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Abstract

In recent years, many general presentations (metamodels) for calculi
dealing with names, e.g. process calculi with name-passing, have been pro-
posed. (Pre)sheaf categories have been proved to satisfy classical proper-
ties on the existence of initial algebras/final coalgebras. Named sets are
a theory of sets with permutations, introduced as the basis for the op-
erational model of HD-automata. Permutation algebras are more in the
line of algebraic specifications, where the direct axiomatization of equiva-
lence under name permutation allows for the development of a theory of
structured coalgebraic models.

In this paper, we investigate the connections among these proposals,
with the aim of establishing a bridge between different approaches to the
abstract specification of nominal calculi.
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1 Introduction

Since the introduction of π-calculus, the notion of name has been recognized
as central in models for concurrency, mobility, staged computation, metapro-
gramming, memory region allocation, etc. In recent years, several approaches
have been proposed as general frameworks (metamodels) for streamlining the
development of these models featuring name passing and/or allocation.

One of the most common approaches is to consider categories of functors
over the category I of finite sets and injective functions, such as presheaves
SetI; see e.g. Moggi, Stark, Hofmann, Fiore and Turi, among others [12, 15, 7,
5]. Presheaves represent “staged computations”, indexed by the (finite) sets of
names currently allocated. In these categories, the classical results for definining
initial algebra/final coalgebra can be extended to deal with names, and thus
are well suited for interpreting specifications given by polynomial functors. A
variation considers only the subcategory of sheaves with respect to the atomic
topology (the so-called Schanuel topos), leading to models supporting classical
logic; see e.g. Stark, Hofmann, and others [15, 7, 2].

An alternative approach, based on the Fraenkel-Mostowski permutation
model of set theory with atoms (FM-sets), is proposed by Gabbay and Pitts [6].
A different theory of sets with permutations, named sets, has been introduced
as a basis for the operational model of History Dependent automata [13]. In
the line of algebraic specifications, permutation algebras have been considered
for the development of a theory of structured coalgebras [4].

It comes as no surprise that there are so many approaches: despite all ul-
timately cope with the same issues, they are inspired by different aims and
perspective, leading to different solutions and choices. It is therefore important
to investigate the relationships between these metamodels. First of all, this will
point out similarities and differences between them. Possibly, apparently pecu-
liar idiosyncrasies are either justified, or revealed to be inessential. Moreover,
these interconnections allow for transferring properties, techniques and construc-
tions among metamodels, thus cross-fertilizing each other. In fact, this formal
comparison allows for highlighting weak points of some metamodel, and possibly
for suggesting improvements. Actually, these approaches are not always easily
comparable, also because they dwell in different meta-logical settings (category
theory, (non-standard) set theory, algebraic specifications, automata theory. . . ).

Many of the metamodels above have been already compared to each other.
So far we know that the model of FM-sets with finite support used in [6] is
equivalent to the category of sheaves used in [7, 2], which, of course, is a full
reflective subcategory of SetI used in [7, 5]. However, the big picture is still
incomplete, since the connections with other approaches, and in particular those
rooted on permutation algebras, are still unclear.

This is indeed the aim of this work: we study the connections between per-
mutation algebras, sheaf categories and named sets. Permutation algebras are
algebras over signatures containing a group of permutation of an enumerable
set of names. A problem with these signatures is that the group of all permuta-
tions of names leads to a non-countable signature; for this, one can restrict the
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attention to countable subgroups, such as that of finite kernel permutations.
Moreover, we are interested in permutation algebras whose elements are finitely
supported—i.e., we rule out processes and terms with infinite free names at
once. Although the two issues are in general unrelated (i.e., there are permuta-
tion algebras over finite kernel permutations which are not finitely supported),
one of the results of this paper is that finitely supported permutation algebras,
both on signatures with all permutations and on the sole finite kernel ones, are
equivalent to the Schanuel topos.

On the other hand, named sets are a category of sets where each element is
equipped with a finite set of names and name bijections. Named sets have been
intended to be an implementation of permutation algebras, to some extent. In
this paper, we make this connection precise: It turns out that named sets form
a category which is equivalent to the category of algebras with finite support,
and hence to the Schanuel topos again.

These results confirm that permutation algebras with finite support (and
named sets) are a good metamodel for formalisms dealing with names, as much
as the Schanuel topos and the FM-sets are. Moreover, we can restrict ourselves
to signatures containing only the finite kernel permutations, since the resulting
algebras with finite support are the same.

Synopsis. In Section 2 we recall the basic definitions about (finite kernel)
permutations, permutation algebras, and finite support. In Section 3 we show
that permutation algebras can be seen as particular continuous G-sets, and then,
in Section 4 we prove that permutation algebras with finite support ultimately
correspond to the Schanuel topos. In Section 5 we consider named sets, and we
show that they also form a category which is equivalent to the category of finite
kernel permutation algebras with finite support. Finally, some conclusions are
drawn in Section 6.

2 Permutation algebras

This section recalls the main definitions on permutation algebras: They are
mostly drawn from [13], with some additional references to the literature.

Definition 2.1 (permutation group) Given a set A, a permutation on A is
a bijective endofunction on A. The set of all such permutations is denoted by
Aut(A), and it forms a group, called the permutation group of A, where the
operation is function composition: For all π1, π2 ∈ Aut(A), π1π2 , π1 ◦ π2.

Permutations on sets coincide with automorphisms (because there is no struc-
ture to preserve), hence the notation denoting the permutation group. We
stick however to permutations since now this is almost the standard usage in
theoretical computer science, and it is the term used in our main references:
See [13, Section 2.1] and the initial paragraphs of [6, Section 3].
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Definition 2.2 (finite kernel permutations) Let π ∈ Aut(A) be a permu-
tation on A. The kernel of π is defined as ker(π) , {a ∈ A | π(a) 6= a}. The
set Autfk(A) of finite kernel permutations forms a subgroup of Aut(A).

Let us now fix A as ω = {0, 1, 2, . . .}, the set of natural numbers. In the
paper we will restrict our attention to permutations on ω, i.e., belonging to
Aut(ω), even if our definitions and remarks could apply in full generality.

Definition 2.3 (permutation signature and algebras) The permutation
signature Σπ is given by the set of unary operators {π̂ | π ∈ Aut(ω)}, together

with the pair of axioms schemata îd(x) = x and π̂1(π̂2(x)) = π̂1π2(x).
A permutation algebra A = (A, {π̂A}) is an algebra for Σπ. A permutation

morphism σ : A → B is an algebra morphism, i.e., a function σ : A → B such
that σ(π̂A(x)) = π̂B(σ(x)). Finally, Alg(Σπ) (often shortened as Algπ) denotes
the category of permutation algebras and their morphisms.

An interesting example is given by the permutation algebra for the π-
calculus: The carrier contains all the processes, up-to structural congruence,
and the interpretation of a permutation is the associated name substitution
(see also [13, Definition 15 and Section 3]).

We give now some additional definitions, concerning the finite kernel prop-
erty, again drawn from [13, Section 2.1].

Definition 2.4 (algebras for finite kernel) The finite kernel permutation
signature Σfk

π is obtained as the subsignature of Σπ restricted to those unary
operators induced by finite kernel permutations.

The associated category of algebras is Alg(Σfk
π ), shortened as Algfkπ .

Of course, finite kernel does not imply finite carrier, since each algebra in
Algπ belongs also to Algfkπ , thus the former is a subcategory of the latter. (Their
relationship is actually stronger, as we will prove in Section 4.) However, Algfkπ
has a countable set of operators and axioms, and thus it is more amenable to
the standard results out of the algebraic specification mold.

A permutation algebra with finite kernel and infinite carrier is the one for
the π-calculus with bound parallelism, i.e., limited to those recursive processes
whose unfolding can generate a finite number of names (see [13, Definition 46]).

We provide now a final list of definitions, concerning the finite support prop-
erty. They rephrase those definitions in [13, Section 2.1], according to [6, Defi-
nition 3.3], and to our needs in the following sections.

Definition 2.5 (finite support algebras) Let A be a permutation algebra,
and let a ∈ A. We denote as fixA(a) the set of permutations fixing a in A, i.e.,
those permutations π such that π̂A(a) = a.

Moreover, let X ⊆ ω be a set. We denote as fix(X) the set of permutations
fixing X (i.e., those permutations π such that π(k) = k for all k ∈ X), and we
say that the set X supports the element a if all permutations fixing X also fix
a in A (i.e., if fix(X) ⊆ fixA(a)).
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An algebra A is finitely supported if for each element of its carrier there
exists a finite set supporting it. The category of all finitely supported algebras is
denoted by FSAlg(Σπ), shortened as FSAlgπ.

It is important to remark that not all the algebras in Algπ are finitely sup-
ported (hence, neither those in Algfkπ ). For example, let us consider the algebra
(A, {π̂ | π ∈ Autfk(ω)}), where A contains id and the following permutation

ρ(i) =

{
i − 1 if i = 2k + 1

i + 1 if i = 2k
= (1, 0, 3, 2, 5, 4, 7, 6 . . .)

and it is closed under precomposition with finite kernel permutations. Let
π̂(ρ) , πρ: This algebra is in Algπ , but it is not finitely supported. Indeed,
for any X ⊂ ω finite, we can choose π ∈ Autfk(ω) such that π(x) = x for all
x ∈ X , but which swaps max(X) + 1 and max(X) + 2; then π̂(ρ) = πρ 6= ρ.

In general, an element of the carrier of an algebra may have different sets
supporting it. The following proposition, mirroring [6, Proposition 3.4], ensures
that a minimal support does exist.

Proposition 2.6 Let A be a permutation algebra, and let a ∈ A. If a is finitely
supported, then there exists a least finite subset of ω supporting it.

Given an algebra A, and a finitely supported element a ∈ A, we call support
of a the (necessarily unique) least subset supporting it, denoted by suppA(a).

It is easy to see that fixA(a) always forms a group. Furthermore, the permu-
tations fixing an element have a strong link to its support. We tighten up this
section with a technical lemma relating a simple result, which is needed later
on, concerning permutations preserving the support.

Lemma 2.7 (preserving supports) Let A be a permutation algebra, and let
a ∈ A be a finitely supported element. Moreover, let spA(a) be the set of
permutations preserving the support of a (i.e., spA(a) , {π | π(suppA(a)) =
suppA(a)}). Then, spA(a) is a group and fixA(a) ⊆ spA(a).

3 Permutation algebras and continuous G-sets

In this section we show that the categories of algebras Algπ and Algfkπ are strictly
related to a well-known notion of algebraic topology, namely that of (continuous)
G-sets. This will allow for taking advantage of a large and well-established
theory, which will be used in the next section.

3.1 Continuous G-sets

In this subsection we recall some standard definitions and results about contin-
uous G-sets, which will be needed in the following; see e.g. [9] for a presenta-
tion of these concepts in the context of general topology, and [10, Section V.9]
and [11, II] in the context of category and topos theory.
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Definition 3.1 (G-sets) Let G be a group. A G-set is a pair (X, ·X) where X
is a set and ·X : X × G → X is a right G-action, that is

x ·X id = x (x ·X g1) ·X g2 = x ·X (g1g2)

A morphism f : (X, ·X) → (Y, ·Y ) between G-sets is a function f : X → Y
such that f(x ·X g) = f(x) ·Y g for all x ∈ X.

The G-sets and their morphisms form a category denoted by BGδ.

More generally, we are interested in G-sets where G is a topological group,
i.e., its carrier is equipped with a topology and multiplication and inverse are
continuous. Let us recall some basic definitions of topology theory.

Definition 3.2 (topological spaces) A topological space is a pair (X,O(X))
for X a set and O(X) ⊆ ℘(X) (the topology over X) is closed with respect to
arbitrary union and finite intersection, and ∅, X ∈ O(X).

A function f : X → Y is a continuous map f : (X,O(X)) → (Y,O(Y )) if
f−1(U) ∈ O(X) for all U ∈ O(Y ).

Topological spaces and continuous maps form a category, denoted top.

The elements of O(X) are referred to as the open sets of the topology.

Example 3.3 The smallest (i.e., coarsest) topology is O(X) = {∅, X}. On the
other hand, the finest topology is the discrete topology, where O(X) = ℘(X).
It is easy to prove that a topology is discrete if and only if {x} ∈ O(X) for
all x ∈ X , i.e., if every point is separated from the others (hence the name).
Clearly, every function is continuous with respect to the discrete topology.

Remark 3.4 (product of spaces) The category top is complete and cocom-
plete [10, Section V.9]. In particular, given a family of topological spaces
(Xi,O(Xi)) ∈ top, indexed by i ∈ I, the product

∏
i∈I(Xi,O(Xi)) is the

topological space whose space is X =
∏

i∈I Xi, and the topology is the smallest
topology such that the projections πi : X → Xi are continuous. If I is finite,
then O(X) =

∏
i∈I O(Xi). This does not hold for I infinite, in general.

Finally, we recall the last standard definition we need for our development,
which generalizes Definition 3.1.

Definition 3.5 (topological groups and continuous G-sets) A group G
is a topological group if its carrier is equipped with a topology, and its mul-
tiplication and inverse are continuous with respect to this topology.

A G-set (X, ·X) is continuous if G is topological and the action ·X : X×G →
G is continuous with respect to X equipped with the discrete topology.

A morphism f : (X, ·X) → (Y, ·Y ) between continuous G-sets is a function
f : X → Y which respects the actions.

For a given topological group G, continuous G-sets and their morphisms form
a category, denoted by BG.
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Notice that for any group G, the category of all G-sets is the category of
continuous G-sets where G is taken with the discrete topology – hence the
notation BGδ from [11] we have used in Definition 3.1.

A useful characterization of continuous G-set is the following lemma [11, I,
Exercise 6].

Lemma 3.6 Let G be a topological group, let (X, ·X) be a G-set, and for each
x ∈ X let Ix , {g ∈ G | x ·X g = x} be denoted the isotropy group of x. Then,
(X, ·X) is continuous iff all its isotropy groups are open sets in G.

3.2 Permutation algebras as G-sets

Let us consider the G-sets when G is either Aut(ω) or Autfk(ω). Clearly, every
Aut(ω)-set is also a Autfk(ω)-set (just by restricting the action to the finite
kernel permutations), mimicking the correspondence between Algπ and Algfkπ .
In fact, a stronger equivalence holds between the formalisms, as it is put in
evidence by the next result.

Proposition 3.7 Algπ
∼= BAut(ω)δ and Algfkπ

∼= BAutfk(ω)δ.

Proof. Let A a permutation algebra. We define a corresponding Aut(ω)-set
G(A) = (A, ·G(A)) where a ·G(A) π , π̂A(a) for all a ∈ A. On the other hand, if
(X, ·X) is a Aut(ω)-set, the corresponding algebra X = (X, {πX}) is defined by
taking π̂X(x) , x ·X π for π ∈ Aut(ω).

Let A,B be two permutation algebras. A function f : A → B is a morphism
f : A → B in Algπ iff f(π̂A(a)) = π̂B(f(a)) for all permutations π and a ∈
A, which in turn holds iff f(a ·G(A) π) = f(a) ·G(B) π for all π and a, which

equivalently states that f : (A, ·G(A)) → (B, ·G(B)) is a morphism in BAut(ω)δ.
Clearly, this correspondence is full and faithful, hence the thesis.

Using the same argument, we have also that Algfkπ
∼= BAutfk(ω)δ.

Also the subcategories of algebras with finite support, possibly over only
finite kernel permutations, can be recasted in the more general setting of G-
sets, but to this end we need to equip the groups Aut(ω) and Autfk(ω) with a
topology.

Let us consider the space N, given as the set ω of natural numbers equipped
with the discrete topology. The Baire space is the topological space

∏∞

i=0 N =
Nω, equipped with the infinite product topology. A base of this topology is
given by the sets of the form

∏∞

i=0 Xi where Xi 6= ω only for finitely many
indexes i.

Let us now consider the groups Aut(ω) and Autfk(ω). As described
in [11, Section III.9] for Aut(ω), the carriers of these groups can be seen as
subspaces of the Baire space, where each π corresponds to the infinite list
(π(0), π(1), π(2), . . . ). Therefore, both Aut(ω) and Autfk(ω) inherit a topol-
ogy from Nω: Their open sets are of the form U ∩ Aut(ω) and U ∩ Autfk(ω),
for U open set of Nω. We can therefore consider the categories BAut(ω) and
BAutfk(ω) of continuous Aut(ω)-sets and continuous Autfk(ω)-sets, respectively.
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We are now ready to prove our first main result, namely, the correspondence
between continuous G-sets and permutation algebras with finite support.

Theorem 3.8 FSAlgπ
∼= BAut(ω) and FSAlgfkπ

∼= BAutfk(ω).

Proof. In order to prove FSAlgfkπ
∼= BAutfk(ω), we show that the functor G of

Proposition 3.7 maps algebras with finite support and finite kernel to continuous
Autfk(ω)-sets, and vice versa.

Let A = (A, {π̂A}) be an algebra in FSAlgfkπ ; the corresponding Autfk(ω)-set
is (A, ·G(A)), where a ·G(A) π , π̂A(a) for all a ∈ A. For Lemma 3.6, G(A)
is continuous if and only if Ia is open for all a ∈ A, as it can be proved by a
suitable characterization of Ia, given by

Ia =
⋃

π∈Ia

∞∏

i=0

{π(i)}

=
⋃

π∈Ia

(
∞∏

i=0

Aπ
i

)
∩ Autfk(ω) where Aπ

i ,

{
{π(i)} if i ∈ supp(a)

ω otherwise

=

( ⋃

π∈Ia

∞∏

i=0

Aπ
i

)
∩ Autfk(ω) (3.1)

which is open in Autfk(ω) because each
∏∞

i=0 Aπ
i is open in Nω since suppA(a)

is finite and thus only finitely many Aπ
i ’s are different from ω.1

On the other hand, let (X, ·X) be a continuous Autfk(ω)-set; we prove that
X = (X, {π̂X}) is in FSAlgfkπ . Clearly X is a finite kernel permutation algebra.
By Lemma 3.6, for any x ∈ X , Ix is an open set of Autfk(ω), hence Ix =
U ∩ Autfk(ω) for some U open set of Nω. More explicitly, Ix can be written as

Ix =


⋃

i∈I

∞∏

j=0

Xij


 ∩ Autfk(ω)

for some family of indexes I, and where for each i ∈ I there exists a finite Ji ⊂ ω
such that Xij 6= ω only for j ∈ Ji. Since id ∈ Ix (it is a group), there exists

i0 ∈ I such that id ∈
∏∞

j=0 Xi0j . We prove that the finite set J , Ji0 supports x.

Let π ∈ fix(J)∩Autfk(ω). For all j ∈ ω, if j ∈ J then π(j) = j ∈ Xi0j , otherwise
Xi0j = ω. In both cases, π(j) ∈ Xi0j . So π ∈

∏∞

j=0 Xi0j , and therefore π ∈ Ix,
i.e. π̂(x) = x ·X π = x, hence the thesis.

For proving FSAlgπ
∼= BAut(ω) we can reply the argument above, just

replacing Autfk(ω) with Aut(ω).

1We can prove the equivalence (3.1) also directly. Obviously, Ia ⊆
“

S

π∈Ia

Q∞
i=0

Aπ
i

”

∩

Autfk(ω). Let π ∈
“

S

π∈Ia

Q∞
i=0

Aπ
i

”

∩ Autfk(ω); then, there exists ρ ∈ Ia such that for all

i ∈ suppA(a) : π(i) = ρ(i). Since ρ(a) = a, also π(a) = a, thus π ∈ Ia.
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Figure 1: The Permutation Algebra Cube (first version).

Figure 1 summarizes the relationships we have established so far among
permutation algebras and G-sets. It is interesting to notice that the inclusion
functors BAut(ω) ↪→ BAut(ω)δ and BAutfk(ω) ↪→ BAutfk(ω)δ have right ad-
joints; the latter is e.g. defined on the objects as follows

r : BAutfk(ω)δ → BAutfk(ω) (X, ·X) 7→ ({x ∈ X | Ix open for Autfk(ω)}, ·X)

and it is the restriction on morphisms. Therefore, r maps every BAutfk(ω)δ-
set to the largest continuous BAutfk(ω)-set contained in it. Translating r to
permutation algebras along the equivalences, this is equivalent to state that
there exists a functor

r′ : Algfkπ → FSAlgfkπ (A, {π̂A}) 7→ (B, {π̂A|B})

where B , {a ∈ A | Ia open for Autfk(ω)}. Now, Ia is open iff there exists a
finite J ⊂ ω such that for any π, if π(i) = i for all i ∈ J then π ∈ Ia (see
the proof of Theorem 3.8). This corresponds exactly to say that a has finite
support, hence we can define directly r′(A) = {a ∈ A | suppA(a) finite}.

4 Permutation algebras and sheaves

In this section we study the relationship between the categories of permutation
algebras, and sheaf categories. We will prove that both FSAlgπ and FSAlgfkπ are
equivalent to a well-known sheaf category, the so-called Schanuel topos. In virtue
of the equivalences with BAut(ω) and BAutfk(ω) proved in the previous section,
we will take most advantage of known techniques and results on continuous G-
sets and sheaf categories.
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4.1 Categories of presheaves and sheaves

Recall that the category of presheaves over a small category C is the category of
functors SetC

op

and natural transformations among them. In particular, we are
interested in the presheaf category SetI, where I is the category of finite subsets
of ω and injective maps. This category has been used by many authors for
modelling the computational notion of dynamic allocation of names or locations;
see e.g. [12, 15, 7, 5]. For instance, following [5] the late semantics of π-calculus
can be defined as the final coalgebra of the behaviour functor B : SetI → SetI

BP =℘f (N × PN + N × N × P + N × δP + P )

that is, for a finite K ⊂ ω

(BP )K =℘f (K × (PK)K + K × K × PK + K × PK]1 + PK)

where δ : SetI → SetI is the shift functor defined as (δP )K = PK]1, and
N = y(1) = I(1, ) is the object of names, such that NK

∼= K holds.
Actually, we have to consider a particular subcategory of SetI, namely the

category of sheaves with respect to the atomic topology. Sheaf conditions are usu-
ally expressed in terms of sieves and amalgamations (see e.g. [11, Section III.4]),
but in the case of the atomic topology there exists a simpler, well-known alter-
native characterization of this subcategory [8, Example 2.1.11(h)].

Proposition 4.1 Sh(Iop) is the full subcategory of SetI of pullback preserving
functors.

The category Sh(Iop) is often called the Schanuel topos. It features the
same important properties of SetI above: It is a topos (and hence it is carte-
sian closed), the functor N = y(1) is a sheaf, and the shift operator δ can
be restricted to Sh(Iop). Initial algebras and final coalgebras of polynomial
functors, such as the behaviour functor of π-calculus above, are pullback pre-
serving. Therefore, Sh(Iop) can be used in place of SetI for giving the semantics
of languages with dynamic name allocations, as in [15, 16, 7, 2] and ultimately
also in [6] (being the Fraenkel-Mostowsky set theory essentially equivalent to
Sh(Iop)). The main difference between SetI and Sh(Iop) is that the latter is a
Boolean topos [11, Section III.8, p. 150], while the former is not. Hence, Sh(Iop)
can be used for interpreting a classical logic, instead of the usual intuitionistic
(extensional) higher order logic of topoi.

4.2 Permutation algebras and the Schanuel topos

We first recall a known characterisation result [11, Section III.9, Corollary 3].

Proposition 4.2 BAut(ω) ∼= Sh(Iop).

For Proposition 3.8, this implies that FSAlgπ, the category of permutation alge-
bras with finite support, is equivalent to the Schanuel topos. Quite surprisingly,
it turns out that the proposition can be extended to finite kernel algebras.
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Theorem 4.3 BAutfk(ω) ∼= Sh(Iop).

The proof of this result follows the same pattern of the discussion following [11,
III.9, Theorem 2], just restricting to finite kernel permutations. Indeed, the
proof works also in the restricted case because any monomorphism L � K in
I can be extended to a finite kernel isomorphism on ω, that is, to an object of
Autfk(ω). However, for sake of completeness and due to the technical nature
of this approach, we prefer to give here a detailed proof of Theorem 4.3, which
will take most of the remaining part of this section.

We begin by recalling some other technical definition and general result from
the theory of continuous G-sets (see e.g. [11, Section III.9]).

Definition 4.4 A family U of open subgroups of a topological group G is a
cofinal system if for each G′ open subgroup of G there exists U ∈ U such that
U ⊆ G′.

Now, let U be an (open) subgroup of G. A right coset of U is any set of the
shape Uv = {uv | u ∈ U}, for v ∈ G. An equivalent definition of right cosets is
reported below.

Lemma 4.5 Let G be a group, and U a subgroup of G. Then, a subset H ⊆ G
is a right coset of U iff U = {uv−1 | u, v ∈ H}.

Proof. (⇒) Let H be a right coset of U , that is H = Ug for some g ∈ G. We
prove that U = {uv−1 | u, v ∈ H}. Indeed, U ⊆ {uv−1 | u, v ∈ H} because
U = Hg−1 and g ∈ H . Conversely, let u, v ∈ H ; then u = h1g and v = h2g for
some h1, h2 ∈ U . Then, uv−1 = h1a(h2a)−1 = h1aa−1h−1

2 = h1h
−1
2 ∈ U . Thus

U ⊇ {uv−1 | u, v ∈ H}.
(⇐) Let u, v ∈ H ; obviously, H = Uv. Indeed, let h = uv−1 ∈ U , then

u = hv, and hence u ∈ Uv for all u ∈ H .

For a given U , the family of its right cosets form a partition of G, denoted
as G/U . Clearly, each family G/U is a continuous G-set; the action is simply
(Uv) · w = Uvw. Therefore, for any U cofinal system we can consider the full
subcategory of BG whose objects are families G/U for U ∈ U . This subcategory
is denoted by SU (G). Then, we recall [11, Section III.9, Theorem 2].

Lemma 4.6 BG ∼= Sh(SU (G)).

In particular, when G = Autfk(ω), we can describe morphisms between
family of cosets as particular cosets themselves.

Lemma 4.7 Let U be a cofinal system of open subgroups of Autfk(ω). There
exists a 1-1 correspondence between morphisms φ : Autfk(ω)/U → Autfk(ω)/V
in SU (Autfk(ω)) and cosets V α ∈ Autfk(ω)/V such that U ⊆ α−1V α.

Proof. First, notice that for any α ∈ Autfk(ω), the set α−1V α is the isotropy
group of V α.

For any φ : Autfk(ω)/U → Autfk(ω)/V , we define the corresponding α ∈
Autfk(ω) to be the one such that V α = φ(U). Let us check that U ⊆ α−1V α.
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For π ∈ U , we have that V απ = φ(U)π = φ(Uπ) = φ(U) = V α; hence,
π ∈ IV α = α−1V α. Therefore U ⊆ α−1V α.

On the other hand, let V α be a right coset of V ; we define the corresponding
φ : Autfk(ω)/U → Autfk(ω)/V as φ(Uβ) = V αβ. This definition is well given
because if Uβ = Uγ, then βγ−1 ∈ U , and hence βγ−1 ∈ α−1V α by hypothesis.
But since α−1V α is the isotropy group of V α, we have that V αβγ−1 = V α,
that is V αβ = V αγ.

Therefore, from now on we will denote a morphism from Autfk(ω)/U to
Autfk(ω)/V by a permutation α ∈ Autfk(ω) satisfying U ⊆ α−1V α.

We can now prove Theorem 4.3.

Proof of Theorem 4.3. By Lemma 4.6, it is sufficient to show that there
exists a cofinal system U of open subgroups of Autfk(ω) such that

SU (Autfk(ω)) ∼= I
op (4.1)

For any K ⊂ ω finite, let us define fixfk(K) , fix(K) ∩ Autfk(ω). Clearly,
fixfk(K) is a subgroup of Autfk(ω), and it is open because it can be covered by
the open set deriving from

∏∞

i=0 Ai where Ai = {i} if i ∈ K, and ω otherwise.

Now, let U , {fixfk(K) | K ⊂ ω, finite}. U is a cofinal system of open
subgroups. Indeed, if U is an open subgroup of Autfk(ω), then the carrier of U
is an open set of the form

⋃
j (
∏∞

i=0 Aij)∩Autfk(ω) where for each j there exists
a Kj finite such that for i 6∈ Kj : Aij = ω. Since id ∈ U , there exists a j such

that id ∈ (
∏∞

i=0 Aij)∩Autfk(ω), that is, for all i : i ∈ Aij . Hence fixfk(Kj) ⊆ U .
We prove now the equivalence (4.1) by defining a full and faithful functor

F : SU(Autfk(ω)) → Iop.
The functor F sends each family Autfk(ω)/fixfk(K), object of SU (Autfk(ω)),

to K, object of Iop. More precisely, for Q ∈ SU (Autfk(ω)), we can calculate
the finite set K such that Q = Autfk(ω)/fixfk(K) as follows. Clearly, K =
{i ∈ ω | ∀π ∈ fixfk(K).π(i) = i} because π ∈ fixfk(K) iff ∀i ∈ K : π(i) = i.
By Lemma 4.5, for any right coset U of fixfk(K), we have fixfk(K) = {αβ−1 |
α, β ∈ U}. Therefore, K = {i ∈ ω | ∀u, v ∈ U.uv−1(i) = i} = {i ∈ ω | ∀u, v ∈
U.u−1(i) = v−1(i)}. Thus, for all Q ∈ SU(Autfk(ω)), we define

F (Q) , {i ∈ ω | for any U ∈ Q : ∀u, v ∈ U.u−1(i) = v−1(i)}.

If α ∈ Autfk(ω) denotes a morphism α : Autfk(ω)/fixfk(K) →
Autfk(ω)/fixfk(L), then fixfk(K) ⊆ α−1fixfk(L)α. This is equivalent to say
that α−1(L) ⊆ K (see Lemma 4.8 below), and hence the restriction α−1|L :
L � K of α−1 to L is a monomorphism. The functor F sends therefore
α : Autfk(ω)/fixfk(K) → Autfk(ω)/fixfk(L) to α−1|L : L � K.

We check that F is well defined and faithful. Let α, β ∈ Autfk(ω) be two per-
mutations representing two morphisms Autfk(ω)/fixfk(K) → Autfk(ω)/fixfk(L).
Their action is completely defined by their action on the coset fixfk(L)id =
fixfk(L). Hence, α and β represent the same morphism iff fixfk(L)α = fixfk(L)β,
iff αβ−1 ∈ fixfk(L) (see Lemma 4.9 below), iff ∀x ∈ L : β−1(x) = α−1(x), iff
F (α) = α−1|L = β−1|L = F (β).



14 5 PERMUTATION ALGEBRAS AND NAMED SETS

Moreover, F is also full, because for any monomorphism β : L � K there
is a permutation α ∈ Autfk(ω) such that F (α) = β. Just take α = β̄−1, where
β̄ : ω → ω is any finite kernel extension of β to the whole ω, e.g. as follows

β̄(i) ,

{
β(i) if i ∈ L

(i + 1 − j)-th element of ω \ β(L) otherwise, j = |{l ∈ L | l < i}|.

Clearly β̄ (and β̄−1) is a permutation, and F (β̄−1) = (β̄−1)−1|L = β. It is easy
to see that |ker(β̄−1)| = |ker(β̄)| ≤ max(L ∪ K) + 1, and hence it is finite.

Lemma 4.8 Let L, K ⊂ ω be finite sets, and let α ∈ Autfk(ω) be a permutation.
Then, fixfk(K) ⊆ α−1fixfk(L)α iff α−1(L) ⊆ K

Proof. (⇒) We have to prove that α−1(j) ∈ K for all j ∈ L. Let us suppose
there exists j ∈ L such that α−1(j) 6∈ K; then, let us consider any φ ∈ Autfk(ω)
which fixes K but not α−1(j). Clearly, φ ∈ fixfk(K), but αφα−1 6∈ fixfk(L),
because φα−1(j) 6= α−1(j) and hence αφα−1(j) 6= αα−1(j) = j. This means
that φ 6∈ α−1fixfk(L)α, and this is absurd by hypothesis.

(⇐) Let α−1(L) ⊆ K, and let φ ∈ fixfk(K). Then, we have αφα−1(j) =
αα−1(j) = j for all j ∈ L, and therefore, φ ∈ fixfk(L).

Lemma 4.9 Let L ⊂ ω be a finite set, and let α, β ∈ Autfk(ω) be permutations.
Then, fixfk(L)α = fixfk(L)β iff αβ−1 ∈ fixfk(L).

Proof. (⇒) By hypothesis, for all π ∈ fixfk(L) there exists ρ ∈ fixfk(L) such
that πα = ρβ. For π = id, we have α = ρβ, that is αβ−1 = ρ ∈ fixfk(L).

(⇐) Let π ∈ fixfk(L), and let ρ , παβ−1. Clearly ρ ∈ fixfk(L), hence
πα = παβ−1β = ρβ; therefore fixfk(L)α ⊆ fixfk(L)β. Similarly, we can prove
fixfk(L)α ⊇ fixfk(L)β.

We can summarize the results we have proved so far by strengthening the
diagram of Figure 1 as in Figure 2. In particular, we have that FSAlgπ

∼=
FSAlgfkπ

∼= Sh(Iop). In other words, permutation algebras with finite support
form a Boolean topos with enough structure for defining the semantics of lan-
guages with dynamic name allocation, such as π-calculus, mobile ambients, etc.

5 Permutation algebras and named sets

Named sets are the building blocks of HD-automata, the implementation coun-
terpart of permutation algebras. The definitions below are lifted from [4, Sec-
tion 3.1], and simplified according to our needs.

Definition 5.1 (named sets) A named set N is a triple

N = 〈QN , ‖ · ‖N : QN → ω, GN :
∏

q∈QN
℘(Aut(‖q‖N))〉

where QN is a set of states; ‖ · ‖N is the enumerating function; and for all
q ∈ QN , the set GN (q) is a subgroup of Aut(‖q‖N ) (hence, closed with respect
to inverse and identity), and it is called the permutation group of q.
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Figure 2: The Permutation Algebra Cube, revisited.

In this definition, and also in the following, we adopt the usual “set-
theoretic” convention of representing finite ordinals by natural numbers, thus
0 = ∅ and n = {0, . . . , n− 1}. Therefore, Aut(‖q‖N ) = Aut({0, . . . , ‖q‖N − 1}).

Intuitively, a state in QN represents a process, and thus the function ‖ · ‖N

assigns to each state the number of variables possibly occurring free in it; in
other words, it denotes a canonical choice of its free variables. Finally, GN

denotes for each state the group of renamings under which it is preserved, i.e.,
those permutations on names that do not interfere with its possible behavior.
Note also that GN (q) = {id} if ‖q‖N = 0.

Definition 5.2 (category of named sets) Let N , M be named sets. A
named function H : N → M is a pair

H = 〈h : QN → QM , Λh :
∏

q∈QN
℘(I(‖h(q)‖M , ‖q‖N))〉

for h a function and Λh(q) a set of injections from ‖h(q)‖M to ‖q‖N , satisfying
the additional condition

GN (q) ◦ λ ⊆ Λh(q) = λ ◦ GM (h(q)) ∀λ ∈ Λh(q)

Finally, NSet denotes the category of named sets and their morphisms.

So, a named function is a state function, equipped with a set of injective
renamings for each q ∈ QN , which are somewhat compatible with the permu-
tations in GN (q) and GM (h(q)) (and such that λh(q) = ∅ if ‖h(q)‖M = 0). In
other words, “the whole set of Λh(q) must be generated by saturating any of
its elements by the permutation group of h(q), and the result must be invariant
with respect to the permutation group of q” [4, Section 3.1]. In particular, the
identity on N is 〈id, Aut(‖ · ‖N)〉, and composition is defined as expected.

Example 5.3 Let us consider a few simple examples. Since 1 = {0} is the
singleton set, both N1 = 〈1, ‖0‖ = 1, Aut(1) = {id}〉 and Np

2 = 〈1, ‖0‖ =
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2, Aut(2) = {id, (1, 0)}〉 are named sets: same set of states, different enumerat-
ing functions. Instead, N i

2 = 〈1, ‖0‖ = 2, {id} ⊆ Aut(2)〉 is a named set with
the same set of states and the same enumerating function of Np

2 , but with a
different permutation group.

Notice that there is no named function from Np
2 to N1, since any injection λ,

when post-composed with Aut(2), generates the whole I(1, 2). Instead, denoting
by Ij , for j = 0, 1, the set containing the injection mapping 0 to j, then 〈id, Ij〉
is a named function from N i

2 to N1, while 〈id, I0 ∪ I1 = I(1, 2)〉 is not.
Similarly, there is no named function from Np

2 to N i
2, while 〈id, Aut(2)〉 :

N i
2 → Np

2 (and it does not exist for any other choice of the set of injections
Λ(1) ⊆ Aut(2)). In fact, it is easy to see that, given named sets 〈Q, ‖·‖, G1〉 and
〈Q, ‖·‖, G2〉 (i.e., same state set and enumerating function, different permutation
groups), with G1(q) a subgroup of G2(q) for all q ∈ Q, then 〈id, G2〉 is a well-
defined named function from the former named set to the latter.

In the remaining of this section we relate FSAlgfkπ , the category of finitely
supported, finite kernel permutation algebras and their morphisms, and NSet,
the category of named sets. We plan to sharpen and make more concise some
of the results presented in [13, Section 6].

Summarizing, Proposition 5.4 and Proposition 5.7 (and the “canonical” ver-
sion of the latter, Proposition 5.13: See later) prove the existence of suitable
functors between the underlying categories, generalizing the functions on ob-
jects presented as Definition 49 and Definition 50, respectively, in [13, Section 6];
while Theorem 5.14 extends to a categorical equivalence the correspondence on
objects proved in Theorem 51 of the same paper.

5.1 From named sets to permutation algebras

The functor from named sets to permutation algebras is obtained by a free
construction, (apparently) analogous to the standard correspondence between
sets and algebras. We need to introduce some notation. For π ∈ Aut(n) and
π′ ∈ Autfk(ω), for n ∈ ω, let us denote by [π, π′] ∈ Autfk(ω) the completion of

π with π′, defined as [π, π′](i) ,

{
π(i) if i < n

π′(i − n) + n otherwise

Proposition 5.4 (from sets to algebras) Let FO be the function mapping
each named set N to the finite kernel permutation algebra freely generated
from the elements of QN (considered as new constants), modulo the equiva-
lence ≡N induced by set of axioms associated to the permutations in GN , that

is, [̂π, π′]F (N)(q) ≡N q (i.e., a suitable completion of π) if π ∈ GN (q).
Moreover, given a named function H : N → M , for each q ∈ QN let us

choose an injection λq ∈ Λh(q), and a permutation λ̂q ∈ Aut(‖q‖N) extending

λq. Let us denote by Hλ : QN → QM the function Hλ(q) = [λ̂q, id](h(q)) for all
q ∈ Q. Then, let FA be the function associating to each named function H the
free extension of the function Hλ.

The pair F = 〈FO, FA〉 defines a functor from NSet to FSAlgfkπ .
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Proof. The carrier of FO(N) is {π(q) | q ∈ QN , π ∈ Autfk(ω)}/≡N . Thus, it
is easy to see that the resulting algebra has finite support, proving that each
element [π(q)]N is supported by the set π({0, . . . , ‖q‖N − 1}). In order to prove
this, we must show that each permutation π′ fixing π({0, . . . , ‖q‖N − 1}) also
fixes π̂F (N)(q). Then we have that

∀k′ ∈ π(‖q‖N) : π′(k′) = k′ =⇒ ∀k < ‖q‖N : π′(π(k)) = π(k)

=⇒ ∀k < ‖q‖N : π−1(π′(π(k))) = k

=⇒ ̂(π−1π′π)F (N)(q) ≡N q

=⇒ π̂−1
F (N)(π̂

′
F (N)(π̂F (N)(q))) ≡N q

=⇒ π̂′
F (N)(π̂F (N)(q)) ≡N π̂F (N)(q)

Let us now consider a named set function H : N → M . The function Hλ

can be lifted to an algebra homomorphism from the free algebra TΣfk
π

(QN )

to the free algebra TΣfk
π

(QM ). Moreover, it preserves the axioms on iden-
tity and composition: We must then prove that this holds also for the addi-
tional axioms arisen from the permutation group. This is equivalent to prove
that Hλ([π, π′]F (N)(q)) ≡M Hλ(q) for all π ∈ GN (q). By construction, we

have that Hλ([π, π′]F (N)(q)) , [π, π′]F (M)([λ̂a, id]F (M)(h(q))). Now, remem-
ber that there exists a π ∈ GM (h(q)) such that π ◦ λa = λa ◦ π, and then

that for a suitable π′ we have [π, π′] ◦ [λ̂a, id] = [λ̂a, id] ◦ [π, π′]: This implies

that Hλ([π, π′]F (N)(q)) coincides with [λ̂a, id]F (M)([π, π′]F (M)(h(q))), which is

equivalent to [λ̂a, id]F (M)(h(q)), hence the result.
The identities 〈id, GN 〉 are clearly preserved. Concerning composition, it

is enough to show that the result of the functor is independent with respect
to the choice of the injection, i.e, that given a named function H : N → M ,
then for any λ, λ′ ∈ Λh(q) the equality [λ̂, id](h(q)) ≡M [λ̂′, id](h(q)) holds. To
prove the latter, note that the conditions on ΛH(q) ensure on the existence of
a permutation π ∈ GM (h(q)) such that λ ◦ π = λ′, hence the equality follows.

5.2 From permutation algebras to named sets

We first define some additional structure on supports.

Definition 5.5 (on finite supports) Let A be a permutation algebra, and
let a ∈ A be a finitely supported element. Moreover, let normA(a) ∈
I(|suppA(a)|, ω) denote the (necessarily unique) order-preserving injection cov-
ering the support. Formally, normA(a)(i) < normA(a)(i + 1) for all i <
|suppA(a)| and normA(a)({0, . . . , |suppA(a)| − 1}) = suppA(a).

Now an easy technical lemma, relating the support of two algebras.

Lemma 5.6 (mapping supports) Let σ : A → B be an algebra homomor-
phism, and let a ∈ A be finitely supported. Then, suppB(σ(a)) ⊆ suppA(a).
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Proof. Let us prove that any K ⊆ ω supporting a ∈ A, supports also σ(a) ∈ B.
Let π ∈ Aut(ω) such that for all i ∈ K : π(i) = i. Then, by hypothesis
π̂A(a) = a, and hence π̂B(σ(a)) = σ(π̂A(a)) = σ(a).

In other words, the lemma above implies that for each morphism σ the
element σ(a) is finitely supported if a is; and it allows for defining a functor I
from finite kernel permutation algebras to named sets.

Proposition 5.7 (from algebras to sets) Let IO be the function mapping
each A ∈ FSAlgfkπ to the named set 〈A, |suppA(·)|, GI(A)〉, for GI(A)(a) the set
of permutations given by

{π ∈ Aut(|suppA(a)|) | ∃π′ ∈ fixA(a) : normA(a) ◦ π = π′ ◦ normA(a)}.

Let σ : A → B, and let inσ(a) : |suppB(σ(a))| → |suppA(a)| the
uniquely induced arrow (thanks to Lemma 5.6) such that normA(a) ◦ inσ(a) =
normB(σ(a)). Hence, let IA be the function associating to σ the named function
〈hσ, Λσ〉 given by the obvious function from A to B and by the set of injections
Λσ(a) = inσ(a) ◦ GI(B)(σ(a)) for all a ∈ A.

The pair I = 〈IO, IA〉 defines a functor from FSAlgfkπ to NSet.

Proof. It is easy to check that GI(A)(a) is a group, since fixA(a) is so.
Concerning Λσ, it is clear that the condition λ ◦ GI(B)(σ(a)) = Λσ(a) holds

for all λ ∈ Λσ(a), since λ is of the shape inA(a) ◦ π, for π ∈ GI(B)(σ(a)).
We must now prove that GI(A)(a) ◦ λ ⊆ Λσ(a) for all λ ∈ Λσ(a). This

is equivalent to ask that for all π ∈ GI(A)(a) there exists a π ∈ GI(B)(σ(a))
such that π ◦ inσ(a) = inσ(a) ◦ π. By definition we have normA(a) ◦ inσ(a) =
normB(σ(a)), so that for π′ ∈ fixA(a) corresponding to π, we have

normA(a) ◦ inσ(a) = normB(σ(a)) =⇒

=⇒ π′ ◦ normA(a) ◦ inσ(a) = π′ ◦ normB(σ(a))

=⇒ normA(a) ◦ π ◦ inσ(a) = π′ ◦ normB(σ(a))

since fixA(a) ⊆ fixB(σ(a)) ⊆ spB(σ(a)), there exists π ∈ Aut(|suppB(σ(a))|)

=⇒ normA(a) ◦ π ◦ inσ(a) = normB(σ(a)) ◦ π

=⇒ normA(a) ◦ π ◦ inσ(a) = normA(a) ◦ inσ(a) ◦ π

and finally, since normA(a) is injective,

=⇒ π ◦ inσ(a) = inσ(a) ◦ π

The identities are clearly preserved. Concerning composition, note that the
choice of arrow in is preserved by it, in the sense that inσ(a) ◦ inσ′(σ(a))
coincides with inσ;σ′(σ′(σ(a))). Then, we have that

Λσ;σ′(a) = inσ;σ′(a) ◦ GC(σ′(σ(a))) = inσ(a) ◦ inσ′(σ(a)) ◦ GC(σ′(σ(a)))

= inσ(a) ◦ GB(σ(a)) ◦ inσ′(σ(a)) ◦ GC(σ′(σ(a))) = Λσ(a) ◦ Λσ′(σ(a))

and thus compositionality holds.
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5.3 About the adjunction between named sets and per-
mutation algebras

We first give a look at the structure of the algebras obtained via functor F .

Lemma 5.8 Let N be a named set, and let q ∈ QN . Then, the equivalence class
[q]≡N

is finitely supported, and suppF (N)([q]≡N
) = ‖q‖N = {0, . . . , ‖q‖N − 1};

furthermore, fixF (N )([q]≡N
) = {[π, π′] | π ∈ GN (q), π′ ∈ Autfk(ω)}.

Proof. Clearly, each permutation π ∈ fix({0, . . . , ‖q‖N − 1}) fixes [q]≡N
, since

it can be written as [id, π′] (see also the proof of Proposition 5.4). Now, let us
assume a k < ‖q‖N such that k 6∈ suppF (N)([q]N ), and let πk be the permutation
exchanging k with ‖q‖N + 1, and fixing the rest. Now, we have πk(q) = q in
FO(N), but the equivalence can not be obtained by ≡N , since the latter is
generated by the permutations in GN (q). This proves the first half.

Now, let us consider π ∈ fixF (N)([q]N ). Then, π ∈ spF (N)([q]N ), so that it
is of the shape π = [πs, π

′] for πs ∈ Aut(‖q‖N). As for before, since GN (q) is a
group, it follows that πs ∈ GN (q).

Let N be a named set. By Lemma 5.8, we have that |suppF (N)([q]≡N
)| =

‖q‖N and GI(F (N))([q]≡N
) = GN (q), so that the pair ηN = 〈in≡N

, GN (q)〉
defines a named function from N to I(F (N)), for in≡N

the obvious injection
mapping q to [q]≡N

. Such a morphism is a strong candidate for the unit of a
possible adjunction. Unfortunately, this is not the case, as explained below.

Remark 5.9 Let A ∈ FSAlgπ, and let us suppose that F a I. Then, for each
named function H : N → I(A) there exists a unique morphism σH : F (N) → A
such that ηN ; I(σH) = H (see [1, Definition 13.2.1]).

Such a morphism should behave as h on QN , meaning that (the equivalence
class) [q]≡N

has to be mapped into h(q): So, this fact does constrain the choice
of σH to be the free extension of h. To prove its existence would now be enough
to show that the axiomatization is preserved, i.e., that [π, π′](h(q)) = h(q) holds
in A if [π, π′](q) ≡N q: The commutativity of the diagram follows, as well as
the uniqueness of σH .

Let W = 〈ω, {π̂W }〉 be the algebra such that π̂W (i) = π(i) for all i ∈ ω.
It is finitely supported, since clearly suppW (i) = {i} for all i ∈ ω. Then, by
construction I(W) = 〈ω, ‖i‖ = 1, id〉 (compare with the named sets in Exam-
ple 5.3). Now, let us consider the identity on I(W): The obvious function
σid : F (I(W)) → W is not an algebra morphism.

The problem lies on the “normalization” along the functor I, which blurs
the identity of the elements of the support. We need to choose a “canonical”
element for each set of elements with the same cardinality of the support.

Lemma 5.10 Let A ∈ Algπ and let a ∈ A. If a is finitely supported, then
suppA(π(a)) = π(suppA(a)) for all π ∈ Aut(ω).
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Lemma 5.11 Let A ∈ Algπ, let a ∈ A and let HomA[a, a′] , {π | π̂A(a) = a′}.
Then, HomA[a, a′] ◦ fixA(a) = HomA[a, a′] = fixA(a′) ◦ HomA[a, a′].

We now introduce a last concept, the orbit of an element, consisting of the
family of all the other elements of an algebra which can be reached from it via
the application of an operator of the permutation signature.

Definition 5.12 (orbits) Let A ∈ Algπ and let a ∈ A. The orbit of a is the
set OrbA(a) , {π̂A(a) | π ∈ Aut(ω)}.

Thus, the orbit of an element a collects all the other elements that are
reached from a via the application of a permutation, i.e., an operator of the
signature. It is obvious that orbits partition a permutation algebra. Moreover,
let us assume the existence for each orbit OrbA(a) of a canonical representative
aO. (We will come back on this later on.)

Proposition 5.13 (from algebras to sets, II) Let ÎO be the function map-
ping each A ∈ FSAlgfkπ to the named set 〈{aO | a ∈ A}, |suppA(·)|, GbI(A)〉, for

GbI(A)(aO) the set of permutations given by

{π ∈ Aut(|suppA(a0)|) | ∃π′ ∈ fixA(a0) : normA(aO) ◦ π = π′ ◦ normA(aO)}.

Let σ : A → B, let inσ(aO) : |suppB(σ(aO))| → |suppA(aO)| be the
uniquely induced arrow such that normA(aO) ◦ inσ(aO) = normB(σ(aO)), and
let Ξ(σ(a)O , σ(aO)) ⊆ I(|suppA(σ(a)O)|, |suppA(σ(aO))|) be the set of permuta-
tions given by

{π | ∃π′ ∈ HomB[σ(a)O, σ(aO)] : normB(σ(aO)) ◦ π = π′ ◦ normB(σ(a)O)}.

Hence, let ÎA be the function associating to σ the named function 〈hσ, Λσ〉 such
that hσ(aO) = σ(a)O and Λσ(aO) = inσ(aO) ◦ Ξ(σ(a)O , σ(aO)) ◦ GbI(B)(σ(a)O)

for all aO ∈ A.
The pair Î = 〈ÎO, ÎA〉 defines a functor from FSAlgfkπ to NSet.

Proof. The key remark for the correctness of Λσ is that HomB[σ(a)O, σ(a0)] ◦
fixB(σ(aO)) = fixB(σ(a)O)◦HomB[σ(a)O, σ(aO)] (see Lemma 5.11 above), and
equality Ξ(σ(a)O , σ(aO)) ◦GbI(A)(σ(a)O) = GI(A)(σ(aO)) ◦Ξ(σ(a)O , σ(aO)) fol-

lows: Then, it is enough to mimic the proof for Proposition 5.7.

The proof goes along the same lines of the one for Proposition 5.7: Addi-
tionally, now the “normalization” along Î picks up a single representative for
each orbit, which is mirrored by the introduction of the family ΞaO

. Using
the previously defined functor, it is easy to realize that named sets are just a
different presentation for finite kernel permutation algebras.

Theorem 5.14 NSet ∼= FSAlgfkπ .
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Proof. Let N be a named set: It is easy to prove that it is isomorphic to
Î(F (N)). Thanks to Lemmata 5.8 and 5.11, the set of states of the latter is⋃

q∈QN
(([q]≡N

)O), its enumerating function is |suppF (N)(([q]≡N
)O)| = ‖q‖N ,

and its set of permutations GbI(F (N ))(([q]≡N
)O) ⊆ Aut(‖q‖N) satisfies

GbI(F (N ))(([q]≡N
)O)◦Ξ(([q]≡N

)O, [q]≡N
)) = Ξ(([q]≡N

)O, [q]≡N
))◦GI(F (N ))([q]≡N

).

Now, since GI(F (N ))([q]≡N
) = GN (q), the corresponding isomorphism is given

by 〈([−]≡N
)O, GbI(F (N ))(([q]≡N

)O) ◦ Ξ(([q]≡N
)O, [q]≡N

))〉, which is also natural.

Analogous considerations hold for the endomorphism F (Î(A)) on algebras.

The element aO ∈ Î(A) generates the whole orbit of [aO]≡
F ( bI(A))

, and the algebra

isomorphism σ maps the latter is to π̂A(aO), for π any permutation extending
normA(aO).

Remark 5.15 As a final note, we remark that the canonical representative aO

of each orbit can be constructively defined. In fact, Aut(ω) can be naturally
equipped with a total order, which is then lifted to sets of permutations. Hence,
for each orbit an element ac can be chosen, such that |suppA(ac)| = suppA(ac),
and which has the minimal permutation group associated to it. The definition
is well-given, since it is easy to prove that fixA(a) = fixA(a′) implies a = a′ for
all finitely supported a ∈ A and a′ ∈ OrbA(a).

6 Conclusions

In this paper, we have investigated the connections between three different ap-
proaches to the treatment of nominal calculi, such as calculi for name passing
or location generation. We have compared metamodels based on (pre)sheaf
categories, on algebras over permutation signatures, and on sets enriched with
names and permutation structures. We have proved that the category of named
sets are equivalent to the relevant categories of permutation algebras with finite
support (either on the signature with all permutations or with only finite kernel
ones) which in turn are equivalent to the category of sheaves over I, that is the
Schanuel topos. Our characterization results are summarized in Figure 3.

These results confirm that named sets and permutation algebras are well
suited for modelling the semantics of nominal calculi. Moreover, we can import
from the (pre)sheaf approach all the initial algebra/final coalgebra machinery. In
fact, our next step will be to compare the models obtained by suitable bialgebras
on named sets and permutation algebras (see [13, Section 4] and [3]), with
the coalgebraic models over presheaves categories from [5] briefly sketched in
Section 4.1.

Beside this, it seems natural to develop further our research in terms of
categorical logic. We would aim to define a suitable internal language for the
three meta-models we analyzed so far. The connection with the Schanuel topos,
and its correspondence with Fraenkel-Mostowski set theory, would lead us to
consider some variant (e.g., higher-order) of Pitts’ Nominal Logic [14].
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Figure 3: The Permutation Algebra Cube.
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