
A unifying model of variables and names?

Marino Miculan1 Kidane Yemane2

1 Dept. of Mathematics and Computing Science, University of Udine
Via delle Scienze 206, I-33100 Udine, Italy. miculan@dimi.uniud.it

2 Dept. of Information Technology, Uppsala University
Box 337, S-751 05 Uppsala, Sweden. kidane.yemane@it.uu.se

Abstract. We investigate a category theoretic model where both “vari-
ables” and “names”, usually viewed as separate notions, are particular
cases of the more general notion of distinction. The key aspect of this
model is to consider functors over the category of irreflexive, symmet-
ric finite relations. The models previously proposed for the notions of
“variables” and “names” embed faithfully in the new one, and initial al-
gebra/final coalgebra constructions can be transferred from the formers
to the latter. Moreover, the new model admits a definition of distinction-
aware simultaneous substitutions. As a substantial application example,
we give the first semantic interpretation of Miller-Tiu’s FOλ∇ logic.

1 Introduction

In recent years, many models for dynamically allocable entities, such as (bound)
variables, (fresh) names, reference, etc., have been proposed. Most of (if not
all) these models are based on some (sub)category of (pre)sheaves, i.e., functors
from a suitable index category to Set [18, 6, 10, 8, 5, 17]. The basic idea is to
stratify datatypes according to various “stages” representing different degrees of
information, such as number of allocated variables. A simple example is that of
set-valued functors over F, which is the category of finite subsets C ⊂ A of a
given enumerable set A of abstract symbols (“variable names”) [6, 10]; here, the
datatype of untyped λ-terms is the functor Λ : F → Set , ΛC = {t | FV (t) ⊆ C}.
Morphisms between objects of the index category describe how we can move from
one stage to the others; in F, morphisms are any function σ : C → D, that is any
variable renaming possibly with unifications. Correspondingly, Λσ : ΛC → ΛD

is the usual (capture-avoiding) variable renaming −{σ} on terms.
Different index categories lead to different notions of “allocable entities”. The

notion of name, particularly important for process calculi, can be modeled using
the subcategory I of F of only injective functions. Thus, stages of I can be still
“enlarged” by morphisms (which corresponds to allocation of new names), but
they cannot be “contracted”, which means that two different symbols can never
coalesce to the same. Categories of set- and domain-valued functors over I have
been used for modeling π-calculus, ν-calculus, etc. [18, 5].

According to this view, variables and names are quite different concepts,
and as such they are rendered by different index categories. This separation is a
drawback when we have to model calculi or logics where both aspects are present
? Work supported by EU projects IST-2001-33100 profundis and IST-510996 types.

and must be dealt with at once. Some examples are: the fusion calculus, where
names can be unified under some conditions; the open bisimulation of π-calculus,
which is defined by closure under all (also unifying) distinction-preserving name
substitutions; even, a (still unknown) algebraic model for the Mobile Ambients is
supposed to deal with both variables and names (which are declared as different
entities in capabilities); and finally, the logic FOλ∇ [14], featuring a peculiar
interplay between “global variables” and “locally scoped constants”.

Why are F and I not sufficient to model these situations? The problem is
that these models force the behaviour of atoms a priori. Atoms will always act
as variables in F, as names in I. This is to be contrasted with the situations
above, where the behaviour of an atom is not known beforehand.

A way for circumventing this problem is to distinguish allocation of atoms,
from specifications of their behaviour. Behaviour of atoms is given a symmetric,
irreflexive relation, called distinction: two atoms are related if and only if they
cannot be unified, in any reachable stage. These relations can change dynam-
ically, after that atoms are introduced. Thus a stage is a finite set of atoms,
together with a distinction over it. These stages form the objects of a new index
category D, which subsumes both the idea of variables and that of names.

The aim of this paper is to give a systematic presentation of the model
of set-valued functors over D, first introduced by Ghani, Yemane and Victor
for characterizing open bisimulation of π-calculus [9]. Following similar previous
work about [6, 5], we focus on algebraic, coalgebraic and logical properties of this
category, relating these results with the corresponding ones in SetF and Set I.

In Section 2, we present the category D, its properties and relations with F
and I. In Section 3 we study the structure of SetD, and its relations with SetF,
Set I. In particular, due to their importance for modeling process calculi, we will
study initial algebras and final coalgebras of polynomial functors over SetD.

In Section 4, we give a general definition of the key notions of support and
apartness, and then apply and compare their instances in the cases of SetD,
SetF and Set I. An application of apartness is in Section 5, where we present a
monoidal definition of “apartness-preserving” simultaneous substitution.

In Section 6 we turn to the logical aspects of SetD: restricting to the subcat-
egory of pullback-preserving functors, we define a self-dual quantifier similar to
Gabbay-Pitts’ И. This quantifier, and the structure of SetD, will be put at work
in Section 7 in giving the first denotational semantics of Miller-Tiu’s FOλ∇.

Final remarks and directions for future work are in Section 8.

2 Distinctions

Let us fix an infinite, countable set of atoms A. Atoms are abstract elements
with no structure, intended to act both as variables and as names symbols.

We denote finite subsets of A as n,m, Functions among these finite sets
are “atom substitutions”. The category of all these finite sets, and any maps
among them is F. The subcategory of F with only injective maps is I. Thus,
while a morphism in F may map different atoms to the same target, this cannot
happen in I. This corresponds to the difference between variables and names,

2

that is, the formers can be identified and replaced, while names cannot. In fact,
we can see a name essentially as an atom which must be kept apart from the
others. We can formalize this concept as follows:

Definition 1. (The category D) The category D of distinctions relations is
the full subcategory of Rel of irreflexive, symmetric binary relations over A with a
finite carrier set. (Here Rel is the category of relations and monotone functions.)

A distinction relation (n, d) is thus a finite set n of atoms and a symmetric
relation d ⊆ n × n such that for all i ∈ n : (i, i) 6∈ d. In the following we
will write (n, d) as d(n), possibly dropping the superscript when clear from the
context. A morphisms f : d(n) → e(m) is any monotone function f : n→ m, that
is a substitution of atoms for atoms which preserves the distinction relation (if
(a, b) ∈ d then (f(a), f(b)) ∈ e). In other words, substitutions cannot map two
related (i.e., definitely distinct) atoms to the same atom of a later stage, while
unrelated atoms can coalesce to a single one.

Structure of D. The category D inherits from Rel products and coproducts.
More explicitly, products and coproducts can be defined on objects as follows:

d
(m)
1 × d

(n)
2 ,(m× n, {((i1, j1), (i2, j2)) | (i1, i2) ∈ d1 and (j1, j2) ∈ d2})

d
(m)
1 + d

(n)
2 ,(m+ n, d1 ∪ {(l + i, l + j) | (i, j) ∈ d2}) (l , max(m) + 1)

where m+n , m∪{l+ i | i ∈ n}. Note that D has no terminal object, but it has
initial object (∅, ∅). In fact, D inherits meets, joins and partial order from ℘(A):

– d(n) ∧ e(m) = (d ∩ e)(m∩n), and d(n) ∨ e(m) = (d ∪ e)(m∪n)

– d(n) ≤ e(m) iff d ∧ e = d, that is, iff d ⊆ e.

For each n, let us denote Dn the full subcategory of D whose objects are all
relations over n. Then, Dn is a complete Boolean algebra. Let ⊥(n) , (n, ∅) and
>(n) , (n, n2 \ ∆n) be the empty and complete distinction on n, respectively,
where ∆ : F → Rel is the diagonal functor defined as ∆n = (n, {(i, i) | i ∈ n}).
For d(n)

i (i ∈ J) a set of distinctions of Dn, we define
∨

i∈J d
(n)
i ,

⋃
i∈J di

as sets; similarly for meets. Finally, ¬d(n) = (n, n2 \ (d ∪ ∆n)), and as usual,
d⇒ e , (¬d) ∨ e.

D can be given another monoidal structure. Let us define ⊕ : D× D → D as

d
(m)
1 ⊕ d

(n)
2 = (m+ n, d1 ∪ d2 ∪ {(i, j), (j, i) | i ∈ m, j ∈ n}).

Proposition 2. (D,⊕,⊥(0)) is a symmetric monoidal category.

By applying coproduct and tensor to ⊥(1) we get two distinguished dynamic
allocation functors δ−, δ+ : D → D, as δ− , ⊥(1) + and δ+ , ⊥(1) ⊕ .
More explicitly, the action of δ+ on objects is δ+(d(n)) = d

(n+1)
+1 where d+1 =

d∪{(∗, i), (i, ∗) | i ∈ n}. Thus both δ− and δ+ add an extra element to the carrier,
but, as the superscript + is intended to suggest, δ+ adds in extra distinctions.

3

The extra element can be used to represent a bound variable; δ+ asks that,
in addition, this new element is made distinct from the other elements. The
functor δ+ will be used for the binding associated with restriction to ensure that
the extruded name cannot be renamed to other name as in open semantics of π-
calculus, while the δ− functor is used for bound input where no such restrictions
are necessary.

Embedding I and F in D. Let De denote the full subcategory of D of empty
distinctions ⊥(n) = (n, ∅), and Dc the full subcategory of complete distinctions
>(n) = (n, n2 \ ∆n). Notice that all morphisms in Dc are mono morphisms of
D—that is, injective maps.

Let us consider the forgetful functor U : D → F, dropping the distinction
relation. The functor v : F → De mapping each n in F to ⊥(n), and each f : n→
m to itself, is inverse of the restriction of U to De.

On the other hand, the restriction of U to Dc is a functor U : Dc → I, because
the only morphisms in Dc are the injective ones. The functor t : I → Dc mapping
each n in I to >(n), and each f : n � m to itself, is inverse of U . Hence:

Proposition 3. De
∼= F, and Dc

∼= I.

Therefore, we can say that the category of D generalises both I and F. In fact,
it is easy to check that the forgetful functor U : D → F is the right adjoint of
the inclusion functor v : F ↪→ D.

Remark 4. While we are on this subject, we define the functor V : D → I which
singles out from each d the (atoms of the) largest complete distinction contained
in d. More precisely, V is defined on objects as V (d(n)) = max{m | >(m) ≤ d(n)}
and on morphisms as the restriction. This defines a functor: if f : d(n) → e(m) is a
morphism, then it preserves distinctions, and thus for i ∈ V (d), since i is part of
a complete subdistinction of d, it must be mapped in a complete subdistinction
of e, and hence f(i) ∈ V (e). However, V is not an adjoint of t. ut

We recall finally that F has finite products (and hence also De), while I has
binary products only. Disjoint unions are finite coproducts in F, but not in I.
Actually, disjoint union] : I× I → I is only a monoidal structure over I, which
quite clearly corresponds to the restriction of ⊕ to Dc:
Proposition 5. ⊕ ◦ 〈t, t〉 = t ◦], that is, for n,m ∈ I: >(n]m) = >(n) ⊕>(m).
As a consequence, for Proposition 3, we have] = U ◦ ⊕ ◦ 〈t, t〉. On the other
hand, ⊕ restricted to De is not equivalent to the coproduct + in F.

3 Presheaves over D
SetD is the category of functors from D to Set (often called presheaves (over
Dop)) and natural transformations. Note that the restriction to finite distinction
relations means that there are no size problems when talking about the category
of presheaves. The structure of D lifts to SetD, which has:3

3 We shall use the same symbols for the lifted structure, but ensuring the reader has
enough information to deduce which category we are working in.

4

1. Products and coproducts, which are computed pointwise (as with all limits
and colimits in functor categories); e.g. (P × Q)d(n) = Pd(n) × Qd(n) . The
terminal object is the constant functor K1 = y(⊥(∅)): K1(d) = 1.

2. A presheaf of atoms Atom ∈ SetD, Atom = y(⊥(1)) = y(>(1)). The action
on objects is Atom(d(n)) = n.

3. Two dynamic allocation functors δ−, δ+ : SetD → SetD, induced by each
κ ∈ {δ+, δ−} on D as ◦ κ : SetD → SetD.

4. Let ℘f be the finite (covariant) powerset functor on Set ; then ℘f ◦ : SetD →
SetD is the finite powerset operator on D-presheaves.

5. Exponentials are defined as usual in functor categories:

(BA)d , SetD(A× D(d,), B)

(BA)f (m) , m ◦ (idA × (◦ f)) for f : d→ e in D,m : A× D(d,) −→ B

In particular, exponentials of representable functors have a nice definition:

Proposition 6. For all d ∈ D, B in SetD: By(d) ∼= Bd+ .

Proof. (By(d))e = SetD(y(d)× y(e), B) by definition of exponential
∼= SetD(y(d+ e), B) since y preserves coproducts
∼= Bd+e by Yoneda Lemma. ut

This allows us to point out a strict relation between Atom and δ−:

Proposition 7. ()Atom ∼= δ−, and hence ×Atom a δ−.

Proof. Since Atom = y(⊥(1)), by Proposition 6 we have that FAtom ∼= F⊥(1)+ =
Fδ−() = δ−(F). The second part is an obvious consequence, because in CCC’s
it is always ×B a ()B . ut

The categories SetF and Set I can be embedded into SetD. Let us consider
first the functors v : F ↪→ D and U : D → F.

Proposition 8. The functor v : F ↪→ D induces an essential geometric mor-
phism v : SetF → SetD, that is two adjunctions v! a v∗ a v∗, where v!

∼= ◦ U ,
v∗ = ◦ v, and v∗(F)(d(n)) = Fn if d(n) = ⊥(n), 1 otherwise.

SetF

v!∼= ◦U
((

v∗ 66 SetDv∗= ◦voo where v∗(F)(d(n)) =

{
Fn if d(n) = ⊥(n)

1 otherwise

Proof. The existence of the essential geometric morphism, and that the inverse
image is ◦ v, is a direct application of [12, VII.2, Theorem 2].

Let us prove that the direct image v∗ has the definition above. By [12, VII.2,
Theorem 2], we know that

v∗ = HomFop(•Dop
v ,) (1)

5

where •Dop
v : Dop × F → Set is the bifunctor defined on objects as •Dop

v (d, n) =
Dop(v(n), d) = D(d,⊥(n)). By expanding the equation (1), we have that for all
F : F → Set and d(m) in D:

v∗(F)(d(m)) = SetF(D(d, v()), F) : Set (2)

Now, an element of the set SetF(D(d, v()), F) is a natural transformation φ :
D(d, v()) −→ F , that is a family of functions φn : D(d,⊥(n)) → Fn.

If d is not an empty distinction, then the set D(d,⊥(n)) is always empty,
because there is no monotone map from d 6= ⊥(m) to ⊥(n). Therefore φn can be
only ? : ∅ → Fn, and hence SetF(D(d, v()), F) = {? : K∅ −→ F} = 1.

If d is the empty distinction⊥(m), then D(d,⊥(n)) = D(⊥(m),⊥(n)) = F(m,n)
by Proposition 3. Hence we can write equation (2) as

v∗(F)(⊥(m)) = SetF(F(m,), F) = Fm

by Yoneda lemma, hence the thesis.
Let us prove that v!

∼= ◦ U . Again by [12, VII.2, Theorem 2], we have

v! = ⊗Fop vDop• (3)

where vDop• : Fop × D → Set is the bifunctor defined on objects as

vDop•(n, d(m)) = Dop(d, v(n)) = D(⊥(n), d).

By expanding the equation (3), we can give the following more elementary defi-
nition of v! on objects F : F → Set , d(m) : D:

v!(F)(d) = F ⊗Fop D(v(), d) = (qn∈NFn × D(v(n), d))/∼

= (qn∈NFn × F(n,m))/∼ = (qn∈NFn ×mn)/∼

since D(v(n), d) = D(⊥(n), d) = F(n,m), and where ∼ is the equivalence relation
on pairs defined as follows: for n, n′ ∈ N, f : n→ n′, g : n′ → m, a ∈ Fn:

Fn′ ×mn′ 3 (a[f], g) ∼ (a, g ◦ f) ∈ Fn ×mn

By definition of ∼, any pair (a, f) ∈ Fn × mn is equivalent to (a[f], id) ∈
Fm ×mm. On the other hand, each a ∈ Fm identifies uniquely an equivalence
class [(a, id)]∼. Therefore, each equivalence class v!(F)(d) can be given a unique
canonic representantive a ∈ Fm. This means that there is a bijective equivalence
between v!(F)(d) and Fm, and hence v!(F) ∼= F ◦ U .

Alternative proof of v!
∼= ◦ U : v! can be defined as the left Kan extension

along y : Fop ↪→ SetF of the functor T : Fop → SetD, T (n) = D(⊥(n),) = y◦vop:

Fop � � y //

vop

||yy
yy

yy
yy

y
T

��

SetF

v!=Lany(T)||xxxxxxxx

Dop � � y // SetD

6

. Hence:

v!(F) = (Lany(T))(F) =
∫ m∈F

SetF(y(m), F) · D(⊥(m),)

=
∫ m∈F

Fm · F(m,U()) =

(∫ m∈F
Fm · F(m,)

)
◦ U = F ◦ U ut

Proposition 9. v : SetF → SetD is an embedding, that is: v∗ ◦ v∗ ∼= Id.

Proof. For F : F → Set , we have to prove that v∗(F) ◦ v ∼= F . For n ∈ F, we
have v∗(F)v(n) = v∗(F)⊥(n) = Fn by definition. Analogously, it is easy to prove
that for f : n→ m in F, it is v∗(F)(t(f)) = v∗(F)(f) = Ff . ut

As a consequence, by [12, VII.4, Lemma 1] we have also v∗ ◦ v!
∼= Id, and

hence both v∗ and v! are full and faithful.
A similar result holds also for t : I ↪→ D, although the adjoints have not a

neat description as in the previous case.

Proposition 10. t induces an essential geometric morphism t : Set I → SetD,
that is two adjunctions t! a t∗ a t∗,

Set I

t!
((

t∗ 66 SetDi∗= ◦too

where for all G : I → Set, and d ∈ D, it is t∗(G)(d) = Set I(D(d, t()), G) and
t!(G)(d) = GV (d)× D(>(V (d)), d) .

Proof. The definition of t∗ is a direct application of [12, VII.2, Theorem 2]. Let
us prove the definition of t!. We know that

t! = ⊗Iop tDop• (4)

where tDop• : Iop × D → Set is the bifunctor defined on objects as

tDop•(n, d(m)) = Dop(d, t(n)) = D(>(n), d).

By expanding the equation (4), we can give the following more elementary defi-
nition of t! on objects G : I → Set , d(m) : D:

t!(G)(d) = G⊗Iop D(t(), d) =
(
qn∈NGn × D(>(n), d)

)
/∼

where ∼ is the equivalence relation on pairs defined as follows: for n, n′ ∈ N,
f : n � n′, g : >(n′) → d(m), a ∈ Gn:

Gn′ × D(>(n′), d) 3 (a[f], g) ∼ (a, g ◦ f) ∈ Gn × D(>(n), d)

Now, notice that for any h ∈ D(>(n), d(m)) is a function h : n � m which
can be factorized as h = g ◦ in, where in : n ↪→ V (d) is the inclusion (and
thus in : >(n) → >(V (d))) and g : >(V (d)) → d is a suitable monomorphism
g : V (d) � m. Therefore, for any pair (a, h) ∈ Gn × D(>(n), d) there is an
equivalent one (a[in], g) ∈ GV (d) × D(>(V (d)), d), hence the thesis. ut

7

Proposition 11. t : Set I → SetD is an embedding, that is: t∗ ◦ t∗ ∼= Id.

Proof. For F : I → Set , we have to prove that t∗(F) ◦ t ∼= F . For n ∈ I, we have
t∗(F)t(n)

∼= Fn, since t∗(F)t(n) = Set I(D(>(n), t()), F) ∼= Set I(I(n,), F) ∼= Fn.
It is similarly easy to prove that on morphisms, the action of t∗(F) ◦ t is

isomorphic to that of F . Let f : n → m in I; then, t∗(F)(t(f)) maps a natural
transformation φ : I(n,) → F to the natural transformation φ : I(m,) → F
whose components are ψk = φk(◦ f) = Ff ◦ φk, hence the thesis. ut

This means that also t∗ ◦ t! ∼= Id, and hence both t∗ and t! are full and faithful.

Algebras and coalgebras of polynomial functors. It is well-known that
any polynomial functor over Set (i.e., defined only by constant functors, finite
products/coproducts and finite powersets) has initial algebra. This result has
been generalized to SetF [6, 10] in order to deal with signatures with variable
bindings; in this case, polynomials can contain also V ar, the functor of variables,
and a dynamic allocation functor δF : SetF → SetF. For instance, the datatype
of λ-terms up-to α-conversion can be defined as the initial algebra of the functor

ΣΛ(X) = V ar +X ×X + δF(X) (5)

that is, for all n ∈ F: ΣΛ(X)n = n+Xn ×Xn +Xn+1. A parallel generalization
for dealing with name generation use the category Set I (and its variants) [10,
8, 5], which provides the functor of names N and a dynamic allocation functor
δI : Set I → Set I. The datatype of λ-terms where all bound variables are “fresh”4

is defined as the initial algebra of the functor

ΣΛ(X) = N +X ×X + δI(X) (6)

that is, for all n ∈ I: ΣΛ(X)n = n+Xn ×Xn +Xn+1.
The domain for late semantics of π-calculus [5] can be defined as the final

coalgebra of the functor B : Set I → Set I

BP , ℘f (

input︷ ︸︸ ︷
N × PN +

output︷ ︸︸ ︷
N ×N × P +

bound output︷ ︸︸ ︷
N × δIP +

τ︷︸︸︷
P) (7)

(BP)X = ℘f (X × (PX)X × PX]1 +X ×X × PX +X × PX]1 + PX).

In SetD, we can generalize a step further. We say that a functor F : SetD →
SetD is polynomial if it be defined by using only Atom, constant functors, finite
products/coproducts, dynamic allocations δ+ and δ− and finite powersets.

There is a precise relation among initial algebras of polynomial functors on
SetF and SetD. Let us recall a general result (see e.g. [10]):

Proposition 12. Let C,D be two categories and f : C −→ D, T : C −→ C
and T ′ : D −→ D be three functors such that T ′ ◦ f ∼= f ◦ T for some natural
isomorphism φ : T ′ ◦ f −→ f ◦ T .
4 This is what Barendregt called “hygienic convention”.

8

1. If f has a right adjoint f∗, and (A,α : TA → A) is an initial T -algebra in
C, then (f(A), f(α) ◦ φA : T ′(f(A)) → f(A)) is an initial T ′-algebra in D.

2. If f has a left adjoint f∗, and (A,α : A → TA) is a final T -coalgebra in C,
then (f(A), φ−1

A ◦ f(α) : f(A) → T ′(f(A))) is a final T ′-coalgebra in D.

Proof. 1. The adjoint pair f a f∗ can be lifted to a pair of adjoint functors
between the categories of T - and T ′- algebras. Since any functor with a right
adjoint preserves colimits and the initial object is a colimit, then the initial
object of the former category is preserved in the latter.

2. Like in the previous case, the adjoint f∗ a f can be lifted to the categories
of coalgebras, and functors with a left adjoint preserve limits. ut

For a polynomial functor T : SetD → SetD, let us denote T̄ : SetF → SetF

the functor obtained by replacing Atom with V ar and δ+, δ− with δF in T .

Theorem 13. The polynomial functor T : SetD → SetD has initial algebra,
which is (isomorphic to) F ◦ U , where (F, α) is the initial T̄ -algebra in SetF.

Proof. The functor T̄ has initial algebra (see e.g. [6, 10]); let us denote it by
(F, α). In order to prove the result, we apply Proposition 12(1), where f : C −→
D is the functor v! = ◦ U : SetF → SetD of Proposition 8, whose right adjoint
is v∗. Then v!(F) = F ◦ U . We have only to prove that T ◦ v!

∼= v! ◦ T̄ . It is
easy to see that this holds for products, coproducts, constant functors and finite
powersets. It is also trivial to see that Atom ∼= V ar ◦ U .

It remains to prove that κ ◦ v!
∼= v! ◦ δF, for κ = δ+, δ−. For F a functor in

SetF, we prove that there is a natural isomorphism φ : κ(v!(F)) = κ(F ◦ U) −→
v!(δF(F)) = δF(F) ◦ U . This is trivial, because for d(n) a distinction in D, it is
κ(F ◦ U)d = (F ◦ U)κd = FU(κd) = Fn+1 = δF(F)n = (δF(F) ◦ U)d. ut

Therefore, initial algebras of polynomial functors in SetD are exactly initial al-
gebras of the corresponding functors in SetF. This means that SetD can be used
in place of SetF for defining datatypes with variable binding, as in e.g. [9].

There is a similar connection between Set I and SetD, about final coalgebras.

Lemma 14. δ+ ◦ t∗ ∼= t∗ ◦ δI.

Proof. Let F : I → Set be a functor, and d(n) ∈ D; we have to prove that

Set I(D(δ+d, t()), F) ∼= Set I(D(d, t()), δIF)

natural in d and F .
For φ : D(δ+d, t()) −→ F , the corresponding natural transformation ψ :

D(d, t()) −→ δIF has components ψn , φn+1 ◦ δ+. More explicitly, for f : d→
>(n), we have δ+(f) : δ+d→ >(n+1), thus φn+1(δ+(f)) ∈ Fn+1 = (δI(F))n.

On the other hand, for ψ : D(d, t()) −→ δIF , the components of the corre-
sponding natural transformation φ : D(δ+d, t()) −→ F are defined as follows.
Trivially, φ0 =? : ∅ → F0, because D(δ+d,>(0)) = ∅. Let us consider n 6= 0, and
f : δ+d → >(n), we have to define ψn(f) ∈ Fn. Now, let n = m + 1, where the
element in 1 is the image along f of the element added by δ+ to d. The restrict
of f to d is a morphism f|d : d→ >(m). Thus, we define φn(f) , ψm(f|d).

It is easy to check that these two mappings are inverse of each other. ut

9

Lemma 15. δ− ◦ t∗ ∼= t∗ ◦ ()N .

Proof. t∗(FN)d = Set I(D(d, t()), Fy(1)) by definition
∼= Set I(D(d, t())× y(1), F) since we are in a CCC
= Set I(D(d, t())× D(>(1), t()), F)
∼= Set I(D(d+>(1), t()), F) D(, e) preserves products
= Set I(D(δ−d, t()), F) by definition
= t∗(F)δ−d = δ−(t∗(F))d ut

Let T : Set I → Set I be a polynomial functor. Let us denote by T̃ : SetD →
SetD the functor obtained by replacing in (the polynomial of) T , every occurrence
of N with t∗(N), δ with δ+, ()N with δ−. Then, we have the following:

Theorem 16. The functor T̃ : SetD → SetD has final coalgebra, which is (iso-
morphic to) t∗(F), where (F, β) is the final T -coalgebra in Set I.

Proof. Follows from previous lemmas and Proposition 12(2). ut

Therefore, in SetD we can define coalgebrically all the objects definable by
polynomial functors in Set I, like that for late bisimulation [5]. Moreover, SetD

provides other constructors, such as Atom, which do not have a natural coun-
terpart in Set I. An example of application of these distinctive constructors, fol-
lowing [9], is the characterization of open semantics of π-calculus as the final
coalgebra of the functor Bo : SetD → SetD:

BoP , ℘f (

input︷ ︸︸ ︷
Atom × δ−P +

output︷ ︸︸ ︷
Atom ×Atom × P +

bound output︷ ︸︸ ︷
Atom × δ+P +

τ︷︸︸︷
P) (8)

Notice that, although similar in shape, Bo is not the lifting of the functor B of
strong late bisimulation in Set I (Equation 7), nor can be defined on Set I. More
precisely, open bisimulation is closed under all name substitutions keeping apart
extruded names. Thus, names are actually atoms, which can be unified if the
distinctions allow so. A bound output adds a new atom to the distinction, which
must be kept apart from any other previously known atom—hence the usage of
δ+. On the other hand, an input action introduces an atom which can be unified
with any other name—hence the usage of δ−.

4 Support and apartness

A key feature of categories for modeling names, such as Set I and similar functor
categories, is to provide some notion of support of terms/elements, and of non-
interference, or “apartness” [18, 8]. In this section, we first introduce a general
definition of support and apartness, and then we examine these notions in the
case of SetD, and related categories.

10

4.1 Support

Definition 17 (support). Let C be a category, F : C → Set be a functor. Let
C be an object of C, and a ∈ FC . A subobject i : D � C of C supports a (at C)
if there exists a (not necessarily unique) b ∈ FD such that a = Fi(b).

A support is called proper iff it is a proper subobject.

We denote by SuppF,C(a) the set of subobjects of C supporting a. The intuition
is that D supports a ∈ FC if D is “enough” for defining a. It is clear that
the definition does not depend on the particular subobject representative. As a
consequence, a is affected by what happens to elements in D only:

Proposition 18. For all D ∈ SuppF,C(a), and for all h, k : C → C ′: if h|D =
k|D then Fh(a) = Fk(a).

Notice that in general, the converse of Proposition 18 does not hold.

Remark 19. When C = F, I, the supports of a ∈ Fn can be seen as approxima-
tions at stage n of the free variables/names of a—that is, the free variables/names
which are observable from n. For instance, let us consider t ∈ Λn, where Λ is
the algebraic definition of untyped λ-calculus in equation 5. It is easy to prove
by induction on t that for all m ⊆ n: m ∈ SuppΛ,n(t) ⇐⇒ FV (t) ⊆ m.

Supports are viewed as “approximations” because elements may have not
any proper support, at any stage. For example, consider the presheaf Stream :
F → Set constantly equal to the set of all infinite lists of variables. The stream
s = (x1, x2, x3, . . .), which has infinite free variables, belongs to Streamn for all
n, but also SuppStream,n(s) = {n}. ut

SuppF,C(a) is a poset, inheriting its order from Sub(a), and C itself is always its
top, but it may be that there are no proper supports, as shown in the remark
above. Even in the case that an element has some finite (even proper) support,
still it may be that it does not have a least support. (Consider, e.g., G : F → Set
such thatGn = ∅ for |n| < 2, and = {x} otherwise; then x ∈ G{x,y,z} is supported
by {x, y} and {x, z} but not by {x} alone.) However, we can prove the following

Proposition 20. Let C have pullbacks, F : C → Set be pullback-preserving, C
be in C, and x ∈ FC . If both C1, C2 support x at C, then C1 ∧ C2 supports x.

Proof. C1 ∧ C2 is the pullback of the inclusions j1 : C1 � C, j2 : C2 � C;
hence, by hypothesis the square in the diagram below is a pullback in Set :

1

y2

��

y1

&&

y

""
FC1∧C2

Fi2

��

Fi1 // FC1

Fj1

��
FC2

Fj2 // FC

11

Let y1 ∈ FC1 and y2 ∈ FC2 be the witnesses of x at stages C1, C2 by the
definition of support. Due to the pullback there exists a (unique) y ∈ FC1∧C2

such that Fj1◦i1(b) = Fj2◦i2(b) = a, hence the thesis. ut

Remark 21. In the case that C = I, pullback-preserving functors correspond
to sheaves with respect to the atomic topology, that is the Schanuel topos [12].
This subcategory of Set I has been extensively used in previous work for modeling
names and nominal calculi; see [10, 4] among others, and ultimately also the FM
techniques by Gabbay and Pitts [8, 16], since the category of nominal sets with
finite support is equivalent to the Schanuel topos [8, Section 7].

We will use pullback-preserving functors over D in Section 6 below. ut

Along the same line of Definition 17, we can introduce an abstract general
notion of “closed element”:

Definition 22. Let C be a category with initial object 0. For A : C → Set, an
element a ∈ AC is closed if 0 ∈ SuppA,C(a).

Closed elements are not affected by any action on atoms whatsoever:

Proposition 23. Let C be a category with initial object 0. For all A : C → Set,
C ∈ C, a ∈ AC , if a is closed then for all h, k : C → D in C: Ah(a) = Ak(a).

Proof. Follows from Proposition 18, noticing that h|0 = k|0 always. ut

In the rest of the paper, we focus on the case when C is one of F, I, D, which
do have pullbacks and initial object (∅, ∅ and ⊥(∅) respectively). As one may
expect, the support in D is a conservative generalization of those in F and I:

Proposition 24. 1. Let n,m ∈ F, and F : F → Set. For all a ∈ Fn: m ∈
SuppF,n(a) ⇐⇒ v(m) ∈ Suppv!(F),v(n)(a). 5

2. Let n,m ∈ I, and F : I → Set. For all a ∈ Fn: m ∈ SuppF,n(a) ⇐⇒ t(m) ∈
Suppt∗(F),t(n)(a).

4.2 Apartness

We can now give the following general key definition, generalizing that used
sometimes in Set I (see e.g. [18]).
Definition 25 (Apartness). Let C be a category with pullbacks and initial ob-
ject. For A,B : C → Set, the functor A#C B : C → Set (“A apart from B”) is
defined on objects as follows:

(A#C B)C = {(a, b) ∈ AC ×BC | for all f : C → D :
there exist s1 ∈ SuppA,D(Af (a)), s2 ∈ SuppB,D(Bf (b)) s.t. s1 ∧ s2 = 0} (9)

For f : C → D, it is (A#C B)f , Af ×Bf .

As a syntactic shorthand, we will write pairs (a, b) ∈ (A#C B)c as a# b. In the
following, we will drop the index C when clear from the context.

Let us now apply this definition to the three categories Set I, SetF, and SetD.
5 Recall that v!(F)v(n)

∼= Fn, and hence it is consistent to consider a ∈ v!(F)v(n).

12

C = F In this case we have that a# b iff at least one of a, b is closed, i.e., it is
supported by the empty set: if both a and b have only non-empty supports, then
some variable can be always unified by a suitable morphism. So the definition
above simplifies as follows:

(A #F B)n = {(a, b) ∈ An × Bn | ∅ ∈ SuppA,n(a) or ∅ ∈ SuppB,n(b)} (10)

C = I In this case, names are subject only to injective renamings, and therefore
can be never unified. So it is sufficient to look at the present stage, that is, the
definition above simplifies as follows:

(A#I B)n = {(a, b) ∈ An ×Bn |
there exist n1 ∈ SuppA,n(a), n2 ∈ SuppB,n(b) s.t. n1 ∩ n2 = ∅} (11)

which corresponds to say that a# b iff a, b do not share any free name.

C = D This case subsumes both previous cases: informally, (a, b) ∈ (A # B)d

means that if i is an atom appearing free in a, then any j occurring free in b can
never be unified with i, that is (i, j) ∈ d:

(A#D B)d(n) = {(a, b) ∈ Ad ×Bd |
there exist s1 ∈ SuppA,d(a), s2 ∈ SuppB,d(b) s.t. s1 ⊕ s2 ≤ d} (12)

Actually, all these tensors arise from the monoidal structures ⊕ and] of the
categories I and D, via the following general construction due to Day [3]:

Proposition 26. Let (C, ?, I) be a (symmetric) monoidal category. Then,
(SetC , ?C ,y(I)) is a (symmetric) closed monoidal category, where

(A ?C B)C =
∫ C1

AC1 ×
∫ C2

BC2 × C(C1 ? C2, C) (13)

Theorem 27. The monoidal structure (D,⊕,⊥(∅)) induces, via equation 13, the
monoidal structure (SetD,#D,y(⊥(0)) = K1 = 1) of equation 12.

Proof. Let A,B : D → Set , and d(n) ∈ D; by applying Proposition 26 and since
products preserves coends, we have

(A ?D B)d =
∫∫ d1,d2

Ad1 ×Bd2 × D(d1 ⊕ d2, d)

=

 ∐
d1,d2∈D

Ad1 ×Bd2 × D(d1 ⊕ d2, d)


/≈

(14)

where the equivalence ≈ is defined on triples as follows

(a, b, f : d1 ⊕ d2 → d) ≈ (a′, b′, g : d′1 ⊕ d′2 → d)
⇐⇒ Af◦inl(a) = Ag◦inl(a′) and Bf◦inr(b) = Bg◦inr(b′)

13

For each class [(a, b, f : d1 ⊕ d2 → d)] ∈ (A ?D B)d we can associate a unique
pair (Af◦inl(a), Bf◦inr(b)) ∈ (A#D B)d; the definition does not depend on the
particular representative we choose.

On the converse, let us consider a pair (a, b) ∈ (A#D B)d; this means that

– there exists f1 : s1 � d, a′ ∈ As1 such that a = Af1(a
′)

– there exists f2 : s2 � d, b′ ∈ Bs2 such that b = Bf2(b
′)

and such that [f1, f2] : s1 ⊕ s2 � d. We can associate this pair (a, b) to the
equivalence class of the triple (a′, b′, [f1, f2]) in the coend 14. The class defined
in this way does not depend on the particular a′ and b′ we choose.

It is easy to check that these two mappings are inverse of each other. ut

A similar constructions applies also to Set I, as observed e.g. in [18]:

Proposition 28. The monoidal structure (I,], 0) induces, via equation 13, the
monoidal structure (Set I,#I,y(0) = 1) of equation 11.

Using Theorem 27, we can show that #F is a particular case of #D:

Proposition 29. #F = v∗ ◦#D ◦ 〈v∗, v∗〉.

Proof. Let us prove that for F,G : F → Set , it is (v∗(F) #D v∗(G))⊥(n) ∼=
(F #F G)n. By applying Theorem 27, we have

(v∗(F) #D v∗(G))⊥(n) =

 ∐
d
(n1)
1 ,d

(n2)
2 ∈D

v∗(F)d1 × v∗(G)d2 × D(d1 ⊕ d2,⊥(n))


/≈

=

 ∐
d
(n1)
1 ,d

(n2)
2 ∈D

Fn1 ×Gn2 × D(d1 ⊕ d2,⊥(n))


/≈

Let us consider the set D(d1 ⊕ d2,⊥(n)). If d1 ⊕ d2 = ⊥(m) for some m, then
D(d1 ⊕ d2,⊥(n)) = F(m,n). Otherwise, D(d1 ⊕ d2,⊥(n)) = ∅.

Now, the only way for having d1⊕d2 = ⊥(m) is that both d1 and d2 are empty
relations ⊥(n1),⊥(n2), and at least one of them has no atoms at all (otherwise
the ⊕ would add a distinction in any case). Therefore, the equivalence above can
be continued as follows:

. . . =

((∐
n1∈F

Fn1 ×G∅ × F(n1, n)

)
+

(∐
n2∈F

F∅ ×Gn2 × F(n2, n)

))
/≈

This means that the triples are either of the form (a ∈ F∅, b ∈ Gn2 , f : n2 → n),
or of the form (a ∈ Fn1 , b ∈ G∅, f : n1 → n). The first is equivalent to the pair
(F?(a), Gf (b)), the second to the pair (Ff (a), G?(b)), both in (F #F G)n. ut

The next corollary is a consequence of Theorem 27 and Proposition 26:

14

Corollary 30. The functor A# : SetD → SetD has a right adjoint [A] , defined
on objects by ([A]B)d = SetD(A,Bd⊕).

Proof. By the general construction in [3], the right adjoint of A? is [A] , defined
as ([A]B)d =

∫
e(m) Set(Ae, Bd⊕e), which yields the thesis. ut

Remark 31. Let us consider the counit evA,B : A# [A]B −→ B of this adjunc-
tion. For d ∈ D, the component evd : (A # [A]B)d −→ Bd maps an element
a ∈ Ad and a natural transformation φ : A→ Bd⊕ , apart from each other, to an
element in Bd, which can be described as follows. Let s1, s2 ∈ Sub(d) supporting
φ and a, respectively, and such that s1 ⊕ s2 ≤ d. By the definition of support,
let φ′ : A → Bs1⊕ and a′ ∈ As2 be the witnesses of φ and a at s1 and s2,
respectively. Then, φ′s2

(a′) ∈ Bs1⊕s2 , which can be mapped to an element in Bd

by the inclusion s1 ⊕ s2 ≤ d. ut

Finally, for A = Atom we have the counterpart of Proposition 7:

Proposition 32. [Atom] ∼= δ+, and hence # Atom a δ+.

Proof. Since Atom = y(⊥(1)), we have ([Atom]B)d = SetD(y(⊥(1)), Bd⊕) =
Bd⊕⊥(1) = (δ+(B))d by Yoneda. ut

5 Substitution monoidal structure of SetD

Let us define a tensor product • : SetD × SetD → SetD as follows:

for A,B ∈ SetD : A •B ,
∫ e∈D

Ae ·Be

that is, for d ∈ D : (A •B)d =
∫ e∈D

Ae × (Be)d

where, for e(n) in D, Be : D → Set is the functor defined by

(Be)d = {(b1, . . . , bn) ∈ (Bd)n | if (i, j) ∈ e then (bi, bj) ∈ (B #B)d}

(Be)f = (Bf)n for f : d(m) → d′(m
′)

Unfolding the coend, we obtain the following explicit description of A •B :

(A •B)d =

(∐
e∈D

Ae × (Be)d

)
/≈

where ≈ is the equivalence relation defined by

(a; bρ(1), . . . , bρ(n)) ≈ (Aρ(a); b1, . . . , bn′) for ρ : e(n) → e′(n
′).

Actually, B() can seen as a functor B() : Dop → SetD, adding the “reindex-
ing” action on morphisms: for ρ : e(n) → e′(n

′), define Bf : Be′ −→ Be as the nat-
ural transformation with components Bf

d : (Be′)d −→ (Be)d, B
f
d (b1, . . . , bn′) =

15

(bf(1), . . . , bf(n)). It is easy to check that Bf is well defined: if (i, j) ∈ e′(n′), then
(f(i), f(j)) ∈ e(n) and hence (bf(i), bf(j)) ∈ (B#B)d. The functor B() is a gen-
eralization of Cartesian extension; for instance, B⊥(2)

= B×B, B>(2)
= B#B.

We can give now a more abstract definition of • B : SetD → SetD, for all
B ∈ SetD. In fact, •B arises as the left Kan extension of the functor B():

1
⊥(1)
//

B B
BB

BB
BB

B Dop

B()

��

� � y //
Lan∼=

SetD

•B

ww
SetD

〈B, 〉

CC
(15)

where 〈B, 〉 is the right adjoint of •B, defined as 〈B,A〉d = SetD(Bd, A).

Proposition 33. (SetD, •,Atom) is a (non-symmetric) monoidal category.

Proof. Since Atom = y(⊥(1)), the equivalence A • Atom ∼= A follows from Dia-
gram 15. The equivalence Atom •A ∼= A is a simple calculation:

(Atom •A)d =
∫ e(m)

Atome(m) × (Ae(m)
)d =

(∐
e(m)

m× (Ae(m)
)d

)
/≈

∼= Ad

where the last equivalence holds because the class of a tuple (i; a1, . . . , am) ∈
m× (Ae(m)

)d corresponds uniquely to ai ∈ Ad.
We prove now associativity of •:

((A •B) • C)d =
∫ e

(A •B)e × (Ce)d by definition,

=
∫ e

(∫ e′

Ae′ × (Be′)e

)
× (Ce)d by definition,

=
∫ e ∫ e′

Ae′ × (Be′)e × (Ce)d product preserves coends,

=
∫ e′

Ae′ ×
∫ e

(Be′)e × (Ce)d by Fubini result,

=
∫ e′

Ae′ × ((Be′) • C)d by definition,

∼=
∫ e′

Ae′ × ((B • C)e′)d

= (A • (B • C))d ut

Monoids in SetD satisfy the usual properties of clones. In particular, the mul-
tiplication σ : A • A → A of a monoid (A, σ, v) can be seen as a distinction-
preserving simultaneous substitution: for every d(n) ∈ D, σd maps (the class of)

16

(a; a1, . . . , am) ∈ Ae×(Ae)d to an element in Ad, making sure that distinct atoms
are “replaced by” elements which are apart (if (i, j) ∈ e, then (ai, aj) ∈ (A#A)d).

As in [6, 17], the monoidal structure of SetD can be used for characteriz-
ing presheaves coherent with apartness-preserving substitution; in particular,
presheaves generated by binding signatures with constructors for distinctions,
such as the signature of D-Fusion [2]. Details will appear elsewhere.

6 Self-dual quantifier

As for any topos, SetD can be used for modeling (higher-order) intuitionistic
logic. However, like in Set I, the Schanuel topos, and FM-set theory, the ex-
tra structure given by apartness product brings in other, peculiar logical con-
structors. In this section we define a self-dual quantifier, in a suitable subcat-
egory of SetD. We begin with a standard construction of categorical logic. For
A,B ∈ SetD, let us consider the morphism θ : A # B ↪→ A × B

π→ B, given
by inclusion in the cartesian product. We can define the inverse image of θ,
θ∗ : Sub(B) → Sub(A#B): for U ∈ Sub(A), the subobject θ∗(U) ∈ Sub(A#B)
is the pullback of U � B along θ: θ∗(U)d = {(x, y) ∈ (A#B)d | y ∈ Ud}.

By general and well-known results [15, 12], θ∗ has both left and right adjoints,
denoted by ∃θ,∀θ : Sub(A#B) → Sub(B), respectively. (If # is replaced by ×,
these are the usual existential and universal quantifiers ∃,∀ : Sub(A × B) →
Sub(B).) Our aim is to prove that, under some conditions, it is ∃θ = ∀θ.

The condition is suggested by the following result, stating that if a property
of a “well-behaved” type holds for a fresh atom, then it holds for all fresh atoms:

Proposition 34. Let B : D → Set be a pullback preserving functor, and let U
a subobject of Atom # B. Let d ∈ D, and (a, x) ∈ Ud. Then for all b ∈ Atomd

such that b# x: (b, x) ∈ Ud.

Proof. It suffices to define f : d→ d in D such that (Atom #B)f (a, x) = (b, x);
that is, we have to find an f : d → d such that f(a) = b and Bf (x) = x. By
functoriality of U , this means that Uf (a, x) = (b, Bf (x)) ∈ Ud.

Since (a, x) ∈ U , it is a # x; hence, let s1, r1 be the two subdistinctions
supporting a and x at d, such that s1 ⊕ r1 ≤ d (equation 12). Similarly, for
b # x, let s2, r2 be the two subdistinctions supporting b and x at d, such that
s2 ⊕ r2 ≤ d. Both r1 and r2 support x; hence, by Proposition 20, also r1 ∧ r2
supports x. Thus we can define the map f : d → d as f(a) = b, f(b) = a, and
f(i) = i otherwise. f is well defined, and moreover f|r1∧r2 = id|r1∧r2 because
both a, b 6∈ Im(r1 ∧ r2) (a 6∈ Im(r1) and b 6∈ Im(r2)). By Proposition 18, this
means that Bf (x) = x, hence the thesis. ut

Then, we have to restrict our attention to a particular class of subobjects:

Definition 35. Let A : D → Set be an object of SetD. A subobject U ≤ A is
closed if for all d ∈ D, f : d→ e, x ∈ Ad: if Af (x) ∈ Ue then x ∈ Ud.

The lattice of closed subobjects of A is denoted by ClSub(A).

17

However, pullback-preserving subobjects of pullback-preserving functors are au-
tomatically closed, so this requirement is implied by the first one:

Proposition 36. Let A : D → Set be a pullback preserving functor, and U ≤ A
be a subobject of A. If also U is pullback preserving, then it is closed.

Proof. Let f : d → e be a morphism in D, and x ∈ Ad such that Af (x) ∈ Ue.
Take any object d′ and g1, g2 : d→ d′ such that d is the pullback of g1 along g2:

d

f

��

f // e

g1

��
e

g2 // d′

1

Uf (x)

��

Uf (x)

##

y

��
Ud

Uf

��

Uf // Ue

Ug1

��
Ue

Ug2 // Ud′

Then, the square of the diagram on the right is a pullback, and hence there exists
a unique y ∈ Ud such that Uf (y) = Af (x). It must be y = x, because there must
be exactly one x satisfying a similar pullback diagram for A. ut

Let us denote by D the full subcategory of SetD of pullback preserving func-
tors. By above, for all A ∈ D, the lattice Sub(A) of pullback-preserving subob-
jects is ClSub(A), but we will keep writing ClSub(A) for avoiding confusions.

For “well-behaved” types, θ∗ restricts to closed subobjects:

Proposition 37. For all A,B ∈ D and U ∈ ClSub(A) : θ∗(U) ∈ ClSub(A#B).

Its left and right adjoints ∃θ,∀θ : ClSub(A # B) → ClSub(A) have the
following explicit descriptions: for U ≤ A#B :

∃θ(U)d = {y ∈ Bd | there exist f : d→ e, x ∈ Ae,

such that x#Bf (y) and (x,Bf (y)) ∈ Ue}
∀θ(U)d = {y ∈ Bd | for all f : d→ e, x ∈ Ae, if x#Bf (y) then (x,Bf (y)) ∈ Ue}

Proposition 38. For all B in D: θ∗ ◦ ∃θ = idClSub(Atom#B)

Proof. For U ∈ ClSub(Atom # B), we have to prove that θ∗(∃θ(U)) = U . In-
clusion ⊇ is trivial. Let us prove ⊆. If (a, y) ∈ θ∗(∃θ(U))d, then a # y, and by
definition of ∃θ there exist f : d→ e, b ∈ Atome such that (b, Bf (y)) ∈ Ue (and
hence b# Bf (y)). But also f(a) # Bf (y), and therefore by Proposition 34, this
means that also (f(a), Bf (y)) ∈ Ue. By closure of U , it must be (a, y) ∈ Ud. ut

Proposition 39. Let B ∈ D, and U ∈ ClSub(B); then, for all x ∈ Ud, there
exist f : d→ e and a ∈ Atome such that a#Bf (x).

Proof. We can “lift” this result from the subcategory of pullback preserving
functors of Set I, i.e. the Schanuel topos, where this property is known to hold
[8]. It is easy to check that if F : D → Set is pullback-preserving, then also
F ◦ t : I → Set is pullback preserving. As a consequence, if x ∈ Ud(n) , then
x ∈ U>(n) = (U ◦ t)n, and hence there exist f : n � m, a ∈ Nm = Atom>(m)

such that a#I (B ◦ t)f (x), and thus a#Bf (x). ut

18

Proposition 40. For all B in D: ∃θ ◦ θ∗ = idClSub(B).

Proof. Let U ∈ ClSub(B) be a closed subobject. For any d ∈ D, we have

∃θ(θ∗(U))d = {x ∈ Bd | there exist f : d→ e, a ∈ Atome,

s.t. a#Bf (x) and (a,Bf (x)) ∈ θ∗(U)e}
= {x ∈ Bd | there exist f : d→ e, a ∈ Atome, s.t. a#Bf (x) and Bf (x) ∈ Ue}
= {x ∈ Ud | there exist f : d→ e, a ∈ Atome, s.t. a#Bf (x)}

For Proposition 39 above, this is exactly equal to Ud, hence the thesis. ut

Corollary 41. For A ∈ D, the inverse image θ∗ : ClSub(A) → ClSub(Atom #
A) is an isomorphism, and hence θ∗ a ∃θ = ∀θ a θ∗

Let us denote by И : ClSub(Atom # A) → ClSub(A) any of ∃θ and ∀θ.
There is a close connection between this quantifier and Gabbay-Pitts’ (hence
the notation); in fact, both quantifiers enjoy the following inclusions:

Proposition 42. Let i : A # B ↪→ A × B be the inclusion map, and i∗ :
ClSub(A × B) → ClSub(A # B) its inverse image. Then: ∀ ≤ И ◦ i∗ ≤ ∃,
that is, for all U ∈ ClSub(A×B): ∀U ≤ И(i∗(U)) ≤ ∃U .

Proof. A direct check. ut

7 A model for FOλ∇

In this section we apply the structure of D for giving a semantic interpretation
of the logic FOλ∇ [14]. FOλ∇ is a proof theory of generic judgments. Terms and
typing judgments Σ ` t : τ of FOλ∇ are as usual for simply typed λ-calculus,
signatures Σ are sets x1:τ1, . . . , xm:τm. Sequents have the form

Σ : σ1 BB1, . . . , σn BBn −→ σ0 BB0

where Σ is the global signature, and each σi is a local signature. A judgment
σi BBi is called generic; each Bi can use variables of the global signature Σ or
in the local signature σi (formally: Σ, σi ` Bi : o). See [14] for further details.

Variable symbols in FOλ∇ play two different roles. Those declared in global
signatures act as variables of λ-calculus; instead, variables of local signatures act
as “locally scoped constants”, much like restricted names of π-calculus. A model
of FOλ∇ must account for both aspects at once, and this is the reason for neither
SetF nor Set I (and their subcategories) can suffice. We can give an interpretation
of both aspects in D, taking advantage of its structure which subsumes those of
SetF and Set I: as we will see, the dynamic allocation functor δ−, the apartness
tensor (right adjoint to δ+) and the И quantifier will come into play.

The interpretation of types and terms is standard: each type τ is interpreted
as a functor JτK in D; the interpretation is extended to global signatures using
the cartesian product. A well-typed term Σ ` t : γ is interpreted as a morphism
(i.e., a natural transformation) JtK : JΣK −→ JγK in D. Notice that here, “local”

19

signatures do not have any special rôle, so that terms are simply typed λ-terms
without any peculiar “freshness” or “scoping” constructor.6

On the other hand, in the interpretation of generic judgments we consider
variables in local signatures as distinguished atoms. A declaration y appearing
in a local signature σ, is intended as a “fresh, local” atom.

Remark 43. A correct model for FOλ∇ would require a distinguished functor of
atoms for each type (which can occur in local signatures) of the term language.
Although it is technically possible to develop a typed version of the theory of
SetD (along the lines of [13] for SetF), it does not add anything substantial to
our presentation; so in the following we assume variables of local signatures, or
bound by ∇, can be only of one type (denoted by α). Hence, local signatures σ
are of the form (y1:α, . . . , yn:α), or better (y1, . . . , yn) leaving α’s implicit. ut

The distinguished type of propositions, o, is interpreted as the classifier of
(closed) subobjects: JoKd = ClSub(y(d)) = ClSub(D(d,)). A generic judgment
(y1, . . . , yn) BB in Σ (i.e., Σ, y1 : α, . . . yn : α ` B : o) is interpreted as a closed
subobject J(y1, . . . , yn) BBKJΣK ≤ JΣK. More precisely, Jσ BBKA ∈ ClSub(A)
is defined first by induction on the length of the local context σ, and then by
structural induction on B. Local declarations and the ∇ quantifier are rendered
by the functor И : ClSub(A#Atom) → ClSub(A) above. Some interesting cases:

J(y, σ) BBKA , И(Jσ BBKA#Atom) JBB1 ∧B2KA , JBB1KA ∧ JBB2KA

JB∇y.BKA , И(JBBKA#Atom) JB∀γx.BKA , ∀(JBBKA×JγK)

It is easy to prove by induction on σ that

Proposition 44. J(σ, y) BBKA = Jσ B∇y.BKA.

Finally, a sequent Σ : B1, . . . ,Bn −→ B0 is valid if
∧n

i=1 JBiKJΣK ≤ JB0KJΣK.
A rule S1...Sn

S is sound if, whenever all S1, . . . ,Sn are valid, also S is valid.
Using this interpretation, one can check that the rules of FOλ∇ are sound.

In particular, the rules ∇L and ∇R are trivial consequence of above. The veri-
fication of ∀R, and ∃L requires some work. Here, we have to give a categorical
account of a particular encoding technique, called raising, used to “gain access”
to local constants from “outside” their scope. E.g.:

Σ, h:σ → γ : Γ −→ σ BB[(h σ)/x]
Σ : Γ −→ σ B ∀γx.B

∀R

A simpler (i.e., monadic) application of raising occurs, in the following equiva-
lence, which is provable in FOλ∇:

∇x∀γy.B ≡ ∀α→γh∇x.B[(h x)/y] where Σ, x : α, y : γ ` B : o (16)

We show first how to represent (monadic) raising as in the equation 16; inter-
estingly, it is here where the δ− comes into play. Referring to equation 16, let us
6 As Miller and Tiu say, this is a precise choice in the design of FOλ∇, motivated by

the fact that standard unification algorithms still work unchanged.

20

denote A = JΣK and C = JγK. By the definition above, the interpretation of B
is a subobject of (A# Atom)×C, while B[(h x)/y] corresponds to a subobject
of (A× CAtom) # Atom. Now, notice that CAtom = δ−C (Proposition 7); thus,
h : α→ γ is actually a term JhK ∈ δ−C, that is a term which can make use of a
locally declared variable. We can define the raising morphism

r : (A× δ−C) # Atom → (A# Atom)× C

(x, h, a) 7→ (x, a, h(a))

The inverse image of r is r∗ : ClSub((A# Atom) × C) → ClSub((A × δ−C) #
Atom), defined by the following pullback:

r∗(U)
��

��

// U
��

��
(A× δ−C) # Atom r // (A# Atom)× C

This morphism r∗ is the categorical counterpart of the syntactic raising:

Proposition 45. Let Σ, x:α, y:γ ` B : o. Let us denote A = JΣK, C = JγK.
Then, r∗(Jy BBKC) = Jy BB[(h y)/x]KA×δ−C .
Then, quite obviously, the equation 16 states that И ◦ ∀γ = ∀α→γ ◦ И ◦ r∗, that
is, the following diagram commutes:

ClSub((A # Atom)× C)
r∗ //

∀γ

��

ClSub((A× δ−C) # Atom)
И // ClSub(A× δ−C)

∀α→γ

��
ClSub(A # Atom)

И // ClSub(A)

which can be checked by calculation. The raising morphism can be easily gen-
eralized to the polyadic case (recall that B>(n)

= B # · · ·#B, n times):

r : (A× δ−nC) # Atom>(n)
→ (A# Atom>(n)

)× C

(x, h, a1, . . . , an) 7→ (x, a1, . . . , an, h(a1, . . . , an))

Then, the soundness of the rule ∀R is equivalent to the following:

Proposition 46. Let A,C ∈ D be functors, and n ∈ N. Let π : A× δ−nC → A

be the projection, and r : (A × δ−nC) # Atom>(n)
−→ (A# Atom>(n)

) × C the
raising morphism. For all G ∈ ClSub(A), and U ∈ ClSub((A#Atom>(n)

)×C),
if π∗(G) ≤ Иn(r∗(U)) then G ≤ Иn(∀γ(U)).

8 Conclusions

In this paper, we have studied a new model for dynamically allocable entities,
based on the notion of distinction. Previous models for variables and for names
can be embedded faithfully in this model, and also results about initial alge-
bras/final coalgebras and simultaneous substitutions are extended to the more
general setting. In a suitable subcategory of the model, it is possible to define
also a self-dual quantifier, similar to Gabbay-Pitts’ “И”. This rich structure has
allowed us to define the first denotational model for the logic FOλ∇.

21

Future work. The rich structure of SetD can be useful also for modeling process
calculi featuring both variables and names at once, like e.g. ambients. Actually,
the intuition behind distinctions is also at the base of the D-Fusion calculus [2];
in fact, we think that the two binders λ, ν of D-Fusion can be modeled precisely
by δ− and δ+ in SetD, respectively. Details will appear elsewhere.

FOλ∇ is not complete with respect to the model presented in this paper: the
И quantifier enjoys properties which are not derivable in FOλ∇ (e.g., ∀x.B ⊃
∇x.B and ∇x.B ⊃ ∃x.B). One main reason is that FOλ∇ does not admit
weakening on local signature; for instance, the sequent Σ : σBB −→ (σ, y) BB
is not derivable. This has been already noticed by Gabbay and Cheney, in their
interpretation of FOλ∇ into Fresh Logic [7], another first-order logic with a self-
dual quantifier. Actually, we think that the И quantifier of D is closer to the И
quantifier of Fresh Logic, than to the ∇ of FOλ∇. For this reason, it should be
possible to model Fresh Logic in D quite easily—another future work.

On the other hand, the construction of a complete model for FOλ∇ is still
an open problem. Ulrich Schöpp has suggested to use a tripos over SetB, where
B is the subcategory of F of bijective maps.

Acknowledgments. The authors wish to thank Dale Miller and Alwen Tiu for
useful discussions about FOλ∇, and Neil Ghani for hints about Kan extensions.

References

1. J. Adamek, editor. Coalgebraic Methods in Computer Science, ENTCS. 2004.
2. M. Boreale, M. G. Buscemi, and U. Montanari. D-fusion: A distinctive fusion

calculus. In Proc. APLAS’04, LNCS 3302, pages 296–310. Springer, 2004.
3. B. J. Day. On closed categories of functors. In Reports of the Midwest Category

Seminar, volume 137 of Lecture Notes in Mathematics, pages 1–38. Springer, 1970.
4. M. Fiore and S. Staton. Comparing operational models of name-passing process

calculi. In Adamek [1].
5. M. Fiore and D. Turi. Semantics of name and value passing. In H. Mairson, editor,

Proc. 16th LICS, pages 93–104, 2001.IEEE.
6. M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In [11].
7. M. Gabbay and J. Cheney. A sequent calculus for nominal logic. In Proc. LICS’04,

pages 139–148. IEEE Computer Society, 2004.
8. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable

binding. Formal Aspects of Computing, 13:341–363, 2002.
9. N. Ghani, K. Yemane, and B. Victor. Relationally staged computation in calculi

of mobile processes. In Adamek [1].
10. M. Hofmann. Semantical analysis of higher-order abstract syntax. In Longo [11].
11. G. Longo, editor. Proc. 14th Symp. of Logic in Computer Science, 1999. IEEE.
12. S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer, 1994.
13. M. Miculan and I. Scagnetto. A framework for typed HOAS and semantics. In

Proc. PPDP’03, pages 184–194. ACM Press, 2003.
14. D. Miller and A. F. Tiu. A proof theory for generic judgments: An extended

abstract. In LICS 2003, pages 118–127, 2003. IEEE.
15. A. M. Pitts. Categorical logic. In Handbook of LICS, vol. 5. OUP, 2000.

22

16. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 186:165–193, 2003.

17. J. Power and M. Tanaka. Binding signatures for generic contexts. In Proc.
TLCA’05, LNCS ?. Springer, 2005.

18. I. Stark. A fully abstract domain model for the π-calculus. In Proc. LICS’96.

23

