
Research Report UDMI/12/2006/RR

Directed Bigraphs: Theory and Applications∗

Davide Grohmann Marino Miculan
Department of Mathematics and Computer Science, University of Udine, Italy

grohmann@dimi.uniud.it miculan@dimi.uniud.it

December 29, 2006

Abstract

We introduce directed bigraphs, a bigraphical meta-model for describing
computational paradigms dealing with locations and resource communica-
tions. Directed bigraphs subsume and generalize both original Milner’s and
Sassone-Sobociński’s variants of bigraphs. The key novelty is that directed
bigraphs take account of the “resource request flow” inside link graphs, from
controls to edges (through names), by means of the new notion of directed
link graph.

For this model we give RPO and IPO constructions, generalizing and uni-
fying the constructions independently given by Jensen-Milner and Sassone-
Sobociński in their respective variants. Moreover, the very same construc-
tion can be used for calculating RPBs as well, and hence also luxes (when
these exist). Therefore, directed bigraphs can be used as a general theory
for deriving labelled transition systems (and congruence bisimulations) from
(possibly open) reactive systems.

We study also the algebraic structure of directed bigraphs: we give a
sound and complete axiomatization of the (pre)category of directed bigraphs.
Moreover, we use this axiomatization for encoding the λ-calculus, both in
call-by-name and call-by-value variants.

∗Work supported by Italian MIUR project 2005015824 Art.

1

mailto:grohmann@dimi.uniud.it
mailto:miculan@dimi.uniud.it

Contents

1 Introduction 3

2 Directed link graphs and bigraphs 5

3 RPO and IPO for directed link graphs 9
3.1 Construction of relative pushouts and pullbacks 9
3.2 Construction of idem-relative pushouts 11

4 Embedding output-linear and input-linear link graphs in directed
link graphs 14

5 Algebraic structure of ′DBig 18

6 Algebraic structure of DBig 22

7 The λ-calculus 24

8 Conclusions 27

2

1 Introduction

The fundamental importance of labelled transition systems (LTS) for defining the
dynamics of a calculus is well known. Many fundamental notions and techniques,
such as “bisimulations” and “model checking”, rely on this kind of model. The
key feature (and advantage) of an LTS semantics is that it is compositional: the
behaviour of a system is explained in terms of the behaviour of its components,
usually by a syntax-directed set of rules.

In spite of this, defining a satisfactory LTS for a given calculus is not an easy
task. Essentially, the problem boils down to identify correctly the observations,
that is, the “labels” of the LTS, which must represent exactly (i.e., no more and
no less) all possible interactions with any context which can surround a system.
Traditionally, LTSs are crafted “by hand”, but the more complex is the calculus,
the more difficult is to devise its LTS (compare, e.g., the LTSs of CCS, π-calculus
and Ambients [8, 11, 7]).

For this reason, often the semantics of a calculus is given by means of a reaction
(or reduction) system. Reaction systems are easier to define, understand and
justify than LTSs, but are not as useful in supporting tools and analytic techniques
such as bisimulations and model checking. Thus, a natural question is whether,
and how, is possible to construct a “good” labelled transitions system out of a
reduction system.

In the last years much work has been spent in looking for general procedures
for deriving LTSs from reduction systems. Sewell [16] argued that the labels c of
transitions of a term t are the contexts c[·] such that c[t] yields a reaction; remark-
ably, the bisimulation induced by a such LTS is always a congruence. However,
we want to take as labels the contexts really relevant to t only, i.e., in c[t] the
reaction has to involve (part of) t and not only the surrounding context c. To
this end, a major breakthrough has been achieved by Leifer and Milner with the
observation that a natural concept of “minimal context” is elegantly expressed by
the categorical notions of relative pushout (RPO) and idem-relative pushout (IPO)
[6]. The notion of RPO has been later generalized to groupoidal RPO for dealing
with syntactic congruences [14], and dualized into (groupoidal) relative pullback
(RPB) to take into account also open (i.e., non-ground) terms and reaction rules.
Eventually, RPO and RPB have been merged into the single concept of locally
universal hexagons (luxes) [4].

Now, given this general and elegant theory, we have to find the categories where
the calculi and systems used in Concurrency can be conveniently represented, and
RPOs, RPBs and luxes can be constructed.

To this end, an emerging meta-model are Milner’s bigraphs [9, 10], for which
a construction of RPOs has been given in [2]. A bigraph is composed by two
orthogonal structures: a hierarchical place graph describing locations, and a link
(hyper-)graph describing connections. These structures allow to represent many
formalisms such as CCS, π-calculus, Ambients, and Petri nets among others. Thus,
bigraphs can be seen as a promising meta-model for Concurrency.

On the other hand, Sassone and Sobociński presented in [15] a general approach
for constructing RPOs in a wide range of models, namely those which can be ex-

3

pressed as input-linear cospans over adhesive categories [5]. Adhesive categories
are quite common in Computer Science; e.g., presheaf categories (and hence Set
and Graph) are adhesive. An input-linear cospan X � A← Y represents a sys-
tem A whose input and output interfaces are X and Y , respectively. The Sassone-
Sobociński construction to the category of input-linear cospans over Graph yields
(and generalizes) Ehrig and König’s borrowed-context rewriting [1]. However, this
construction cannot be applied to Milner’s bigraphs, due to the input-linearity
condition: bigraphs are actually output-linear (and not input-linear) cospans in
an adhesive category of place-link graphs [15].

Summarizing, so far we have two kinds of bigraphs: “output-linear” (i.e. origi-
nal Milner’s) bigraphs, with Jensen-Milner’s RPO construction; and “input-linear”
bigraphs, with Sassone-Sobocińksi’s RPO construction. These two categories and
constructions do not generalize each other, although they agree on the intersection
(i.e., input- and output-linear bigraphs). A natural question then arises: is there
a generalization of both kinds of bigraphs, with an RPO construction subsuming
both Jensen-Milner’s and Sassone-Sobocińki’s constructions?

The answer is affirmative: in this paper we introduce directed bigraphs, which
subsume and generalize both previous theories. A directed bigraph is composed
by a place graph and a directed link graph, which is a natural generalization of
input-linear link graphs and output-linear link graphs.

The key idea of directed link graphs is to notice that in link graphs names
are not resources on their own, but only a way for denoting (abstract) resources,
represented by the edges. In a system, a name may be not denoting any resource
(i.e., not associated to any edge); in this case, the name can be seen as a formal
parameter of the system which is asking through it for a resource from outside
itself. Thus, we can discern a “resource request flow” which starts from points
(i.e., control ports), goes through names and eventually terminates in edges. In
output-linear link graphs, this request flow enters a system from its inner interface
(i.e., the system offers its resources to inner modules) and exits through its outer
interface (i.e., the system asks for resources to the outer environment); that is, the
flow moves ascending the place graph hierarchy. The converse happens in input-
linear link graphs, where the requests flow descends the place graph hierarchy.
Therefore, we generalize both situations by allowing resource requests to go in both
directions: a module may ask for resources and offer resources on each interface
at once. In order to avoid inconsistent situations, however, we must take care of
the “polarity” of names in interfaces, according as their meaning flows “upward”
or “downward”—hence the adjective directed.

In this model, we give a construction of RPOs (and IPOs), generalizing and
unifying the known constructions in the previous models (Actually, the IPO con-
struction for input-linear bigraphs obtained in this way is the first one, up to our
knowledge). Moreover, since the (pre)category of directed link graphs turns out
to be self-dual, the RPO construction can be used for calculating RPBs as well,
and hence for the construction of luxes.

Like Milner’s bigraphs, also for the precategory of directed bigraphs a notion
of normal form can be given, together with a complete axiomatization. This is
very useful for encoding specific calculi, as we will see in the case of λ-calculus.

4

Synopsis The rest of the paper is organized as follows. In Section 2 we present
the precategories ′DLG and ′DBig of directed link graphs and directed bigraphs,
and their basic properties. The constructions of RPOs and IPOs for directed link
graphs are described in Section 3, and in Section 4 we show how input-linear and
output-linear link graphs are subsumed by directed link graphs.

In Section 5 we analyze the algebraic structure of the precategory ′DBig, giving
a sound and complete axiomatization of this (pre)category. This analysis is then
carried on to the category DBig in Section 6.

In Section 7 we put directed bigraphs at work, giving the encodings of λ-
calculus, both in call-by-name and call-by-value variants. Notably, we do not
need to introduce further extensions (such as binding signatures) to this end; thus,
directed bigraphs turn out to be more expressive than the two previous variants.

Conclusions and direction for future work are in Section 8.

2 Directed link graphs and bigraphs

In this section we introduce directed link graphs, and present their main prop-
erties. In order to allow a direct comparison with traditional (i.e., output-linear,
Milner’s) bigraphs, we work with precategories. We refer the reader to [3, §3] for
an introduction to the theory of supported monoidal precategories.

Let K be a given signature of controls.

Definition 2.1 A polarized interface X is a pair of sets of names X = (X−, X+);
the two components are called downward and upward interfaces, respectively.

A directed link graph A : X → Y is A = (V,E, ctrl, link) where X and Y
are the inner and outer interfaces, V is the set of nodes, E is the set of edges,
ctrl : V → K is the control map, and link : Pnt(A) → Lnk(A) is the link map,
where the ports, the points and the links of A are defined as follows:

Prt(A),
∑
v∈V

ar(ctrl(v)) Pnt(A) , X+] Y −] Prt(A) Lnk(A) , X−] Y +]E

The link map cannot connect downward and upward names of the same interface,
i.e., the following condition must hold: (link(X+) ∩X−) ∪ (link(Y −) ∩ Y +) = ∅.

Directed link graphs are graphically depicted much like ordinary link graphs,
with the difference that edges are explicit objects, and not hyper-arcs connecting
points and names; points and names are associated to edges (or other names) by
(simple, non hyper) directed arcs. Some examples are given in Figure 1. This
notation aims to make clear the “resource request flow”: ports and names in the
interfaces can be associated either to internal or to external resources. In the first
case, ports and names are connected to an edge; these names are “inward” because
they declare to the context how to get to an internal resource. In the second case,
the ports and names are connected to an outward name, which is waiting to be
plugged by the context into a resource.

5

A : ({w}, ∅) → ({x, y, z}, ∅)

(a)

w

v0

z

v1

x y

e

B : (∅, {x, y, z}) → (∅, {w})

(b)

w

v0

z

v1

x y

e

C : (∅, {x, y}) → ({z, w}, ∅)

(c)

w z

x y

e

Figure 1: Examples of directed link graphs.

Notice that input-linear (output-linear, respectively) link graphs are just spe-
cial cases of this definition: just restrict to empty upward (downward, respec-
tively) interfaces (Figure 1.a and b). However, there are directed link graphs
which are neither input-linear nor output-linear, nor any combination of these;
e.g. C , (∅, {e}, ∅, {(x, e), (y, e), (z, e), (w, e)}) : {x, y} → {z, w} in Figure 1.c.

In the following, by “interface” and “link graphs” we will intend “polarized
interface” and “directed link graphs” respectively, unless otherwise noted.

Definition 2.2 (′DLG) The precategory of directed link graphs has polarized
interfaces as objects, and directed link graphs as morphisms.

Given two directed link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Xi+1 (i = 0, 1),
the composition A1◦A0 : X0 → X2 is defined when the two link graphs have disjoint
nodes and edges. In this case, A1 ◦ A0 , (V,E, ctrl, link), where V , V0] V1,
ctrl , ctrl0] ctrl1, E , E0] E1 and link : X+

0] X−
2] P → E] X−

0] X+
2 is

defined as follows (where P = Prt(A0)] Prt(A1)):

link(p) ,

link0(p) if p ∈ X+

0] Prt(A0) and link0(p) ∈ E0]X−
0

link1(x) if p ∈ X+
0] Prt(A0) and link0(p) = x ∈ X+

1

link1(p) if p ∈ X−
2] Prt(A1) and link1(p) ∈ E1]X+

2

link0(x) if p ∈ X−
2] Prt(A1) and link1(p) = x ∈ X−

1 .

The identity link graph of X is idX , (∅, ∅, ∅K, IdX−]X+) : X → X.

A
v

x y

B

w

x y

It is easy to check that composition is associative, and that given
a link graph A : X → Y , the compositions A ◦ idX and idY ◦ A
are defined and equal to A. Definition 2.1 forbids connections
between names of the same interface in order to avoid undefined
link maps after compositions. An example is shown aside, where
the composition of two apparently unproblematic directed link
graphs would yield a “loop” and hence not a directed link graph.

Proposition 2.3 The precategory ′DLG is self-dual, that is ′DLG ∼=′ DLGop.

6

Proof. Define the functor () :′ DLG →′ DLGop on objects as (X−, X+) ,
(X+, X−), and on a morphism A = (V,E, ctrl, link) : X → Y as A itself but with
swapped interfaces: A , A : (V,E, ctrl, link) : Y → X. It is easy to check that
this is a full and faithful functor, and that A = A.

Definition 2.4 The support of a link graph A = (V,E, ctrl, link) : X → Y is the
set |A| = V ⊕ E.

Proposition 2.5 The precategory ′DLG is well supported.

Proof. A lengthy check that |A1 ◦A2| = |A1|] |A2|, and that all the properties
about support translation are verified.

Definition 2.6 (idle, lean, open, closed, peer) Let A : X → Y be a link
graph.

A link l ∈ Lnk(A) is idle if it is not in the image of the link map (i.e., l 6∈
link(Pnt(A))). The link graph A is lean if there are no idle links.

A link l is open if it is an inner downward name or an outer upward name
(i.e., l ∈ X− ∪ Y +); it is closed if it is an edge. A point p is open if link(p) is
an open link; otherwise it is closed.

Two points p1, p2 are peer if they are mapped to the same link, that is link(p1) =
link(p2).

Proposition 2.7 A link graph A : X → Y is epi iff there are no peer names in
Y − and no idle names in Y +. Dually, A is mono iff there are no idle names in
X− and no peer names in X+.

A is an isomorphism iff it has no nodes, no edges, and its link map can be
decomposed in two bijections link+ : X+ → Y +, link− : Y − → X−.

Definition 2.8 The tensor product ⊗ in ′DLG is defined as follows. Given two
objects X, Y , if these are pairwise disjoint then X ⊗ Y , (X−] Y −, X+] Y +).
Given two link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Yi (i = 0, 1), if the tensor
products of the interfaces are defined and the sets of nodes and edges are pairwise
disjoint then the tensor product A0 ⊗ A1 : X0 ⊗ X1 → Y0 ⊗ Y1 is defined as
A0 ⊗A1 , (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1).

It is not difficult to check |A1 ⊗A2| = |A1|] |A2| and the following proposition.

Proposition 2.9 ′DLG is a well-supported monoidal precategory.

Finally, we can define the directed bigraphs as the composition of standard
place graphs (see [3, §7] for definitions) and directed link graphs.

Definition 2.10 A directed bigraph with signature K is G = (V,E, ctrl, prnt, link) :
I → J , where I = 〈m,X〉 and J = 〈n, Y 〉 are its inner and outer interfaces respec-
tively. An interface is composed by a width (a finite ordinal) and by a pair of finite
sets of names (from a global set X). V and E are the sets of nodes and edges re-
spectively, and prnt, ctrl and link are the parent, control and link maps, such that
GP , (V, ctrl, prnt) : m→ n is a place graph and GL , (V,E, ctrl, link) : X → Y
is a directed link graph.

7

We denote G as combination of GP and GL by G = 〈GP , GL〉. In this notation,
a place graph and a (directed) link graph can be put together iff they have the
same sets of nodes and edges.

Definition 2.11 (′DBig) The precategory ′DBig of directed bigraph with signa-
ture K has interfaces I = 〈m,X〉 as objects and directed bigraphs G = 〈GP , GL〉 :
I → J as morphisms. If H : J → K is another directed bigraph with sets of nodes
and edges disjoint from V and E respectively, then their composition is defined by
composing their components, i.e.:

H ◦G , 〈HP ◦GP ,HL ◦GL〉 : I → K.

The identity directed bigraph of I = 〈m,X〉 is 〈idm, IdX−]X+〉 : I → I.

Proposition 2.12 A directed bigraph G in ′DBig is epi (respectively mono) iff
its two components GP and GL are epi (respectively mono).

The isomorphisms in ′DBig are all the combinations ι = 〈ιP , ιL〉 of an iso-
morphism in ′PLG and an isomorphism in ′DLG.

Definition 2.13 The tensor product ⊗ in ′DBig is defined as follows. Given
I = 〈m,X〉 and J = 〈n, Y 〉, where X and Y are pairwise disjoint, then 〈m,X〉 ⊗
〈n, Y 〉 , 〈m + n, (X−] Y −, X+] Y +)〉. The tensor product of two bigraphs
Gi : Ii → Ji is defined when the tensor products of the interfaces are defined and
the sets of nodes and edges are pairwise disjoint, then:

G0 ⊗G1 , 〈GP
0 ⊗GP

1 , GL
0 ⊗GL

1 〉 : I0 ⊗ I1 → J0 ⊗ J1.

It is very simple to check the following proposition.

Proposition 2.14 For every signature K, the precategory ′DBig is wide monoidal;
the origin is ε = 〈0, (∅, ∅)〉 and the interface 〈n, X〉 has width n.

In virtue of this result, ′DBig can be used for applying the theory of wide reaction
systems and wide transition systems as developed by Jensen and Milner; see [3,
§4, §5] for details. To this end, we need to show that ′DBig has RPOs and IPOs.
Since place graphs are the usual ones, it suffices to show that directed link graphs
have RPOs and IPOs; this is the subject of the next section.

Actually, in many situations we do not want to distinguish bigraphs differing
only on the identity of nodes and edges. To this end, we introduce the category
DBig of abstract directed bigraphs. The category DBig is constructed from ′DBig
forgetting the identity of nodes and edges and any idle edge. More precisely,
abstract bigraphs are bigraphs taken up-to an equivalence m (see [3] for details).

Definition 2.15 (abstract directed bigraphs) Two concrete directed bigraphs
G and H are lean-support equivalent, written G m H, if they are support equiva-
lent after removing any idle edges.

The category DBig of abstract directed bigraphs has the same objects as ′DBig,
and its arrows are lean-support equivalence classes of directed bigraphs. We denote
by A :′ DBig→ DBig the associated quotient functor.

We remark that DBig is a category (not only a precategory); moreover, A enjoys
several important properties; see [3].

8

3 RPO and IPO for directed link graphs

3.1 Construction of relative pushouts and pullbacks

We first give an idea of how the construction works. Suppose D0 : X0 → Z,
D1 : X1 → Z is a bound for a span A0 : W → X0, A1 : W → X1 and we wish
to construct the RPO (B0, B1, B). In the following we will denote a pair (A0, A1)
by ~A and the link map of A simply by A. To form the pair ~B we truncate ~D
by removing all the edges, nodes and ports not present in ~A. Then in the outer
interface of ~B, we create an outer name for each point unlinked by the truncation:
the downward names connected to the same link (name or edge) must be “bound
together”, i.e. we must consider all the possible ways to associate a downward
name of A0 with one of A1 and vice versa; further we must equate an upward
name of A0 with one of A1 only if they are both connected to a point shared
between A0 and A1. Formally:

Construction 3.1 (RPOs in directed link graphs) A relative pushout (~B :
~X → X̂, B : X̂ → Z), for a pair ~A : W → ~X of link graphs relative to a
bound ~D : ~X → Z, will be built in three stages. Since RPOs are preserved by
isomorphisms, we can assume the components of X0 and X1 disjoint.

nodes and edges If Vi are the nodes of Ai (i = 0, 1), then the nodes of Di are
VDi = (Vī \ Vi)] V2 for some V2. Define the nodes of Bi and B to be
VBi , Vī \ Vi (i = 0, 1) and VB , V2. Edges Ei and ports Pi of Ai are
treated analogously.

interface Construct the shared codomain X̂ = (X̂−, X̂+) of ~B as follows: first
we define the names in each Xi = (X−

i , X+
i), for i = 0, 1, that must be

mapped into X̂ = (X̂−, X̂+):

X ′−
i , {x ∈ X−

i | ∃y ∈ X−
ī

s.t. Ai(x) = Aī(y) or Ai(x) ∈ (Ei \ Eī)}
X ′+

i , {x ∈ X+
i | Di(x) ∈ (E2] Z+)} .

We define for each l ∈ (W−] (E0 ∩E1)) the set of names in X ′−
i linked to l:

X ′−
i (l) , {x ∈ X ′−

i | Ai(x) = l} (i = 0, 1).

Now we must “bind together” names connected to the same link, so we create
all the possible pairs between a name in X ′−

0 and a name in X ′−
1 . Further

we must add to X̂− all the names in X ′−
i “not associable” to any name of

X ′−
ī

. Then the set of downward names of ~B is:

X̂− ,
⋃

l∈(W−](E0∩E1))

X ′−
0 (l)×X ′−

1 (l) ∪
∑

i∈{0,1}

⋃
e∈(Ei\Eī)

X ′−
i (e).

9

Next, on the disjoint sum X ′+
0 ⊕X ′+

1 , define ∼= to be the smallest equivalence
for which (0, x0) ∼= (1, x1) iff there exists p ∈ (W+] (P0 ∩ P1)) such that
A0(p) = x0 and A1(p) = x1. Then define:

X̂+ , (X ′+
0 ⊕X ′+

1)/∼=.

For each x ∈ X ′+
i we denote the equivalence class of (i, x) by î, x.

links Define the link maps of Bi as follows:

for x ∈ X+
i : Bi(x) ,

{
Di(x) if x ∈ (X+

i \X ′+
i)

î, x if x ∈ X ′+
i ;

for p ∈ (Pī \ Pi) : Bi(p) ,

{
Di(p) if Aī(p) /∈ X+

ī̂̄i, x if Aī(p) = x ∈ X+
ī

;

for x̂ ∈ X̂− : Bi(x̂) ,

x if x̂ = (x, y) and i = 0
y if x̂ = (x, y) and i = 1
x̂ if x̂ ∈ (X̂− ∩X−

i)
Aī(x̂) if x̂ ∈ (X̂− ∩X−

ī
).

Finally we define the link map of B:

for x̂ ∈ X̂+ : B(x̂) , Di(x) where x̂ = î, x and x ∈ X+
i ;

for p ∈ (P2] Z−) : B(p) ,

Di(p) if Di(p) ∈ (E2] Z+)
Dī(p) if Di(p) ∈ (Eī \ Ei)
Di(p) if Dī(p) ∈ (Ei \ Eī)
(x, y) if D0(p) = x ∈ X−

0 and
D1(p) = y ∈ X−

1 .

Theorem 3.2 In ′DLG, whenever a pair ~A of link graphs has a bound ~D, there
exists an RPO (~B,B) for ~A to ~D, and Construction 3.1 yields such an RPO.

Proof. The proof is in two parts. First we have to check that (~B,B) is an RPO
candidate; this is done by long and tedious calculations.

Next, for any other candidate (~C, C), we have to construct the unique arrow
Ĉ such that the diagram aside commutes. This link graph Ĉ can be constructed
as follows: let be VC the nodes of C, for i = 0, 1 the set of nodes of Ci is VCi ,
(Vī \ Vi)] V3, where V3 is such that V2 = V3] VC ; edges ECi

and ports PCi
of Ci

are defined analogously. Then Ĉ has V3, E3 and P3 as sets of nodes, edges and
ports respectively. Its link map is defined as follows:

for ĵ, x ∈ X̂+ : Ĉ(ĵ, x) , Cj(x);

for p ∈ (P3] Ŷ −) : Ĉ(p) ,

Ci(p) if Ci(p) ∈ (E3] Ŷ +)
C0(p) if C0(p) ∈ (X̂− ∩X−

0)
C1(p) if C1(p) ∈ (X̂− ∩X−

1)
(x, y) if C0(p) = x ∈ X−

0 and C1(p) = x ∈ X−
1 .

10

As an immediate consequence, we can calculate RPBs as well.

Corollary 3.3 In ′DLG, whenever a pair ~D : ~X → W of link graphs has a co-
bound ~A : Z → ~X, there exists an RPB (~B : X̂ → ~X,B : Z → X̂) for ~A to ~D,
and Construction 3.1 can be used for calculating such an RPB.

Proof. Consider the pair ~D : W → ~X, which is in ′DLG for Proposition 2.3;
this pair has the bound ~A : ~X → Z, and hence, for Theorem 3.2, Construction 3.1
yields a RPO (~C : ~X → X̂, C : X̂ → Z). Then, take ~B , ~C and B , C.

Finally, one may wonder whether this construction can be used for calculat-
ing locally universal hexagons (luxes). Actually ′DLG does not have all luxes,
although it has RPOs and RPBs. In fact, it is easy to construct an hexagon such
that its RPO and RPB do not commute; the result follows from [4, Theorem 1].

However, there are two subprecategories of ′DLG where luxes do exist:

Proposition 3.4 Let ′MDLG be the wide subprecategory of ′DLG of mono di-
rected link graphs. Then, ′MDLG has luxes, which can be constructed using Con-
struction 3.1 twice.

Proof. Follows from [4, Corollary 3], and previous results. Clearly, the result

applies also to ′EDLG =′ MDLGop, the subprecategory of ′DLG of epi directed
link graphs. Notice that, by Proposition 2.7, mono and epi link graphs are easy
to recognize and single out.

3.2 Construction of idem-relative pushouts

We now proceed to characterise all the IPOs for a given pair ~A : W → ~X of link
graphs. The first step is to establish consistency conditions.

Definition 3.5 We define four consistency conditions on a pair ~A : W → ~X of
link graphs.

CDL0 ctrl0(v) = ctrl1(v) if v ∈ (V0 ∩ V1);

CDL1 if p ∈ (P0 ∩ P1) and Ai(p) ∈ ((E0 ∩ E1)]W−), then Aī(p) = Ai(p);

CDL2 if p2 ∈ (P0 ∩ P1) and Ai(p2) ∈ (Ei \ Eī), then Aī(p2) = xī for some
xī ∈ X+

ī
, and further if Aī(p) = Aī(p2) then p ∈ (W+] (P0 ∩ P1)) and

Ai(p) = Ai(p2), or p ∈ (Pī \ Pi) and exists xi ∈ X−
i such that Ai(xi) =

Ai(p2);

CDL3 for each p ∈ (Pi \ Pī) such that Ai(p) ∈ (W−] (E0 ∩ E1)), then exists
xī ∈ X−

ī
such that Aī(xī) = Ai(p).

11

Informally, CDL1 says that if a shared point p in Ai is linked to a shared link l,
then in Aī the shared point p must be linked to the same link l. CDL2 says that if
the link of a shared point p2 in Ai is closed and unshared, then its link in Aī must
be an outer upward name, further any peer p of p2 in Aī must also be its peer in
Ai, or if p is not shared, then in Ai there exists an outer downward name linked
to the unshared edge of p2. Finally, CDL3 says that if an unshared point in Ai is
linked to a shared link, then in Aī there is an outer downward name linked to the
shared link.

Proposition 3.6 If a pair of link graphs ~A has a bound, then the consistency
conditions hold.

Now, assuming the consistency conditions of Definition 3.5, we shall construct
a non-empty family of IPOs for ~A denoted by IPO(~A).

Construction 3.7 (IPOs in directed link graphs) Assume the consistency con-
ditions for the pair ~A : W → ~X of link graphs. We define ~C : ~X → Y an IPO for
~A as follows:

nodes and edges Define the nodes of Ci to be VCi , Vī \ Vi. Edges and ports
of Ci are defined analogously.

interface For i = 0, 1 choose any subset L+
i of the names X+

i such that all
members of L+

i are idle. Define

P̃i , {p ∈ Pi\Pī | Ai(p) ∈ X+
i and @p′ ∈ (Pi∩Pī)]W+ s.t. Ai(p) = Ai(p′)}

and choose Q+
i ⊆ Ai(P̃i). Let be K+

i = X+
i \ (L+

i ∪Q+
i), define K ′+

i ⊆ K+
i ,

the names to be mapped to the codomain Y +. Then we define (for i = 0, 1):

X ′−
i , {x ∈ X−

i | ∃y ∈ X−
ī

s.t. Ai(x) = Aī(y) or Ai(x) ∈ (Ei \ Eī)}
K ′+

i , {x ∈ K+
i | ∀p ∈ (W+] (P0 ∩ P1)).Ai(p) = x ∈ X+

i ⇒ Aī(p) ∈ X+
ī
} .

As in Construction 3.1, we define for each l ∈ (W−] (E0 ∩ E1)) the set
X ′−

i (l) of names linked to l, and define:

Y − ,
⋃

l∈(W−](E0∩E1))

X ′−
0 (l)×X ′−

1 (l) ∪
∑

i∈{0,1}

⋃
e∈(Ei\Eī)

X ′−
i (e).

Next, on the disjoint sum K ′+
0 ⊕K ′+

1 , define ' to be the smallest equivalence
for which (0, x0) ' (1, x1) iff there exists p ∈ (W+] (P0 ∩ P1)) such that
A0(p) = x0 and A1(p) = x1. Then define:

Y + , (K ′+
0 ⊕K ′+

1)/'.

For each x ∈ K ′+
i we denote the equivalence class of (i, x) by î, x.

12

links For i = 0, 1, choose three arbitrary functions:

ηi : L+
i → Eī \ Ei;

ξi : Q+
i → {e ∈ Ei \ Eī | ∃x ∈ S−i s.t. Ai(x) = e};

and for each l ∈ (W−] (E0 ∩ E1)) for which there exists xi ∈ X−
i and

p ∈ (Pī \ Pi) such that Ai(xi) = l and Aī(p) = l, choose an arbitrary
function:

θl
i : {p ∈ (Pī \ Pi) | Aī(p) = l} → X ′−

i (l).

Then define the link maps Ci : Xi → Y as follows:

for x ∈ X+
i : Ci(x) ,

Aī(p) if x ∈ (K+
i \K ′+

i), then
∃p ∈ (W+] (P0 ∩ P1)) s.t. Ai(p) = x

î, x if x ∈ K ′+
i

ηi(x) if x ∈ L+
i

ξi(x) if x ∈ Q+
i ;

for p ∈ (Pī \ Pi) : Ci(p) ,

Aī(p) if Aī(p) ∈ (Eī \ Ei)̂̄i, x if Aī(p) = x ∈ X+

ī
\Q+

ī

θl
i(p) if Aī(p) = l ∈ ((E0 ∩ E1)]W−)

θe
i (p) if p ∈ P̃ī and e = ξī(Aī(p));

for y ∈ Y − : Ci(y) ,

x if x̂ = (x, y) and i = 0
y if x̂ = (x, y) and i = 1
y if y ∈ (Y − ∩X−

i)
Aī(y) if y ∈ (Y − ∩X−

ī
).

The maps ηi are called elision; this refers to the fact that the idle names L+
i in

Ai are not exported in the IPO interface Y , but instead mapped into Ci.
The maps ξi are called inversion; this refer to the fact that in the bound Cī

of Aī we can invert the verse of some link from upward to downward, in this way
we can connect a port p of Pi \ Pī to an edge e in Eī \ Ei without any explicit
motivation, i.e. there is no shared port connected to the same name of p that in
Aī is linked to e.

The maps θl
i are called random link ; this refers to the fact that if a link has

more then one name linked to it, then in the bound it is indifferent to which name
a point is linked to, because the effect of composition is the same.

There is a distinct IPO for each choice of L+
i , Q+

i , ηi, ξi and θl
i. When ~A are

both epi then there are no elisions of idle names and there not exists two different
names in X−

i that are peers, then the IPO is unique and hence a pushout.

Theorem 3.8 A pair ~C : ~X → Y is an IPO for ~A : W → ~X iff it is generated
(up to isomorphism) by Construction 3.7.

13

Proof. (⇒) ~B is an IPO for ~A iff it is the legs of an RPO w.r.t. some bound
~D. So we can assume w.l.g. that ~B is generated by Construction 3.1. Now apply
Construction 3.7 to create ~C by choosing ~L+, ~Q+, ~η, ~ξ and ~θl as in ~D. Then ~C
coincides with ~B.

(⇐) Consider any ~C generated by Construction 3.7. Now apply the Construc-
tion 3.1 to yield an RPO (~B,B) for ~A to ~C. Then ~B coincides with ~C.

4 Embedding output-linear and input-linear link
graphs in directed link graphs

In this section, we show how the previous theories of output-linear and input-linear
bigraphs are related to directed link graphs.

Let us first recall the definition of bigraphs, as given by Milner [10]. For clarity,
we add the adjective “output linear”.

Definition 4.1 An output-linear link graph is a tuple A = (V,E, ctrl, link) :
X → Y , where V is the set of nodes, E is the set of edges, and X and Y are the
sets of inner and outer names, respectively; ctrl : V → K is the control map, and
finally link : P]X → E] Y is the link map, where P ,

∑
v∈V ar(ctrl(v)) is the

set of ports of A. Inner names and ports are the points, while outer names and
edges are the links.

The support of the output-linear link graph A is the set |A| , V ⊕ E.

Then, we recall the definition of the category of output-linear link graphs (cf. [3,
Def. 8.3], there called ′Lig):

Definition 4.2 (′OLG) The precategory of output-linear link graphs ′OLG has
sets of names as objects, and output-linear link graphs as morphisms. Composition
of two link graphs A0, A1 is defined when their supports are disjoint; in this case,
A1 ◦ A0 , (V0] V1, E0] E1, ctrl0] ctrl1, link), where link : P] X0 → E] X2

(where P = P0] P1) is defined as follows:

link(p) ,

link0(p) if p ∈ X0] P0 and link0(p) ∈ E0

link1(x) if p ∈ X0] P0 and link0(p) = x ∈ X1

link1(p) if p ∈ P1.

The identity link graph at X is idX , (∅, ∅, ∅K, IdX) : X → X.

The precategory ′OLG is well-supported; actually it is a well-supported monoidal
precategory. See [3] for details. Moreover, whenever a span ~A in ′OLG has a
bound ~D, there exists an RPO for (~A, ~D); see [3, Construction 8.8].

The precategory ′ILG of input-linear link graphs is defined much like ′OLG,
just by swapping the input and output interfaces in the arity of the link functions
(i.e., for A : X → Y , its link map is link : P] Y → E]X). The composition has

14

to be changed accordingly: given two input-linear link graphs A0 : X0 → X1, A1 :
X1 → X2 the composition A1 ◦ A0 is defined when their supports are disjoint; in
this case, A1 ◦ A0 , (V0] V1, E0] E1, ctrl0] ctrl1, link), where link : P]X2 →
E]X0 (where P = P0] P1) is defined as follows:

link(p) ,

link1(p) if p ∈ X2] P1 and link1(p) ∈ E1

link0(x) if p ∈ X2] P1 and link1(p) = x ∈ X1

link0(p) if p ∈ P0.

It is immediate to see that an output-linear link graph (V,E, ctrl, link : P]
X → E]Y) : X → Y is also an input-linear link graph (V,E, ctrl, link : P]X →
E] Y) : Y → X, and vice versa. Thus:

Proposition 4.3 ′OLG ∼=′ ILGop.

Corollary 4.4 Let ~A be a span in ′OLG, with a bound ~D. A triple (~B,B) is an
RPO for (~A, ~D) in ′OLG iff (~Bop, Bop) is an RPB for (~Aop, ~Dop) in ′ILG.

As a consequence, the RPO construction in ′OLG can be used for constructing
RPBs in ′ILG, but it does not work for constructing RPOs. On the converse, an
RPOs construction in ′ILG would give an RPB construction in ′OLG for free.

Actually, an RPO construction in ′ILG can be recovered by noticing that
input-linear link graphs correspond to input-linear cospans over a certain adhesive
category LGraph of hypergraphs, as observed in [15]. Thus we can apply the
general (G)RPO construction presented in loc. cit. (and fully detailed in [17]).
In this paper, for a more direct comparison with the constructions in ′DLG and
′OLG (and in order to avoid to introduce 2-categorical machinery), we present a
version of this construction tailored to the specific precategory ′ILG.

Construction 4.5 (RPOs in input-linear link graphs) An RPO in ′ILG is
built as follows:

nodes and edges If Vi are the nodes of Ai (i = 0, 1); then the nodes of Di are
VDi = (Vī \ Vi)] V2 for some V2. Define the nodes of Bi and B to be
VBi , Vī \ Vi (i = 0, 1) and VB , V2. Edges Ei and ports Pi of Ai are
treated analogously.

interface Construct the shared codomain X̂ of ~B as follows: first we define the
names in each Xi, for i = 0, 1, that must be mapped into X̂:

X ′
i , {x ∈ Xi | ∃y ∈ Xī s.t. Ai(x) = Aī(y) or Ai(x) ∈ (Ei \ Eī)} .

We define for each l ∈ (W] (E0 ∩ E1)) the set of names in X ′
i linked to l:

X ′
i(l) , {x ∈ X ′

i | Ai(x) = l} (i = 0, 1).

Now we must “bind together” names connected to the same link, so we create
all the possible pairs between a name in X ′

0 and a name in X ′
1. Further we

15

must add to X̂ all the names of X ′
i “not associable” to any name of X ′

ī
.

Then the set of downward names of ~B is:

X̂ ,
⋃

l∈(W](E0∩E1))

X ′
0(l)×X ′

1(l) ∪
∑

i∈{0,1}

⋃
e∈(Ei\Eī)

X ′
i(e).

links Define Bi as follows:

for p ∈ (Pī \ Pi) : Bi(p) , Di(p);

for x̂ ∈ X̂ : Bi(x̂) ,

x if x̂ = (x, y) and i = 0
y if x̂ = (x, y) and i = 1
x̂ if x̂ ∈ (X̂ ∩Xi)
Aī(x̂) if x̂ ∈ (X̂ ∩Xī).

Finally we define B:

for p ∈ (Z] P2) : B(p) ,

Di(p) if Di(p) ∈ E2

Dī(p) if Di(p) ∈ (Eī \ Ei)
Di(p) if Dī(p) ∈ (Ei \ Eī)
(x, y) if D0(p) = x and D1(p) = y.

Proposition 4.6 If a span ~A in ′ILG has a bound ~D, then there exists an RPO
for (~A, ~D), which is constructed by Construction 4.5.

Actually, both constructions in ′ILG and ′OLG are special cases of Construc-
tion 3.1 in ′DLG, since the former precategories are embedded in the latter:

Proposition 4.7 ′ILG and ′OLG are equivalent to two well-supported monoidal
subprecategories of ′DLG.

Proof. The monoidal embeddings FI :′ ILG→′ DLG and FO :′ OLG→′ DLG
are defined as obvious: on objects, FI(X) = (X, ∅) and FO(X) = (∅, X); on
morphisms, simply as FI(A) = FO(A) = A. It is easy to check that these are two
faithful functors, respecting supports and the monoidal operations.

Proposition 4.8 Given a span ~A with a bound ~D in ′ILG, a triple (~B,B) is an
RPO for (~A, ~D) iff (FI(~B), FI(B)) is an RPO for (FI(~A), FI(~D)) in ′DLG.

Thus, in order to calculate an RPO for a square (~A, ~D) in either ′ILG or ′OLG,
we just embed the square in ′DLG, apply Construction 3.1, and drop the empty
sets from the interfaces of the resulting RPO.

This result, in virtue of the self-duality of ′DLG, extends to RPB as well, thus
we have an algorithm for calculating RPBs in ′ILG and ′OLG.

Proposition 4.9 Let ~A be a span with a bound ~D in ′ILG or ′OLG; then there
exists an RPB (~B,B) for (~A, ~D).

16

Proof. Consider the square (FI(~D), FI(~A)) in ′DLG. By applying Construc-
tion 3.1, we get an RPO (~C, C) for it. Then, the RPB for (~A, ~D) is obtained by
taking (~C, C), and cancelling the empty sets from the interfaces.

Luxes Since ′OLG and ′ILG have RPOs and RPBs, one may wonder whether
we can build luxes as well. The answer is the same of ′DLG: not always. In both
categories we can build hexagons which do not have luxes. However, if we restrict
to either all epi or all mono link graphs, luxes do exist, and can be calculated by
embedding an hexagon in ′DLG and applying Proposition 3.4.

IPOs Also the consistency conditions and the construction of IPOs in ′OLG
and ′ILG are subsumed by Definition 3.5 and Construction 3.7. Let us recall the
consistency condition for output-linear graphs as in [3, Definition 8.10].

Definition 4.10 The three consistency conditions on a pair ~A : W → ~X of
output-linear link graphs are the following:

COL0 ctrl0(v) = ctrl1(v) if v ∈ (V0 ∩ V1);

COL1 if Ai(p) ∈ (E0 ∩ E1), then p ∈ (W] (P0 ∩ P1)) and Aī(p) = Ai(p);

COL2 for p2 ∈ (P0 ∩ P1), if Ai(p2) ∈ (Ei \ Eī) then Aī(p2) ∈ Xī, and if also
Aī(p) = Aī(p2) then p ∈ (W] (P0 ∩ P1)) and Ai(p) = Ai(p2).

On the other hand, the consistency conditions for input-linear graphs are quite
different:

Definition 4.11 The three consistency conditions on a pair ~A : W → ~X of input-
linear link graphs are the following:

CIL0 ctrl0(v) = ctrl1(v) if v ∈ (V0 ∩ V1);

CIL1 if p ∈ (P0 ∩ P1), then A0(p) = A1(p);

CIL2 for p ∈ (Pi \ Pī) such that Ai(p) ∈ (W] (E0 ∩ E1)), there exists xī ∈ Xī

such that Aī(xī) = Ai(p).

In both precategories, if a bound satisfies the relevant consistency conditions,
its IPOs can be calculated using Construction 3.7, in virtue of the following result:

Proposition 4.12 Let ~A a span in ′OLG. If ~A satisfy the conditions in Defini-
tion 4.10 then IPO(~A) ∼= IPO(FO(~A)).

Let ~A a span in ′ILG. If ~A satisfy the conditions in Definition 4.11 then
IPO(~A) ∼= IPO(FI(~A)).

Thus, we have automatically an algorithm for calculating IPOs for a span of input-
linear link graphs ~A: just apply Construction 3.7 to FI(~A) and drop the empty
sets from the interfaces of the IPOs so obtained. As far as we know, these are the
first consistency conditions and IPO construction for input-linear link graphs.

17

5 Algebraic structure of ′DBig

We begin this section introducing some useful notations.
Remark. We abbreviate an interface 〈0, (X−, X+)〉 simply by (X−, X+), and a
set like {x} by x; in similar way we write m for 〈m, (∅, ∅)〉. The two interfaces (∅, ∅)
and 0 are equal and stand for the origin ε, so the identity idε can be expressed as
ε, (∅, ∅) or 0.

A bigraph A : (∅, X+) → (∅, Y +) is defined by a (not necessarily surjective)
function σ : X+ → Y +, called substitution, if it has no nodes and no edges and
the link map is σ; analogously a bigraph A : (X−, ∅) → (Y −, ∅) is defined by a
(not necessarily surjective) function δ : Y − → X−, called fusion, if it has no nodes
and no edges and the link map is δ. With abuse of notation, we write σ and δ to
mean their corresponding bigraphs.

Let two vectors ~x and ~y of the same length; we write (y0/x0, y1/x1, . . .) or
simply M~y

~x, where all the xi are distinct, for the surjective substitution xi 7→ yi;
similarly, we write (y0/x0, y1/x1, . . .) or O~y

~x, where all yi are distinct, for the
surjective substitution yi 7→ xi.

We denote by MX : (∅, ∅)→ (∅, X) the bigraph defined by the empty substitu-
tion σ : ∅ → X, in the same way we denote OX : (X, ∅) → (∅, ∅) for the bigraph
defined by the empty fusion δ : ∅ → X.

Note that each substitution σ can be expressed in a unique way as σ = τ⊗MX ,
where τ is a surjective substitution; while each fusion δ can be expressed in a
unique way as δ = ζ⊗OX , where ζ is a surjective fusion. We denote the renamings
by α, i.e. the bijective substitution or bijective fusion.

Finally, we introduce the closure bigraphs. The closure HN
x
y : (∅, y) → (x, ∅)

has no nodes, a unique edge e and the link map is link(x) = e = link(y). Two
other types of closures are obtained by composing the closure HN

x
y and Mx or Oy

respectively:

• the up-closure Ny : (∅, y) → (∅, ∅) has no nodes, a unique edge e and
link(y) = e;

• the down-closure Hx : (∅, ∅) → (x, ∅) has no nodes, a unique edge e and
link(x)=e.

Definition 5.1 (wirings) A wiring is a bigraph whose interfaces have zero width
(and hence has no nodes). The wirings ω are generated by the composition or
tensor product of three base elements: the substitutions σ : (∅, X+)→ (∅, Y +); the
fusions δ : (Y −, ∅)→ (X−, ∅); and the closures HN

x
y : (∅, y)→ (x, ∅).

Definition 5.2 (prime bigraph) An interface is prime if it has width equal to
1. Often we abbreviate a prime interface 〈1, (X−, X+)〉 with 〈(X−, X+)〉, in par-
ticular 〈(∅, ∅)〉 = 1. A prime bigraph P : 〈m, (Y −, ∅)〉 → 〈(∅, X+)〉 has no upward
inner names and no downward outer names, and has a prime outer interface.

18

An important prime bigraph is merge : m→ 1, it has no nodes and it maps m
sites to an unique root. A bigraph G : n → 〈m, (X−, X+)〉 without inner names,
it can be simply converted in a prime bigraph as follows: (merge⊗ id(X−,X+))◦G.

Definition 5.3 (discrete bigraph) A bigraph D : 〈n, (X−, X+)〉 → 〈m, (Y −, Y +)〉
is discrete if it has no edges and the link map is a bijection. That means all points
are open, no pair of points is a peer and no link is idle.

The discreteness is well-behaved, and preserved by composition and tensor prod-
ucts. It is easy to see that discrete bigraphs form a monoidal sub-precategory of
′DBig.

Definition 5.4 (ion, atom and molecule) For any non atomic control K with
arity k and a pair of sequence ~x− and ~x+ of distinct names, whose overall length
is k, we define the discrete ion K(v)~x+

~x− : 〈(~x−, ∅)〉 → 〈(∅, ~x+)〉 as the bigraph with
a unique K-node v, whose ports are separately linked to ~x− or to ~x+. We omit v
when it can be understood.

For a prime discrete bigraph P with outer names (Y −, Y +) the composite
(K~x+

~x− ⊗ id(Y −,Y +)) ◦ P is a discrete molecule. If K is atomic, we define the
discrete atom K~x+

~x− : (~x−, ∅)→ 〈(∅, ~x+)〉; it resembles an ion, but has no site.

An arbitrary (non-discrete) ion, molecule or atom is formed by the composition
of ω ⊗ id1 with a discrete one. Often we omit · · · ⊗ idI in the compositions,
when there is no ambiguity; for example we write merge ◦ G to mean (merge ⊗
id(X−,X+))◦G and K~x+

~x− ◦P to mean (K~x+

~x− ⊗ id(Y −,Y +))◦P . Note that every atom
and every molecule are prime, furthermore an atom is also ground, but a molecule
is not necessarily ground, since it may have sites.

Now, we define some variants of the tensor product, whose can allow the sharing
of names. Process calculi often have a parallel product P | Q, that allows the
processes P and Q to share names. In directed bigraphs, this sharing can involve
inner downward names and/or outer upword names, as described by the following
definitions.

Definition 5.5 (sharing products) The outer sharing product, inner sharing
product and sharing product of two link graphs Ai : Xi → Yi (i = 0, 1) are defined
as follows:

(X−, X+) 	 (Y −, Y +) , (X−] Y −, X+ ∪ Y +)

(X−, X+) � (Y −, Y +) , (X− ∪ Y −, X+] Y +)

A0 	 A1 , (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1) : X0 ⊗X1 → Y0 	 Y1

A0 � A1 , (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1) : X0 � X1 → Y0 ⊗ Y1

A0 ‖ A1 , (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1) : X0 � X1 → Y0 	 Y1

defined when their interfaces are defined and Ai have disjoint node and edge sets.

19

The outer sharing product, inner sharing product and sharing product of two
bigraphs Gi : Ii → Ji are defined by extending the corresponding products on their
link graphs with the tensor product on widths and place graphs:

〈m,X〉 	 〈n, Y 〉 , 〈n + m,X 	 Y 〉 〈m,X〉 � 〈n, Y 〉 , 〈n + m,X � Y 〉

G0 	 G1 , 〈GP
0 ⊗GP

1 , GL
0 	 GL

1 〉 : I0 ⊗ I1 → J0 	 J1

G0 � G1 , 〈GP
0 ⊗GP

1 , GL
0 � GL

1 〉 : I0 � I1 → J0 ⊗ J1

G0 ‖ G1 , 〈GP
0 ⊗GP

1 , GL
0 ‖ GL

1 〉 : I0 � I1 → J0 	 J1.

defined when their interfaces are defined and Gi have disjoint node and edge sets.

It is simple to verify that 	, � and ‖ are associative, with unit ε.
Another way of constructing a sharing product of two bigraphs G0, G1 is to

disjoin the names of G0 and G1, then take the tensor product of the two bigraphs
and finally merge the name again:

Proposition 5.6 Let G0 and G1 be bigraphs with disjoint node and edge sets.
Then

G0	G1 = σ(G0⊗τG1ζ) G0�G1 = (G0⊗τG1ζ)δ G0 ‖ G1 = σ(G0⊗τG1ζ)δ

where the substitution σ and τ are defined in the following way: if zi (i ∈ n) are
the upward outer names shared by G0 and G1, and wi are fresh names in bijection
with the zi, then τ(zi) = wi and σ(wi) = σ(zi) = zi (i ∈ n). The substitution δ
and ζ are defined in a very similar way, but acting on the downward inner names.

Definition 5.7 (prime products) The prime outer sharing product and prime
sharing product of two bigraphs Gi : Ii → Ji are defined as follows:

〈m, (X−, X+)〉 & 〈n, (Y −, Y +)〉 , 〈(X−] Y −, X+ ∪ Y +)〉

G0 & G1 , merge(width(J0)+width(J1)) ◦ (G0 	 G1) : I0 ⊗ I1 → J0 & J1

G0 | G1 , merge(width(J0)+width(J1)) ◦ (G0 ‖ G1) : I0 � I1 → J0 & J1.

defined when their interfaces are defined and Gi have disjoint node and edge sets.

It is easy to show that & and | are associative, with unit 1 when applied to prime
bigraphs. Note that for a wiring ω and a prime bigraph P , we have ω & P = ω	P
and ω | P = ω ‖ P , because in this case these products have the same meaning.

Now, we can describe discrete bigraphs, which are the complement of wirings:

Theorem 5.8 (discrete normal form) 1. Every bigraph G can be expressed
uniquely (up to iso) as: G = (ω⊗ idn)◦D ◦ (ω′⊗ idm), where D is a discrete
bigraph and ω, ω′ are two wirings satisfying the following conditions:

• in ω, if two outer downward names are peer, then their target is an
edge;

20

• in ω′ there are no edges, and no two inner upward names are peer.

2. Every discrete bigraph D : 〈m, (X−, X+)〉 → 〈n, (Y −, Y +)〉 may be factored
uniquely (up to iso) on the domain of each factor Di, as:

D = α⊗ ((D0 ⊗ · · · ⊗Dn−1) ◦ (π ⊗ iddom(~D)))

with α a renaming, each Di prime and discrete, and π a permutation.

Proof. For the first part, let us consider a generic bigraph G : 〈n, (X−, X+)〉 →
〈m, (Y −, Y +)〉. We show how to divide G in three parts: a discrete D : 〈n, (Z−, Z+)〉 →
〈m, (W−,W+)〉 and two wirings ω : (W−,W+)→ (Y −, Y +) and ω′ : (X−, X+)→
(Z−, Z+) satisfying the previous conditions. We proceed by cases:

p ∈ P , linkG(p) = e ∈ E: we add a fresh name we ∈ W+ and define linkD(p) =
we and linkω(we) = e;

p ∈ P , linkG(p) = y ∈ Y +: we add a fresh name wy ∈W+ and define linkD(p) =
wy and linkω(wy) = y;

p ∈ P , linkG(p) = x ∈ X−: this case is analogous to the previous one;

y ∈ Y −, linkG(y) = e ∈ E: we define linkω(y) = e;

x ∈ X+, linkG(y) = e ∈ E: we add a fresh name ze ∈ Z+, a fresh name we ∈W+

and define linkω′(x) = ze, linkD(ze) = we, linkω(we) = e;

y ∈ Y −, linkG(y) = x ∈ X−: we add a fresh name wx ∈ W−, a fresh name zx ∈
Z− and define linkω(y) = wx, linkD(wx) = zx and linkω′(zx) = x;

x ∈ X+, linkG(x) = y ∈ Y +: this case is analogous to the previous one; it is suf-
ficient to invert the direction of links and swap the rule of ω with ω′.

Note that there are no idle names in Z−, Z+, W− and W+, so those sets are
formed only by the fresh names defined in this proof. Furthermore, the three
conditions above holds because we create a fresh name every time we need one.

The proof of the second part is easy. Since the outer interface of D has width
n, we can decompose D in n discrete and prime parts, obtaining D0⊗· · ·⊗Dn−1.
The renaming α describe the connections between the inner interface and the outer
one. Finally the permutation π gives the right sequence of the sites, so we can
take the tensor product of Di (i = 0,n− 1) in any order. ut

We call this unique factorization discrete normal form (DNF). The DNF ap-
plies to abstract bigraphs as well, and indeed it will play an important part in the
complete axiomatization of DBig, as we will discuss in the next section.

Note that a renaming is discrete but not prime (since it has zero width);
this is why the factorization in Theorem 5.8(2) has such a factor. This unique
factorization depends on the fact that the prime bigraphs have no upward inner
names and downward outer names. In the special case that D is ground, the
factorization in Theorem 5.8(2) is simply D = d0 ⊗ · · · ⊗ dn−1, that is a product
of discrete and prime ground bigraphs.

21

y

x

HN
x
y :(∅, y)→ (x, ∅) closure

y

x1x2. . .xn

. . . My
X :(∅, X)→ (∅, y) substitution

x

y1y2 . . .ym

. . . OY
x :(x, ∅)→ (Y, ∅) fusion

1:ε→ 1 a barren root

1 2 merge:2→ 1 mapping 2 sites in 1 root

m+1 . . . m+n 1 . . . n γm,n:m + n→ n + m swapping m with n

x1x2. . .xn

x1x2. . .xm
. . .

. . .

K~x+

~x− :〈(~x−, ∅)〉 → 〈(∅, ~x+)〉 a discrete ion

Figure 2: Elementary Bigraphs

6 Algebraic structure of DBig

In this section we describe a sound and complete axiomatization for directed ab-
stract bigraphs. Furthermore we give a normal form for discrete bigraphs, that is
useful to prove the completeness of the axiomatization.

First we introduce the algebraic signature, that is a set of elementary bigraphs
able to define any other bigraph (Figure 2).

We have to show that all bigraphs can be constructed from these elementary
ones by composition and tensor product. Before giving a formal result, we provide
an intutive explanation of the meaning of these elementary bigraphs.

• The first three bigraphs build up all wirings, i.e. all the link graphs having
no nodes. Indeed, all substitutions (fusions, resp.) can be obtained as ten-
sor products of elementary substitutions My

X (fusions OY
x , resp.); the tensor

products of singleton substitutions My
x and/or singleton fusions Ox

y give all
renamings. The composition and the tensor product of substitutions, fusions
and closures give all wirings.

• The next three bigraphs define all placings, i.e. all place graphs having no
nodes; for example mergem : m→ 1, merging m sites in a unique root, are

22

defined as:

merge0 , 1 mergem+1 , merge ◦ (id1 ⊗mergem).

Notice that merge1 = id and merge2 = merge, and that all permutations
π : m→ m are constructed by composition and tensor from the γm,n.

• Finally, for expressing any direct bigraph we need to add only the discrete
ions K~x+

~x− . In particular, we can express any discrete atoms as K~x+

~x− ◦ 1.

The following proposition shows that every bigraph can be expressed in a
normal form, called (again) discrete normal form (DNF). We will use D, Q and N
to denote primes, discrete prime bigraphs, and the discrete molecules respectively.

Proposition 6.1 (discrete normal form) In DBig every bigraph G, discrete
D, discrete and prime Q and discrete molecule N can be described by an expression
of the respective following form:

G = (ω ⊗ idn) ◦D ◦ (ω′ ⊗ idm) (1)
where ω, ω′ satisfy the conditions given in Theorem 5.8(1);

D = α⊗ ((Q0 ⊗ · · · ⊗Qn−1) ◦ (π ⊗ iddom(~Q))) (2)

Q = (mergen+p ⊗ id∅,Y +) ◦ (idn ⊗N0 ⊗ · · · ⊗Np−1) ◦ (π ⊗ id(Y −,∅)) (3)

N = (K~x+

~x− ⊗ id∅,Y +) ◦Q. (4)

Furthermore, the expression is unique up to isomorphisms on the parts.

Proof. The proof is quite similar to the proof of Theorem 5.8. ut

We can use these equations for normalizing any bigraph G as follows; first, we
apply equations (1), (2) to G once, obtaining an expression containing discrete and
prime bigraphs Q0, . . . , Qn−1. These are decomposed further using equations (3),
(4) repeatedly: each Qi is decomposed into an expression containing molecules
Ni,0, . . . , Ni,pi−1, each of which is decomposed in turn into an ion containing an-
other discrete and prime bigraph Q′

i,j . The last two steps are repeated recursively
until the ions are atoms. Note that the unit 1 is a special case of Q when n = p = 0.

In Figure 3 we give a set of axioms which we prove to be sound and complete.
Each of these equations holds only when both sides are defined; in particular,

recall that the tensor product of two bigraphs is defined only if the name sets are
disjoint. It is important to notice also that for ions only the renaming axiom is
needed (because the names are treated positionally).

Theorem 6.2 (Completeness of the axiomatization) Let E0, E1 be two ex-
pressions constructed from the elementary bigraphs by composition and tensor
product. Then, E0 and E1 denote the same bigraph in DBig if and only if the
equation E0 = E1 can be proved by the axioms in Figure 3.

23

Categorical Axioms
A ◦ id = A = id ◦A A ◦ (B ◦ C) = (A ◦B) ◦ C

A⊗ idε = A = idε ⊗A A⊗ (B ⊗ C) = (A⊗B)⊗ C

γI,ε = idI γJ,I ◦ γI,J = idI⊗J

(A1 ⊗B1) ◦ (A0 ⊗B0) = (A1 ◦A0)⊗ (B1 ◦B0)
γI,K ◦ (A⊗B) = (B ⊗A) ◦ γH,J (where A : H → I,B : J → K)

Link Axioms
HN

x
y ◦ My

z = HN
x
z Oz

x ◦ HN
x
y = HN

z
y Ox ◦ HN

x
y ◦ My = idε

Mz
(Y]y) ◦ (id(∅,Y) ⊗ My

X) = Mz
(Y]X) (id(Y,∅) ⊗ OX

y) ◦ O(Y]y)
z = O(X]Y)

z

Place Axioms
merge ◦ (1⊗ id1) = id1 merge ◦ γ1,1 = merge

merge ◦ (merge⊗ id1) = merge ◦ (id1 ⊗merge)

Node Axioms

(id1 ⊗ α) ◦K~x+

~x− = K
α(~x+)
~x− K~x+

~x− ◦ (id1 ⊗ α) = K~x+

α(~x−)

Figure 3: Axiomatization for the abstract directed bigraphs.

Proof. The proof is similar to that of [3, Theorem 10.2]. The “if” direction
is simple to prove, since it requires to check that each axiom is valid. The “only
if” direction is in two steps. First, we prove by induction on the structure of
expressions, that the equality between an expression and its DNF is derivable
from the axioms. Next, since DNFs are taken up to iso, we have to show that the
equality between isomorphic DNFs is provable from the axioms. This is proved
by showing that the axioms can prove the isomorphisms of the components of a
DNF, which are ions, discrete and prime bigraphs, and discrete bigraphs. ut

7 The λ-calculus

In this section we describe an encoding of both the call-by-name and the call-by-
value λ-calculus. Recall that the set Λ of λ-terms are the terms up-to α-equivalence
generated by the following grammar:

M,N ::= x | λx.M |MN.

A value is either a λ-abstraction or a variable; values are ranged over by V .

24

varx

x

var

lamx

x

λ

app

app

subx,y

x y

sub

defx

x

def

Figure 4: The signature for the λ-calculus.

The call-by-name reduction semantics is defined by the following rules

(λx.M)N →M [N/x] (β)
M →M ′

MN →M ′N

N → N ′

MN →MN ′

while the call-by-value reduction semantics is defined by the following rules

(λx.M)V →M [V/x] (βv)
M →M ′

MN →M ′N

N → N ′

MN →MN ′

In Figure 4 we give a signature for representing the λ-calculus “with single
substitutions”, that is where a substitution is performed once for each variable
occurrence. This signature resembles Milner’s encoding using binding bigraphs,
but in directed bigraphs we do not need to introduce further binding structures.

We can define a translator operator J·K : Λ→ DBig as follows:

JxK = varx Jλx.MK = lamx ◦ (JMK 	 Mx) JMNK = app ◦ (JMK 	 JNK)

Intuitively, a λ-term M is represented by a ground bigraph JMK : ε→ 〈(∅, X+)〉
whose place hierarchy reflects the syntactic tree of M and the outer upwards names
X+ are the free variables of M . Each λ-expression is represented by a control and
a local resource which is bound to a upward name in the inner interface.

Proposition 7.1 Let M,N be two λ-terms; then, M ≡α N iff JMK = JNK.

Let us now see how we can represent the two semantics of the λ-calculus. For
the call-by-name semantics, we define the controls lam and def as passive, sub
and app as active. The reaction rules are given in Figure 5.

For the call-by-value λ-calculus, we have to replace the Appcbn rule with two
rules Appcbv-var and Appcbv-lam (Figure 6) corresponding to the two cases of values
where the application can be performed.

For both variants, we can prove the following result:

Proposition 7.2 Let M,M ′ be two λ-terms.

1. If M →M ′ then JMK→∗ JM ′K;

25

app

λ

0

x

1

app ◦ (lamx 	 id1) → subx,y ◦ (id1 	 defy)

sub

def

1

x

0

Appcbn

sub

def

10

subx,y ◦ (id1 	 Mx 	 defy) → id1

0 Subdispose

def

1

x

var

HNx
y ◦ (vary 	 defy) → HNx

y ◦ (id1 	 defy)

1

def

1

x

Subvar

Figure 5: Reactions for the call-by-name λ-calculus.

26

app

λ

0

x

var

z

app ◦ (lamx 	 varz) → subx,y ◦ (id1 	 (defy ◦ varz))

sub

def

var

z

x

0

Appcbv-var

app

λ

0

x

λ

1

z

app ◦ (lamx 	 lamz) → subx,y ◦ (id1 	 (defy ◦ lamz))

sub

def

λ

1

zx

0

Appcbv-lam

Figure 6: Reactions for the call-by-value λ-calculus.

2. If JMK→∗ JM ′K then M →∗ M ′.

Proof. By induction on the lenght of traces.

1. The application of β (or βv) is encoded by applying Appcbn (or one of
Appcbv-var and Appcbv-lam) on the correct sub-bigraph, i.e. the one which
encodes the right side of the rule. Next we use Subvar for every occurrence
of x in M , finally we apply Subdispose to eliminate the unnecessary controls
sub and def .

2. First of all note that, by definition of J·K, JM ′K has no sub or def controls. If
JMK→∗ JM ′K, in the trace there are one or more application of Appcbn (or
Appcbv-var and Appcbv-lam), so we use the β (or βv) rule on the correspond-
ing λ-subterm. We can ignore the Subvar and Subdispose rules because the
substitutions in λ-calculus are performed instantaneously. ut

8 Conclusions

In this work, we have presented the directed bigraphs, whose connection graphs,
called directed link graphs, generalize both output-linear (i.e., Milner’s) and input-
linear (i.e., Sassone-Sobocińki’s) link graphs. We have given a constructions of
RPOs generalizing and unifying the known constructions in the previous theories.
Moreover, the RPO construction can be used for calculating RPBs as well, and, in

27

suitable subcategories, also luxes. We have proposed new consistency conditions
for the existence of IPOs, and a general construction of IPOs, in directed link
graphs. These conditions and construction subsume those proposed for Milner’s
bigraphs; moreover, these have been specialized to the input-linear case yielding
the first consistency conditions and IPO construction for this variant.

Moreover, a sound and complete axiomatization of the precategory of directed
bigraphs has been proposed. We have used this axiomatization for encoding the
λ-calculus, both in call-by-name and call-by-value variants. It is interesting to
notice that no further extensions (such as binding signatures) are needed.

Future work We plan to apply directed bigraphs for representing other calculi,
in particular calculi with resources, locations, etc., which can be represented by
edges. An interesting candidate could be the ν-calculus [13], whose bound names
can be represented by edges, and variables by names. We think that also the
Fusion calculus [12] can be represented easily in directed bigraphs. It is interesting
to investigate the corresponding wide transition systems.

Another future work is to move the theory of directed link graphs into the
realm of groupoidal 2-categories. Actually, due to their intrinsic bi-directional
linearity, representing directed link graphs simply as input-linear cospans in some
adhesive G-category does not seem feasible. We suppose that a generalization of
input-linear cospans, and the corresponding GRPO construction, will be required
to this end.

References

[1] H. Ehrig and B. König. Deriving bisimulation congruences in the dpo ap-
proach to graph rewriting. In Walukiewicz [18], pages 151–166.

[2] O. H. Jensen and R. Milner. Bigraphs and transitions. In Proc. POPL, pages
38–49, 2003.

[3] O. H. Jensen and R. Milner. Bigraphs and mobile processes (revised). Tech-
nical report UCAM-CL-TR-580, Computer Laboratory, University of Cam-
bridge, 2004.

[4] B. Klin, V. Sassone, and P. Sobociński. Labels from reductions: Towards a
general theory. In J. L. Fiadeiro, N. Harman, M. Roggenbach, and J. J. M. M.
Rutten, editors, Proc. CALCO, volume 3629 of Lecture Notes in Computer
Science, pages 30–50. Springer, 2005.

[5] S. Lack and P. Sobociński. Adhesive categories. In Walukiewicz [18], pages
273–288.

[6] J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive
systems. In C. Palamidessi, editor, Proc. CONCUR, volume 1877 of Lecture
Notes in Computer Science, pages 243–258. Springer, 2000.

28

[7] M. Merro and F. Zappa Nardelli. Behavioral theory for mobile ambients. J.
ACM, 52(6):961–1023, 2005.

[8] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[9] R. Milner. Bigraphical reactive systems. In K. G. Larsen and M. Nielsen,
editors, Proc. 12th CONCUR, volume 2154 of Lecture Notes in Computer
Science, pages 16–35. Springer, 2001.

[10] R. Milner. Pure bigraphs: Structure and dynamics. Inf. Comput., 204(1):60–
122, 2006.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. In-
form. and Comput., 100(1):1–77, 1992.

[12] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. In Proceedings of LICS ’98, pages 176–185. IEEE, Computer
Society Press, July 1998.

[13] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions
that dynamically create local names, or what’s new? In A. M. Borzyszkowski
and S. Sokolowski, editors, MFCS, volume 711 of Lecture Notes in Computer
Science, pages 122–141. Springer, 1993.

[14] V. Sassone and P. Sobociński. Deriving bisimulation congruences: A 2-
categorical approach. In Proc. EXPRESS’02, volume 68(2) of Electr. Notes
Theor. Comput. Sci., 2002.

[15] V. Sassone and P. Sobociński. Reactive systems over cospans. In Proc. LICS,
pages 311–320. IEEE Computer Society, 2005.

[16] P. Sewell. From rewrite rules to bisimulation congruences. Theor. Comput.
Sci., 274(1-2):183–230, 2002.

[17] P. Sobociński. Deriving process congruences from reaction rules. PhD thesis,
BRICS, University of Aarhus, 2004.

[18] I. Walukiewicz, editor. Proceedings of Foundations of Software Science and
Computation Structures, volume 2987 of Lecture Notes in Computer Science.
Springer, 2004.

29

	Introduction
	Directed link graphs and bigraphs
	RPO and IPO for directed link graphs
	Construction of relative pushouts and pullbacks
	Construction of idem-relative pushouts

	Embedding output-linear and input-linear link graphs in directed link graphs
	Algebraic structure of 'DBig
	Algebraic structure of DBig
	The -calculus
	Conclusions

