameter var : Set.

11.4. Other complex situations 137

Inductive L : Set :=

Var : var -> L

| App : L -> L -> L

| Lam : (var->L) -> L.

(* call by name evaluation *)

Inductive eval : L -> L -> Prop :=

eval_var : (x:var)(m:L)(Var x)=m -> (eval (Var x) m)

| eval_lam : (M:var->L)(eval (Lam M) (Lam M))

| eval_app : (B,n:L)(M:var->L)

((x:var)(Var x)=B -> (eval (M x) n))

-> (eval (App (Lam M) B) n).

(* call by value evaluation *)

Inductive evalv : L -> L -> Prop :=

evalv_var : (x:var)(m:L)(Var x)=m -> (evalv (Var x) m)

| evalv_lam : (M:var->L)(evalv (Lam M) (Lam M))

| evalv_app : (A,B,n,m:L)(M:var->L)

(evalv A (Lam M)) ->

(evalv B m) ->

((x:var)(Var x)=m -> (evalv (M x) n))

-> (evalv (App A B) n).

(* an example derivation *)

Lemma identity : (m:var->L)(eval (App (Lam [x:var](Var x)) (Lam m))

(Lam m)).

Intro.

Apply eval_app.

Intros.

Rewrite -> H.

Apply eval_lam.

Qed.

ut

This solution has been adopted, for instance, in the implementation of the µ-calculus;
see Chapter 15.

11.4 Other complex situations

In this section we sketch briefly other situation in which the standard encoding paradigm
is not satisfactory.

11.4.1 Conditioned Grammars

When one (or more) syntactic constructor is subject to formation conditions, we cannot
adopt directly the methodology defined above.

138 Chapter 11. Encoding of Formal Systems in the Calculus of Inductive Constructions

Take a BNF description of a language L as follows:

A ::= c1(A11, . . . , A1m1
) | . . . | cn(An1, . . . , Anmn)

where ci is a syntactic constructor (in prefix notation) of arity mi and Ai1, . . . , Aimi
are

non-terminal symbols of sorts Li1, . . . , Limi
respectively.

Constructor ci is said to be conditioned (by P) if its application is subject to a condition
P (Ai1, . . . , Aimi

) of the arguments of ci. A BNF-grammar is said to be conditioned if its
constructors are conditioned.

A simple example of these languages is the language of lists of different naturals:

DiffNats : l ::= 〈〉

| l.n provided that n 6∈ l

This kind of condition is very common in Logic and programming languages (often
it is said static semantics [Plo81]). For instance, in the µ-calculus, the formation of
µx.ϕ is subject to the condition that x occurs only positively in ϕ. In the λI -calculus,
abstractions can be made only on really free variables. In many process algebra (CCS,
WPA for instance), recursive processes have to be guarded. In Pascal, Algol, C and every
other modern languages, a variable can appear only inside the scope of its declaration.

These features are common even in Proof Theory. For instance, in most implementa-
tions of Modal Logics, the introduction of 2 relies on conditions on proofs (terms), which
can be defined together with the notion of proof itself (see Chapter 13, the “Closed”-
judgement and “Boxed”-judgement techniques).

A natural question arises: which is the class of conditioned grammars? The answer is:
it depends on the expressive power of the conditions language. In the case of the Calculus
of Inductive Constructions, the language allows us to represent all computable functions.
Hence, by Turing completeness, every recursive language can be expresses as a conditioned
grammar.

We will examine now two techniques for encoding conditioned grammars. The first is
actually feasible in CIC; the second is a proposal for an extension of CIC. We will use the
language DiffNats as a running example for both solutions.

11.4.2 The only solution - so far

Define a subtype (a quasi-subset type):

• represent the set of pre-phrases (also those not acceptable) by a type, say T1, fol-
lowing the methodology described in the previous Sections.

• define a judgement P : T1 → Prop on this type, inductively, which represents the
condition of well-formness.

• define the type T2 = Σt:T1
(P t) of well formed phrases.

Example 11.10 Following this approach, the Coq encoding of DiffNats is as follows:

11.4. Other complex situations 139

Inductive preDiffNats : Set :=

empty : preDiffNats

| cons : nat -> preDiffNats -> preDiffNats.

Inductive notin [n:nat] : preDiffNats -> Prop :=

notin_empty : (notin n empty)

| notin_cons : (m:nat)(l:preDiffNats)

~(n=m) -> (notin n l) -> (notin n (cons m l)).

Inductive isgood : preDiffNats -> Prop :=

isg_empty : (isgood empty)

| isg_cons : (n:nat)(l:preDiffNats)

(notin n l) -> (isgood l) -> (isgood (cons n l)).

Record DiffNats : Set := mkdn {

l : preDiffNats;

c : (isgood l)

}.

(* this is a macro for the following definition :

Inductive DiffNats : Set :=

mkdn : (l:preDiffNats)(isgood l) -> DiffNats.

*)

ut

This solution is not very satisfactory because

• The encoding function maps a well formed phrase in a pair 〈t, d〉, such that t : T1 is
the encoding of the phrase, and d : (P t) the (encoding of the) proof of well formness.
Since, usually, we do not take into account of well-formness proofs in the pre-formal
syntax, adequacy theorem can be obtained only modulo the second components of
these pairs. A bijection can be recovered by bundling up into the pre-formal syntax
also the proofs of well-formness.

• the type T2 is a Σ-type; hence it can be obtained only in higher order logical frame-
works, such as CIC, or in Martin-Löf’s type theory, but not in the Edinburgh LF.

• when we need to reason by induction on phrases, the only inductive principle we are
given is that of pre-phrases, and hence we need to take into account also non well
formed phrases, even if we restrict ourselves to well formed ones.

11.4.3 A proposal for extending CIC and Coq

A better solution could be available if we extended CIC with the stratified mutual inductive
definitions. The most natural, elegant, efficient and powerful encoding of conditioned lan-
guages would be defining simultaneously the set of phrases and the conditions judgement.
This would take the following form:

Mutual Inductive T1 : Set :=

140 Chapter 11. Encoding of Formal Systems in the Calculus of Inductive Constructions

...constructors for T1, among them there is...

c : (A1:TA1)..(An:TAn)(isok A1 ... An) -> T1

...

with isok : TA1 -> ... TAn -> Prop :=

...rules for isok... .

where isok represents the well formed condition on the constructor c.

Example 11.11 In the case of DiffNats, the encoding would appear as follows:

Inductive DiffNats : Set :=

empty : DiffNats

| cons : (n:nat)(l:DiffNats)(notin n l) -> DiffNats.

with notin : nat -> DiffNats -> Prop :=

notin_empty : (notin n empty)

| notin_cons : (m:nat)(l:DiffNats)

~(n=m) -> (notin n l) -> (notin n (cons m l)).

ut

This scheme can be generalized in the notion of stratified mutual inductive definitions:
consider the general schemata of mutual inductive definition:

Mutual Inductive P1 : TP1 :=

... constructors for P1 ...

...

with Pk : TPk :=

... constructors for Pk ...

where TP1...TPk are the types of the judgements under definitions. In the actual definition
of CIC, these types cannot contain the judgements under definition.

Indeed, a tout court elimination of this restriction yields inconsistencies. For instance,
suppose that the following definition would be feasible:

Mutual Inductive A:B := a : B -> A

with B:A := b : A -> B.

the minimal solution of the functor corresponding to this definition would be “A inhabits
B which inhabits A”, and this yields (a version of) the Burali-Forti paradox.

However, we do not need so general definitions. We propose to allow only for stratified
types, that is TPi+1 can contain P1, . . . , Pi, and constructors of Pi+1 can refer to constructors
of P1, . . . , Pi.

As a consequence of this, we obtain:

• The definition of every conditioned grammar would fall into this category, hence a
very large class of languages could be faithfully and immediately represented.

• The definition of the encoding function would be a simple extension of the usual one
(provided the definition of a pre-formal proof system for the conditions)

• The inductive principles associated with these definitions would be the intuitive ones;
we have not to deal with non well-formed phrases any more. For instance, in the
case of DiffNats the inductive principle would be as follows:

11.4. Other complex situations 141

DiffNats_ind : (P:DiffNats->Prop)

(P empty)

->((n:nat)(p:DiffNats)(notin n p) -> (P p) -> (P (cons n p)))

->(p:DiffNats)(P p).

Notice that, in the inductive step, a well-formness condition on the head natural
is locally assumed, together with the inductive hypothesis. This is all we need for
reasoning inductively on these lists.

• Adequacy theorems are easily adapted to this case.

Although we have not thoroughly investigated the consistency of the resulting system,
no problems should arise with this extension. Peter Dybjer has introduced a similar notion
in the context of Martin-Löf’s type theory (simultaneous inductive-recursive definitions),
from a categorical-theoretic viewpoint [Dyb96]. The consistency of Dybjer’s extension to
MLTT should be sufficient to our purposes, since in the representation of a language there
is no need of impredicative features, and therefore the predicative fragment of CIC suffices.

11.4.4 Subsorting

One of the strong points of adopting the multi-sorted approach of the theory of arities, as
we have seen, is that the type checking of the object language is delegated to the typing
system of the metalanguage. In presence of subsorts, however, this simple approach fails,
because so far Logical Frameworks based on type-theory do not support subtyping (This
is an ongoing research; see the section about related works).

The direct extension of the standard approach is to add coercion constructors (called
simply “coercions”). A coercion is just a “sort-conversion” constant for embedding ex-
pressions of a subsort in the supersort. For instance, if S1 ⊆ S2 are two sorts, represented
by θ1, θ2 respectively, then we have to add a constant c : θ1 → θ2 in the definition of θ2.

If the Hasse diagram of the subsorting relation does not form cycles, then the use of
coercions is not problematic. Otherwise, in the case there are cycles, then an expression
may be represented by more than just one term. Let S1, S2, S3, S4 be four sorts, repre-
sented respectively by θ1, . . . , θ4. Suppose that S1 ⊆ Si ⊆ S4 for i = 2, 3; in this case, we
would introduce four coercions

c12 : θ1 → θ2 c13 : θ1 → θ3 c24 : θ2 → θ4 c34 : θ3 → θ4

In this situation, an expression e ∈ S1 would be represented by a term ε(e) : θ1, which
would be embedded in two ways into the type θ4. In fact, both c24(c12(ε(e))) and
c34(c13(ε(e))) have type θ4, and correspond to the same term. In this case, therefore,
we miss the bijection between expressions of sort S4 and terms inhabiting θ4.

Therefore, if one does not want to reason “up to coercions”, a solution is to represent
the language L by a single sort L : Set, which represents the whole universe of expressions,
with no sort structure. For each expression constructor e we introduce a term constructor
εe in L, whose type is obtained by “currying” and flattening the arity of e. Each expression
e ∈ Expr is then mapped into a first-order term ε(e) whose type is L.

The resulting encoding lacks the information carried by a multi-sorted language. For
instance, in FOL, two sorted expression constructors such as + and ff, whose arities are

142 Chapter 11. Encoding of Formal Systems in the Calculus of Inductive Constructions

(Term,Term) → Term and Form respectively, are represented by two constants +′ and ff ′

whose sorts are L→ L→ L and L respectively. Hence, also non-well formed formulæ arise.
Therefore, we need to implement “by hand” the typing system of the object language: for
each sort S, we have to introduce a judgement WfS : L→ Prop on L which specifies when
a term represents an expression of sort S. In this setting, a sort S is represented as a
subset of the whole language L.

The use of an unique-sorted encoding is usually more cumbersome than the corre-
sponding multisorted approach, since type checking is not delegated to the metalanguage.
We do not investigate further this point; see e.g. [Ter95] for more details.

11.5 Related Work

The challenge of combining higher-order abstract syntax and inductive definitions is an
ongoing and very active research area; see e.g. [DH94, DFH95, PW95, DPS96]

In [DH94], a different approach is followed. There, like in this thesis and in [DFH95],
a separate type for variables is introduced. However, terms of the object language Φ are
there represented as functions of type LL = (list L) → L, from lists of arguments of type
L to terms of type L, instead of using directly terms of type L. Despite a much more
complex representation of the object-level syntax, this approach allow for short definitions
of (standard) substitutions; for instance, the β-rule of λ-calculus can be encoded as follows:

redβ :
∏

e,v:LL

(red (App (Lam e) v) λx:(list L).(e (cons (v x) x)))

This definition is just one line long, instead of the complex inductive/recursive definitions
presented above and in [DFH95]. This style of presentation might be a good approach to
describe a new type theory which will allow primitive recursion over higher-order abstract
syntax.

Other approaches aim to extend the underlying metalanguage, so that it can be used
for describing primitive recursive functional types. Since primitive recursion cannot be
allowed on any term of functional (i.e., higher-order) type, the problem is how to circum-
sribe the functional types on which primitive recursion can be allowed without giving rise
to paradoxes. In [DPS96], an approach inspired by Linear Logic is followed: the prim-
itive recursive function space A ⇒ B is decomposed into a “modal type operator” and
a parametric function space: A ⇒ B = (2A) → B. This promising approach has been
proved successful in the case of simple typed λ-calculus; ongoing researches (e.g. by De-
speyroux and Leleu at INRIA-Sophia Antipolis) aim to extended it approach to λ-calculi
with dependent types.

Also the issue of combining subsorting with dependent types is an ongoing research
area; we refer the reader to [Com94, KP93b, Luo96].

Chapter 12

Encoding of Operational
Semantics

From a logician’s point of view, a Structural or Natural Operational Semantics of a lan-
guage is just a formal logical system. In particular, a NOS specification is a formal system
in Natural Deduction style, therefore it can be easily encoded in interactive proof check-
ers based on type-checking of typed λ-calculus, such as those presented in Chapter 10.
Moreover, as we have already pointed out in Chapter 4, a Natural Deduction-style presen-
tation of the semantics is more modular. Furthermore, Natural Deduction style evaluation
proofs are compositional: any proof can be reused in more complex proofs, provided that
the assumptions on which it depends are preserved.

In this chapter we study the encoding of SOS and NOS specifications in Logical Frame-
works. As for any other formal system, in encoding the semantics we aim at:

• a faithful representation of the system: an encoding function from the pre-formal
proofs and the formal syntax of terms of a certain type. Side and proof conditions
on derivations have to be enforced;

• taking full advantage of the features of a Logical Framework (higher-order, multi-
judgement), for reducing the overhead in encoding and using the systems;

• a way for reasoning on it, namely by induction. Most proofs are done by structural
induction on the length of computation [Plo81].

The chapter is organized as follows. In Section 12.1 we introduce a general methodology
for encoding transition systems. Despite its generality, the outlined methodology is not
very satisfactory if we are dealing with stores and/or environments; therefore, in Section
12.2 we focus on the encoding of specifications in Natural Operational Semantics. Finally,
in Section 12.3 we provide some references to other approaches not faced here.

12.1 The basic approach

Natural Semantics and SOS are defined by sets of rules with no discharged assumptions.
These rules a set of evaluation judgements which possibly involve linear data structures
such as environment and stores (see Section 4.1). A general implementation is to adopt
straightforwardly the LF methodology of [HHP93]:

143

144 Chapter 12. Encoding of Operational Semantics

• each evaluation judgement is represented by an inductively defined judgement

• each inference rule is represented by a constructor.

Example 12.1 Let us consider the following TAP, trivial algebra of processes, whose
syntax and operational semantics are defined as follows:

α ::= a | b | ct ::= nil | α.t | t+ t

α.t→ t
t1 → t

t1 + t2 → t

t2 → t

t1 + t2 → t

Let us denote by π :` t1 → t2 a derivation of t1 → t2 in such system. This specification
can be directly represented in CIC by the following signature Σ (in Coq syntax):

Inductive Set Act := a:Act | b:Act | c:Act.

Inductive Set Proc :=

nil : Proc

| prfx : Act -> Proc -> Proc

| or : Proc -> Proc -> Proc.

Inductive trans : Proc -> Proc -> Prop :=

action : (ac:Act)(t:Proc)(trans (prfx ac t) t)

| ndc1 : (t1,t2,t:Proc)(trans t1 t) -> (trans (or t1 t2) t)

| ndc2 : (t1,t2,t:Proc)(trans t2 t) -> (trans (or t1 t2) t).

The encoding functions:

ε0(a) = a ε0(b) = b ε0(c) = c

ε1(nil) = nil ε1(α.t) = (prfx ε0(α) ε1(t)) ε1(t1 + t2) = (or ε1(t1) ε1(t2))

ε2(α.t→ t) = (action ε0(α) ε1(t))

ε2

π
t1 → t

t1 + t2 → t

= (ndc1 ε1(t1) ε1(t2) ε1(t) ε2(π))

ε2

π
t2 → t

t1 + t2 → t

= (ndc2 ε1(t1) ε1(t2) ε1(t) ε2(π))

It is easy to prove that these encoding functions are bijective:

Proposition 12.1 (Adequacy for TAP) The map ε0 is a bijection between Act and
canonical terms a such that `Σ a : Act; the map ε1 is a bijection between Proc and
canonical terms t such that `Σ t : Proc.

For all t1, t2 ∈ Terms, ε2 is a bijection between proofs in the SOS of t1 → t2, and
canonical terms d such that `Σ d : (trans ε1(t1)ε2(t2).

ut

12.2. Encoding of Natural Operational Semantics 145

In many cases, this solution is satisfactory:

• easily deduced by the SOS (or Natural Semantics) specification; actually, it can be
mechanized;

• adequacy theorem is easy;

• induction principles on proofs (=computations) are available.

The application of this approach to the Natural Semantics paradigm has been studied in
depth by Terrasse [Ter95], (although with a different treatment of syntax). As Terrasse
pointed out, the process of translation from a high-level formalism for Natural Semantics
(Typol) to this kind of encoding is mechanizable.

However, this approach suites very well only “propositional semantics,” that is op-
erational semantics with neither environments nor stores, nor processes variables. As we
have seen in Section 4.1.2, bundling environments and stores into the judgements has some
drawbacks; moreover, this approach does not take advantage of higher-order features of
logical framework.

For these reasons, we focus on the Natural Operational Semantics paradigm, which we
have describe in Section 4.2.

12.2 Encoding of Natural Operational Semantics

Due to their strong Natural Deduction flavour, NOS specifications as described in Section
4.2 are directly encoded in logical frameworks and implemented within LF-based proof
environments, giving us powerful tools for developing language semantics formally, for
checking correctness of translators and for proving semantic properties. See for instance
[MP91, Mic94].

The encoding of NOS has several significant consequences. In fact, when we encode
the operational semantics, we have to discuss details that are normally left out, or taken
for granted. Most of the rules of a NOS specification are directly encoded without any
particular difficulty. However, particular care has to be taken in implementing the core
idea of Natural Operational Semantics, that is the distribution of informations into the
derivation context by means of bookkeepings (see Section 4.2.2). For the sake of simplicity,
we focus on the following let rule; other “substitution-like” rules (such as rule A.1) are
encoded similarly.

(x′ ⇒ n)
...

N ⇒ n M ′ ⇒ m′

let x = N in M ⇒ m
EC(x,M,m)

where the eigenvariable side condition EC(x,M,m) is

EC(x,M,m) ≡
“M ′,m′ are obtained from M,m respectively by replacing all the
occurrences of x with x′, which does not appears neither in x, M ,
m nor in any live assumption different from (x′ ⇒ n)”.

146 Chapter 12. Encoding of Operational Semantics

The problem is to enforce precisely this side condition. The canonical, paradigmatical
approach to similar capture-avoiding substitution problems is based on the idea of higher-
order abstract syntax (Chapter 2 and Section 10.5): every binding operator is reduced to
the λ-abstraction of the metalanguage [HHP93, Gar92]. Accordingly to this idea, variables
of the object language are represented by variables of the metalanguage. In this way, we
immediately recover both α-conversion and capture-avoiding substitution at the object
language level, from the α-conversion and the β-reduction of metalanguage, respectively.

Recall that, as we have pointed out in Section 11.1, the feasibility of HOAS is submitted
to precise closure properties of both the syntax and the proof system. Roughly, let S be
a sort represented by HOAS by a type θS , and let x a variable ranging over S (and hence
represented by a metavariable x : θS); then, every occurrence of x in any phrase ϕ and
proof π can be replaced by any term t ∈ S, leading to the existence of ϕ[t/x] and π[t/x] (see
Theorem 11.2 and Corollary 11.3 for precise statements). Now, these “closure properties”
often are unsound in presence of commands and other imperative figure (see also Section
3.2.3): actually, a variables can be seen as a placeholder for terms only in purely functional
languages.

In the case we cannot adopt HOAS directly, we introduce a specific set for variables,

Parameter Var:Set.

which is embedded into terms by a suitable coercion constructor :

Mutual Inductive

Expr : Set

:= isX : Var -> Expr

| zero : Expr

| succ : Expr -> Te

| do : Prog -> Expr -> Expr

with Prog : Set

:= ass : Var -> Expr -> Prog

| comp : Prog -> Prog -> Prog

| while : Expr -> Prog -> Prog.

For implementing the bookkeepings, we introduce the auxiliary judgement 7→: Var →
Expr → Prop. Therefore, the evaluation of identifiers is realized by an application of the
constant

Eval Var :
∏

x:Var

∏

M :Expr

(x 7→M) → ((IsX x) ⇒M)

The most difficult task is to express formally the “freshness” condition of substitution
rules. We need to reify metasyntactic notions such as “occurrence” and “non-occurrence”
of variables in terms. For the sake of simplicity, we focus on the language of while
programs. This is achieved by introducing two auxiliary judgements:

isin, isnotin : Var →
∏

S:Set

S → Prop.

The intended meaning of “isin x S t” is “the variable x appears in the phrase t which
belongs to the syntactic class S”; dually for notin. The rules for these judgements are

12.3. Related work 147

given on the syntax of phrases, accordingly to the intuitive notion of “occurrence” and
“nonoccurrence”, similarly to those of Dynamic Logic (Figure 14.5).

Thus, the complete substitution rule for let is as follows (we present it in a pretty-
printed Natural Deduction-style fashion)

M,m:Var→Expr
N ⇒ n

∀w:var

(isnotin x Var w)
...

isnotin x Expr (M w)

∀x′:Var

(isnotin x′ Var x)
(isnotin x′ Expr (M x))
(isnotin x′ Expr (m x))

x′ 7→ n

...
(M x′) ⇒ (m x′)

let x = N in (M x) ⇒ (m x)

The middle subderivation requires M(·) is a “good” context for x, that is, x does not
occur in the expression context M (expression with a hole). Evaluation is performed in
the right-hand subderivation; here, x is replaced by x′ assuming x′ does not occur in any
of x, (M x), (m x). This is achieved by the three discharged assumptions about isnotin;
these assumptions can be needed in the subderivation in order to prove other well-formness
conditions on contexts, such as the one on M .

12.3 Related work

The encoding of various forms of natural semantics in Logical Frameworks has been subject
to an extensive study. In [Ter95], Terrasse has investigated the automatic translation of
Typol specifications into Coq signatures.

An interesting improvement of Natural Semantics that we have not investigated here,
is the use of higher-order abstract syntax in representing binding operators. This ap-
proach, introduced by Hannan in the Extended Natural Semantics (ENS) [Han93], has
been proved particularly suited for the specification of purely functional languages. Al-
though in Hannan’s original approach, ENS specifications are encoded in λProlog, the
higher-order solution has been successfully applied in other Logical Frameworks. In the
Elf logic programming language (which is based on the Edinburgh LF), ENS has been
used by Michaylov and Pfenning for investigating the meta-theoretic properties of opera-
tional semantics [MP91], and by Harper and Pfenning for addressing the issue of compiler
correctness [HP92]. In the Forum language (which is based on Linear Logic), higher-order
Natural Semantics specifications have been used by Miller [Mil94] and Chirimar [Chi95].

However, higher-order abstract syntax cannot be applied in presence of imperative
features (as we have see in Section 4.2). The NOS paradigm aims to overcome this problem;
in this Chapter we have addressed the issue of encoding NOS specifications in a type-theory
based Logical Framework.

148 Chapter 12. Encoding of Operational Semantics

Chapter 13

Encoding of Modal Logics

In this chapter we examine some basic techniques for representing modal features of proof
systems. These techniques are useful not only in encoding truly modal logics, such as
NK, but any proof system with “modal rules”, that is, rules in which we have to check
dependencies of conclusion from assumptions.

13.1 Encoding of the syntax

The encoding of the syntax of modal formulæ is not problematic; it follows the standard
pattern of free algebræ. For the sake of simplicity, but without loss of generality, we focus
on a minimal fragment, namely

Φ : ϕ ::= p | ϕ ⊃ ψ | 2ϕ

which is encoded by the following signature:

o : Set

p : o
⊃ : o→ o→ o
2 : o→ o

Inductive o : Set :=
p : o
| imp : o− > o− > o

| box : o− > o

In this simple case, we can apply freely the variable convention: we do not need of
introducing a specific type for propositional variables; instead, we represent propositional
variables by means of metalinguistic variables of type o. The easy encoding function is
then

εX : ΦX → {t | Ξ(X) ` t : o, t canonical}

defined as usual. Let δX be the left-inverse of εX .
In order to simplify the presentation, in the rest of the chapter we will sometime drop

the encoding; we will hence denote by “ϕ” both the abstract formula ϕ ∈ Φ and its
encoding εX(ϕ) : o.

13.2 Encoding of systems for K

Here we give two methodologies for representing modalities and proof rules for NK. Let
us recall the 2

′-I rule:

∅ ` ϕ

∅ ` 2ϕ
that is,

Γ ` ϕ

Γ ` 2ϕ

ϕ does not depend on
any assumption in Γ

149

150 Chapter 13. Encoding of Modal Logics

U : Set

T : U → o→ Prop

⊃-I :
∏

ϕ,ψ:o

∏

w:U ((T w ϕ) → (T w ψ)) → (T w (⊃ ϕψ))

⊃-E :
∏

ϕ,ψ:o

∏

w:U (T w (⊃ ϕψ)) → (T w ϕ) → (T w ψ)

⊃2-E :
∏

ϕ,ψ:o

∏

w:U (T w 2(⊃ ϕψ)) → (T w 2ϕ) → (T w 2ψ)

2
′-I :

∏

ϕ:o (
∏

w:U (T w ϕ)) →
∏

w:U (T w (2ϕ))

2-E :
∏

ϕ:o

∏

w:U (T w 2ϕ) → (T w ϕ)

22-I :
∏

ϕ:o

∏

w:U (T w 2ϕ) → (T w 22ϕ)

23-I :
∏

ϕ:o

∏

w:U (T w 3ϕ) → (T w (23ϕ))

2⊃-E :
∏

ϕ:o

∏

w:U (T w 2(⊃ (2ϕ)ϕ)) → (T w 2ϕ)

Figure 13.1: Σw(NK) and its extensions for NK4,. . .

The two methodologies we are going to describe correspond to two dual approaches.
Roughly, in the first one, called “world technique”, we make explicit the dependencies
of the conclusion from the assumptions by “tagging” the proving judgements. On the
other hand, in the second technique we do not change the proving judgement; instead, we
decide what are the assumptions a proof depends on by examining its representing proof
term. We will see that these two approaches are strictly related.

13.2.1 World Parameter

In Figure 13.1 we give the signature Σw(NK) and its extensions for the other systems
(NK4, . . .).

The extra sort U (the universe) has no constructors: therefore, the only terms inhab-
iting U are variables, which have to be assumed in the typing context. These variables
are called suggestively “worlds” (of the universe). An assertion of the form (T w ϕ) has
the intuitive meaning “ϕ holds in the world w.” It should be noticed, however, that these
names are chosen only for their intuitive meaning, and there is no direct connection with
Kripke semantics of modal logics. The idea behind the use of the extra parameter is that
in making an assumption, we are forced to assume the existence of a world, say w, and
to instantiate the truth judgement T also on w. This judgement appears also as an hy-
pothesis on w. Hence, deriving as premise a judgement, which is universally quantified
with respect to U , amounts to estabilishing the judgement for a generic world on which
no assumptions are made, i.e., on no assumptions.

We prove formally the adequacy of this approach.

Definition 13.1 (Encoding of assumptions and proofs) Let w be a variable of sort
U , X set of propositional variables. For each ∆ ⊆ ΦX , we define the context γw(∆) as
follows:

γw(∆)
def
=

{

w : U if ∆ ≡ ∅
γw(∆′), vϕ : (T w εX(ϕ)) if ∆ ≡ ∆′, ϕ and vϕ fresh for γw(∆′)

The encoding function for proofs,

ε
Σw(NK)
X,∆,w : {π | π : ∆ ` ϕ,FV(π) ⊆ X} → {t | Ξ(X), γw∆ `Σw(NK) t : (T w εX(ϕ))}

13.2. Encoding of systems for K 151

is defined on the structure of proofs of NK; given a proof π : ∆ `NK ϕ, εX,∆,w(π) is the
proof term corresponding to π, as follows:

εX,∆,w(ϕ)
def
= vϕ , if vϕ ∈ γw(∆)

εX,∆,w(2′-Iϕ(π′))
def
= (2′-I εX(ϕ) (λw′ : U.εX,∅,w′(π

′)) w)

εX,∆,w(⊃-Iϕψ(π′))
def
= (⊃-I εX(ϕ) εX(ψ) w (λvϕ:(T w εX(ϕ)).εX,(∆,ϕ),w(π′)))

εX,∆,w(⊃-Eϕψ(π′, π′′))
def
= (⊃-E εX(ϕ) εX(ψ) w εX,∆,w(π′) εX,∆,w(π′′))

εX,∆,w(⊃2-Eϕψ(π′, π′′))
def
= (⊃2-E εX(ϕ) εX(ψ) w εX,∆,w(π′) εX,∆,w(π′′))

Theorem 13.1 The function ε
Σw(NK)
X,∆,w is a compositional bijection between proofs π : ∆ `

ϕ, such that FV(π) ⊆ X, and canonical terms t, such that Ξ(X), γw(∆) `Σw(NK) t :
(T w εX(ϕ)).

Proof. We verify by induction on the structure of proofs that ε
Σw(NK)
X,∆,w (π) is a canonical

term of type (T w εX(ϕ)) in Σw(NK) and Ξ(X), γw(∆).

Base Step. Let ϕ ∈ ∆ is an assumption. Since ε
Σw(NK)
X,∆,w (ϕ) = vϕ ∈ γw(∆), immediately

Ξ(X), γw(∆) `Σw(NK) vϕ : (T w εX(ϕ)).
Inductive Step. By cases on the last rule applied.

If π ≡ ⊃-Eψ,ϕ(π′, π′′), then π′ : ∆ ` ψ ⊃ ϕ and π′′ : ∆ ` ψ with free variables in X.
By IH, we have

Ξ(X), γw(∆) `Σw(NK) ε
Σw(NK)
X,∆,w (π′) : (T w εX(ψ))

Ξ(X), γw(∆) `Σw(NK) ε
Σw(NK)
X,∆,w (π′′) : (T w εX(ψ ⊃ ϕ)).

Therefore, we have immediately,

Ξ(X), γw(∆) `Σw(NK)

(

MP εX(ψ) εX(ϕ) w ε
Σw(NK)
X,∆,w (π′) ε

Σw(NK)
X,∆,w (π′′)

)

: (T w εX(ϕ)).

The case for ⊃2-E is similar.
If π ≡ ⊃-Iϕ,ψ(π′), then π′ : ∆, ϕ `NK ψ. By IH, we have

Ξ(X), γw(∆, ϕ) `Σw(NK) ε
Σw(NK)
X,(∆,ϕ),w(π′) : (T w εX(ψ))

and abstracting on vϕ we obtain

Ξ(X), γw(∆) `Σw(NK) (λvϕ:(T w εX(ϕ)).ε
Σw(NK)
X,(∆,ϕ),w(π′)) :

∏

vϕ:(T w εX(ϕ))

(T w εX(ψ)).

Finally, applying the constant ⊃-I we obtain

Ξ(X), γw(∆) `Σw(NK) (⊃-I εX(ϕ) εX(ψ) w (λvϕ : (T w εX(ϕ)).ε
Σw(NK)
X,(∆,ϕ),w(π′)))

: (T w εX(⊃ ϕ ψ)).

Otherwise, π ≡ 2
′-Iϕ(π′); then π′ : ∅ `NK ϕ. By IH, we have

Ξ(X), γw(∅) `Σw(NK) ε
Σw(NK)
X,∅,w (π′) : (T w εX(ϕ)).

152 Chapter 13. Encoding of Modal Logics

By abstracting on w we have

Ξ(X) `Σw(NK)

(

λw′:U.ε
Σw(NK)
X,∅,w′ (π′)

)

:
∏

w′:U

(T w′ εX(ϕ))

therefore, we have immediately

Ξ(X), γw(∅) `Σw(NK)

(

2
′-I εX(ϕ)(λw′:U.ε

Σw(NK)
X,∅,w′ (π′))

)

w : (T w 2εX(ϕ)).

By the above steps, it is easy to show that ε
Σw(NK)
X,∆,w is injective. Surjectivity is estab-

lished by exhibiting a left-inverse δ
Σw(NK)
X,∆,w , defined by induction on the structure of the

canonical forms as follows:

δ
Σw(NK)
X,∆,w (vϕ)

def
= ϕ , if vϕ ∈ dom(γw(∆))

δ
Σw(NK)
X,∆,w (⊃-I t t′ w(λp : (T w t).p′))

def
= ⊃-IδX(t),δX (t′)

(

δ
Σw(NK)
X,(∆,δX (t)),w(p′)

)

δ
Σw(NK)
X,∆,w (⊃2-E t t′ w p p′)

def
= ⊃2-EδX(t),δX(t′)

(

δ
Σw(NK)
X,∆,w (p), δ

Σw(NK)
X,∆,w (p′)

)

δ
Σw(NK)
X,∆,w (⊃-E t t′ w p p′)

def
= ⊃-EδX(t),δX (t′)

(

δ
Σw(NK)
X,∆,w (p), δ

Σw(NK)
X,∆,w (p′)

)

δ
Σw(NK)
X,∆,w (2′-I t (λw′:U.p) w)

def
= 2

′-IδX(t)

(

δ
Σw(NK)
X,∅,w (p)

)

The decoding map δ
Σw(NK)
X,∆,w is total and well-defined. Moreover, if Ξ(X), γw(∆) `Σw(()

NK)p : (T w t) then δ
Σw(NK)
X,∆,w is a proof of ∆ ` δX(t); we show this by induction on the

syntax of canonical form p of type (T w t).

Base Step. Let be p ≡ vϕ : (T w εX(ϕ)); then, take π = ϕ.

Inductive Step. We see only three significant cases.

If p ≡ (⊃-E t′ t′′ w p′ p′′):(T w t′′), since p is well-typed, we have

Ξ(X), γw(∆) `Σw(NK) p′ : (T w t′)

Ξ(X), γw(∆) `Σw(NK) p′′ : (T w (⊃ t′ t′′)).

By IH, there are two proofs δ
Σw(NK)
X,∆,w (p′) : ∆ `NK δX(t′) and δ

Σw(NK)
X,∆,w (p′′) : ∆ `NK δX(⊃

t′ t′′). Therefore by applying ⊃-E we obtain the proof π : ∆ `NK δX(t′′).

If p ≡ (⊃-I t′ t′′ w p′) : (T w (⊃ t′ t′′)), since p is well-typed, we have p′ ≡ λv:(T w t′).p′′

and

Ξ(X), γw(∆) `Σw(NK) p
′ : (T w t′) → (T w t′′)

that is,

Ξ(X), γw(∆), v:(T w t′) `Σw(NK) p
′′ : (T w t′′)

Let ϕ
def
= δX(t′); then, γw(∆), v:(T w t′) = γw(∆, ϕ). By IH, there is a proof δ

Σw(NK)
X,(∆,ϕ),w(p′) :

∆, ϕ `NK δX(t′′). Therefore by applying ⊃-I we obtain the proof π : ∆ `NK ϕ ⊃ δX(t′′).

If p ≡ (2′-I t′ (λw′:U.p′)w) : (T w (2t′)), since p is well-typed, we have that

Ξ(X), γw(∆) `Σw(NK) (λw′:U.p′):
∏

w′:U

(Tw′t′).

13.2. Encoding of systems for K 153

Notice that each (canonical) term p of type (T w t) has exactly one free variable of type
U , namely w. This can be proved by induction on the structure of p (look at the previous
steps). Hence, (λw′:U.p′) has no free variable of type U . We can drop therefore the
hypotheses γw(∆), since if they appear free in p there should be two free variables of type
U in p′ — a contradiction. Hence,

Ξ(X) `Σw(NK) (λw′:U.p′):
∏

w′:U

(T w′ t′)

that is
Ξ(X), w′:U `Σw(NK) p

′:(T w′ t′).

By IH there is a valid proof δ
Σw(NK)
X,∅,w′ (p′) : ∅ `NK δX(t′). Hence by applying 2-I we obtain

the proof π : ∆ `NK δX(2t′).

It remains to show that δ
Σw(NK)
X,∆,w

(

ε
Σw(NK)
X,∆,w (π)

)

= π, and that ε
Σw(NK)
X,∆,w is composi-

tional. This is proved by induction on the structure of π, following the steps above. ut

13.2.2 Closed Judgement

In Figure 13.2 we give the signature ΣCl(NK) and its extensions for the other truth
systems (NK4, NKT , . . .). Notice that there is a rule for establishing the “closed
assumption”-judgement corresponding to each proof constructor, i.e. for each rule in NK.

The existence and definition of the encoding function relies upon two technical lem-
mata:

Lemma 13.2 ∀p canonical form,
if Ξ(X),∆ `ΣCl(NK) p : (T t) then ∃c.Ξ(X),∆,Ξp(∆) `ΣCl(NK) c : (Cl t p),

where Ξp(∆)
def
= {c:(Cl t x) | x ∈ FV(p) ∧ (x:(T t)) ∈ ∆}.

Proof. (Hint) Long and tedious induction on p ut

Lemma 13.2 defines naturally a function from canonical proof forms p : (T t) to
canonical forms of type (Cl t p), in the same environment expanded with the “closed
assumptions” for the free variables of p. Let us denote such function by α.

Lemma 13.3 ∀c canonical form,
if ΓX ,∆,Ξ `ΣCl(NK) c:(Cl t p) then ΓX ,∆

′,Ξ `ΣCl(NK) c:(Cl t p),
where Ξ contains all and only the Cl assertions, and ∆′ = {x:(T t) | (Cl t x) ∈ =(Ξ)}.

We can now define the encoding function ε
ΣCl(NK)
X,∆ , which relies on the α above-

mentioned.

ε
ΣCl(NK)
X,∆ (ϕ)

def
= vϕ , if ϕ ∈ ∆

ε
ΣCl(NK)
X,∆ (⊃-Iϕ,ψ(π))

def
= ⊃-I εX(ϕ) εX(ψ) (λvϕ:(T εX(ϕ)).ε

ΣCl(NK)
X,(∆,ϕ) (π))

ε
ΣCl(NK)
X,∆ (⊃-Eϕ,ψ(π′, π′′))

def
= ⊃-E εX(ϕ) εX(ψ) ε

ΣCl(NK)
X,∆ (π′) ε

ΣCl(NK)
X,∆ (π′′)

ε
ΣCl(NK)
X,∆ (⊃2-Eϕ,ψ(π′, π′′))

def
= ⊃2-E εX(ϕ) εX(ψ) ε

ΣCl(NK)
X,∆ (π′) ε

ΣCl(NK)
X,∆ (π′′)

ε
ΣCl(NK)
X,∆ (2′-Iϕ(π))

def
= 2

′-I εX(ϕ) ε
ΣCl(NK)
X,∅ (π) α

(

ε
ΣCl(NK)
X,∅ (π)

)

154 Chapter 13. Encoding of Modal Logics

Judgements
T : lo→ Prop

Cl : l
∏

ϕ:o

(T ϕ) → Prop

Axioms and Rules

⊃2-E : l
∏

ϕ,ψ:o

(T 2(⊃ ϕψ)) → (T 2ϕ) → (T 2ψ)

⊃-I : l
∏

ϕ,ψ:o

((T ϕ) → (T ψ)) → (T (⊃ ϕψ)),

⊃-E : l
∏

ϕ,ψ:o

(T (⊃ ϕψ)) → (T ϕ) → (T ψ),

2
′-I : l

∏

ϕ:o

∏

d:(T ϕ)

(Cl ϕ d) → (T 2ϕ),

Cl
2
′-I : l

∏

ϕ:o

∏

d1:(T ϕ)

∏

c1:(Cl ϕ d1)

(Cl 2ϕ (2′-I ϕ d1 c1))

Cl⊃-I : l
∏

ϕ,ψ:o

∏

d:(T ϕ)→(T ψ)

∏

x:(T ϕ)

(Cl ϕ x) → (Cl ψ dx)

→ (Cl ψ (⊃-I ϕ ψ d)),

Cl⊃-E : l
∏

ϕ,ψ:o

∏

d1:(T (⊃ ϕ ψ))

∏

d2:(T ϕ)

(Cl ϕ d2) → (Cl (⊃ ϕ ψ) d1) →

(Cl ψ (⊃-E ϕ ψ d1 d2)),

Cl⊃2-E : l
∏

ϕ,ψ:o

∏

d1:(T 2(⊃ϕψ))

∏

d2:(T 2ϕ)

(Cl 2(⊃ ϕψ) d1) → (Cl 2ϕ d2) →

(Cl 2ψ (⊃2-E ϕ ψ d1 d2))

2-E :
∏

ϕ:o

(T 2ϕ) → (T ϕ), Cl2-E :
∏

ϕ:o

∏

d:(T 2ϕ)

(Cl 2ϕ d) → (Cl ϕ (2-E ϕ d)); . . .

Figure 13.2: ΣCl(NK) and its extensions for NK4,

Theorem 13.4 The function ε
ΣCl(NK)
X,∆ is a compositional bijection between proofs π :

(∆ |=NK ϕ such that FV(π) ⊆ X, and canonical terms t, such that ΓX , γT (∆) `ΣCl(NK)

t:(T εX(ϕ)).

As before, the proof of this theorem is composed by long and tedious inductions.

13.3 Encodings of special systems for S4

13.3.1 Boxed Judgement

In Figure 13.3 we give the signature Σ2(NS4), which adopts a variant of the Closed
technique for implementing Prawitz’s first version of NS4 [Pra65].

The idea is that the auxiliary judgement Bx :
∏

ϕ:o(T ϕ) → Prop holds only on “boxed
proof terms”, that is, the terms which represent proofs depending only on boxed formulæ.
At every moment, in the context For each assumption a : (T ϕ) such that ϕ is boxed, there

13.3. Encodings of special systems for S4 155

Judgements
T : o→ Prop

Bx :
∏

ϕ:o

(Tϕ) → Prop,

Axioms and Rules

⊃2-I :
∏

ϕ,ψ:o

∏

d:(T 2ϕ)

(Bx 2ϕ d) → (T ψ)

→ (T (⊃ 2ϕ ψ)),

⊃-I :
∏

ϕ,ψ:o

((T ϕ) → (T ψ)) → (T (⊃ ϕ ψ)),

⊃-E :
∏

ϕ,ψ:o

(T (⊃ ϕ ψ)) → (T ϕ) → (T ψ),

2-I :
∏

ϕ:o

∏

d:(T ϕ)

(Bx ϕ d) → (T (2ϕ)),

2-E :
∏

ϕ:o

(T (2ϕ)) → (T ϕ),

Bx⊃2-I :
∏

ϕ,ψ:o

∏

d:(
∏

a:(T 2ϕ)
(Bx 2ϕ a)→(T ψ))

∏

a:(T 2ϕ)

∏

b:(Bx 2ϕ a)

(Bx ψ (d a b))

→ (Bx (⊃ 2ϕ ψ) (⊃2-I ϕ ψ d))

Bx⊃-I :
∏

ϕ,ψ:o

∏

d:(T ϕ)→(T ψ)

∏

a:(T ϕ)

(Bx ϕ a) → (Bx ψ (da))

→ (Bx (⊃ ϕ ψ) (⊃-I ϕ ψ d)),

Bx⊃-E :
∏

ϕ,ψ:o

∏

d1:(T (⊃ ϕ ψ))

∏

d2:(T ϕ)

(Bx (⊃ ϕ ψ) d1) → (Bx ϕ d2) → (Bx ψ (⊃-E ϕ ψ d1 d2))

Bx2-I :
∏

ϕ:o

∏

d:(T ϕ)

∏

b:(Bx ϕ d)

(Bx 2ϕ (2-I ϕ d b)),

Bx2-E :
∏

ϕ:o

∏

d:(T 2ϕ)

(Bx 2ϕ d) → (Bx ϕ (2-E ϕ d))

Figure 13.3: Σ2(NS4).

is also an assumption ba : (Bx ϕ a) (see the encoding of contexts, below). Therefore, for
establishing whether a proof is boxed, we need to look for such assumption for each free
variable of the corresponding proof term. In the system there are rules for establishing
the “boxed ” judgement corresponding to each rule in NS4. Additional rules for T can be
induced by hypothesis-discharging rules, whenever the discharged formula is boxed (and
hence belongs to the context). This is the case of ⊃2-E: we need to introduce in the
context also the assumption (Bx 2ϕ d), which encodes the fact that the d assumes a
boxed formula.

Given ∆ ⊆ Φ with FV(∆) ⊆ X, we define the LF context γ2(∆) as follows:

γ2(∆)
def
=

〈〉 if ∆ ≡ ∅
γ2(∆′), vϕ : (TεX(ϕ)) if ∆ ≡ ∆′, ϕ, ϕ is not boxed and vϕ fresh for γ2(∆′)
γ2(∆′), vϕ : (TεX(ϕ)), if ∆ ≡ ∆′, ϕ, ϕ is boxed and vϕ, vbϕ fresh for γ2(∆′)

vbϕ : (BxεX(ϕ)vϕ)

The long proof of adequacy relies upon some very technical lemmata. We report here

156 Chapter 13. Encoding of Modal Logics

only those needed for defining the encoding function. For sake of simplicity, we adopt the
following definition: for p term and Γ context, we define

C(p,Γ)
def
= for all vψ ∈ FV(p), if (vψ:(T εX(ψ))) ∈ Γ then (vbψ:(Bx εX(ψ) vψ)) ∈ Γ

Lemma 13.5 Let p be a canonical term s.t. ΓX , γ2(∆) `Σ2(NS4) p : (T t). If C(p, γ2(∆))
holds then there is a canonical term b such that ΓX , γ2(∆) `Σ2(NS4) b : (Bx t p).

A consequence of this lemma is the existence of a function β∆ which maps proof terms
p whose free variables are “boxed,” to proofs b of (Bx ϕ p); this “reifies” the fact that p
represents a proof which depends only on boxed assumptions. This function is inductively
defined as follows.

β∆(vϕ)
def
= vbϕ , if ϕ ∈ ∆ and ϕ boxed

β∆(⊃-I t t′(λv1:(T t).p))
def
=

(Bx⊃-I t t
′ (λv1:(T t).p)(λv1:(T t)λvb1:(Bx t v1).β∆,δX(t)(p)))

β∆(⊃-E t t′ p1 p2)
def
= (Bx⊃-E t t′ p1 p2 β∆(p1) β∆(p2))

β∆(2-I t p b)
def
= (Bx2-I t p b)

β∆(2-E t p)
def
= (Bx2-E t p β∆(p))

β∆(⊃2-I t t′ p2)
def
= (Bx⊃2-I t t

′ p2(λv1:(T t)λv2:(Bx t v1).β∆,δX(A)(p)))

where p2
def
= λv1:(T t)λv2:(Bx t v1).p

Lemma 13.6 ∀X,∆, ϕ, if π : (∆ `NS4 ϕ) such that FV(π) ⊆ X then there exists a
canonical form p such that ΓX , γ2(∆) `Σ2(NS4) p : (T εX(ϕ)).

A consequence of this lemma is the existence of the function ε
Σ2(NS4)
X,∆ , which maps

proofs of NS4 to canonical proof terms. This function is inductively defined as follows.

ε
Σ2(NS4)
X,∆ (ϕ)

def
= vϕ , if ϕ ∈ ∆

ε
Σ2(NS4)
X,∆ (⊃-Iϕψ(π′))

def
=

(⊃2-I εX(ϕ) εX(ψ)

(λvϕ:(TεX(ϕ))λvbϕ:(BxεX(ϕ)vϕ).ε
Σ2(NS4)
X,∆,ϕ (π′))) if ϕ boxed

(⊃-I εX(ϕ) εX(ψ) (λvϕ:(TεX(ϕ)).ε
Σ2(NS4)
X,∆,ϕ (π′))) if ϕ ¬ boxed

ε
Σ2(NS4)
X,∆ (⊃-Eϕ,ψ(π′, π′′))

def
= (⊃-E εX(ϕ) εX(ψ) ε

Σ2(NS4)
X,∆ (π′′) ε

Σ2(NS4)
X,∆ (π′))

ε
Σ2(NS4)
X,∆ (2-Iϕ(π′))

def
= (2-I εX(ϕ) εX,∆(π′) β∆(ε

Σ2(NS4)
X,∆ (π′)))

ε
Σ2(NS4)
X,∆ (2-Eϕ(π′))

def
= (2-E εX(ϕ) ε

Σ2(NS4)
X,∆ (π′))

Theorem 13.7 The function ε
Σ2(NS4)
X,∆ is a compositional bijection between proofs π :

(∆ `NS4 ϕ, such that FV(π) ⊆ X and canonical terms t, such that Ξ(X), γ2(∆) `Σ2(NS4)

t : (T εX(ϕ)).

13.3.2 “Boxed Fringe”-judgement

For the sake of completeness we sketch here how to encode Prawitz’s “third” system NS4f
[Pra65]. The signature ΣFr(NS4) appears in fig.13.4.

13.4. Encoding of multiple consequence relation systems 157

Judgements
T : o→ Prop,

BF :
∏

ϕ:o(T ϕ) → Prop,

Axioms and Rules

⊃2-I :
∏

ϕ,ψ:o

∏

d:(T 2ϕ)

(BF 2ϕ d) → (T ψ)

→ (T (⊃ 2ϕ ψ)),

⊃-I :
∏

ϕ,ψ:o

((T ϕ) → (T ψ)) → (T (⊃ ϕ ψ)),

⊃-E :
∏

ϕ,ψ:o

(T (⊃ ϕ ψ)) → (T ϕ) → (T ψ),

2-I :
∏

ϕ:o

∏

d:(T ϕ)

(BF ϕ d) → (T 2ϕ),

2-E :
∏

ϕ:o

(T (2ϕ)) → (T ϕ),

BF⊃2-I :
∏

ϕ,ψ:o

∏

d:
∏

a:(T 2ϕ)
(BF 2ϕ a)→(T ψ)

∏

a:(T2ϕ)

∏

b:(BF 2ϕ a)

(BF ψ (d a b))

→ (BF (⊃ 2ϕ ψ) (⊃2-I ϕ ψ d)),

BF⊃-I :
∏

ϕ,ψ:o

∏

d:(T ϕ)→(T ψ)

∏

a:(T ϕ)

(BF ϕ a) → (BF ψ (d a))

→ (BF (⊃ ϕ ψ) (⊃-I ϕ ψ d)),

BF⊃-E :
∏

ϕ,ψ:o

∏

d1:(T (⊃ ϕ ψ))

∏

d2:(T ϕ)

(BF (⊃ ϕ ψ) d1) → (BF ϕ d2) → (BF ψ (⊃-E ϕ ψ d1 d2)),

BF ′⊃-E
:
∏

ϕ,ψ:o

∏

d1:(T (⊃ ϕ 2ψ))

∏

d2:(T ϕ)

(BF 2ψ (⊃-E ϕ 2ψ d1 d2)),

BF2-I :
∏

ϕ:o

∏

d:(T ϕ)

∏

b:(BF ϕ d)

(BF 2ϕ (2-Iϕ d b)),

BF2-E :
∏

ϕ:o

∏

d:(T 2ϕ)

(BF ϕ (2-E ϕ d))

Figure 13.4: ΣFr(NS4).

The judgement BF :
∏

ϕ:o(T ϕ) → Prop holds only on proofs with a fringe of boxed for-
mulæ (in the minimal fragment of modal logic, boxed formulæ are all the essentially modal
formulæ). In the system there are rules for establishing the “boxed fringe” judgement cor-
responding to each rule in NS4. Additional rules for BF can be induced by elimination
rules whenever the major premise (the eliminated formula) is boxed (and hence belongs
to the fringe). This is the case, e.g., of ⊃-E.

13.4 Encoding of multiple consequence relation systems

In this section we sketch briefly the encoding of multi-judgement systems NK ′, NK ′′

(Sections 5.3.2, 5.3.3).

158 Chapter 13. Encoding of Modal Logics

Judgements
Ta, V : o→ Prop,

Rules

⊃-I :
∏

ϕ,ψ:o

((Ta ϕ) → (Ta ψ)) → (Ta(⊃ ϕ ψ))

2Ta-I :
∏

ϕ:o

(Ta ϕ) → (V 2ϕ)

⊃-ETa,Ta :
∏

ϕ,ψ:o

(Ta (⊃ ϕ ψ)) → (Ta ϕ) → (Ta ψ)

2V -I :
∏

ϕ:o

(V ϕ) → (V 2ϕ),

⊃-EV,Ta :
∏

ϕ,ψ:o

(V (⊃ ϕ ψ)) → (Ta ϕ) → (V ψ),

⊃-ETa,V :
∏

ϕ,ψ:o

(Ta (⊃ ϕ ψ)) → (V ϕ) → (V ψ),

⊃-EV,V :
∏

ϕ,ψ:o

(V (⊃ ϕ ψ)) → (V ϕ) → (V ψ),

⊃2-E :
∏

ϕ,ψ:o

(Ta 2(⊃ ϕ ψ)) → (Ta 2ϕ) → (Ta 2ψ)

2-E :
∏

ϕ:o

(Ta 2ϕ) → (Ta ϕ) 22-I :
∏

ϕ:o

(Ta 2ϕ) → (Ta 22ϕ)

23-I :
∏

ϕ:o

(Ta 3ϕ) → (Ta 23ϕ) 2⊃-E :
∏

ϕ:o

(Ta 2(⊃ (2ϕ) ϕ)) → (Ta 2ϕ)

Figure 13.5: Σ2j(NK
′) and its extensions for NK4′,. . .

13.4.1 Encoding of NK ′ by two judgements

In Figure 13.5 we give the signature Σ2j(NK
′) and its extension for systems NK4′, NKT ′,

. . .

Given ∆ ⊆ Φ with FV(∆) ⊆ X, we define the context γTa(∆) as follows:

γTa(∆)
def
=

{

〈〉 if ∆ ≡ ∅
γTa(∆

′), vϕ : (Ta εX(ϕ)) if ∆ ≡ ∆′, ϕ and vϕ fresh for γTa(∆
′)

Theorem 13.8 For X ⊂ Φa, ∆ ⊆ ΦX , ϕ ∈ ΦX :

• There exists a compositional bijection between proofs π : (∆ ` ϕ), with FV(π) ⊆ X,
and canonical terms p, such that ΓX , γTa(∆) `Σ2j(NK)′ p : (Ta εX(ϕ)).

• There exists a compositional bijection between proofs π : (∆ `̀ ϕ), and canonical
terms p, such that ΓX , γTa(∆) `Σ2j(NK)′ p : (V εX(ϕ)).

The proof appears in [AHMP97].

13.4. Encoding of multiple consequence relation systems 159

Σ3j(NK
′′) = Σ2j(NK

′) +

Judgements
T : o→ Prop,

Axioms and Rules

C :
∏

ϕ:o

(V ϕ) → (T ϕ)

⊃T -I :
∏

ϕ,ψ:o

((T ϕ) → (T ψ)) → (T (⊃ ϕ ψ))

⊃T -E :
∏

ϕ,ψ:o

(T (⊃ ϕ ψ)) → (T ϕ) → (T ψ),

. . . similarly for negation and ff.

2-E :
∏

ϕ:o

(Ta 2ϕ) → (Ta ϕ) 22-I :
∏

ϕ:o

(Ta 2ϕ) → (Ta 22ϕ)

23-I :
∏

ϕ:o

(Ta 3ϕ) → (Ta 23ϕ) 2⊃-E :
∏

ϕ:o

(Ta 2(⊃ (2ϕ) ϕ)) → (Ta 2ϕ)

Figure 13.6: Σ3j(NK
′′) and its extensions for NK4′′,. . . .

13.4.2 Encoding of NK ′′ by three judgements

In order to encode the system NK ′′, we add to Σ2j(NK
′′) a judgement T : o → Prop,

whose constructors are like those of Ta plus a constant C which represents the Embed’
rule (Figure 13.6). We can prove then the adequacy for the “third” level of the system:

Theorem 13.9 There is a compositional bijection between proofs π : (∆ `̀̀ NK′′ ϕ) with
FV(π) ⊆ X and canonical terms t such that ΓX , γT (∆) `Σ3j(NK′′) t : (T εX(ϕ)).

160 Chapter 13. Encoding of Modal Logics

Chapter 14

Encoding of Dynamic Logics

In this chapter we present the encoding of the systems for Propositional Dynamic Logic
and First-Order Dynamic Logic, presented in Chapters 6, 7.

14.1 Encoding of PDL

14.1.1 Encoding of the language

The encoding of the language of PDL follows simply the paradigmatical methodology
(Chapter 11). Each syntactic category is represented by a type, and each syntactic con-
structor is represented by a functional constant (Figure 14.1). There is also a function
b2p : B → P , defined by induction on the syntax of box-free propositions, which embeds
box-free propositions into propositions. When clear from the context, it will be omitted for
sake of readability. Actually, applications of such a function are computable (Simplifable)
in the Coq environment.

Let ξ : B∪Prog∪Φ → B ∪C ∪P be the obvious compositional bijective representation
of propositions. For the sake of simplicity, ξ will be often omitted; therefore, with the
same term we will denote a formula as well as its encoding in the LF signature; similarly
we shall deal with sets of assumptions.

14.1.2 Encoding of the finitary NfPDL

Since NfPDL is in ND-style, most of the rules are encoded straightforwardly following the
methodology of [HHP93, AHMP92] (Figure 14.2). The main difficulty is the representation
of the modal rule ∗

f -I. Here we adopt the world technique presented in Section 13.2.1.

Theorem 14.1 (Adequacy and Faithfulness for NfPDL) Let Γ range over finite sets
of assumptions, d over canonical proof terms of type (T w ϕ) for some ϕ,w. Then, ∀Γ, ϕ :

Γ `NfPDL ϕ ⇐⇒ ∃d. γw(Γ) `Σ(PDL) d : (T w ϕ).

14.1.3 Encoding of NPDL

The encoding of the infinitary proof system NPDL is very close to the one presented in
14.2. The only difference is the representation of the infinitary rule ∗-I. The system NPDL

161

162 Chapter 14. Encoding of Dynamic Logics

B : Set
¬b : B → B
⊃b,∧b : B → B → B

C : Set
∗ : C → C
? : B → C
; ,+ : C → C → C

P : Set
¬ : P → P
⊃,∧ : P → P → P
[·] · : C → P → P

Figure 14.1: Representation of LPDL in Σ(PDL).

can take into account infinite sets of assumptions, hence we need to be able to refer to
infinite sets of formulæ. This we achieve by means of a recursive function from naturals
to (proofs of) propositions, as follows:

∗-I :
∏

p:P

∏

c:C

∏

w:U

(

∏

n:nat

(T w (I c p n))

)

→ (T w [c∗] p)

The version of the rule ∗-I, that we encode in Coq is therefore as follows:

∗-I
for all n ∈ N : I(c, ϕ, n)

[c∗]ϕ
where

I : Prog → Φ → N → Φ

I(c, ϕ, 0)
def
= ϕ, I(c, ϕ, n+ 1)

def
= [c] I(c, ϕ, n)

In Coq the premise of the rule is represented using a λ-term of type nat → Prop. Thus, in
the encoding, we can refer only to lists of premises which can be enumerated by a function
provably total in PAw. Nevertheless this is enough for dealing with representable lists of
assumptions.

Theorem 14.2 (Adequacy and Faithfulness for PDL) Let Γ range over representable
sets of assumptions, d over canonical proof terms of type (T w ϕ) for some ϕ,w. Then
∀Γ, p.Γ `NPDL p ⇐⇒ ∃d. γw(Γ) `Σ(PDL) d : (T w p).

14.2 Encoding of First Order Dynamic Logic

This system will extend those presented in the previous Section 14.1.

14.2.1 Encoding the language of DL

As we have discussed in Section 11.1, the presence of identifiers in formulæ standing for
left-hand values which cannot be substituted for, forces us to introduce a specific type
for identifiers. Therefore, substitutions of terms for identifiers cannot be handled any
more “for free” by the metalanguage, using higher order syntax. Nevertheless, we can still
handle at the metalevel substitution of identifiers for identifiers, as we have described in
Sections 11.1, 11.3. The encoding of the language of DL (Figure 14.3) extends that of
PDL (Figure 14.1).

14.2.2 The assignment rules

As remarked earlier, we cannot exploit higher-order syntax directly to encode ()[t/x], the
substitution operator, as was possible in [AHMP92, HHP93, MP91]. The näıve encoding
of the assignment constructor, :=: Te → Te → C , could yield meaningless commands

14.2. Encoding of First Order Dynamic Logic 163

∧-I :
∏

p,q:P

∏

w:U

(T w p) → (T w q) → (T w (p ∧ q))

∧-El :
∏

p,q:P

∏

w:U

(T w (p ∧ q)) → (T w p)

∧-Er :
∏

p,q:P

∏

w:U

(T w (p ∧ q)) → (T w q)

⊃-I :
∏

p,q:P

∏

w:U

((T w p) → (T w q)) → (T w (p ⊃ q))

⊃-E :
∏

p,q:P

∏

w:U

(T w (p ⊃ q)) → (T w p) → (T w q)

;-I :
∏

p:P

∏

c1,c2:C

∏

w:U

(T w [c1] [c2] p) → (T w [c1; c2] p)

;-E :
∏

p:P

∏

c1,c2:C

∏

w:U

(T w [c1; c2] p) → (T w [c1] [c2] p)

+-I :
∏

p:P

∏

c1,c2:C

∏

w:U

(T w [c1] p) → (T w [c2] p) → (T w [c1 + c2] p)

+-El :
∏

p:P

∏

c1,c2:C

∏

w:U

(T w [c1 + c2] p) → (T w [c1] p)

+-Er :
∏

p:P

∏

c1,c2:C

∏

w:U

(T w [c1 + c2] p) → (T w [c2] p)

?-I :
∏

p:P

∏

b:B

∏

w:U

((T w b) → (T w p)) → (T w [b?] p)

?-E :
∏

p:P

∏

b:B

∏

w:U

(T w [b?] p) → (T w b) → (T w p)

∗
f -I :

∏

p:P

∏

c:C

∏

w:U

(

∏

w′:U

(T w′ p) → (T w′ [c]p)

)

→ (T w p) → (T w [c∗] p)

∗-E :
∏

p:P

∏

c:C

∏

w:U

(T w [c∗] p) →
∏

n:nat

(T w (I c p n))

where (I c p 0) = p, (I c p (S n)) = [c] (I c p n)

Figure 14.2: Representation of NfPDL in the signature Σ(PDL).

164 Chapter 14. Encoding of Dynamic Logics

X ,Te,B ,C ,P : Set
¬b : B → B
⊃b,∧b : B → B → B
¬ : P → P
⊃,∧ : P → P → P

isId : X → Te
0, 1 : Te
+, ∗ : Te → Te → Te
=b, <b : Te → Te → B
=, < : Te → Te → P

[·] · : C → P → P
∗ : C → C
? : B → C
; ,+ : C → C → C
:= : X → Te → C

Figure 14.3: Representation of L(DL) in Σ(DL) (some constructors).

:=-I:
∏

A:X→P

∏

x:X

∏

t:Te

∏

w:U

∏

y:X

(isnotin y P ∀A)→(isnotin y Te t)→(T w (y = t))→(T w (A y))

→ (isnotin x P ∀A) → (T w ([x := t](A x)))

:=-E:
∏

A:X→P

∏

q:P

∏

x:X

∏

t:Te

∏

w:U

∏

y:X

(isnotin y P ∀A) → (isnotin y Te t) → (isnotin y P q) →

(T w (y = t)) → (T w (Ay)) → (T w q)) → (isnotin x P ∀A) →

(T w ([x := t] (A x))) → (T w q)

Figure 14.4: The LF encoding of the rules for assignment.

such as 0 := 1. Substitution has to be dealt with differently from [HHP93], rather in the
style of [BH90]. The encodings of the rules :=-I and :=-E appear in Figure 14.4. We need
to express the fact that an identifier is “fresh”, i.e. that it is different from any other pre-
existing identifier. To this end, we generalize Mason’s idea [AHMP92] later expounded
in [BH90, Mic94], and we introduce the two auxiliary judgements, isin, isnotin : X →
∏

A:Set A → Prop. The intuitive meaning of (isin x A a) is “the identifier x appears in
the phrase a whose type is A;” dually for isnotin. These two judgements are derivable by
means of a simple set of rules which are polymorphic in the syntactic constructors (Figure
14.5). The inference of these judgements is completely syntax-driven: it is sufficient to look
at the top-level constructor of the phrase for deciding which rule has to be applied. The
premise (isnotin x P ∀A) of the :=-I rule enforces the fact that the context A(·) does not
contain any occurrence of x. In both rules we have also to reify the “freshness condition”
of variables locally quantified in premises. This is achieved by assuming suitable isnotin
judgements. Such reified assumptions are needed to deal with “contexts” such as A(·)
above, or the CongrId rule below.

14.2.3 The congruence rules

The encodings of Congr and CongrId appear in Figure 14.6. In encoding CongrId,
we have to check that the context A(·) does not contain any occurrence of x, y. This is
enforced as for :=-I, :=-E, via the premises (isnotin x P ∀A) and (isnotin y P ∀A) In
encoding Congr we have to check that the predicate A is command-free. This is easily

14.2. Encoding of First Order Dynamic Logic 165

isin x :
∏

x:X

(isin x X x)

isin 1 :
∏

x:X

∏

s1,s2:Set

∏

op:s1→s2

∏

p:s1

(isin x s1 p) → (isin x s2 (op p))

isin 2l :
∏

x:X

∏

s1,s2,s3:Set

∏

op:s1→s2→s3

∏

p1:s1

∏

p2:s2

(isin x s1 p1) → (isin x s3 (op p1 p2))

isin 2r :
∏

x:X

∏

s1,s2,s3:Set

∏

op:s1→s2→s3

∏

p1:s1

∏

p2:s2

(isin x s2 p2) → (isin x s3 (op p1 p2))

isin n :
∏

s1,s2:Set

∏

op:(X→s1)→s2

∏

p:X→s1

∏

y:X

(isin x s1 (p y))

→ (isin x s2 (op p))

isnotin symm :
∏

x,y:X

(isnotin y X x) → (isnotin x X y)

isnotin zero :
∏

x:X

(isnotin x Te zero) isnotin false :
∏

x:X

(isnotin x P false)

isnotin 1 :
∏

x:X

∏

s1,s2:Set

∏

op:s1→s2

∏

p:s1

(isnotin x s1 p) → (isnotin x s2 (op p))

isnotin 2 :
∏

x:X

∏

s1,s2,s3:Set

∏

op:s1→s2→s3

∏

p:s1

∏

p:s2

(isnotin x s1 p1) → (isnotin x s2 p2) → (isnotin x s3 (op p1 p2))

isnotin el :
∏

x,y:X

∏

s:Set

∏

p:s

(isnotin x s p) → (isin y s p) → (isnotin y X x)

isnotin n :
∏

s1,s2:Set

∏

op:(X→s1)→s2

∏

p:X→s1

∏

y:X

(isnotin x X y) → (isnotin x s1 (p y))

→ (isnotin x s2 (op p))

Figure 14.5: The rules for auxiliary judgements isin, isnotin of Σ(DL).

166 Chapter 14. Encoding of Dynamic Logics

CongrId :
∏

x,y:X

∏

A:X→P

∏

w:U

(isnotin x P ∀A) → (isnotin y P ∀A) →

(T w (A x)) → (T w ((isId x) = (isId y))) → (T w (A y))

Congr :
∏

t1,t2:Te

∏

A:Te→P

∏

w:U

(T w (A t1))→(T w (t1 = t2))→(BF (A t2))→(T w (A t2))

Figure 14.6: The LF encoding of the congruence rules.

∀-I :
∏

A:X→P

∏

w:U

(

∏

x:X

(isnotin x P ∀A) → (T w (A x))

)

→ (T w ∀A)

∀-E :
∏

A:X→P

∏

q:P

∏

t:Te

∏

w:U

(

∏

x:X

(isnotin x Te t) → (isnotin x P q) → (isnotin x P ∀A) →

(T w (x = t)) → (T w (A x)) → (T w q)) → (T w ∀A) → (T w q)

Figure 14.7: The LF encoding of the ∀-I, ∀-E rules.

achieved by introducing a new judgement BF : P → Prop, whose rules are the following:

BF false : (BF false) BF forall :
∏

p:X→P (
∏

x:X (BF (p x))) → (BF (∀p)
BF eq :

∏

t1,t2:Te(BF (t1 = t2)) BF and :
∏

p,q:P (BF p) → (BF q) → (BF (p ∧ q))
BF not :

∏

p:P (BF p) → (BF (¬p)) BF imp :
∏

p,q:P (BF p) → (BF q) → (BF (p ⊃ q))

Clearly, derivations of BF are syntax-driven and can be mostly automated in the Coq
environment using the Auto tactic.

14.2.4 The ∀-quantifier rules

The encoding of the rules for ∀ appearing in Figure 14.7, is not as straightforward as
in the standard FOL case. We have to deal with side-conditions and reify “freshness”
assumptions on the variables locally quantified in premises, as was the case for the :=-I

and :=-E rules.

14.3 Adequacy of the encoding

The statement of the Adequacy Theorem for the encoding Σ(DL) is more problematic
than in the “paradigm case” of FOL [HHP93], since we have to take into account infinite
sets of formulæ. Clearly, this cannot be done in full generality and we will be able to state
the Adequacy Theorem only with respect to representable sets of assumptions, i.e. sets
of formulæ whose encodings can be enumerated in Coq. Formally, Γ = {pn | n ∈ N} is
representable (in a context ∆) if there exists a term G such that ∆ `Σ(DL) G : nat → P
and for all n ∈ N : ∆ `Σ(DL) (G n) = ξ(pn)

14.3. Adequacy of the encoding 167

Given a representable set of assumptions Γ, in order to define γ(Γ), the Coq represen-
tation of Γ, we proceed as follows. First of all, we assume, for each free identifier appearing
in Γ, the identifier itself and the judgement asserting that it is different from any other
identifier (notice that, for obvious reasons, we are interested in considering only a finite
set of identifiers at any given time); we put

ι(Γ)
def
= {x : X | x ∈ FV(Γ)} ∪ {ixy : (isnotin x X y) | x, y ∈ FV(Γ), x 6= y}

If Γ = {p1, . . . , pn} is finite then we put

γ({p1, . . . , pn}) = ι(Γ) ∪ {w : U, u1 : (T w ξ(p1)), . . . , un : (T w ξ(pn))}

Otherwise, if Γ = {pn | n ∈ N} is infinite and representable by a term G in ι(Γ), we put

γ(Γ) = ι(Γ) ∪ {w : U, a :
∏

n:nat

(T w (G n))}.

Thus we have the following theorem, which is proved by induction.

Theorem 14.3 (Adequacy of Σ(DL)) Let Γ be a representable (in ι(Γ)) set of assump-
tions. Then

1. ∀Γ, if γ(Γ) `M : A, where A ∈ {X ,Te,B ,C ,P}, then

(∃u.γ(Γ) `NDL u : (isin x A M)) ⇐⇒ x ∈ FV(M)

(∃u.γ(Γ) `NDL u : (isnotin x A M)) ⇐⇒ x 6∈ FV(M)

2. ∀Γ, p : Γ `NDL p ⇐⇒ ∀w.∃d. γ(Γ) `Σ(DL) d : (T w p).

Proof. (Hint) The two properties have to be proved by simultaneous induction:

⇒ on the height of derivations in NDL

⇐ on the syntax of canonical terms ut

168 Chapter 14. Encoding of Dynamic Logics

Chapter 15

Encoding of µ-calculus

In this chapter we present the encoding of the µ-calculus, presented in Chapter 9. The
proof system does present new difficulties, with respect to those of Modal and Dynamic
Logics, since it is finitary and has just one proof rule. The main issues are instead related
to the representation of the syntax of µ-formulæ.

15.1 Encoding of the language

The encoding of the language of µ-calculus is quite elaborate. The first problem is the
presence of a negative formula constructor (the µ); as we have already pointed out in
Section 11.2, this kind of constructors cannot be used in inductive definitions of CIC. In the
case of µ-calculus, the substitution we have to implement is the same of the metalanguage,
hence we can apply the bookkeeping technique implemented by means of Leibnitz equality
(Section 11.3).

The second problem is the presence of a context-sensitive condition on the applicability
of µ. So far, as described in Section 11.4.1, the only way for enforcing the context-sensitive
condition is to use a Σ-type, that is, to define a subtype.

We introduce a separate type, var, for the identifiers. There are no constructors for
this types: we only assume that there are infinite many variables.

Parameter var : Set.

Axiom var_nat : (Ex [srj:var->nat](n:nat)(Ex [x:var](srj x)=n)).

Then, we define the set of preformulæ of µ-calculus, also those not well formed:

Parameter Act : Set.

Inductive o : Set :=

ff : o

| Not : o -> o

| And : o -> o -> o

| Imp : o -> o -> o

| Box : Act -> o -> o

| Var : var -> o

| mu : (var->o) -> o.

Since we have not declared var as an inductive set, there are no exotic terms.

169

170 Chapter 15. Encoding of µ-calculus

Now, in order to define the subtype of well formed formulæ, we need to formalize the
system for positivity/negativity presented in Figure 9.2. Therefore, we can define two
judgements on preformulæ,

posin,negin : var → o→ Prop

A careful analysis of the proof system (Figure 9.2) points out that the derivation of these
judgement is completely syntax driven. It is therefore natural to define these judgements
as recursively defined functions, instead of inductively defined propositions. This is indeed
possible, but the rules for the binding operators introduce an implicit quantification over
the set of variables different from the one we are looking for. This quantification is rendered
by assuming a locally new variable (y) and that it is different from the variable x (see last
cases):

Fixpoint posin [x:var;A:o] : Prop :=

<Prop>Case A of

True

[B:o](negin x B)

[A1,A2:o](posin x A1)/\(posin x A2)

[A1,A2:o](negin x A1)/\(posin x A2)

[a:Act][A1:o](posin x A1)

[y:var]True

[F:var->o](y:var)~(x=y) -> (posin x (F y))

end

with negin [x:var;A:o] : Prop :=

<Prop>Case A of

True

[B:o](posin x B)

[A1,A2:o](negin x A1)/\(negin x A2)

[A1,A2:o](posin x A1)/\(negin x A2)

[a:Act][A1:o](negin x A1)

[y:var]~(x=y)

[F:var->o](y:var)~(x=y) -> (negin x (F y))

end.

Therefore, in general a goal (posin x A) can be simplified to a conjunction of only three
forms of propositions: True, negations of equalities or implications from negations of
equalities to another conjunction of the same form. These three forms are dealt simply in
the Coq environment, hence proving this kind of goals is a simple task.

Finally, we can define when a preformula is well formed: when every application of µ
satisfies the positivity condition:

Fixpoint iswf [A:o] : Prop :=

<Prop>Case A of

True

[A1:o](iswf A1)

[A1:o][A2:o](iswf A1)/\(iswf A2)

[A1:o][A2:o](iswf A1)/\(iswf A2)

15.2. Encoding of proof system 171

[a:Act][A1:o](iswf A1)

[x:var]True

[F:var->o](x:var)

((notin x (mu F)) -> (posin x (F x)))/\(iswf (F x))

end.

Hence, each formula of the µ-calculus is represented by a pair preformula-proof of its
well-formness:

(* the set of well formed formuale *)

Record wfo : Set := mkwfo {

prp : o;

cnd : (iswf prp)

}.

Theorem 15.1 There is a bijection between well-formed formulæ of the µ-calculus and
canonical forms of type wfo

Proof. (Sketch) Long but not difficult inductions. First, we prove that posin, negin
adequately represent the positivity/negativity proof system. Due to its structure, it is easy
to prove that the proposition posin x A is inhabited by at most one canonical form (that is
to say, there is at most one way for proving that a preformula is well-formed). Therefore,
a preformula ϕ is a formula iff each application of µ is valid, iff for each application of µ
there exists a (unique) witness of posin, iff there exists a (unique) inhabitant of iswf ϕ. ut

15.2 Encoding of proof system

Finally we examine the implementation of the bookkeeping by means of Leibnitz equality:
in the recursion rules,

Axiom mu_I : (F:var->o)

((z:var)(notin z (mu F)) -> (Var z)=(mu F) -> (T w (F z)))

-> (T w (mu F)).

Axiom mu_E : (F:var->o)(iswf A) ->

((z:var)(notin z (mu F)) -> (Var z)=A ->

(w’:U)(T w’ (F z)) -> (T w’ A))

->

(T w (mu F)) -> (T w A).

we locally assume

1. a new variable, z;

2. the fact that z does not appear in the formula, i.e. it is fresh;

3. the binding between z and the formula itself, for successive unfoldings

The judgement notin (and the dual isin) are auxiliary judgements for occur-checking;
they may be needed in the rest of derivation for inferring well-formness of discharged
formulæ in rules Raa, ⊃-I, ¬-I.

172 Chapter 15. Encoding of µ-calculus

Part IV

Pragmatics

173

Chapter 16

The Implementation of NfDL and
NDL

16.1 The signature ΣDL

This implementation subsumes the one of ΣPDL, of course.

(* Full Dynamic Logic *)

(* Modal technique: World Parameter *)

(* Subst technique: isin, isnotin *)

(* Quant technique: Higher Order Syntax *)

(*--*)

(* SYNTACTIC CATEGORIES *)

(*--*)

(* Set of Identifiers: it may be any enumerable set of objects *)

Parameter X : Set.

Parameter i : nat -> Set.

(* hence, (i n) represents the n-th identifier *)

(* Set of Terms *)

Inductive Te : Set

:= isX : X -> Te

| zero : Te

| succ : Te -> Te

| pls : Te -> Te -> Te.

(* Set of Box-Quantifier-Free Formulae *)

Inductive B : Set

:= bff : B

| bEq : Te -> Te -> B

| bNot : B -> B

| bAnd : B -> B -> B

175

176 Chapter 16. The Implementation of NfDL and NDL

| bImp : B -> B -> B.

(* Set of Regular Programs *)

Inductive C : Set

:= ass : X -> Te -> C

| comp : C -> C -> C

| test : B -> C

| iter : C -> C

| ndc : C -> C -> C. (* Non Deterministic Choice *)

Definition ifte : B -> C -> C -> C

:= [b:B][c1:C][c2:C]

(ndc (comp (test b) c1) (comp (test (bNot b)) c2)).

Definition while : B -> C -> C

:= [b:B][c:C]

(comp (iter (comp (test b) c)) (test (bNot b))).

(* Set of All Formulae *)

Inductive P : Set

:= false : P

| Eq : Te -> Te -> P

| Not : P -> P

| And : P -> P -> P

| Imp : P -> P -> P

| box : C -> P -> P

| forall : (X -> P) -> P.

(* embedding function from box-quantifier free to all formulae *)

Fixpoint b2p [b:B] : P

:= <P>Case b of

(* bff *) false

(* bEq *) [t1,t2:Te](Eq t1 t2)

(* bNot *) [b1:B](Not (b2p b1))

(* bAnd *) [b1,b2:B](And (b2p b1) (b2p b2))

(* bImp *) [b1,b2:B](Imp (b2p b1) (b2p b2))

end.

(*--*)

(* JUDGMENTS *)

(*--*)

(* The Universe: auxiliary set of Worlds *)

Parameter U : Set.

16.1. The signature ΣDL 177

(************************)

(* The proving judgment *)

(************************)

Parameter T : U -> P -> Prop.

(**)

(* auxiliar occur-check judgments *)

(**)

Inductive isin [x:X] : (A:Set) A -> Prop

:= isin_x : (isin x X x)

| (* 1-arity constructors *)

isin_1 : (s1,s2:Set)(op: s1->s2)(p:s1)

(isin x s1 p) ->

(isin x s2 (op p))

| (* 2-arity constructors *)

isin_2l : (s1,s2,s3:Set)(op: s1->s2->s3)(p1:s1)(p2:s2)

(isin x s1 p1) ->

(isin x s3 (op p1 p2))

| isin_2r : (s1,s2,s3:Set)(op: s1->s2->s3)(p1:s1)(p2:s2)

(isin x s2 p2) ->

(isin x s3 (op p1 p2))

| isin_n : (s1,s2:Set)(op: (X->s1)->s2)(p:X->s1)

((y:X)(isin x s1 (p y))) ->

(isin x s2 (op p)).

Hint isin_x.

(* due to the negative case, isnotin cannot be defined inductively *)

Parameter isnotin : X -> (A:Set) A -> Prop.

Axiom isnotin_base : (x,y:X) ~(x=y) -> (isnotin x X y).

(* 0-arity constructors *)

Axiom isnotin_zero : (x:X)(isnotin x Te zero).

Axiom isnotin_false: (x:X)(isnotin x P false).

(* 1-arity constructors *)

Axiom isnotin_1 : (x:X)(s1,s2:Set)(op:s1->s2)(p:s1)

(isnotin x s1 p) -> (isnotin x s2 (op p)).

(* 2-arity constructors *)

Axiom isnotin_2 : (x:X)(s1,s2,s3:Set)(op:s1->s2->s3)(p1:s1)(p2:s2)

(isnotin x s1 p1) ->

(isnotin x s2 p2) ->

(isnotin x s3 (op p1 p2)).

(* negative constructors on X (forall) *)

Axiom isnotin_n : (x:X)(s1,s2:Set)(op:(X->s1)->s2)(p:X->s1)

((y:X)(isnotin x X y) -> (isnotin x s1 (p y))) ->

(isnotin x s2 (op p)).

(* elimination (separation) *)

178 Chapter 16. The Implementation of NfDL and NDL

Axiom isnotin_el : (s:Set)(p:s)(x,y:X)

(isnotin x s p) ->

(isin y s p) ->

(isnotin y X x).

Hint isnotin_zero isnotin_false.

Lemma isnotin_symm : (x,y:X)(isnotin y X x) -> (isnotin x X y).

Intros; Apply isnotin_el with p:=x; Auto.

Qed.

(***)

(* auxiliar judgments for the box-free condition *)

(***)

Inductive BF : P -> Prop

:= BF_false : (BF false)

| BF_eq : (t1,t2:Te)(BF (Eq t1 t2))

| BF_not : (p:P)(BF p) -> (BF (Not p))

| BF_and : (p,q:P)(BF p) -> (BF q) -> (BF (And p q))

| BF_imp : (p,q:P)(BF p) -> (BF q) -> (BF (Imp p q))

| BF_forall : (p:X->P)((x:X)(BF (p x))) -> (BF (forall p)).

Hint BF_false BF_eq BF_not BF_and BF_imp.

(*---*)

(* RULES *)

(*---*)

(******************************)

(* Rules of First Order Logic *)

(******************************)

(* some properties of equality *)

Axiom eq_refl : (t:Te)(w:U)(T w (Eq t t)).

Hint eq_refl.

Axiom eq_congr: (t1,t2:Te)(p:Te->P)(w:U)

(T w (p t1)) ->

(T w (Eq t1 t2)) ->

(BF (p t2)) ->

(T w (p t2)).

Axiom eq_congr_id : (x,y:X)(p:X->P)(w:U)

(T w (p x)) ->

(T w (Eq (isX x) (isX y))) ->

(isnotin x P (forall p)) ->

(isnotin y P (forall p)) ->

(T w (p y)).

16.1. The signature ΣDL 179

Theorem eq_sym : (t1,t2:Te)(w:U)(T w (Eq t1 t2)) -> (T w (Eq t2 t1)).

Intros t1 t2 w h.

Apply eq_congr with t1:=t1 p:=[t:Te](Eq t t1); Auto.

Qed.

Hint eq_sym.

Theorem eq_trans : (t1,t2,t3:Te)(w:U)

(T w (Eq t1 t2)) -> (T w (Eq t2 t3)) -> (T w (Eq t1 t3)).

Intros.

Apply eq_congr with t1:=t2 p:=[t:Te](Eq t t3); Auto.

Qed.

(* two delta rules for plus *)

Axiom pls_zero : (t:Te)(w:U)(T w (Eq (pls t zero) t)).

Axiom pls_succ : (t,t1,t2:Te)(w:U)

(T w (Eq (pls t1 t2) t)) ->

(T w (Eq (pls t1 (succ t2)) (succ t))).

Axiom not_E : (p:P)(w:U)(T w p) -> (T w (Not p)) -> (T w false).

Axiom not_I : (p:P)(w:U)((T w p) -> (T w false)) -> (T w (Not p)).

Axiom and_I : (p,q:P)(w:U)(T w p) -> (T w q) -> (T w (And p q)).

Axiom and_El : (p,q:P)(w:U)(T w (And p q)) -> (T w p).

Axiom and_Er : (p,q:P)(w:U)(T w (And p q)) -> (T w q).

Axiom imp_I : (p,q:P)(w:U)((T w p) -> (T w q)) -> (T w (Imp p q)).

Axiom imp_E : (p,q:P)(w:U)(T w (Imp p q)) -> (T w p) -> (T w q).

Axiom forall_I : (p:X -> P)(w:U)

((x:X)(isnotin x P (forall p)) -> (T w (p x))) ->

(T w (forall p)).

Axiom forall_E : (p:X -> P)(q:P)(t:Te)(w:U)

(T w (forall p)) ->

((x:X)(isnotin x Te t) ->

(isnotin x P q) ->

(isnotin x P (forall p)) ->

(T w (Eq (isX x) t)) ->

(T w (p x)) ->

(T w q)) ->

(T w q).

Axiom notnot_E : (p:P)(w:U)(T w (Not (Not p))) -> (T w p).

Theorem false_E : (p:P)(w:U)(T w false) -> (T w p).

Intros; Apply notnot_E; Apply not_I; Intro; Assumption.

Qed.

180 Chapter 16. The Implementation of NfDL and NDL

(***************)

(* Modal Rules *)

(***************)

(* Assignment Rules *)

Axiom ass_I : (p:X -> P)(x:X)(t:Te)(w:U)

(isnotin x P (forall p)) ->

((y:X)(isnotin y X x) ->

(isnotin y P (forall p)) ->

(isnotin y Te t) ->

(T w (Eq (isX y) t)) ->

(T w (p y))) ->

(T w (box (ass x t) (p x))).

Axiom ass_E : (p:X -> P)(q:P)(x:X)(t:Te)(w:U)

(T w (box (ass x t) (p x))) ->

((y:X)(isnotin y Te t) ->

(isnotin y P q) ->

(isnotin y P (forall p)) ->

(T w (Eq (isX y) t)) ->

(T w (p y)) ->

(T w q)) ->

(T w q).

Axiom comp_I : (p:P)(c,d:C)(w:U)

(T w (box c (box d p))) ->

(T w (box (comp c d) p)).

Axiom comp_E : (p:P)(c,d:C)(w:U)

(T w (box (comp c d) p)) ->

(T w (box c (box d p))).

Axiom test_I : (p:P)(b:B)(w:U)

((T w (b2p b)) -> (T w p)) ->

(T w (box (test b) p)).

Axiom test_E : (p:P)(b:B)(w:U)

(T w (box (test b) p)) -> (T w (b2p b)) ->

(T w p).

Axiom ndc_I : (p:P)(c1,c2:C)(w:U)

(T w (box c1 p)) -> (T w (box c2 p)) ->

(T w (box (ndc c1 c2) p)).

Axiom ndc_El : (p:P)(c1,c2:C)(w:U)

(T w (box (ndc c1 c2) p)) ->

(T w (box c1 p)).

Axiom ndc_Er : (p:P)(c1,c2:C)(w:U)

(T w (box (ndc c1 c2) p)) ->

(T w (box c2 p)).

16.1. The signature ΣDL 181

Fixpoint I [n:nat] : C -> P -> P

:= [c:C][p:P](<P>Case n of

(* 0 *) p

(* S n *) [m:nat](box c (I m c p))

end).

Axiom iter_I : (p:P)(c:C)(w:U)

((n:nat)(T w (I n c p))) ->

(T w (box (iter c) p)).

Axiom iter_E : (p:P)(c:C)(w:U)

(T w (box (iter c) p)) ->

(n:nat)(T w (I n c p)).

(* The base case for Scott rule: only on the assignment *)

Axiom Sc_basecase : (x:X)(t:Te)(p:P)(G:nat->P)

((w:U)((n:nat)(T w (G n))) -> (T w p))

->

(w:U) ((n:nat)(T w (box (ass x t) (G n)))) ->

(T w (box (ass x t) p)).

(* Then, it is generalized to every command *)

Theorem Sc : (c:C)(p:P)(G:nat->P)

((w:U)((n:nat)(T w (G n))) -> (T w p))

->

(w:U)((n:nat)(T w (box c (G n)))) -> (T w (box c p)).

(Induction c;Intros).

(* case 0: assignment *)

(Apply Sc_basecase with G:=G ;Auto).

(* case 1: composition *)

(Apply comp_I;Apply H with G:=[n:nat](box c1 (G n))).

Exact (H0 p G H1).

(Intros;Apply comp_E;Apply H2).

(* case 2: test *)

(Apply test_I;Intro;Apply H;Intro;Apply test_E with b:=b ;Auto).

(* case 3: iteraction *)

(Apply iter_I;Intros n;Cut (n1:nat)(T w (I n c0 (G n1)))).

(Generalize n w ;Induction n). (* by induction on iteration levels *)

(* base case *)

Exact H0.

(* step case *)

(Intros;Simpl;Apply H with G:=[n:nat](I n1 c0 (G n)) ;Auto).

(Intro;Apply iter_E;Exact (H1 n1)).

(* case 4: non-deterministic choice *)

Apply ndc_I.

182 Chapter 16. The Implementation of NfDL and NDL

(Apply H with G:=G ;Auto).

(Intro;Apply ndc_El with c2:=c1 ;Apply H2).

(Apply H0 with G:=G ;Auto).

(Intro;Apply ndc_Er with c1:=c0 ;Apply H2).

Qed.

(* box-intro is a derived rule *)

Theorem box_I : (c:C)(p:P)(w:U)

((w1:U)(T w1 p)) -> (T w (box c p)).

Induction c; Intros.

(* case 0: assignment *)

Apply Sc_basecase with G:=[n:nat](Eq zero zero).

Intros; Apply H.

Intro; Apply ass_I with p:=[x:X](Eq zero zero); Auto.

Apply isnotin_n with op:=forall;

Intros; Apply isnotin_2 with op:=Eq; Apply isnotin_zero.

(* case 1 : composition *)

Apply comp_I; Apply H; Intro; Apply H0; Assumption.

(* case 2 : test *)

Apply test_I; Intro; Apply H.

(* case 3 : iteration *)

Apply iter_I; Intro; Generalize n w.

Induction n.

Exact H0.

Intros; Simpl; Apply H; Assumption.

(* case 4 : non deterministic choice *)

Apply ndc_I.

Apply H; Assumption.

Apply H0; Assumption.

Qed.

Theorem K : (c:C)(p,q:P)

((w:U)(T w p) -> (T w q))

->

(w:U)(T w (box c p)) -> (T w (box c q)).

Intros; Apply Sc with G:=[n:nat]p; Intros.

Apply H; Exact (H1 O).

Exact H0.

Qed.

(**)

(* End of Minimal Dynamic Logic *)

(**)

16.1. The signature ΣDL 183

(**)

(* Diamond and derived rules *)

(**)

Definition diam := [c:C][p:P](Not (box c (Not p))).

(*

Syntax diam "<_>_".

*)

Theorem contraposition : (p,q:P)(w:U)((T w p) -> (T w q)) ->

(T w (Not q)) -> (T w (Not p)).

Intros; Apply not_I; Intro; Apply not_E with q; Auto.

Qed.

Theorem notnot_I : (p:P)(w:U)(T w p) -> (T w (Not (Not p))).

Intros; Apply not_I; Intro; Apply not_E with p; Assumption.

Qed.

Theorem K_diam : (c:C)(p,q:P)

((w:U)(T w p) -> (T w q))

->

(w:U)(T w (diam c p)) -> (T w (diam c q)).

Unfold diam; Intros; Apply contraposition with q:=(box c (Not p)); Auto.

Intro; Apply K with p:=(Not q); Auto.

Intros; Apply contraposition with q; Auto.

Qed.

Theorem comp_I_diam : (p:P)(c,d:C)

(w:U)(T w (diam c (diam d p))) -> (T w (diam (comp c d) p)).

Unfold diam; Intros;

Apply contraposition with q:=(box c (Not (Not (box d (Not p))))); Auto.

Intro; Apply K with p:=(box d (Not p)).

Exact (notnot_I (box d (Not p))).

Apply comp_E; Assumption.

Qed.

Theorem comp_E_diam : (p:P)(c,d:C)

(w:U)(T w (diam (comp c d) p)) -> (T w (diam c (diam d p))).

Unfold diam; Intros;

Apply contraposition with q:=(box (comp c d) (Not p)); Auto.

Intros; Apply comp_I; Apply K with p:=(Not (Not (box d (Not p)))); Auto.

Intros; Apply notnot_E; Auto.

Qed.

184 Chapter 16. The Implementation of NfDL and NDL

Theorem test_I_diam : (p:P)(b:B)

(w:U)(T w (b2p b)) -> (T w p) -> (T w (diam (test b) p)).

Intros; Unfold diam.

Apply not_I; Intro.

Apply not_E with p.

Assumption.

Apply test_E with b.

Assumption.

Assumption.

Qed.

Theorem test_E1_diam : (p:P)(b:B)

(w:U)(T w (diam (test b) p)) -> (T w (b2p b)).

Unfold diam; Intros; Apply notnot_E;

Apply contraposition with q:=(box (test b) (Not p)); Auto.

Intros; Apply test_I; Intro; Apply false_E.

Apply not_E with (b2p b); Auto.

Qed.

Theorem test_E2_diam : (p:P)(b:B)

(w:U)(T w (diam (test b) p)) -> (T w p).

Unfold diam; Intros; Apply notnot_E;

Apply contraposition with q:=(box (test b) (Not p)); Auto.

Intros; Apply test_I; Intro; Assumption.

Qed.

(**)

(* algebraic properties of regular programs *)

(**)

(* associativity of composition *)

Theorem Comp_Ass_l : (c,d,e:C)(p:P)(w:U)

(T w (box (comp c (comp d e)) p)) -> (T w (box (comp (comp c d) e) p)).

Intros; Apply comp_I; Apply comp_I; Apply K with p:=(box (comp d e) p).

Exact (comp_E p d e).

Apply comp_E; Assumption.

Qed.

Theorem Comp_Ass_r : (c,d,e:C)(p:P)(w:U)

(T w (box (comp (comp c d) e) p)) -> (T w (box (comp c (comp d e)) p)).

Intros; Apply comp_I; Apply K with p:=(box d (box e p)).

Exact (comp_I p d e).

Apply comp_E; Apply comp_E; Assumption.

Qed.

Theorem Comp_Ass_l_diam : (c,d,e:C)(p:P)(w:U)

16.1. The signature ΣDL 185

(T w (diam (comp c (comp d e)) p)) -> (T w (diam (comp (comp c d) e) p)).

Unfold diam; Intros; Apply not_I; Intro;

Apply not_E with (box (comp c (comp d e)) (Not p)); Auto.

Apply Comp_Ass_r; Auto.

Qed.

Theorem Comp_Ass_r_diam : (c,d,e:C)(p:P)(w:U)

(T w (diam (comp (comp c d) e) p)) -> (T w (diam (comp c (comp d e)) p)).

Unfold diam; Intros; Apply not_I; Intro;

Apply not_E with (box (comp (comp c d) e) (Not p)); Auto.

Apply Comp_Ass_l; Auto.

Qed.

(* idempotence of * *)

Theorem iter_idem_l : (c:C)(p:P)(w:U)

(T w (box (iter c) p)) ->

(T w (box (comp (iter c) (iter c)) p)).

Intros; Apply comp_I; Apply iter_I; Intro.

Generalize n w H .

Clear n H w.

(Induction n;Intros;Auto).

Simpl; Apply K with p:=(box (iter c) p).

Assumption.

Apply Sc with G:=[n:nat](I n c p) .

Intros;Apply iter_I;Assumption.

Intro; Replace (box c (I n1 c p)) with (I (S n1) c p).

(Apply iter_E;Assumption).

Trivial.

Qed.

Theorem iter_idem_r : (c:C)(p:P)(w:U)

(T w (box (comp (iter c) (iter c)) p)) ->

(T w (box (iter c) p)).

(Intros;Replace (box (iter c) p) with (I O c (box (iter c) p))).

(Apply iter_E;Apply comp_E;Assumption).

Trivial.

Qed.

(***)

(* End of Diamond and some derived rules *)

(***)

(* Convergence Axiom *)

Axiom Conver : (p:Te -> P)(c:C)(t:Te)(w:U)

((w1:U)(x:X)

186 Chapter 16. The Implementation of NfDL and NDL

(isnotin x P (forall [x:X](p (isX x)))) ->

(isnotin x C c) ->

(T w1 (p (succ (isX x)))) ->

(T w1 (diam c (p (isX x))))

) ->

(T w (p t))

->

(T w (diam (iter c) (p zero))).

(* forall-elimination is assignment introduction *)

Theorem feiai : (p:X -> P)(x:X)(t:Te)

(isnotin x P (forall p)) ->

(w:U)(T w (forall p)) -> (T w (box (ass x t) (p x))).

Intros p x t x_new w H; Apply ass_I.

Apply x_new.

Intros; Apply forall_E with p:=p t:=(isX y); Auto; Intros;

Apply eq_congr_id with x:=x0; Assumption.

Qed.

(* generic assignment is forall introduction *)

Theorem gaifi : (p:X -> P)(x:X)(w:U)

((t:Te)(T w (box (ass x t) (p x)))) -> (T w (forall p)).

Intros; Apply forall_I; Intros x0 H0;

Apply ass_E with p:=p 1:=(H (isX x0)); Intros;

Apply eq_congr_id with x:=y y:=x0; Auto.

Qed.

(***)

(* End of Full Dynamic Logic *)

(***)

16.2 Equivalence of while-do and repeat-until

(* Equivalence between repeat and while *)

Definition repeat :=

[c:C][b:B](comp c (comp (iter (comp (test (bNot b)) c)) (test b))).

Theorem While2Repeat : (c:C)(b:B)(p:P)

(w:U)(T w (box (comp c (while (bNot b) c)) p)) ->

(T w (box (repeat c b) p)).

Unfold while repeat; Intros; Apply Comp_Ass_r; Apply comp_I.

Apply K with p:=(box (test (bNot (bNot b))) p).

Intros; Apply test_I; Intro; Apply test_E with b:=(bNot (bNot b)).

16.2. Equivalence of while-do and repeat-until 187

Assumption.

Simpl; Apply notnot_I; Assumption.

Apply comp_E; Apply Comp_Ass_l; Assumption.

Qed.

Theorem Repeat2While : (c:C)(b:B)(p:P)

(w:U)(T w (box (repeat c b) p)) ->

(T w (box (comp c (while (bNot b) c)) p)).

Unfold while repeat; Intros; Apply Comp_Ass_r; Apply comp_I.

Apply K with p:=(box (test b) p).

Intros; Apply test_I; Intro; Apply test_E with b:=b.

Assumption.

Simpl in H0; Apply notnot_E; Assumption.

Apply comp_E; Apply Comp_Ass_l; Assumption.

Qed.

Theorem While2Repeat_total : (c:C)(b,b1:B)

(w:U)(T w (diam (comp c (while (bNot b) c)) (b2p b1))) ->

(T w (diam (repeat c b) (b2p b1))).

Unfold while repeat; Intros; Apply Comp_Ass_r_diam; Apply comp_I_diam.

Apply K_diam with p:=(diam (test (bNot (bNot b))) (b2p b1)).

Intros; Apply test_I_diam.

Cut (T w0 (b2p (bNot (bNot b)))).

Simpl; Intro; Apply notnot_E; Assumption.

Apply test_E1_diam with 1:=H0.

Apply test_E2_diam with 1:=H0.

Apply comp_E_diam; Apply Comp_Ass_l_diam; Assumption.

Qed.

Theorem Repeat2While_total : (c:C)(b,b1:B)

(w:U)(T w (diam (repeat c b) (b2p b1))) ->

(T w (diam (comp c (while (bNot b) c)) (b2p b1))).

Unfold while repeat; Intros; Apply Comp_Ass_r_diam; Apply comp_I_diam.

Apply K_diam with p:=(diam (test b) (b2p b1)).

Intros; Apply test_I_diam.

Simpl; Apply notnot_I; Apply test_E1_diam with 1:=H0.

Apply test_E2_diam with 1:=H0.

Apply comp_E_diam; Apply Comp_Ass_l_diam; Assumption.

Qed.

188 Chapter 16. The Implementation of NfDL and NDL

16.3 Derivation of Hoare Logic

Definition HT : U -> P -> C -> P -> Prop

:= [w:U][p:P][c:C][q:P](T w (Imp p (box c q))).

Theorem Ass_Rule : (p:P)(x:X)(t:Te)

(w:U)(HT w (box (ass x t) p) (ass x t) p).

Intros;Unfold HT; Apply imp_I; Intro; Assumption.

Qed.

Theorem If_Rule : (p,q:P)(b:B)(c,d:C)(w:U)

(HT w (And (b2p b) p) c q) ->

(HT w (And (Not (b2p b)) p) d q)

-> (HT w p (ifte b c d) q).

Unfold HT ifte; Intros.

Apply imp_I; Intro; Apply ndc_I; Apply comp_I; Apply test_I; Simpl; Intro.

Apply imp_E with (And (b2p b) p).

Assumption.

Apply and_I; Assumption.

Apply imp_E with (And (Not (b2p b)) p).

Assumption.

Apply and_I; Assumption.

Qed.

Theorem Comp_Rule : (p,q,r:P)(c,d:C)(w:U)

(HT w p c q) ->

((w1:U)(HT w1 q d r))

-> (HT w p (comp c d) r).

Unfold HT; Intros; Apply imp_I; Intro;

Apply comp_I; Apply K with p:=q; Intros.

Apply imp_E with p:=q; Auto.

Apply imp_E with p:=p; Assumption.

Qed.

Theorem Cons_Rule : (p,q,r,s:P)(c:C)(w:U)

(T w (Imp p q)) ->

(HT w q c r) ->

((w1:U)(T w1 (Imp r s)))

-> (HT w p c s).

Unfold HT; Intros; Apply imp_I; Intro; Apply K with p:=r; Intros.

Apply imp_E with p:=r; Auto.

Apply imp_E with p:=q; Auto.

Apply imp_E with p:=p; Auto.

Qed.

16.3. Derivation of Hoare Logic 189

Theorem Or_Rule : (p,q:P)(c,d:C)(w:U)

(HT w p c q) ->

(HT w p d q) ->

(HT w p (ndc c d) q).

Unfold HT; Intros; Apply imp_I; Intro; Apply ndc_I;

Apply imp_E with p:=p; Assumption.

Qed.

Theorem While_Rule : (p:P)(b:B)(c:C)(w:U)

((w1:U)(HT w1 (And p (b2p b)) c p)) ->

(HT w p (while b c) (And p (Not (b2p b)))).

Intros p b c w InvariantProperty.

Unfold HT while; Apply imp_I; Intro; Apply comp_I; Apply K with p:=p.

Intros; Apply test_I; Simpl; Intro; Apply and_I; Assumption.

Apply iter_I; Intro; Cut (T w p).

Generalize n w; Clear n H w.

Induction n; Intros; Simpl; Auto.

Apply comp_I; Apply test_I; Intro; Apply K with p:=p; Auto.

Cut (HT w (And p (b2p b)) c p).

Unfold HT.

Intro; Apply imp_E with p:=(And p (b2p b)); Auto.

Apply and_I; Auto.

Apply InvariantProperty.

Assumption.

Save.

Theorem WhileTermination_Rule : (p:Te -> P)(b:B)(c:C)

((w:U)(n:X)(T w (Imp (p (succ (isX n))) (b2p b)))) ->

((w:U)(n:X)(T w (Imp (p (succ (isX n))) (diam c (p (isX n)))))) ->

((w:U)(T w (Imp (p zero) (Not (b2p b))))) ->

(w:U)(n:X)(T w (Imp (p (isX n)) (diam (while b c) (p zero)))).

Intros; Unfold while; Apply imp_I; Intro; Apply comp_I_diam.

Apply K_diam with p:=(p zero).

Intros; Apply test_I_diam.

Apply imp_E with p:=(p zero); Auto.

Assumption.

Apply Conver with t:=(isX n); Auto.

Intros; Apply comp_I_diam; Apply test_I_diam;

Apply imp_E with p:=(p (succ (isX x))); Auto.

Qed.

Notice that the internalization in [AHMP92, Section 6.1], differently from the one here
presented, encodes the validity consequence relation and not the truth CR.

190 Chapter 16. The Implementation of NfDL and NDL

Chapter 17

The Implementation of µ-calculus

17.1 Implementation of syntax

(* Sets for actions, variables *)

Parameter Act : Set.

Parameter var : Set.

(* var is at least enumerable *)

Axiom var_nat : (Ex [srj:var->nat](n:nat)(Ex [x:var](srj x)=n)).

Lemma neverempty : (x:var)(Ex [y:var]~(x=y)).

(Elim var_nat;Intros srj H x;Elim (H (S (srj x)));Intros).

Exists x0.

Unfold not ;Intro.

(Absurd (eq ? (srj x0) (S (srj x)));Auto).

(Rewrite -> H1;Apply n_Sn).

Qed.

(* the set of preformulae, also not well formed *)

Inductive o : Set :=

ff : o

| Not : o -> o

| And : o -> o -> o

| Imp : o -> o -> o

| Box : Act -> o -> o

| Var : var -> o

| mu : (var->o) -> o.

Fixpoint isin [x:var;A:o] : Prop :=

<Prop>Case A of

False

[B:o](isin x B)

[A1,A2:o](isin x A1)\/(isin x A2)

191

192 Chapter 17. The Implementation of µ-calculus

[A1,A2:o](isin x A1)\/(isin x A2)

[a:Act][B:o](isin x B)

[y:var]x=y

[F:var->o](y:var)(isin x (F y))

end.

Fixpoint notin [x:var;A:o] : Prop :=

<Prop>Case A of

True

[B:o](notin x B)

[A1,A2:o](notin x A1)/\(notin x A2)

[A1,A2:o](notin x A1)/\(notin x A2)

[a:Act][B:o](notin x B)

[y:var]~(x=y)

[F:var->o](y:var)~(x=y) -> (notin x (F y))

end.

Fixpoint posin [x:var;A:o] : Prop :=

<Prop>Case A of

True

[B:o](negin x B)

[A1,A2:o](posin x A1)/\(posin x A2)

[A1,A2:o](negin x A1)/\(posin x A2)

[a:Act][A1:o](posin x A1)

[y:var]True

[F:var->o](y:var)~(x=y) -> (posin x (F y))

end

with negin [x:var;A:o] : Prop :=

<Prop>Case A of

True

[B:o](posin x B)

[A1,A2:o](negin x A1)/\(negin x A2)

[A1,A2:o](posin x A1)/\(negin x A2)

[a:Act][A1:o](negin x A1)

[y:var]~(x=y)

[F:var->o](y:var)~(x=y) -> (negin x (F y))

end.

Fixpoint iswf [A:o] : Prop :=

<Prop>Case A of

True

[A1:o](iswf A1)

[A1:o][A2:o](iswf A1)/\(iswf A2)

[A1:o][A2:o](iswf A1)/\(iswf A2)

[a:Act][A1:o](iswf A1)

[x:var]True

17.1. Implementation of syntax 193

[F:var->o](x:var)

((notin x (mu F)) -> (posin x (F x)))/\(iswf (F x))

end.

(* the set of well formed formuale *)

Record wfo : Set := mkwfo {

prp : o;

cnd : (iswf prp)

}.

(* now some results, relating isin, notin, posin, negin *)

(* separation: if x does not apper in A and y do, then x and y are

* not the same identifiers *)

Lemma separation : (x,y:var)(A:o)(notin x A) -> (isin y A) -> ~(x=y).

(Induction A;Intros;Simpl in H;Simpl in H0).

(* case ff *)

Contradiction.

(* case not *)

(Apply H;Assumption).

(* case and *)

(Elim H1;Elim H2;Intros).

(Apply H;Assumption).

(Apply H0;Assumption).

(* case imp *)

(Elim H1;Elim H2;Intros).

(Apply H;Assumption).

(Apply H0;Assumption).

(* case box *)

(Apply H;Assumption).

(* case var *)

(Rewrite H0;Assumption).

(* case mu *)

(Elim (neverempty x);Intros;Apply (H x0)).

Apply H0; Assumption.

Apply H1.

Qed.

(* an identifier which does not occurr,

* occurrs both positively and negatively *)

Lemma notin_posin_negin :

(x:var)(A:o)(notin x A) -> (posin x A)/\(negin x A).

(Induction A;Intros; Auto).

(Elim (H H0);Intros;Split;Assumption).

(Elim H1;Intros; Elim (H H2);Elim (H0 H3);Intros;Split;Simpl;Auto).

194 Chapter 17. The Implementation of µ-calculus

(Elim H1;Intros; Elim (H H2);Elim (H0 H3);Intros;Split;Simpl;Auto).

(Simpl;Auto).

(Simpl; Split; Intros; Elim (H y (H0 y H1)); Intros; Assumption).

Qed.

Lemma notin_posin : (x:var)(A:o)(notin x A) -> (posin x A).

(Intros; Apply proj1 with B:=(negin x A);

Apply notin_posin_negin; Assumption).

Qed.

Lemma notin_negin : (x:var)(A:o)(notin x A) -> (negin x A).

(Intros; Apply proj2 with A:=(posin x A);

Apply notin_posin_negin; Assumption).

Qed.

(* And now, as example, a formula in which we need the separation

lemma for proving its well-formness: (mu z.~x) *)

Variable x:var.

Lemma f1:wfo.

Apply (mkwfo (mu [z:var](Not (Var x)))).

(Simpl;Split;Auto).

(Intros;Apply separation with A:=(mu [z:var](Not (Var x))) ;Simpl;Auto).

Qed.

Transparent f1.

(* The "transparent" is needed in order to make unfoldable the pair

<prp,cnd> denoted by f1 - by default, lemmata are not transparent

(does not delta-reduce).

*)

(********************)

(* the substitution *)

(********************)

Inductive subst [A:o] : (var->o) -> o -> Prop :=

subst_ff : (subst A [x:var]ff ff)

| subst_not : (B:var->o)(C:o)

(subst A B C) ->

(subst A [x:var](Not (B x)) (Not C))

| subst_and : (B1,B2:var->o)(C1,C2:o)

(subst A B1 C1) -> (subst A B2 C2) ->

(subst A [x:var](And (B1 x) (B2 x)) (And C1 C2))

| subst_imp : (B1,B2:var->o)(C1,C2:o)

(subst A B1 C1) -> (subst A B2 C2) ->

17.2. Implementation of proof system 195

(subst A [x:var](Imp (B1 x) (B2 x)) (Imp C1 C2))

| subst_box : (a:Act)(B:var->o)(C:o)

(subst A B C) ->

(subst A [x:var](Box a (B x)) (Box a C))

| subst_xx : (subst A [x:var](Var x) A)

| subst_xy : (y:var)(subst A [x:var](Var y) (Var y))

| subst_mu : (B:var->var->o)(C:var->o)

((y:var)(subst A [x:var](B x y) (C y))) ->

(subst A [x:var](mu (B x)) (mu C)).

Hint subst_ff subst_not subst_and subst_imp

subst_box subst_xx subst_xy subst_mu.

(* a vacuous substitution has no effect *)

Lemma subst_not_free : (A,B:o)(subst A [x:var]B B).

Induction B; Intros.

Apply subst_ff.

Apply subst_not with B:=[x:var]o0; Assumption.

Apply subst_and with B1:=[x:var]o0 B2:=[x:var]o1; Assumption.

Apply subst_imp with B1:=[x:var]o0 B2:=[x:var]o1; Assumption.

Apply subst_box with B:=[x:var]o0; Assumption.

Apply subst_xy.

Apply subst_mu with B:=[x:var]o0; Assumption.

Qed.

(* example: (mu y.(x/\y))[x:=ff] = (mu y.(ff/\y)) *)

Goal (subst ff [x:var](mu [y:var](And (Var x) (Var y)))

(mu [y:var](And ff (Var y)))).

Apply subst_mu with B:=[x,y:var](And (Var x) (Var y)); Intro.

Apply subst_and with B1:=[x:var](Var x) B2:=[x:var](Var y) .

Apply subst_xx.

Apply subst_xy.

Qed.

17.2 Implementation of proof system

(* the universe, for the world technique *)

Parameter U:Set.

(* the proving judgement *)

Parameter T : U -> o -> Prop.

Section Proof_Rules.

Variable A,B:o.

196 Chapter 17. The Implementation of µ-calculus

Variable w:U.

(* proof rules operate also on non-well formed formulae, but for

having the soundness of the system, we need to require well-formness

of every discharged formula *)

Axiom ff_I : (T w A) -> (T w (Not A)) -> (T w ff).

Axiom Not_I : (iswf A) -> ((T w A) -> (T w ff)) -> (T w (Not A)).

Axiom RAA : (iswf A) -> ((T w (Not A)) -> (T w ff)) -> (T w A).

Axiom And_I : (T w A) -> (T w B) -> (T w (And A B)).

Axiom And_El : (T w (And A B)) -> (T w A).

Axiom And_Er : (T w (And A B)) -> (T w B).

Axiom Imp_I : (iswf A) -> ((T w A) -> (T w B)) -> (T w (Imp A B)).

Axiom Imp_E : (T w (Imp A B)) -> (T w A) -> (T w B).

Axiom Scott : (G:nat->o)(a:Act)

((w’:U)((n:nat)(T w’ (G n))) -> (T w’ A))

->

((n:nat)(T w (Box a (G n)))) -> (T w (Box a A)).

Axiom mu_I : (F:var->o)

((z:var)(notin z (mu F)) -> (Var z)=(mu F) -> (T w (F z)))

-> (T w (mu F)).

Axiom mu_E : (F:var->o)(iswf A) ->

((z:var)(notin z (mu F)) -> (Var z)=A ->

(w’:U)(T w’ (F z)) -> (T w’ A))

->

(T w (mu F)) -> (T w A).

End Proof_Rules.

Lemma ff_E : (A:o)(iswf A) -> (w:U)(T w ff) -> (T w A).

Intros; Apply RAA; Intros; Assumption.

Qed.

Lemma K : (A,B:o)(a:Act)(w:U)

((w’:U)(T w’ A) -> (T w’ B))

->

(T w (Box a A)) -> (T w (Box a B)).

Intros;Apply Scott with G:=[n:nat]A; Intros.

Apply H; Exact (H1 O).

Exact H0.

Qed.

17.3. An example of derivation 197

17.3 An example of derivation

(* An example *)

(* A <-> mu x.((not A) => x) *)

Lemma ex1 : (A:wfo)(w:U)

(T w (prp A)) <-> (T w (mu [x:var](Imp (Not (prp A)) (Var x)))).

(Intros;Split;Intro).

(* -> *)

Apply mu_I; Intros; Apply Imp_I;Intros.

(* Here we have the first test of well formness - but this is easy *)

Exact (cnd A).

(* Then we can go on *)

Rewrite H1. (* this is the key of the substution *)

Apply ff_E.

(* Here we are with the second test *)

Split.

(Intro;Split).

(* now we are facing a huge and painful term - but don’t worry *)

Apply notin_posin.

(Elim (neverempty x);Intros).

(Apply proj1 with B:=(not (eq ? x x0)) ;Simpl in H3;Apply H3;Assumption).

(Simpl; Trivial).

Split.

Exact (cnd A).

Simpl; Trivial.

(* oh well, now we can go on *)

(Apply ff_I with A:=(prp A) ;Assumption).

(* <- : the goal is as follows:

A : wfo

w : U

H : (T w (mu [x:var](Imp (Not (prp A)) (Var x))))

============================

(T w (prp A))

*)

Apply mu_E with F:=[x:var](Imp (Not (prp A)) (Var x)); Intros.

(* now we have the third test - it is easy *)

Exact (cnd A). (* and it’s over *)

(* and now we can go on -

the first goal does not depend on w and assumption H any more:

A : wfo

w : U

H : (T w (mu [x:var](Imp (Not (prp A)) (Var x))))

z : var

198 Chapter 17. The Implementation of µ-calculus

H0 : (notin z (mu [x:var](Imp (Not (prp A)) (Var x))))

H1 : (Var z)=(prp A)

w’ : U

H2 : (T w’ (Imp (Not (prp A)) (Var z)))

============================

(T w’ (prp A))

so we can drop them *)

Clear H w.

(* now we have completely changed the sequent:

A : wfo

z : var

H0 : (notin z (mu [x:var](Imp (Not (prp A)) (Var x))))

H1 : (Var z)=(prp A)

w’ : U

H2 : (T w’ (Imp (Not (prp A)) (Var z)))

============================

(T w’ (prp A))

*)

Apply RAA;Intros.

(* now we have the last check *)

Exact (cnd A).

(* and now we can complete the proof *)

Apply ff_I with A:=(prp A).

Rewrite <- H1.

Apply Imp_E with A:=(Not (prp A)); Assumption.

Assumption.

Assumption.

Qed.

Chapter 18

Conclusions and Future Work

In this thesis, we have investigated the formalization of logical theories of languages and
programs, in Logical Frameworks based on Type Theories.

Although very successful in dealing with “purely logical” systems, the “standard”
representation paradigm of Logical Framework does not apply satisfactorly to formal sys-
tems for proving properties of programs. These systems often present many idiosyncrasies
which escape the standard paradigm, such as negative formulæ constructors, non-standard
notions of instantiation and substitution, context-sensitive grammars, typing systems, in-
finitary formulæ, subsorting, equivalence theories of expressions, infinitary rules, impure
rules, and so on.

The solution proposed in this thesis is that, in order to get the best result, one has
to take into account the characteristics both of the Framework (meta system) and of
the object system. As far as Logical Frameworks are concerned, we need to develop and
investigate new efficient representation techniques, taking as much advantage as possible of
the structural features of the metalanguage. Moreover, the metalogical features of Logical
Frameworks have also a retrospective effect on the design of new representations of the
formal systems themselves. This reformulation process could involve both the syntactic
and the deductive part of the formal system. Often, the conceptual understanding yielded
by the encoding methodology suggests new systems in Natural Deduction style, which
simplify both the encoding process and the subsequent usage.

The proposed methodology has been described and tested through the presentation of
a rich variety of logical systems: Structured and Natural Operational Semantics, Modal
Logics, Dynamic Logics, µ-calculus. Each of these paradigmatical examples presents dis-
tinctive features whose formal representation in Logical Framework is problematic. In
each case, we have proposed, discussed and proved correct, one or several solutions; in
this venture, we have faced many issues regarding both the metatheory and the formal
representation, in Logical Frameworks, of these logical systems. In many cases, genuinely
new formal systems, in Natural Deduction style, have been introduced. At the metalogical
level, we generalize and combine the concept of consequence relation introduced by Avron
and Aczel, in order to handle schematic and multiple consequences.

We focused on a particular Logical Frameworks, namely the Calculus of Inductive
Constructions originated by Coquand and Huet, and its implementation, Coq, developed
at the INRIA and the ENS-Lyon. The investigation carried out in this thesis shows the
wide applicability of this framework, following the proposed methodology. However, this

199

200 Chapter 18. Conclusions and Future Work

research has pointed out also some limitations of existing Logical Frameworks, in relation
with the encoding of program logics; our analysis could be therefore the starting point for
further improvements of these metalanguages.

This work would serve as a guide and reference to future users of Logical Frameworks.

18.1 A more detailed overview

Although it is difficult to convey the great deal of details, techniques, problems and solu-
tions which have arisen along this thesis, we briefly recall the main results.

On the metalogical level, we have focused on the notion of Consequence Relation as
semantic counterpart of logical systems (Chapter 3). In order to capture correctly the
proof systems presented in this thesis, we have generalized and combined the notions of
simple consequence relation introduced by Avron and Aczel. We care both of schematic
(i.e. closed under complex notions of substitution) and of multiple (i.e. describing several
judgements at once) consequences, in a Natural Deduction setting.

On the logical level, we have investigated Natural Deduction style presentations for
many logical theories of programs: Structured and Natural Operational Semantics (Chap-
ter 4), Modal Logics (Chapter 5), Propositional and First-Order Dynamic Logic (Chapters
6, 7), Hoare Logic (chapter 8) and the µ-calculus (Chapter 9). This made us to face several
subtleties, peculiar to program logics, such as complex notions of substitutions, clashing
between logical variables and program variables, recursive formulæ constructors, context-
sensitive grammars, modalities, infinitary rules.

We tried to take full advantage of the Natural Deduction style, in order to simplify
the subsequent encodings and usage. This metalogical analysis has suggested new pre-
sentations of object logics, employing new general techniques based on features of the
metalanguage (such as the bookkeeping technique for representing environmental informa-
tions, or infinitary systems for Dynamic Logics). We have proved the completeness of these
systems, with respect to the corresponding consequence relation. We have also addressed
possible uses (e.g., proving equivalence of programs), and metatheoretic properties (such
as proof-theory) of these new proof systems

On the level of formal representation, we have investigated the encoding of the
systems previously introduced, in type-theory based Logical Frameworks, such as the
Edinburgh LF and the CIC. In this venture, we faced the representation of problematic
features of the object logics, such as binding operators (α-equivalence) with non-standard
notions of substitutions, context-sensitive grammars, modal and infinitary rules (Part III).
We studied when and how much of these aspects can be delegated to the metalanguage
features.

We have investigated the trade-offs between first-order and higher-order abstract syn-
tax approaches, in relation with inductive definitions. Moreover, we have proposed a
slight generalization of CIC inductive definitions which would allow to capture faithfully
and naturally a larger class of languages (e.g., context-sensitive grammars) (Chapter 11).

18.2. Future Work 201

Issue Theory LF Reference(s)

Polyadic operators UNITY CIC [Add94]
π-calculus CIC [Sca97]

Polymorphism Damas-Milner calculus ELF [Har90]
Reflection principle PTS theory ECC [MP93]
Explicit substitutions λσ CIC [Säı96]
Coinductive datatypes CCS, process algebræ CIC [Fel96, Gim95]

Figure 18.1: Some other complex issues not faced in this thesis.

We have presented a methodology for encoding general transition systems, specified by
means of Structural or Natural Operational Semantics. In particular, we have described
the implementation of the bookkeeping technique, previously introduced (Chapter 12).

Furthermore, we have introduced and experimented several new techniques for encod-
ing modal and infinitary rules (Chapters 13, 14)

At the pragmatical level, we have experimented with the proposed encoding, by
implementing the encodings of Propositional and First-Order Dynamic Logics, and of the
µ-calculus, in the Coq system (Chapters 16, 17). Within these implementations, we have
carried out some experiments, such as the formal derivation of Hoare Logic in DL, and
the proof of some simple program equivalence.

In these implementations, we have taken advantage of the pragmatic features provided
by Coq, such as automated resolution and conversion tactics. This work has pointed out
the flexibility and suitability of the Coq proof environment, in reasoning about properties
of programs.

18.2 Future Work

There are so many program logics, and so many formal systems for reasoning on program
behaviours, that probably it is impossible to capture every problem one may encounter in
view of the specification of a logical theory of programs. In this section we outline some
directions for further developments of the subject of this thesis.

18.2.1 Other systems and problematic issues

There are still many problematic issues on program logics, which are not discussed in this
thesis. In Figure 18.1 we give a (non-exhaustive) list of some references for some of these
problems.

Polyadic bindings are common in many process algebræ, such as the polyadic π-
calculus, the polyadic CCS and the UNITY formalism. Their implementation is not
immediate, since the metalanguage features only a monadic binding operator (the λ).

Moreover, typing systems of real languages are usually much more complex than PTS’s.
We have already seen that subsorting is poorly handled by Logical Framework (Section
11.4.4). Other complex features are polymorphic and overloaded types.

Another interesting toping which deserves further investigations is the representation
of infinite or circular objects, via coinductive definitions. In fact, the CIC provides also

202 Chapter 18. Conclusions and Future Work

coinductive definitions, which can be fruitfully used in representing “infinite terms” such
as streams or infinite computations.

18.2.2 Proof theory

The introduction of genuinely new proof systems, in Natural Deduction style, for program
logics (such as, e.g., those for Dynamic Logics, or the µ-calculus) raises many proof-
theoretic issues. Although not strictly related to our work, an investigation of proof-
theoretic properties of the Natural Deduction systems could yield quite interesting syn-
tactic proofs of significant properties.

18.2.3 Case studies

Many interesting case studies can be carried out on the logics presented and encoded in
this thesis. For instance, one can prove formally the correctness of simple programs by
using the encoding of Dynamic Logics.

A more interesting case study could be proving the correctness of an interpreter, by
means of Dynamic Logic. This can be achieved in three steps:

1. give the NOS semantics for a functional language with regular programs; for instance,
the evaluation of an expression M after executing a program c is represented by a
proof of ` (do c result M) ⇓ m.

2. give the Dynamic Logic, where first-order terms are expressions.

3. prove formally its correctness, by proving a statement similar to the following

Conjecture 18.1 ` do c result M ⇓ m ⇒ ` [c](M = m)

This property should be provable by induction on the proof of ` do c result M ⇓ m;
hence, the NOS should be given by using an Inductive definition.

18.2.4 Front-end interfaces

In carrying out derivations in our encoding, we have experienced the limited interactivity
offered by the raw Coq implementation. Therefore, a user-friendly front-end interface
is highly advisable. An interesting and flexible front-end interface for Coq, the CtCoq,
has been developed by the CROAP group at the INRIA-Sophia Antipolis [BB96]. An
interesting research should be the investigation of how CtCoq can be fruitfully employed
in proving properties of the systems presented in this thesis.

18.2.5 Denotational Semantics

In this thesis, we have not faced the formal representation and implementation of de-
notational specifications. There are two main lines of research about the encoding of
Denotational Semantics.

The first approach (classical) is to encode directly the theory of cpo’s, and reason
formally about it. There are several works along this direction, starting from the LCF

18.2. Future Work 203

experience. This work has begun, at some extent, by Gilles Kahn, in order to to certify
the paper [KP93a]; with the help of Gérard Huet, Kahn has completed the development
of part of set theory, and has since begun a development of group theory. Aczel encoded
Category Theory in Coq. A different work has been done by Cenciarelli, in encoding
Moggi’s Modular Semantics in LEGO [Cen94].

The second approach (constructive) is to give a logical and finitary presentation to
domains, and implement the resulting logic. This is possible by means of Scott’s informa-
tions systems [Sco82, Abr87, EHR92, CDHL82], but usually the resulting system is not
natural nor user-friendly.

204 Chapter 18. Conclusions and Future Work

Appendix A

Semantics of LP , LD, LMF
, and

LMI

A.1 Rules for the NOS

A.1.1 NOS of LP

Rules for judgement ⇒

For the meaning of EC(·, ·, ·), see Section
4.2.2. For typographical reasons, lambda
will be sometimes abbreviated with λ and
[〈〉|C]N with [C]N .

(x′ ⇒ n)
...

value n M ′ ⇒ m′

[n/x]M ⇒ m
EC(x,M,m) (A.1)

value m

m⇒ m
(A.2)

N ⇒ n [n/x]M ⇒ m

let x = N in M ⇒ m
(A.3)

(closed x)
...

closed M

lambda x.M ⇒ lambda x.M
(A.4)

(closed y)
...

y ⇒ n lambda x.M ⇒ m

lambda x.M ⇒ [n/y]m
(A.5)

M ⇒ m N ⇒ n m · n⇒ p

MN ⇒ p
(A.6)

[n/x]M ⇒ p

(lambda x.M) · n⇒ p
(A.7)

value n [m′/x](m · n) ⇒ p

([m′/x]m) · n⇒ p
(A.8)

value n

(plus · 0) · n⇒ n
(A.9)

(plus ·m) · n⇒ p

(plus · (succ ·m)) · n⇒ succ · p
(A.10)

letf = (lambdax.letrec
f(x) = N inN) inM ⇒ p

letrec f(x) = N in M ⇒ p
(A.11)

M ⇒ m N ⇒ n

M :: N ⇒ m :: n
(A.12)

value m

hd · (m :: n) ⇒ m
(A.13)

value n

tl · (m :: n) ⇒ n
(A.14)

D � I free C I [D|C]N ⇒ n

[on D do C]N ⇒ n
(A.15)

M ⇒ m [m/x]([D|C]N) ⇒ n

[x = M ;D|C]N ⇒ n
(A.16)

N ⇒ n [n/x]M ⇒ m

[x := N]M ⇒ m
(A.17)

[C]([D]M) ⇒ m

[C;D]M ⇒ m
(A.18)

205

206 Appendix A. Semantics of LP , LD, LMF
, and LMI

M ⇒ true [C]N ⇒ n

[if M then C else D]N ⇒ n
(A.19)

M ⇒ false [D]N ⇒ n

[if M then C else D]N ⇒ n
(A.20)

M ⇒ true
[C]([while M do C]N) ⇒ n

[while M do C]N ⇒ n
(A.21)

M ⇒ false N ⇒ n

[while M do C]N ⇒ n
(A.22)

N ⇒ n [[n/x]cC]M ⇒ m

[begin new x = N ; C end]M ⇒ m
(A.23)

(x′ ⇒ n)
...

value n [C ′]M ⇒ m′

[[n/x]cC]M ⇒ m
EC(x,C,m) (A.24)

value n

(≤ ·0) · n⇒ true
(A.25)

value n

(≤ ·(succ · n)) · 0 ⇒ false
(A.26)

(≤ ·n) ·m⇒ p

(≤ ·(succ · n)) · (succ ·m) ⇒ p
(A.27)

[[lambda x, y.C/P]pcD]M ⇒ m

[procedure P (x, y) = C in D]M ⇒ m
(A.28)

(P ′ ⇒p λx, y.C)
...

freec C (x, y) [D′]M ⇒ m′

[[λx, y.C/P]pcD]M ⇒ m
EC(P,D,m)

(A.29)

P ⇒ λx, y.C M ⇒ m z ⇒ p
[p/x][m/y][C]x⇒ v [v/z]N ⇒ n

[P (z,M)]N ⇒ n
(A.30)

(closed P)

free C (x, y)
...

P ⇒p λx, y.C λz.M ⇒ m

λz.M ⇒ [λx, y.C/P]pem
(A.31)

value n [Q/P]pe(m · n) ⇒ p

([Q/P]pem) · n⇒ p
(A.32)

(P ′ ⇒p Q)
...

freec C (x, y) M ′ ⇒ m′

[λx, y.C/P]peM ⇒ m
EC(P,M,m)

(A.33)

Rules for judgement value

value m
m is a constant (A.34)

M ⇒ m

value m
(A.35)

Rules for judgement �

〈〉� nil
(A.36)

Dl � I

x = M ;Dl � x :: I
(A.37)

Rules for judgement closed

closed m
m is a constant (A.38)

closed M closed N

closed(MN)
(A.39)

closed m closed n

closed(m · n)
(A.40)

(closed x)
...

closed N closed M

closed(let x = N in M)
(A.41)

(closed f, closed x) (closed f)
...

...
closed N closed M

closed(letrec f(x) = N in M)
(A.42)

(closed x)
...

closed M

closed(lambda x.M)
(A.43)

(closed x)
...

closed n closed M

closed([n/x]M)
(A.44)

A.1. Rules for the NOS 207

closed m closed n

closed(m :: n)
(A.45)

D � I free C I closed [D|nop]M

closed [on D do C]M
(A.46)

closed M

closed [〈〉|nop]M
(A.47)

(closed x)
...

closed N closed [R|nop]M

closed [x = N ;R|nop]M
(A.48)

(closedp P)
...

free C (x, y) closed M

closed [lambdax, y.C/P]peM
(A.49)

Rules for judgement free

free x (x,m)
(A.50)

free x m

free x (y,m)
(A.51)

free M m free N m

free (M N) m
(A.52)

free M m free N x :: m

free (letx = M inN) m
(A.53)

free M x :: m

free (lambdax.M) m
(A.54)

free M m free N m

free (M ·N) m
(A.55)

free M m free N m

free (M :: N) m
(A.56)

free n m free M x :: m

free ([n/x]M) m
(A.57)

free C (x, y,m)

(closedp P)
...

free M m

free ([lambdax, y.C/P]M) m
(A.58)

free C m free M m

free ([C]M) m
(A.59)

free C m free D m

free (C;D) m
(A.60)

free M m free C m free D m

free (ifM thenC elseD) m
(A.61)

free M m free C m

free (whileM doC) m
(A.62)

free M m free C x :: m

free (begin newx = M ;C end) m
(A.63)

free C (x, y,m)

(closedp P)
...

free D m

free (procP (x, y) = C inD) m
(A.64)

closedp(P) free x m free M m

free (P (x,M)) m
(A.65)

free n m free C x :: m

free ([n/x]C) m
(A.66)

free C (x, y,m)

(closedp P)
...

free D m

free ([lambdax, y.C/P]D) m
(A.67)

A.1.2 NOS of LD

Rules for judgement ⇒

R⇒d r {r}M ⇒ m

let R in M ⇒ m
(A.68)

M ⇒ m

{nil}M ⇒ m
(A.69)

[n/x]M ⇒ m

{x 7→ n}M ⇒ m
(A.70)

{r}({s}M) ⇒ m

{r :: s}M ⇒ m
(A.71)

Rules for judgement ⇒d

(x′ ⇒ n)
...

value n R′ ⇒d m

[n/x]dR⇒d m
EC(x, n,R,m) (A.72)

208 Appendix A. Semantics of LP , LD, LMF
, and LMI

M ⇒ m

x = M ⇒d x 7→ m
(A.73)

R⇒d r S ⇒d s

R andS ⇒d r :: s
(A.74)

R⇒d r {r}dS ⇒d s

R;S ⇒d r :: s
(A.75)

R⇒d r

{nil}dR⇒d r
(A.76)

[n/x]dR⇒d r

{x 7→ n}dR⇒d r
(A.77)

{r}d({s}dR) ⇒d r

{r :: s}dR⇒d r
(A.78)

Rules for judgement closed

closed M

closed {nil}M
(A.79)

closed [n/x]M

closed {x 7→ n}M
(A.80)

closed {r}{s}M

closed {r :: s}M
(A.81)

closed m

closed x 7→ m
(A.82)

R� m closed 〈m〉M

closed(let R in M)
(A.83)

(closed x)
...

closed M

closed 〈x〉M
(A.84)

closed 〈m〉(〈n〉M)

closed 〈m :: n〉M
(A.85)

Rules for judgement �

〈〉 � nil
(A.86)

R� m S � n

R andS � m :: n
(A.87)

(closed x)
...

closed M R� n

x = M ;R� x :: n
(A.88)

A.1.3 NOS of LMF

Rules for judgement ⇒

struct end ⇒ nil
(A.89)

M ⇒ m [m/x]structBstr ⇒ l

structx = M Bstr ⇒ (x 7→ m, l)
(A.90)

M ⇒ m N ⇒ t proj m (t) n

M : N ⇒ n
(A.91)

u⇒ m (x 7→ p) in m

u.x⇒ p
(A.92)

u⇒ l {l}M ⇒ m

open u inM ⇒ m
(A.93)

M ⇒ m u⇒ l
upd l x m l′ [u := l′]N ⇒ n

[u.x := M]N ⇒ n
(A.94)

Rules for judgement value

value(sigBsig)
(A.95)

Rules for judgement closed

closed sigBsig
(A.96)

closed M closed N

closed M : N
(A.97)

closed struct end
(A.98)

(closed x)
...

closed M closed(structBstr)

closed(structx = M Bstr)
(A.99)

closed u

closed u.x
(A.100)

closed u closed M

closed(open u inM)
(A.101)

A.1. Rules for the NOS 209

Rules for judgements in, proj, upd

m in (m :: l)
(A.102)

m in l

m in (p :: l)
(A.103)

proj l (sig end) nil
(A.104)

(x 7→ m) in l proj l (sigBsig) l
′

proj l (sigx Bsig) (x 7→ m, l′)
(A.105)

upd (x 7→ n, l) x m (x 7→ m, l)
(A.106)

upd l x m l′

upd (y 7→ n, l) x m (y 7→ n, l′)
x 6= y

(A.107)

A.1.4 NOS of LMI

Rules for judgement closed

closed T

closed T.f
(A.108)

Rules for judgement �

(closed T)
...

R� I

[p/T]mR� I
(A.109)

Rules for judgement free

free R m free M m

free R.P (M)
(A.110)

free R m

free R.f m
(A.111)

free p m free N (R,m)

free [p/R]mN m
(A.112)

210 Appendix A. Semantics of LP , LD, LMF
, and LMI

free M m free C (x, y) free N (x) free D (R,m)

free (module R is x = M ; proc P (y) = C; func f = N in D) m
(A.113)

Rules for judgement ⇒

M ⇒ m free C (x, y) free N (x)

R′ ⇒m (m,R′)
(R′, P) ⇒mp λx, y.C
(R′, f) ⇒mf λx.N

...
[D′]N ⇒ n′

[module R is x = M1; proc P (y) = C; func f = M2in D]N ⇒ n
EC(R,D,m) (A.114)

R⇒m (p,R′) (R′, P) ⇒mp lambda x, y.C
M ⇒ m [p/x][m/y][C]x⇒ p′ [p′/R]mN ⇒ n

[R.P (M)]N ⇒ n
(A.115)

(R′ ⇒m (p, T))
...

value p R⇒m (, T) N ′ ⇒ n′

[p/R]mN ⇒ n
EC(R,N, n) (A.116)

R⇒m (p, T) (T, f) ⇒mf lambda x.M [p/x]M ⇒ m

R.f ⇒ m
(A.117)

A.2 Denotational semantics

A.2.1 Denotational semantics of LP

Semantic domains

V = (N + Truth + U + P + F)>⊥
N = Nat (the domain of natural numbers)

Truth = (the domain of truth values)
U = Unit (the one-element domain)

P = V×V
F = V → V

Env = ((Id → V)× (ProcId → Q))>

Q = (Id → V → Env → Env)>

Operators

newenv = (λx.>, λp.>) : Env
update = λx.λn.λ(ρv, ρp).([x 7→ n]ρv, ρp) : Id → V → Env → Env
access = λx.λ(ρv, ρp).ρv(x) : Id → Env → V
procupdate = λp.λq.λ(ρv, ρp).(ρv, [p 7→ q]ρp) : ProcId → Q → Env → Env
procaccess = λp.λ(ρv, ρp).ρp(p) : ProcId → Env → Q
overlay = λρ1.λρ2.λx.ifis>(ρ2(x)) → ρ1(x) [] ρ2(x) : Env → Env → Env

A.2. Denotational semantics 211

Semantic functions

E : Expr → Env → V
C : Commands → Env → Env

D : Decl → Env → Env
Q : Proc → Env → Q

E [[x]] = λρ.access [[x]]ρ E [[0]] = λρ.inN (zero) E [[nil]] = λρ.inU()

E [[true]] = λρ.inTruth(true) E [[false]] = λρ.inTruth(false)

E [[let x = M in N]] = λρ.let v = E [[M]]ρ in E [[N]](update [[x]] v ρ)

E [[letrec f(x) = M in N]] = λρ.let g = fix (λg.λv.E [[M]](update [[f]] g ρ)) in
E [[N]](update [[f]] g ρ)

E [[lambdax.M]] = λρ.inF(λv.E [[M]](update [[x]] v ρ))

E [[M N]] = λρ.cases E [[M]]ρ of isF(f) → f(E [[N]]ρ)[]>end

E [[M :: N]] = λρ.let v1 = E [[M]]ρ in let v2 = E [[N]]ρ in inP((v1, v2))

E [[[m/x]N]] = λρ.let v = E [[m]]ρ in E [[N]](update [[x]] v ρ)

E [[m · n]] = λρ.cases E [[m]] ofisF(f) → f(E [[n]]ρ)[]>end

E [[[on x = M do C]N]] = λρ.if(maxfree [[C]](x)) → C[[C]](D[[x = M]]ρ)[]>

where maxfree : Commands → Id∗ → Truth; the meaning of “maxfree [[C]] s = true” is
simply “every free identifier of C is in s”. maxfree is trivially defined on the syntactic
structure of commands; we omit its definition.

D[[〈〉]] = λρ.newenv

D[[x = M ;R]] = λρ.let v = E [[M]]ρ in
let τ = D[[R]](update [[x]] v ρ) in

overlay τ (update [[x]] v newenv)

D[[[n/x]dR]] = λρ.let v = E [[n]]ρ in D[[R]](update [[x]] v ρ)

C[[x := M]] = λρ.let v = E [[M]]ρ in update [[x]] v ρ

C[[while M do C]] = fix (F)

where F : (Env → Env) → (Env → Env)
F = λf.λρ.cases E [[M]]ρ of

isTruth(t) → ift→ f(C[[C]]ρ) [] ρ
[]>

end

C[[begin new x = M ; C end]] = λρ.let ρ′ = update [[x]] (E [[M]]ρ) ρ in
let ρ′′ = C[[C]]ρ′ in

update [[x]] (access [[x]] ρ) ρ′′

C[[procedure P (x, y) = C in D]] =
λρ.let ρ′ = procupdate [[P]] (Q[[lambdax, y.C]]ρ) ρ in

let ρ′′ = C[[D]]ρ′ in
procupdate [[P]] (procaccess [[P]] ρ) ρ′′

212 Appendix A. Semantics of LP , LD, LMF
, and LMI

C[[P (x,M)]] = λρ.let v = E [[M]]ρ in ((procaccess [[P]] ρ) [[x]] v ρ)

Q[[lambdax, y.C]] = λρ.ifmaxfree [[C]] ([[x]], [[y]])emptysign)) →
λi.λvy.λτ.let vx = (access i τ) in

let ρ′ = C[[C]](update [[y]] vy (update [[x]] vx ρ)) in
update i (access [[x]] ρ′) τ

[]>

E [[[Q/P]peM]] = λρ.E [[M]](procupdate [[P]] Q[[Q]]ρ ρ)

A.2.2 Denotational semantics of LD

Semantic functions

O : SyntEnvir → Env → Env E [[let R in N]] = λρ.E [[N]](overlay (D[[R]]ρ) ρ)

E [[{r}M]] = λρ.E [[M]](O[[r]]ρ) = E [[M]] ◦ O[[r]]

D[[R andS]] = λρ.overlay (D[[S]]ρ) (D[[R]]ρ)

O[[x 7→ n]] = λρ.update (E [[n]]ρ) ρ

O[[r :: s]] = O[[s]] ◦ O[[r]]

A.2.3 Denotational semantics of LMF

Semantic domains

V = (N + U + P + F + B + S)>⊥
U = Unit
P = V×V
F = V → V

B = Id×V
S = Id∗ = ES + CS

ES = Unit
CS = Id× S

Operators

emptystruct = inU() : V
consstruct = λx.λv.λc.inP(inB([[x]], v), c) : Id → V → V → V
emptysign = inES() : V
conssign = λi.λt.inCS((i, t)) : Id → S → S
accessstruct = see below : Id → V → V
applystruct = see below : V → Env → Env
projection = see below : V → S → V
longupdate = see below : LongId → V → Env → Env

projection = λs.λt.cases t of
isES() → inU()
[] isCS(i, t′) →

let v = accessstruct i s in
let s′ = projection s t′ in consstruct i v s′

end

A.2. Denotational semantics 213

Semantic functions

E [[structend]] = λρ.emptystruct

E [[x 7→ n]] = λρ.let v = E [[n]]ρ in inB([[x]], v)

E [[structx = M Bstr]] = λρ.let v1 = E [[M]]ρ in
let v2 = E [[structBstr]](update [[x]] v1 ρ) in

consstruct [[x]] v1 v2

E [[sigend]] = λρ.inS(emptysign)

E [[sigx Bsig]] = λρ.cases E [[sigBsig]]ρ of
isS(s) → inS(conssig [[x]] s)
[]>

end

E [[M : N]] = λρ.let s = E [[M]]ρ in
cases E [[N]]ρ of

isS(t) → projection s t
[]>

end

E [[open u inM]] = λρ.let s = E [[u]]ρ in E [[M]](applystruct s ρ)

E [[u.x]] = λρ.accessstruct [[x]] (E [[u]]ρ)

A.2.4 Denotational semantics of LMI

Semantic domains

Env = (IM× PM×MM)>

IM = Id → V
PM = ProcId → Q

Q = (Id → V → Env → Env)>

MM = ModId → M
M = (V×QM × FM)>

QM = V → V → V
FM = V → V = F

Operators

newenv = (λx.>, λp.>, λr.>) : Env
update = λx.λn.λ(ρv, ρp, ρm).([x 7→ n]ρv, ρp, ρm) : Id → V → Env → Env
access = λx.λ(ρv, ρp, ρm).ρv(x) : Id → Env → V
procupdate = λp.λq.λ(ρv, ρp, ρm).(ρv, [p 7→ q]ρp, ρm) : ProcId → Q → Env → Env
procaccess = λp.λ(ρv, ρp, ρm).ρp(p) : ProcId → Env → Q
modupdate = λr.λq.λ(ρv, ρp, ρm).(ρv, ρp, [r 7→ m]ρm) : ProcId → Q → Env → Env
modaccess = λr.λ(ρv, ρp, ρm).ρm(r) : ProcId → Env → Q

Semantic functions

C[[module R is x = M ; proc P (y) = C; func f = N in D]] =

λρ.ifmaxfree [[C]] (conssign [[x]] (conssign [[y]]emptysign)) →

214 Appendix A. Semantics of LP , LD, LMF
, and LMI

ifmaxfree [[N]] (conssign [[x]] emptysign) →

let m = E [[M]]ρ in

let q = λvx.λvy.access [[x]] C[[C]](update [[y]] vy (update [[x]] vx ρ)) in

let g = λvx.E [[N]](update [[x]] vx ρ) in

let ρ′ = modupdate [[R]] (m, q, g) ρ in

modupdate [[R]] (modaccess [[R]] ρ) C[[D]]ρ′

[]>

[]>

C[[R.P (M)]] = λρ.let (n, q, g) = modaccess [[R]] ρ in
let n′ = q n (E [[M]]ρ) in

modupdate [[R]] (n′, q, g) ρ

E [[R.f]] = λρ.let (n, q, g) = modaccess [[R]] ρ in (g n)

E [[[n/R]mM]] = λρ.let (, q, g) = modaccess [[R]] ρ in
let m′ = E [[n]]ρ in E [[M]](modupdate [[R]] (m′, q, g) ρ)

Appendix B

Proof of completeness of infinitary
systems for Dynamic Logics

B.1 Proof of the Model Existence Lemma for First-Order
Dynamic Logic

Let us recall the statement:

For A set of formulæ, if A 6` ff then A is satisfiable.

The proof is an adaptation of an Henkin-like argument for infinitary logics, such as
Lω1ω [Har84]. In particular, we have to modify suitably the notions of atoms and subfor-
mula closures. Atoms are (possibly infinite) consistent sets of formulæ, while subformulæ
are defined á la Fischer-Ladner, but with a different, infinitary treatment of the case of
iteration: any finite iteration [cn]ϕ, for n ∈ N , is a subformula of [c∗]ϕ.

It is easier to adopt the “diamond” modal connective, in place of the “box”. Therefore,
in the rest of this chapter we will take 〈c〉ϕ as primitive, while [c]ϕ is derived. The rules for
〈c〉ϕ are in Figure B.1. It is easy to prove that the rules for “diamond” and those for “box”
are derivable/ammissible from each other, of course. Although the rules for assignment
are truly Natural Deduction style, their side conditions are more easily described in linear
(sequent-like) form:

:=-I
Γ, y = t ` ϕ[y/x]

Γ ` 〈x := t〉ϕ
y 6∈ FV(Γ, ϕ, t)

:=-E
Γ1 ` 〈x := t〉ϕ Γ2, ϕ[y/x], y = t ` ψ

Γ1,Γ2 ` ψ
y 6∈ FV(Γ2, ϕ, ψ, t)

Notice that also this version of NDL is infinitary, but the infinitary rule is now the
elimination of iteration.

Definition B.1 (Subformula) Let ϕ ∈ Φ a formula of DL. The set of subformulæ of
ϕ is the least sub(ϕ) ⊆ Φ such that the following closure properties hold:

1. ϕ ∈ sub(ϕ);

215

216 Appendix B. Proof of completeness of infinitary systems for Dynamic Logics

:=-I

(y = t)
...

ϕ[y/x]

〈x := t〉ϕ
y fresh :=-E

(ϕ[y/x], y = t)
...

〈x := t〉ϕ ψ

Γ1,Γ2 ` ψ
y fresh

;-I
〈c1〉 〈c2〉ϕ

〈c1; c2〉ϕ
;-E

〈c1; c2〉ϕ

〈c1〉 〈c2〉ϕ

?-I
b ϕ

〈b?〉ϕ
?-El

〈b?〉ϕ

b
?-Er

〈b?〉ϕ

ϕ

+-I
〈ci〉ϕ

〈c1 + c2〉ϕ
i = 1, 2 +-E

(〈c1〉ϕ) (〈c2〉ϕ)
...

...
〈c1 + c2〉ϕ ψ ψ

ψ

∗-I
〈c〉n ϕ

〈c∗〉ϕ
n ∈ N ∗-E

(ϕ) (〈c〉n ϕ)
... . . .

... . . .
〈c∗〉ϕ ψ ψ

c∗ϕ

where 〈c〉0 ϕ
def
= ϕ 〈c〉n+1 ϕ

def
= 〈c〉 〈c〉n ϕ

Figure B.1: The rules for the 〈·〉 · connective.

2. ¬ψ ∈ sub(ϕ) ⇒ ψ ∈ sub(ϕ);

3. ψ1 ∧ ψ2 ∈ sub(ϕ) ⇒ ψ1, ψ2 ∈ sub(ϕ);

4. ψ1 ⊃ ψ2 ∈ sub(ϕ) ⇒ ψ1, ψ2 ∈ sub(ϕ);

5. (∀xψ) ∈ sub(ϕ) ⇒ ψ ∈ sub(ϕ);

6. 〈x := t〉ψ ∈ sub(ϕ) ⇒ ψ ∈ sub(ϕ);

7. 〈c1; c2〉ψ ∈ sub(ϕ) ⇒ 〈c1〉ψ, 〈c2〉ψ ∈ sub(ϕ);

8. 〈b?〉ψ ∈ sub(ϕ) ⇒ b, ψ ∈ sub(ϕ);

9. 〈c∗〉ψ ∈ sub(ϕ) ⇒ for all n ∈ ω : 〈c〉n ψ ∈ sub(ϕ).

The idea is that the subformulæ of ϕ are those formulæ whose truth values affect the value
of ϕ, and are “simpler to derive” than ϕ.

Let G be an infinite set of new constant1 symbols, ranged over by a, b. Let DL(G) be
the logic DL extended by adding G as terms. Symbols of G can be used everywhere we
put a variable; for instance, 〈a := 0〉 a = 0 is a legal formula. We adopt the convention

1Actually, the name “constant” is not very suited, since we allow for replacing variables by these
constants also on the left-hand side of assignments. These new constants are used for denoting “free
variables”, but still having closed terms.

B.1. Proof of the Model Existence Lemma for First-Order Dynamic Logic 217

that symbols of G occurr only in free positions. We denote by `G the derivation in this
extended logic.

Notice that for Γ, ϕ in DL (that is, without symbols from G), we have that

Γ ` ϕ ⇐⇒ Γ `G ϕ

On one hand, trivially, every proof in DL is also a proof of DL(G). On the other hand,
let π : (Γ `G ϕ); then, at most an enumerable set of symbols from G appear in π; we can
replace these symbols by fresh variables, obtaining a proof in DL.

Therefore, the model existence lemma can be stated as follows:

If Γ 6`G ff , then there is a model M for Γ.

Definition B.2 (Atoms) We define the set of atoms of DL(G) as follows:

At
def
= {A ⊆ DL(G) | A 6`G ff , and the symbols from G appearing in A are finite}

It is evident that every set Γ of formulæ from DL is an atom.
We will prove that every atom is satisfiable, that is, given any A0 ∈ At, there is a

model M for A0.

Definition B.3 (Closure) Let A0 ∈ At; we define the closure of A0, CL(A0), as the
least set of formulæ which satisfies the following closure properties:

1. for all ϕ ∈ A0 : sub(ϕ) ⊆ CL(A0);

2. for all a ∈ G,ϕ(t) ∈ CL(A0) : ϕ(c) ∈ CL(A0);

3. for all a, b ∈ G : (a = b) ∈ CL(A0).

Let X be the set of closed formulæ of CL(A0) (possibly with symbols from G in
place of free identifiers). X is enumerable (because CL(A0) is); let X = {ϕ0, ϕ1, . . .} an
enumeration of X. Moreover, let T be the set of basic terms of DL(G), that is, the terms
of the form f(a1, . . . , an). (In particular, G ⊆ T .) Also T is enumerable; let (ti)i an
enumeration.

Let us define a succession of atoms (Ai)i∈ω, such that A0 is the given atom, and Ai+1

is choosed such that the following properties hold:

1. Ai ⊆ Ai+1;

2. If Ai, ϕi 6` ff , then ϕi ∈ Ai+1. Moreover, if ϕ has a “choice” meaning, we need to
include also a “witness” formula for one of the choices:

• if ϕi = 〈a := t〉ϕ, then there is a′ ∈ G such that Ai, a
′ = t, ϕ[a′/a] 6`G ff .

Otherwise, suppose that for every a′ ∈ G we have Ai, a
′ = t, ϕ[a′/a] `G ff ;

then, we can choose a′ fresh in Ai, t, ϕ, so we can replace a′ by a fresh variable
y, obtaining a proof of Ai, y = t, ϕ[y/a] 6`G ff . But then, by applying :=-E, we
obtain Ai, 〈a := t〉ϕ ` ff , a contradiction.

Therefore, we put ϕ[a′/a] ∈ Ai+1.

218 Appendix B. Proof of completeness of infinitary systems for Dynamic Logics

• If ϕi = 〈c1 + c2〉ϕ, then Ai, 〈c1〉ϕ 6`G ff or Ai, 〈c2〉ϕ 6`G ff . Otherwise, by
+-E, we obtain Ai, ϕi `

G ff , a contradiction.

Therefore, we put the appropriate 〈cj〉ϕ ∈ Ai+1.

• If ϕi = 〈c∗〉ϕ, then there exists n ∈ ω such that Ai, 〈cn〉ϕ 6`G ff . Otherwise,
suppose that for all n ∈ ω, we have a proof of Ai, 〈cn〉ϕ `G ff ; then, by applying
∗-E we obtain Ai, ϕi `G ff , a contradiction.

Therefore, we put 〈cn〉ϕ ∈ Ai+1.

3. Furthermore, we require that there exists a formula a = ti in Ai+1, for some a ∈ G.
Such formula can be already included in Ai, at some previous step; otherwise, we
choose a fresh a and we add a = ti at this step.

Afer having defined the succession (Ai)i∈ω, we define

Aω
def
=
⋃

i∈ω

Ai

We define also a binary relation ∼ over G as follows:

a ∼ b ⇐⇒ (a = b) ∈ Aω

It is easy to see that ∼ is an equivalence:

• it is refexive: a = a appears in X, and it is consistent with every consistent set;
hence, it has been included in Aω, at some step.

• it is symmetric: if (a = b) ∈ Aω, then for some i, ϕi = (a = b), and ϕ is consistent
with Ai; therefore, also b = a is consistent with Aj , for j ≤ i, so either b = a is
already in Ai, or it will be added at some step, later on. In both cases, b = a appers
in Aω.

• it is transitive: let a1 = a2, a2 = a3 in Aω; then, there is m ∈ ω such that (a1 =
a2) = ϕm. Let n ≥ m such that (a1 = a2), (a2 = a3) ∈ An; therefore, by transitivity
we have An ` a1 = a3. Then, we have also that An, a1 = a3 6`G ff , otherwise we
would have An ` ¬(a1 = a3), and by ff-I, An ` ff — a contradiction.

Now we are ready for defining the canonic model forA0. The model is a pairM = (D, ·̂)
where

• Domain: D
def
= G/∼ = {[a]∼ | a ∈ G};

• Interpretation of constants: â = [a];

• Interpretation of functional symbols:

f̂(â1, . . . , ân) = â ⇐⇒ (f(a1, . . . , an) = a) ∈ Aω

• Interpretation of relational symbols

R̂(â1, . . . , ân) ⇐⇒ R(a1, . . . , an) ∈ Aω

B.1. Proof of the Model Existence Lemma for First-Order Dynamic Logic 219

This definition is well-given by the properties of congruence. For instance, if both the
formula (f(a1, . . . , an) = a) and the formula (ai = a′i) (for some i = 1, . . . , n) are in Aω,
then also (f(a1, . . . , a

′
i, . . . , an) = a) ∈ Aω.

Finally, we have to prove that M is actually a model for A0. We prove that ∀ϕ ∈
Aω : M |= ϕ; that is, M is a model for Aω and, a fortiori, for A0. We proceed by
nested inductions on the structure of ϕ. The outside induction is on the order given by
the definition of subformula.

Base Case: The base case is when ϕ is either atomic or the negation of an atomic for-
mulæ. Let ϕ = R(t1, . . . , tn) ∈ Aω, the other case being similar. Here, we need a
nested induction on the structure of terms.

Base Case: The base case is therefore R(a1, . . . , an), with a1, . . . , an constants
(from G or from DL). Then, by definition of M, it is immediately M |=
R(a1, . . . , an).

Inductive Step: For the sake of simplicity, but w.l.o.g., we take n = 1; that is, we
have to prove that, take t term,

if for every t′ simpler than t,

if R(t′) ∈ Aω then M |= R(t′)

then, if R(t) ∈ Aω then M |= R(t).

Indeed, let t = f(t1, . . . , tk). Then, t̂ = f̂(t̂1, . . . , t̂k) is an object belonging
to the domain of M. Hence, there exists a such that â = t̂, and moreover
a1, . . . , ak such that the formula (f(a1, . . . , ak) = c) appears in Aω. By congru-
ence rules, it is R(f(a1, . . . , ak)) ∈ Aω. But the formula f(a1, . . . , ak) is simpler
than t, therefore by inductive hypothesis we have M |= R(f(a1, . . . , ak)); by
congruence, we obtain finally M |= R(f(t1, . . . , tk)).

Inductive Step: Let ϕ be a composed formulæ; we decompose it by following the defi-
nition of subformula. We see only significative cases.

• ϕ = ϕ1 ∧ ϕ2. Then, ϕ1, ϕ2 ∈ sub(ϕ), and hence ϕ1, ϕ2 ∈ X; therefore, at
some step both of them have been added to Aω (otherwise, if ϕ1 6∈ Aω then, at
some step n, it is An, ϕ1 ` ff , but then An, ϕ1 ∧ ϕ2 ` ff , a contradiction). By
inductive hypothesis, we have M |= ϕ1 and M |= ϕ2, and hence the thesis.

• ϕ = 〈c1; c2〉ϕ1. Then, 〈c1〉 〈c2〉ϕ1 ∈ Aω (by an argument similar to the previous
case). By inductive hypothesis, we have M |= 〈c1〉 〈c2〉ϕ1, and hence the thesis.

• ϕ = 〈a := t〉ϕ1. Then, there exists a′ such that (a′ = t), ϕ1[a
′/a] ∈ Aω (by

an argument similar to the previous cases). By inductive hypothesis, we have
M |= ϕ1[a

′/a], and moreover â′ = t̂, and hence the thesis.

• ϕ = 〈c∗〉ϕ1. Then, there exists n such that 〈c〉n ϕ1 ∈ Aω (by an argument
similar to the previous cases). By inductive hypothesis, we have M |= 〈c〉n ϕ1,
and hence the thesis.

220 Appendix B. Proof of completeness of infinitary systems for Dynamic Logics

Appendix C

Encoding of Validity FOL

Since Validity FOL does not satisfies the closure conditions, the näıf HOAS encoding is
not correct:

Definition i := nat.

Inductive Set o :=

Eq : i -> i -> o

| Imp : o -> o -> o

| forall : (i -> o) -> o.

Token "=>". Infix 9 "=>" Imp.

Inductive V : o -> Prop :=

S : (A,B,C:o)(V ((A => B => C) => ((A => B) => (A => C))))

| K : (A,B:o)(V (A => B => A))

| MP : (A,B:o)(V (A => B)) -> (V A) -> (V B)

| Gen : (A:i -> o)(x:i)(V (A x)) -> (V (forall A)).

because it allows us for unsound derivations:

Lemma foo : (V (Eq O O)) -> (V (forall [x:i](Eq x O))).

Intro; Apply Gen with x:=O; Assumption.

Qed.

Indeed, the correct implementation is the following, where V means “validity”:

Parameter var : Set.

Inductive i : Set :=

Var : var -> i

| zero : i

| plus : i -> i -> i.

Inductive o : Set :=

Eq : i -> i -> o

| Imp : o -> o -> o

221

222 Appendix C. Encoding of Validity FOL

| forall : (var -> o) -> o.

Token "=>". Infix 9 "=>" Imp.

(* Two occur-check judgements *)

(* nii: not_in for terms *)

Fixpoint nii [x:var; t:i] : Prop :=

<Prop>Case t of

[y:var]~(x=y)

True

[t1,t2:i](nii x t1)/\(nii x t2)

end.

(* nio: not_in for formulae *)

Fixpoint nio [x:var; A:o] : Prop :=

<Prop>Case A of

[t1,t2:i](nii x t1)/\(nii x t2)

[A1,A2:o](nio x A1)/\(nio x A2)

[B:var->o](y:var)~(x=y) -> (nio x (B y))

end.

Inductive V : o -> Prop :=

S : (A,B,C:o)(V ((A => B => C) => ((A => B) => (A => C))))

| K : (A,B:o)(V (A => B => A))

| MP : (A,B:o)(V (A => B)) -> (V A) -> (V B)

| forall_I : (A:var -> o)(x:var)(nio x (forall A)) ->

(V (A x)) -> (V (forall A)).

Parameter x: var.

Lemma foo : (V (Eq (Var x) (Var x))) ->

(V (forall [y:var](Eq (Var y) (Var y)))).

Intro. Apply forall_I with x:=x. Simpl. Intros.

(Split;Auto).

Assumption.

Qed.

Lemma bar : (V (Eq (Var x) zero)) ->

(V (forall [y:var](Eq (Var y) zero))).

Intro. Apply forall_I with x:=x. Simpl. Intros.

(Split;Auto).

Assumption.

Qed.

Appendix D

A Methodology Roadmap for
Encodings

In this chapter we summarize the methodology of representing faithfully a language L in
a Logical Framework, described in more detail in Chapter 11. This chapter is shaped as
a “flattened decision tree”: the nesting of sections and subsections reflects the depth of a
path in the decision tree.

D.1 Are there binding operators?

The main question is this: are there expression constructors whose arity are of level greater
than 0?

D.1.1 No: plain inductive definitions

In this case, we can adopt a plain inductive definition, like those for free algebræ and
propositional logic. Advantages: induction principles, easy adequacy theorems.

D.1.2 Yes! then, would you like some HOAS?

Let us consider the more interesting case of languages with binding operators, and hence
with the equational theory induced by α-equivalence. As we have seen, the canonical
approach is to represent the higher-order constructors by means of constants of higher-
order type. However, straightforward HOAS may be not always feasible. In fact, it can
clash with other features of the logic/language we are considering: closure of the language
under substitution, schematicity of consequence relations, positivity constraints.

No, I do not need of HOAS!

A straightforward and easy-minded solution is to drop HOAS altogether, and to flatten
every expression constructor to arities of level 0. For instance, the set V ar of first-order
variables ranging over i is represented by a specific type var, and a quantifier like ∀ is
represented by a constant forall : var → o → o, whose arity is of level 0. (See e.g.
[Ter95]).

223

224 Appendix D. A Methodology Roadmap for Encodings

Advantages: we can again adopt the plain inductive definitions, and hence we obtain
the inductive principles for free. If we do not consider equational theory of our language
(for instance, we consider ∀x.ϕ different from ∀y.ϕ[y/x]), the adequacy theorems are easy
to prove. In presence of subsorts, we do not need of “embeddings.”

Disadvantages: we cannot delegate anything to the metalanguage, and mostly the α-
equivalence and substitution properties. In fact, the representation is too fine-grained:
two expressions of our language which are equivalent are represented by two terms which
are not equivalent in the metalanguage. Therefore, we need to implement any equational
theory (such as α-equivalence) and substitution mechanism (such as β-reductions) by
hand.

Yes, thanks! I ♥ HOAS!

Binding operators are represented by means of constants of arity of level greater than
0, and the syntact expression (x)e of arity S → S ′ is represented by means of the λ-
abstraction of the metalanguage. For instance, the ∀ of FOL can be represented by a
constant forall : (var → o) → o (but this is not the only solution).

The immediate advantage is that we obtain the α-conversion for free, because we
delegate it to the metalanguage. The disadvantage is that proofs of adequacy are more
complex. Moreover, the introduction of an higher-order constructor on an inductive set
can give rise to “exotic” terms, that is, terms which do not represent any phrase of the
language. In some case, these have to be ruled out by means of extra judgements; see
[DFH95].

Now, there is another choice: shall we define a specific type for identifiers, or shall we
use the identifiers of the metalanguage as identifiers of the object language?

We define a specific type for variables. For instance, in first order logic we define
var, i, o : Set and forall : (var → o) → o.

Advantages: it can be applyed always (if the syntax and the consequence relations ad-
mit the right substitution schemata) we can use inductive definitions, obtaining induction
principles, and the α-conversion is delegated to the metalanguage.

Disadvantage: substitution is not delegated to the metalanguage, so it has to be im-
plemented on its own. There are more than one way for doing this, see next section.

We use metalanguage variables as object-level variables. For instance, in first
order logic we define i, o : Set and forall : (i → o) → o; in the λ-calculus, we define
lambda : (L→ L) → L.

Advantages: both α-conversion and substitution are delegated to the metalanguage.
If the arity of constructors is nonnegative, we can also use inductive definitions, obtaining
induction principles.

Disadvantages: if there are constructors of negative arity, we cannot adopt an in-
ductive definition, and hence we miss inductive principles on the syntax. If the logical
framework does not support inductive definitions, this is not a problem, since inductive
principles cannot be defined anyway; in fact, this solution has been adopted in [AHMP92]
for encoding several λ-calculi.

D.2. Need to implement substitution? 225

D.2 Need to implement substitution?

As we have seen in Chapter 11, we can face the problem of implementing a substitution
mechanism “by hand”. This happens when we have sorts with variables, and for some rea-
son we cannot delegate the instantiation mechanism to the metalanguage. This is the case,
for instance, of Dynamic Logic, NOS, Hoare Logic: the syntactic class is not closed under,
or the consequence relation is not schematic with respect to, the substitution induced by
the metalanguage. Or moreover, in the case of languages with negative constructors, such
as the λ-calculus, and the µ-calculus.

There are two main ways for implementing a substitution mechanism: inline (imme-
diate) or delayed (bookkeeping).

D.2.1 Inline (immediate) substitution

This solution is to implement directly the syntactic notion of substitution of the object
language. This can be achieved by means of an ad hoc judgement, which represents the
substitution mechanism. For instance, in the λ-calculus, the (nondeterministic) substitu-
tion M [N/x] is represented by a judgement subst : L→ (var → L) → L→ Prop: roughly,
(subst N (λx:var.M) M ′) holds iff M ′ = M [N/x]. The rules for the derivation of subst
correspond exactly to the cases of the object substitution mechanism. This approach has
been adopted, for instance, in [DFH95].

Advantages: it is closer to the syntactic notion of substitution. If the set of identifiers
has a decidable equality (e.g. is an inductive set), then the derivation of the subst judge-
ment can be automated, for instace it can be defined as a function in the Coq environment.

Disadvantages: its use could be cumbersome. The user is loaded of the burden of
realizing the substitution. Adequacy theorems are complex. In the case the set of identifier
is inductive, there are exotic terms which have to be ruled out by some extra judgements
(see [DFH95]).

D.2.2 Delayed substitution (bookkeeping)

The other way is to do not perform the substitution at all: we just keep track of the
binding between the identifier and the expression by means of a bookkeeping assertion.
These assertions are distributed in the derivation context, from which they are extracted
on-the-fly, as soon as we have to evaluate an indentifier. This technique is inspired by the
semantic idea of substitution, more than the syntactic one. See [BH90, Mic94, HM96],
and Chapters 12, 14 and 15 for some applications.

Advantages: easier to use and understand; the implementation needs only an extra
judgement (bookkeeping judgement) with no introduction rules, and the the evaluation
rules for identifiers. It can be automated, at some extent, by means of the Auto tactic.

Disadvantages: it does not reflect the syntactic notion of substitution—in fact, it is
not a substitution at all. Hence, adequacy is more difficult to state and prove. We need
some extra judgement for implementing occur checking (although they can be mostly
automatized).

226 Appendix D. A Methodology Roadmap for Encodings

A particular case: Leibnitz bookkeeping

If substitution is just textual replacement of terms for variables, like in FOL or λ-calculus,
the bookkeeping technique can be fruithfully implemented by means of Leibnitz equality.

The idea is that the equality judgement can be used as the bookkeping judgement.
Hence, we do not need to introduce any extra judgement or evaluation rules: the elimi-
nation principle of = automatically provides powerful rules, not only for the evaluation
of identifiers, but also for their replacing inside other terms. In the Coq environment, for
instance, this can be done by means of the Rewrite tactic. This solution has been adopted
in the encoding of µ-calculus (Chapter 15).

Disadvantages: it does not work for all logics, of course; for instance, in Dynamic Logic
not all textual substitutions make sense. Secondly, the logical frameworks has to provide
a structural congruence like Leibnitz equality; for instance, this is not the case for the LF.
Moreover, we still need some extra judgements for occur checking.

Bibliography

[Abr87] Samson Abramsky. Domains in logical form. In Second Annual IEEE Sym-
posium on Logic in Computer Science, pages 47–53. IEEE Computer Society
Press, 1987.

[Acz94] Peter Aczel. Schematic consequence. In Dov Gabbay, editor, What is a Logical
System. Oxford University Press, 1994.

[Add94] Bruno Adducci. Uno strumento integrato per lo sviluppo formale assistito di
programmi: la formalizzazione di unity in un proof assistant. Master’s thesis,
Facoltà di Science Matematiche, Fisiche e Naturali, Universtià di Pisa, Italy,
December 1994. In Italian.

[AGM92] Samson Abramsky, Dov Gabbay, and T. Maibaum, editors. Handbook of Logic
in Computer Science. Oxford University Press, 1992.

[AHMP92] Arnon Avron, Furio Honsell, Ian A. Mason, and Robert Pollack. Using Typed
Lambda Calculus to implement formal systems on a machine. Journal of
Automated Reasoning, 9:309–354, 1992.

[AHMP97] Arnon Avron, Furio Honsell, Marino Miculan, and Cristian Paravano. Encod-
ing modal logics in Logical Frameworks. To appear, 1997.

[And93] Henrik Reif Andersen. Verification of Temporal Properties of Concurrent Sys-
tems. Daimi pb-445, Computer Science Department, Århus University, June
1993.

[AO91] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of Sequential and
Concurrent Programs. Springer-Verlag, 1991.

[Apt81] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey — part I. ACM
Transactions on Programming Languages and Syms, 3(4):431–483, October
1981.

[AS85] Harold Abelson and Gerard Jay Sussman. Structure and Interpretation of
Computer Programs. The MIT Electrical Engineering and Computer Science
Series. MIT Press, Cambridge, Massachusetts, 1985.

[Avr91] Arnon Avron. Simple consequence relations. Information and Computation,
92:105–139, January 1991.

227

228 BIBLIOGRAPHY

[Bar92] Henk P. Barendregt. Lambda calculi with types. In Abramsky et al. [AGM92],
pages 117–309.

[BB96] Janet Bertot and Yves Bertot. CtCoq: A system presentation. In Michael
McRobbie and John Slaney, editors, Automatic Deduction, CADE-13, number
1104 in LNAI, pages 231–234. Springer-Verlag, July 1996.

[BC96] Stefano Berardi and Mario Coppo, editors. Types for Proofs and Programs —
Proceedings of the International Workshop TYPES’95, number 1158 in Lecture
Notes in Computer Science, Turin, March 1996. Springer-Verlag.

[Ber90] Stefano Berardi. Type dependence and constructive mathematics. PhD thesis,
Mathematical Institute, Università di Torino, Italy, 1990.

[BG93] Mark Bezem and Jan Friso Groote, editors. Proceedings of International Con-
ference on Typed Lambda Calculi and Applications, volume 664 of Lecture
Notes in Computer Science. Springer-Verlag, 1993.

[BH90] Rod Burstall and Furio Honsell. Operational semantics in a natural deduction
setting. In Huet and Plotkin [HP90], pages 185–214.

[BN94] Henk Barendregt and Tobias Nipkow, editors. Proceedings of TYPES’93, num-
ber 806 in Lecture Notes in Computer Science. Springer-Verlag, 1994.

[CCF+95] Cristina Cornes, Judicaël Courant, Jean-Christophe Fillâtre, Gérard
Huet, Pascal Manoury, César Muñoz, Chetan Murthy, Cather-
ine Parent, Christine Paulin-Mohring, Amokrane Säıbi, and Ben-
jamin Werner. The Coq Proof Assistant Reference Manual -
Version 5.10. INRIA, Rocquencourt, July 1995. Available at
ftp://ftp.inria.fr/INRIA/coq/V5.10/doc/Reference-Manual.dvi.Z.

[CDDK86] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and Gilles
Kahn. A simple applicative language: Mini-ML. In Proc. of the 1986 Confer-
ence on LISP and Functional Programming. ACM Press, 1986.

[CDHL82] Mario Coppo, Mariangiola Dezani-Ciancaglini, Furio Honsell, and Giuseppe
Longo. Extended type structures and filter lambda models. In G. Lolli,
Giuseppe Longo, and A. Marcja, editors, Proceedings of the Logic Colloquium
’82, pages 241–262, Amsterdam, 1982. North-Holland.

[Cen94] Pietro Cenciarelli. A modular development of denotational semantics. Pre-
sented at the Types for Proofs and Programs Annual Workshop, B̊astad, Swe-
den, June 1994.

[Cer96] Iliano Cervesato. A Linear Logical Framework. PhD thesis, Dipartimento di
Informatica, Università di Torino, Italy, 1996.

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Control, 76:95–120, 1988.

BIBLIOGRAPHY 229

[Chi95] Jawahar Lal Chirimar. Proof Theoretic Approach to Specification Languages.
PhD thesis, University of Pennsylvania, 1995.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[Com94] Adriana B. Compagnoni. Subtyping in fω∧ is decidable. Technical Report
ECS-LFCS-94-281, LFCS, Department of Computer Science, University of
Edinburgh, January 1994.

[Cou90] Patrick Cousot. Methods and Logics for Proving Programs. In van Leeuwen
[vL90], pages 841–993.

[CP90] Thierry Coquand and Christine Paulin. Inductively defined types. In Per
Martin-Löf and G. Mints, editors, Proc. COLOG 88, volume 417 of Lecture
Notes in Computer Science, pages 50–66. Springer-Verlag, 1990.

[dB80] Nicolas G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, New York, 1980.

[Des86] Joëlle Despeyroux. Proof of translation in natural semantics. In Proceedings
of the First Conference on Logic in Computer Science, pages 193–205. The
Association for Computing Machinery, 1986.

[DFH95] Joëlle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order syntax
in Coq. In Proc. of TLCA’95, volume 905 of Lecture Notes in Computer Sci-
ence, Edinburgh, April 1995. Springer-Verlag. Also appears as INRIA research
report RR-2556, April 1995.

[DH94] Joëlle Despeyroux and André Hirschowitz. Higher-order syntax and induction
in Coq. In Proc. of LPAR’94, Kiev, Ukraine, July 1994. Also appears as
INRIA research report RR-2292, June 1994.

[Don77] James E. Donahue. Locations considered unnecessary. Acta Informatica,
8:221–242, July 1977.

[DPS96] Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive re-
cursion for higher order abstract syntax. Technical Report CMU-CS-96-172,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213, August 1996.

[Dyb96] Peter Dybjer. Internal type theory. In Berardi and Coppo [BC96].

[EHR92] Lavinia Egidi, Furio Honsell, and Simona Ronchi-Della Rocca. Operational,
denotational and logical descriptions: a case study. Fundamenta Informaticæ,
16(2):149–170, February 1992.

[Fel96] Mauro Felchero. Sistemi di transizione in teoria dei tipi coinduttivi. Master’s
thesis, Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine,
Italy, July 1996. In Italian.

230 BIBLIOGRAPHY

[Gar92] Philippa Gardner. Representing Logics in Type Theory. Cst-93-92, Department
of Computer Science, University of Edinburgh, July 1992. Also published as
ECS-LFCS-92-227.

[Gar93] Philippa Gardner. A new type theory for representing logics. In Andrei
Voronkov, editor, Proc. of LPAR ’93, volume 698 of Lecture Notes in Computer
Science, pages 146–157, St. Petersburg, Russia, July 1993. Springer-Verlag.

[Gen69] Gerhard Gentzen. Investigations into logical deduction. In M. Szabo, editor,
The collected papers of Gerhard Gentzen, pages 68–131. North Holland, 1969.

[Geu93] Jan Herman Geuvers. Logics and Type Systems. PhD thesis, Katholieke Uni-
versiteit, Nijmegen, The Nederlands, 1993.

[Gim95] E. Gimenez. Codifying guarded recursion definitions with recursive schemes.
In Jan Smith, editor, Proc. of TYPES’94, Lecture Notes in Computer Science,
B̊astad, Sweden, 1995. Springer-Verlag.

[Gir87a] Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102,
1987.

[Gir87b] Jean-Yves Girard. Proof Theory and Logical Complexity. Bibliopolis, Napoli,
1987.

[GLT90] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1990.

[Gor88] Michael J. C. Gordon. HOL: A proof generating system for higher order logic.
In Graham Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis. Kluwer Academic Press, 1988.

[Gor89] Michael J. C. Gordon. Mechanizing program logics in higher order logic. In
P. A. Subrahmanyam and Graham Birtwistle, editors, Current Trends in Hard-
ware Verification and Automated Theorem Prover, pages 387–439. Springer-
Verlag, 1989.

[Gun92] Carl A. Gunter. Semantics of programming languages: structures and tech-
niques. Foundations of Computing. The MIT Press, 1992.

[Han88] John J. Hannan. Proof-theoretical methods for analysis of functional pro-
grams. Technical Report MS–CIS–89–07, Dep. of Computer and Information
Science, University of Pennsylvania, December 1988.

[Han93] John Hannan. Extended Natural Semantics. Journal of Functional Program-
ming, 3(2):123–152, April 1993.

[Har79] David Harel. First-Order Dynamic Logic. Number 68 in Lecture Notes in
Computer Science. Springer-Verlag, 1979.

BIBLIOGRAPHY 231

[Har84] David Harel. Dynamic logic. In Dov Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume II, pages 497–604. Reidel, 1984.

[Har89] Robert Harper. Introduction to Standard ML. Technical Report ECS–LFCS–
86–14, Department of Computer Science, University of Edinburgh, Edinburgh,
Scotland, January 1989.

[Har90] Robert Harper. Systems of polymorphic type assignment in LF. Technical Re-
port CMU-CS-90-144, Scool of Computer Science, Carnegie Mellon University,
Pittsburgh, January 1990.

[HC84] George Edward Hughes and M. J. Cresswell. A companion to Modal Logic.
Methuen, London, 1984.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143–184, January 1993.

[HM85] M. Hennessy and Robin Milner. Algebraic laws for nondeterminism and con-
currency. Journal of ACM, 32:137–162, 1985.

[HM93] Furio Honsell and Marino Miculan. Encoding program logics in type theories.
In Joëlle Despeyroux, editor, Deliverables of the TYPES Workshop Proving
Properties of Programming Languages, Sophia-Antipolis, September 1993.

[HM96] Furio Honsell and Marino Miculan. A natural deduction approach to dynamic
logics. In Berardi and Coppo [BC96], pages 165–182. A preliminar version has
been communicated to the TYPES’94 Annual Workshop, B̊astad, July 1994.

[HMST93] Furio Honsell, Ian A. Mason, Scott Smith, and Carolyn Talcott. A Variable
Typed Logic of Effects. Information and Computation, 1993.

[Hoa69] Christian Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–583, October 1969.

[HP90] Gérard Huet and Gordon Plotkin, editors. Logical Frameworks. Cambridge
University Press, June 1990.

[HP92] Robert Harper and Frank Pfenning. Compiler verification in LF. In Seventh
Annual IEEE Symposium on Logic in Computer Science, pages 407–418, Santa
Cruz, California, June 1992. IEEE Computer Society Press.

[Hue92] Gérard Huet. Constructive computation theory - part I. Lecture notes, Octo-
ber 1992.

[Hue94] Gérard Huet. Residual theory in λ-calculus: a formal development. J. of
Functional Programming, 4,3:371–394, 1994.

[Kah87] Gilles Kahn. Natural Semantics. In Proceedings of the Symposium on Theoret-
ical Aspects of Computer Science, number 247 in Lecture Notes in Computer
Science, pages 22–39. Springer-Verlag, 1987.

232 BIBLIOGRAPHY

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27, 1983.

[Koz95] Dexter Kozen, editor. Proceedings, Tenth Annual IEEE Symposium on Logic
in Computer Science, San Diego, California, 26–29 June 1995. The Institute
of Electrical and Electronics Engineers, Inc., IEEE Computer Society Press.

[KP93a] Gilles Kahn and Gordon Plotkin. Concrete domains. Theoretical Computer
Science, pages 187–277, December 1993.

[KP93b] Michael Kohlhase and Frank Pfenning. Unification in a λ-calculus with inter-
section types. In Dale Miller, editor, Proc. of International Logic Program-
ming Symposium, pages 488–505, Vancouver, Canada, October 1993. The MIT
Press.

[KT90] Dexter Kozen and Jerzy Tiuryn. Logics of Programs. In van Leeuwen [vL90],
pages 789–840.

[Lam91] Leslie Lamport. The temporal logic of actions. Technical Report 79, Digital
Equipment Corporation, System Research Center, 1991.

[LPT89] Zhaohui Luo, Robert Pollack, and Paul Taylor. How to use LEGO (A Pre-
liminary User’s Manual). Department of Computer Science, University of
Edinburgh, October 1989.

[LS88] Jacques Loeckx and Kurt Sieber. The Foundations of Program Verification.
John Wiley and sons, New York, second edition, 1988.

[Luo96] Zhaohui Luo. Coercive subtyping in type theory. In Proc. Annual Conf. of
the European Association for Computer Science Logic, Utrecht, 1996.

[Mar85] Per Martin-Löf. On the meaning of the logical constants and the justifications
of the logic laws. Technical Report 2, Scuola di Specializzazione in Logica
Matematica, Dipartimento di Matematica, Università di Siena, 1985.

[MG95] Marino Miculan and Fabio Gadducci. Modal µ-types for processes. In Kozen
[Koz95], pages 221–231.

[MH82] Albert R. Meyer and Joseph Y. Halpern. Axiomatic definition of programming
languages: A theoretical assessment. Journal of the ACM, 29(2):555–576,
April 1982.

[Mic94] Marino Miculan. The expressive power of structural operational semantics
with explicit assumptions. In Barendregt and Nipkow [BN94], pages 292–320.

[Mil94] Dale Miller. A multiple-conclusion meta-logic. In Samson Abramsky, editor,
Proceedings of the 9th LICS, pages 272–281, Paris, July 1994. The Institute of
Electrical and Electronics Engineers, Inc.

[MN94] Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof
engine. In Barendregt and Nipkow [BN94], pages 213–237.

BIBLIOGRAPHY 233

[Mog93] Eugenio Moggi. Notions of computation and monads. Information and Com-
putation, 1, 1993.

[Mor73] J. H. Morris, Jr. Types are not sets. In Conference Record of the ACM
Symposium on Principles of Programming Languages, pages 120–124, Boston,
October 1973. The Association for Computing Machinery.

[MP81] Zohar Manna and A. Pnueli. Verification of concurrent programs: the temporal
framework. In Robert Boyer and J. Moore, editors, The Correctness Problem
in Computer Science, pages 215–273. Academic Press, 1981.

[MP91] Spiro Michaylov and Frank Pfenning. Natural Semantics and some of its
Meta-Theory in Elf. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister,
editors, Proceedings of the Second International Workshop on Extensions of
Logic Programming, number 596 in LNAI, pages 299–344, Stockolm, Sweden,
January 1991. Springer-Verlag.

[MP93] James McKinna and Robert Pollack. Pure type systems formalized. In Bezem
and Groote [BG93], pages 289–305.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, Massachusetts, 1990.

[NP92] Tobias Nipkow and Lawrence C. Paulson. Isabelle-91. In D. Kapur, editor,
Proc. of the 11th CADE, number 607 in Lecture Notes in Computer Science,
pages 673–676, Saratoga Springs, NY, 1992. Springer-Verlag. System abstract.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in
Martin-Löf ’s Type Theory: An Introduction, volume 7 of International Se-
ries of Monograph on Computer Science. Oxford University Press, 1990.

[NPS92] Bengt Nordström, Kent Petersson, and Jan M. Smith. Martin-löf’s type the-
ory. In Abramsky et al. [AGM92].

[Pau89] Christine Paulin-Mohring. Extracting fω’s programs from proofs in the Cal-
culus of Constructions. In Proc. 16th PoPL, Austin, January 1989. The Asso-
ciation for Computing Machinery.

[Pau93] Christine Paulin-Mohring. Inductive definitions in the system Coq; rules and
properties. In Bezem and Groote [BG93], pages 328–345.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proc.
of ACM SIGPLAN ’88 Symposium on Language Design and Implementation,
pages 199–208, Atlanta, Georgia, June 1988. The Association for Computing
Machinery.

[Pfe89] Frank Pfenning. Elf: A language for logic definition and verified metapro-
gramming. In Fourth Annual Symposium on Logic in Computer Science, pages
313–322. The Institute of Electrical and Electronics Engineers, Inc., June 1989.
Also available as ERGO Report 89–067, School of Computer Science, Carnegie
Mellon Univ., Pittsburgh.

234 BIBLIOGRAPHY

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. DAIMI
FN-19, Computer Science Department, Århus University, Århus, Denmark,
September 1981.

[Plo85] Gordon D. Plotkin. Notes about semantics. Unpublished notes given at CSLI,
Stanford, August 1985.

[Pra65] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965.

[PW90] David Pym and Lincoln Wallen. Proof-search in the λπ-calculus. In Huet and
Plotkin [HP90], pages 309–340.

[PW93] Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML programs
in the system Coq. Journal of Symbolic Computation, 15:607–640, 1993.

[PW95] Frank Pfenning and Hao-Chi Wong. On a modal λ-calculus for S4. In Proc.
MFPS’95, 1995.

[Rey78] John C. Reynolds. Syntactic control of interference. In Conference Record of
the Fifth Annual ACM Symposium on Principles of Programming Languages,
pages 39–46, Tucson, October 1978. The Association for Computing Machin-
ery.

[Säı96] Amokrane Säıbi. Axiomatization of a λ-calculus with explicit substitutions in
coq. In Berardi and Coppo [BC96].

[Sca97] Ivan Scagnetto. π-calculus in CIC. Forthcoming master thesis, Università di
Udine, 1997.

[Sch86] David A. Schmidt. Denotational Semantics. Allyn & Bacon, 1986.

[Sch94] David A. Schmidt. The Structure of Typed Programming Languages. Founda-
tions of Computing. MIT, Cambridge, MA, 1994.

[Sco82] Dana Scott. Domains for denotational semantics. In Proceedings of the ICALP
1982, number 140 in Lecture Notes in Computer Science, pages 577–613.
Springer-Verlag, 1982.

[Sti85] Colin Stirling. Logics for While Programs: Algorithmic/Dynamic Logics. Un-
published notes, 1985.

[Sti92] Colin Stirling. Modal and Temporal Logics. In Abramsky et al. [AGM92],
pages 477–563.

[SW89] Colin Stirling and David Walker. Local model checking for the modal µ-
calculus. In Proceedings of the TAPSOFT Conference, 1989.

[Tay88] Paul Taylor. Using Constructions as a metalanguage. Technical Report ECS-
LFCS-88-70, Department of Computer Science, University of Edinburgh, De-
cember 1988.

BIBLIOGRAPHY 235

[Ten81] Robert D. Tennent. Principles of Programming Languages. Prentice-Hall,
London, 1981.

[Ter95] Delphine Terrasse. Encoding Natural Semantics in Coq. In Proc. AMAST’95,
number 936 in Lecture Notes in Computer Science, pages 230–244, 1995.

[vB83] Johan van Benthem. Modal logic and classical logic, volume 3 of Monographs
in philosophical logic and formal linguistics. Bibliopolis, Napoli, 1983.

[vL90] J. van Leeuwen, editor. Handbook of Theoretical Computer Science. North
Holland, 1990.

[Wal95a] Igor Walukiewicz. Completeness of Kozen’s axiomatisation. In Kozen [Koz95],
pages 14–24.

[Wal95b] Igor Walukiewicz. Notes on the propositional µ-calculus: Completeness and
related results. Notes Series NS-95-1, BRICS, Department of Computer Sci-
ence, University of Aarhus, Denmark, February 1995.

[Wer94] Benjamin Werner. Une théorie des constructions inductives. PhD thesis,
Université Paris 7, 1994.

[WF91] Andrew K. Wright and Matthias Fellaisen. A syntactic approach to type
soundness. Technical Report TR91–160, rev.2, Department of Computer Sci-
ence, Rice University, Houston, Texas, 1991.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. The MIT
Press, 1993.

236 BIBLIOGRAPHY

About this document

The source file of this thesis amounts to more than 585 kbytes of LATEX code (Coq code is
excluded from this count). I adopted the class book at size 11pt, with textwidth=150mm,
textheight=220mm, oddsidemargin=1cm, evensidemargin=2mm, headheight=14pt,
footskip=25pt. The running headers have been obtained by using Piet van Oostrum’s
fancyhdr package, version 1.99b. The title page has been designed on my own.

Almost all the time I worked on a Macintosh SE/30 (8 Mbytes RAM, 49 Mbytes
HD). I begun editing this thesis by using GNU Emacs 19.29.1 with AUCTEX 9.4 on
ten.dimi.uniud.it, a SPARCserver-20 (later upgraded to a four-processor SPARCserver-
1000) running SunOS 5.5; the telnet connection has been provided by NCSA Telnet 2.6,
through a LocalTalk LAN. However, the unsteadyness of LAN performances (swinging
from 16 to 2 kbytes/sec, and less) yielded me to move the editing activity locally on the
Macintosh, where (like in this moment) I used Marc Parmet’s port of GNU Emacs 18.59.

Compilations took always place on ten, where the source file was transferred by means
of the ftp server built-in NCSA Telnet 2.6. The latex compiler (based on TEX 3.1415, C
version 6.1, and LATEX2ε of December 1, 1995, patch level 2), took 52 seconds to compile
the whole document.

The resulting 885 kbytes DVI file has been printed (like every preliminary version,
since an A4 page poorly fits a 9” Mac screen) on an Apple LaserWriter 16/600. The
Postscript file, produced by dvips 5.528a, takes 4.69 Mbytes. Could such a heavy duty
have been the reason for those frequent paper jams? I do not know—anyway, these faults
occurred so often that the printer has been replaced by another one, of the same model
(and, sadly enough, with the same performances).

Like a multitude of scientists all around the world (and beyond), I owe a great debt
to Donald Knuth, Leslie Lamport and the whole LATEX3 Project team, for their invalu-
able effort in developing the TEX and LATEX systems. These immensely successful and
elegant applications of computers acquainted me with one of the brightest yet neglected
expressions of Western Culture: the sublime Art of Typography, whose roots founder in
dusty scriptoria dwelt by thousands of medioeval amanuenses and illuminators—will their
precious work be never forgotten.

237

