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Abstract

We present two case studies in formal reasoning about untyped λ-calculus in Coq,
using both first-order and higher-order abstract syntax. In the first case, we prove
the equivalence of three definitions of α-equivalence; in the second, we focus on
properties of substitution. In both cases, we deal with contexts, which are ren-
dered by means of higher-order terms (functions) in the metalanguage. These are
successfully handled by using the Theory of Contexts.

Introduction

In this paper we present two case studies stemming from two well-known
encoding paradigms of languages with binders in Logical Frameworks: first-
order and higher-order abstract syntax (FOAS and HOAS, respectively). In
the former case, we can choose between de Bruijn indexes or explicit names,
but in both cases the treatment of binders is problematic: using de Bruijn
indexes is a daunting task and difficult to understand (e.g., 600 technical
lemmata for two binders in [9]). On the other hand, the use of explicit names
charges the user with the burden of encoding the mechanism of α-equivalence.
As we will see, from the point of view of computer aided proof development,
this represents a non-trivial task, since α-equivalence is often taken for granted
without an explicit axiomatization. Usually only a short definition is given
in natural language, followed by some examples [1]. Actually, α-equivalence
can be defined rigorously in more than one way; for instance, besides the
“conventional” one [1], there is the variant used by McKinna-Pollack [15], and
Gabbay-Pitts’ alternative, based on the notion of variable transposition [6,7].
It is therefore natural to show formally that these three definitions are really
equivalent.
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Following the higher-order approach, instead, binders are represented by
means of higher-order constructors. Therefore, α-equivalence is automatically
given by the metalanguage of the logical framework. In a type theory with-
out native support for inductive types, like the Edinburgh LF, the natural
choice for representing the “λ” binder is a full HOAS constructor of type
(Λ → Λ) → Λ; this would allow us to delegate also substitution to the meta-
language [8]. However, if we want to take advantage of the inductive features
of a metalanguage like CIC, we cannot resort to a full HOAS approach, be-
cause constructor types like (Λ → Λ) → Λ violate the positivity condition of
inductive types. Hence, we are forced to introduce a separate type for vari-
ables with the consequence that capture-avoiding substitution of terms for
variables is no more delegated to the metalevel (weak HOAS). Moreover, the
latter cannot be defined näıvely as a recursive function, but only as a relation.
This raises questions about its properties, such as functionality (determinism
and totality), composition, etc.

Recently, in order to deal with (meta)theory of nominal calculi, the authors
have proposed a set of axioms called the Theory of Contexts [11], stemming
from the technique originally used in [12] for formally deriving in Coq [13] the
metatheory of strong late bisimilarity of the π-calculus. These axioms reflect
at the theory level some fundamental properties of the intuitive notion of “con-
text” and “occurrence” of variables. Their informal meaning is the following:

Unsaturability of variables: no term can contain all variables; i.e., there
exists always a variable which does not occur free in a given term;

Extensionality of contexts: two contexts are equal if they are equal on a
fresh variable; that is, if M [x] = N [x] and x 6∈ M [·], N [·], then M = N .

β-expansion: given a term M and a variable x, there is a context N [·] such
that N [x] = M and x does not occur in N [·].
In this paper, we apply the Theory of Contexts for dealing formally with

the issues above. More precisely, as far as the FOAS encoding is concerned,
we formally prove that the three alternative definitions of α-equivalence are
indeed equivalent; as far as the HOAS enconding is concerned, we prove the
functionality of the substitution relation. We will see that in both cases the
Theory of Contexts allows for a smooth treatment of the basic notion of renam-
ing, when this is rendered through the functional application of the underlying
metalanguage.

In conclusion, the Theory of Contexts turns out to be a powerful tool for
metareasoning on nominal calculi not only if these are encoded in HOAS, but
even in the case of a plain, first-order approach with explicit names.

Synopsis. In Section 1 we briefly recall the untyped λ-calculus. Then, in
Section 2 we give a first-order encoding of the object language, we describe and
encode the three notions of α-equivalence we take into account and we formally
prove their equivalence by means of the Theory of Contexts. In Section 3 we

2



Honsell et al.

present a higher-order encoding of untyped λ-calculus and of capture-avoiding
substitution, with a formal development of the related metatheory. Final
conclusions are in Section 4. The Appendix is devoted to a brief introduction
to the Calculus of Inductive Constructions and to the Coq proof assistant.

1 The object language Λ

The set Λ of untyped λ-terms is defined by the following grammar:

M, N ::= x | (MN) | λx.M

where x, y, z, . . . range over an infinite set of variables V. Terms are taken
up-to α-equivalence. We denote by M [N/x] the capture-avoiding substitution
of N for x in M . Contexts, i.e. terms with holes, are denoted by M [·]. The
notion of “free variables” (FV ) and “variables”, both free and bound, (V ) are
defined as usual. For X a finite set of variables, we define ΛX , {M ∈ Λ |
FV (M) ⊆ X}. By Λ0 we denote Λ∅. For an introduction and a comprehensive
development of the theory of the λ-calculus, see [1].

2 First-Order Abstract Syntax approach

As a first case study, we will address the problem of encoding three notions of
α-equivalence: the “conventional” one given in common textbooks on λ-calculi
(see, e.g., [1]), a variant used in a previous formal study of the metatheory
of λ-calculus [15], and an alternative formulation proposed in [6]. We are not
interested here in taking a HOAS-based approach in encoding the syntax of
the object language. Otherwise, α-equivalence would be provided for free by
the metalanguage of the logical framework and would not be accessible at the
object level.

Due to lack of space, we cannot present all the results of the complete
development; we refer the interested reader to [21].

2.1 Encoding of syntax

The first-order representation of the syntax of Λ is the following:

Parameter Var: Set.

Inductive tm : Set := var : Var -> tm

| app : tm -> tm -> tm

| lam : Var -> tm -> tm.

It should be noticed that Var is not an inductive set. The only terms which
can inhabit Var are variables of the metalanguage, which represent directly
the variables of the object language. In fact, Var is not required to be in-
ductive by the definition of the syntax of Λ, so there is no reason to bring in
unnecessary assumptions, i.e., the induction and recursion principles. Actu-
ally, these unwanted principles are not harmless, because they can be exploited
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for defining exotic terms. Moreover, they are inconsistent with the properties
of the Theory of Contexts we are going to use (see [12] for the details).

For X = {x1, . . . , xn}, throughout the paper we will denote by ΓX the
typing environment given by {x1 : Var, . . . , xn : Var}∪{dij : ˜(xi = xj) | 1 ≤
i < j ≤ n}. Moreover, in the remaining of this section ΛX will denote the
set {M | M ∈ Λ, V (M) ⊆ X} (differently from Section 1). Finally tmX will
represent the canonical forms M (i.e. βη-head normal forms) of type tm such
that ΓX `ΣΛ

M : tm. The adequacy of the given encoding is stated by the
following proposition, which is a conseguence of [11] Theorem 1 and can be
proved using a standard inductive argument:

Proposition 2.1 For each X ⊂ V finite, there is a bijection εX (with inverse
δX) between ΛX and tmX . Moreover, this bijection is compositional, i.e., if
M ∈ ΛX,x and N ∈ ΛX , then εX(M [N/x]) = εX,x(M)[εX(N)/(var x)].

2.2 The Theory of Contexts for Λ in FOAS

As the type Var is concerned we assume that the equivalence between names
is decidable:

Axiom dec: (x,y:Var)x=y \/ ~x=y.

In order to introduce the remaining axioms of the Theory of Contexts, we
need to define the non occurrence predicate:

Inductive notin [x:Var]: tm -> Prop :=

notin_var: (y:Var)~x=y -> (notin x (var y))

| notin_app: (M,N:tm)(notin x M) ->

(notin x N) -> (notin x (app M N))

| notin_lam: (y:Var)(M:tm)

(notin x M) -> ~x=y -> (notin x (lam y M)).

The intuitive meaning of (notin x M) is that the variable x does not occur
(neither free nor bound) into M. The definition is completely driven by the
signature, following the general pattern of [12,11].

The second axiom about the type Var is the unsaturation property:

Axiom unsat: (M:tm)(Ex [x:Var](notin x M)).

As a technical remark, we notice that it is possible to derive unsat from a
more “general” unsaturation property which is independent from the peculiar
syntax of the object language (var list is the type of (finite) list of variables
and notin list is the predicate allowing to express the non occurrence of a
variable in a list):

Axiom unsat_list: (l:var_list)(Ex [x:Var](notin_list x l)).

The lack of higher-order constructors in tm allows us to derive the axiom
of β-expansion (for plain terms) by means of a structural induction on M:

Lemma EXP: (M:tm)(x:Var)

(Ex [N:Var->tm](notin_context x N) /\ M=(N x)).
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On the other hand, the extensionality and monotonicity axioms still have
to be postulated:

Axiom ext: (F,G:Var->tm)(x:Var)(notin_context x F) ->

(notin_context x G) -> (F x)=(G x) -> F=G.

Axiom notin_mono: (M:Var->tm)(x,y:Var)

(notin x (M y)) -> (notin_context x M).

where notin context is an abbreviation for

[x:Var][F:Var->tm]((y:Var)~x=y -> (notin x (F y))).

Notice that monotonicity axiom has not been cited in the Introduction. Ac-
tually, if we assume unsaturability also at the level of contexts, this property
could be derived by induction over the terms using the other axioms of the
Theory of Contexts.

2.3 Encoding of α-equivalence (I)

We take as a starting point the following definition taken from [1]:

Definition 2.2 (i) A change of bound variables in M is the replacement of
a part λx.N of M by λy.(N [x := y]) where y does not occur (at all) in N .
(Because y is fresh there is no danger in the substitution N [x := y]).

(ii) M is α-congruent with N , notation M ≡α N , if N results from M by
a series of changes of bound variables.

It is clear that a fresh renaming mechanism lies at the very heart of the notion
of α-equivalence. Hence, we first introduce the following inductive predicate,
implementing a simple minded renaming (i.e., it does not check if the new
variable is fresh):

Inductive change_var [x,y:Var]: tm -> tm -> Prop :=

change_var_var1: (change_var x y (var x) (var y))

| change_var_var2: (z:Var)~x=z ->

(change_var x y (var z) (var z))

| change_var_app: (R,S,R’,S’:tm)(change_var x y R R’) ->

(change_var x y S S’) ->

(change_var x y (app R S) (app R’ S’))

| change_var_lam1: (M,M’:tm)(change_var x y M M’) ->

(change_var x y (lam x M) (lam y M’))

| change_var_lam2: (M,M’:tm)(z:var)~x=z -> (change_var x y M M’)

-> (change_var x y (lam z M) (lam z M’)).

Intuitively, (change var x y M N) holds if and only if the term N is the result
of replacing each occurrence (free or bound) of x with y into M. More formally,
the following result states the adequacy of change var w.r.t. the predicate
whose inference rules are depicted in Figure 1.

Proposition 2.3 (Adequacy of change var) Let X ⊂ V finite, x, y ∈ V
5
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−
x[x := y] = y

(CV VAR1)

x 6= z

z[x := y] = z
(CV VAR2)

M [x := y] = M ′

(λx.M)[x := y] = λy.M ′ (CV LAM1)

M [x := y] = M ′ x 6= z

(λz.M)[x := y] = λz.M ′ (CV LAM2)

M [x := y] = M ′ N [x := y] = N ′

(MN)[x := y] = M ′N ′ (CV APP)

Fig. 1. Changing a variable in a λ-term.

Soundness: if there exists t such that ΓX∪{x,y} `ΣΛ
t : (change var x y M N),

then we have δX(M)[x := y] = δX(N).

Completeness: let M, N ∈ ΛX such that M [x := y] = N ; then there is a
canonical form t such that ΓX∪{x,y} `ΣΛ

t : (change var x y εX(M) εX(N)).

Proof. Easily proved by means of Proposition 2.1 and by induction on the
structure of the normal forms (Soundness), and induction on the structure of
the derivation of the variable-changing judgment (Completeness). 2

However, changing a variable “blindly” (i.e., without checking if the new
one is fresh) by means of change var could yield the problem of capturing
occurrences of variables which were free before performing the replacement.
For example, let us consider the term (lam x (app x y))= εx,y(λx.xy), then
we can derive (change var y x (lam x (app x y)) (lam x (app x x)))

which corresponds to the following equation “on paper”:

(λx.xy)[y := x] = λx.xx

The free occurrence of y into λx.xy has been captured once replaced by x,
while the λ-terms λx.xy and λx.xx are not α-equivalent. Hence, we must be
sure that, when replacing a variable in a λ-term, the new one is fresh. The
encoding of freshness is carried out by means of the notin predicate we have
introduced in Section 2.2:

Inductive alphaBar: tm -> tm -> Prop:=

alphaBar_var: (x:Var)(alphaBar (var x) (var x))

| alphaBar_app: (M,M’,N,N’:tm)(alphaBar M M’) ->

(alphaBar N N’) -> (alphaBar (app M N) (app M’ N’))

| alphaBar_lam1: (x:Var)(M,N:tm)(alphaBar M N) ->

(alphaBar (lam x M) (lam x N))

| alphaBar_lam2: (x,y:Var)(M,N:tm)(notin y M) ->

(change_var x y M N) ->

(alphaBar (lam x M) (lam y N))

| alphaBar_trans: (M,N,R:tm)(alphaBar M R) -> (alphaBar R N) ->

(alphaBar M N).

The first three constructors are congruence rules, the fourth one is the change
of bound variables rule, while the last one is transitivity (recall that two terms
can differ by one or more changes of bound variables).
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Proposition 2.4 (Adequacy of alphaBar)

(i) (Soundness) Let X ⊂ V finite, if t is a canonical form such that ΓX `ΣΛ

t : (alphaBar M N), then we have δX(M) ≡α δX(N).

(ii) (Completeness) Let X ⊂ V finite, M, N ∈ ΛX , then if M ≡α N there is
a canonical form t such that ΓX `ΣΛ

t : (alphaBar εX(M) εX(N)).

Proof. Also this result can be proved straightforwardly using the same tech-
nique specified in Proposition 2.3. 2

Thanks to the previous adequacy theorem, alphaBar can be regarded as
a specification which the subsequent definitions we are going to investigate
must fulfill in order to faithfully represent the notion of α-equivalence.

2.4 Encoding of α-equivalence (II)

In [15] an alternative encoding of α-equivalence is proposed; translating it in
terms of our representation of the λ-calculus, we obtain the following defini-
tion:

Inductive alpha: tm -> tm -> Prop:=

alphaMKP_var: (x:Var)(alphaMKP (var x) (var x))

| alphaMKP_app: (M,M’,N,N’:tm)(alphaMKP M M’) -> (alphaMKP N N’)

-> (alphaMKP (app M N) (app M’ N’))

| alphaMKP_lam: (x,y,z:Var)(M,M’,N,N’:tm)

(notin z M) -> (notin z N) ->

(change_var x z M M’) -> (change_var y z N N’) ->

(alphaMKP M’ N’) -> (alphaMKP (lam x M) (lam y N)).

The first two constructors (alphaMKP var and alphaMKP app) are congruence
rules, while the alphaMKP lam constructor states that, in order to establish the
equivalence of λx.M and λy.N , we must pick a fresh name z (not occurring
at all in M and N) and prove that M [x := z] is α-equivalent to N [y := z].

We formally proved the equivalence of alphaBAR and alphaMKP:

Lemma ALPHABAR_ALPHAMKP: (A,B:tm)(alphaBar A B)->(alphaMKP A B).

Lemma ALPHAMKP_ALPHABAR: (A,B:tm)(alphaMKP A B)->(alphaBar A B).

Both lemmata are proved by structural induction on the derivation of the
premise. The second proof is trivial, while the first requires, as a preliminary
result, to prove the transitivity of ALPHAMKP. In order to derive it we followed
the approach pioneered in [15].

2.5 Encoding of α-equivalence (III)

In [6], the α-equivalence relation is proved to be equivalent to the binary rela-
tion ∼ defined by the rules depicted in Figure 2 (where (a b)·(−) stands for the
operation of variable-transposition). As observed in [6], variable-transposition
is an operation more basic than other notions of renaming (e.g. textual and
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x ∈ V
x ∼ x (GP-α-VAR)

M1 ∼ M ′
1 M2 ∼ M ′

2

M1M2 ∼ M ′
1M

′
2

(GP-α-APP)

(z x) ·M ∼ (z y) ·M ′

λx.M ∼ λy.M ′ (z does not occur in M, M ′) (GP-α-LAM)

Fig. 2. Gabbay-Pitts alternative definition of α-equivalence.

capture-avoiding substitution). Indeed, (y x) · M means that all the occur-
rences of x are replaced by occurrences of y and vice versa (without worrying
about eventual captures).

Such a mechanism can be expressed by means of HOAS in a very natural
way; indeed, if x and y are are two distinct variables occurring into M and
εX(M) = M, then we can derive 2 that there is a context M’:Var->Var->tm

such that x and y do not occur into M’ and M=(M’ x y) holds. Then the
operation (y x) ·M can be simply denoted by (M’ y x). Moreover, if y does
not occur in M , we have that M=(M’’ x) where both x and y do not occur
into M’’. Whence (y x) ·M can be denoted by (M’’ y), without resorting to
binary contexts.

Thus, the encoding of the Gabbay-Pitts formulation of α-equivalence is
given by the following inductive predicate:

Inductive alphaGP: tm -> tm -> Prop:=

alphaGP_var: (x:Var)(alphaGP (var x) (var x))

| alphaGP_app: (M,M’,N,N’:tm)(alphaGP M M’) -> (alphaGP N N’)

-> (alphaGP (app M N) (app M’ N’))

| alphaGP_lam: (M,N:Var->tm)(x,x’,y:Var)(notin_context x M) ->

(notin_context x’ N) -> (notin_context y M) ->

(notin_context y N) -> (alphaGP (M y) (N y)) ->

(alphaGP (lam x (M x)) (lam x’ (N x’))).

As we can see, the only differences w.r.t. the definition of alphaMKP are in
the rule involving the lam constructor.

Indeed, alphaMKP and alphaGP are formally equivalent:

Lemma ALPHAMKP_ALPHAGP: (A,B:tm)(alphaMKP A B) -> (alphaGP A B).

Lemma ALPHAGP_ALPHAMKP: (A,B:tm)(alphaGP A B) -> (alphaMKP A B).

Both proofs are carried out by induction on the derivation of the premise.
The only interesting cases are related to the introduction rules for the lam

constructor: a key property in order to conclude is the following (proved by
means of a structural induction on M and of the expansion and extensionality
properties):

Lemma CHANGE_VAR_RW: (M,N:tm)(x,y:Var)(change_var x y M N) ->

(M’:Var->tm)(notin_context x M’) -> M=(M’ x)->N=(M’ y).

2 The derivation makes use of lemma EXP (presented in Section 2.2) and of the axioms of
β-expansion for unary contexts and monotonicity.
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In the proof of ALPHAGP ALPHAMKP, an additional fresh renaming result has to
be proved:

Lemma ALPHAMKP_RW: (A,B:tm)(alphaMKP A B) ->

(x,z:Var)(notin z A) -> (notin z B) ->

(A’:tm)(change_var x z A A’) ->

(B’:tm)(change_var x z B B’) -> (alphaMKP A’ B’).

The reason is that (notin context y M) and (notin context y N) do not
necessarily imply (notin y (M x)) and (notin y (N x’)) (while the vice
versa is true by the monotonicity axiom). Hence, we cannot use the name y

provided by the induction hypothesis, but we must pick a completely fresh
variable in order to make the conclusion.

3 High-Order Abstract Syntax approach

In this section, we adopt a well-known higher-order representation of λ-calculus,
using a separate type for variables (weak HOAS). It follows that we cannot
define substitution as a recursive function, but only as a relation. We will
prove that this relation is indeed functional.

Due to lack of space, we cannot present all the results of the complete
development about this encoding; we refer the interested reader to [17].

3.1 Formalizing the syntax

The HOAS representation of the syntax of Λ is the following:

Parameter Var : Set.

Inductive tm : Set := var : Var -> tm

| app : tm -> tm -> tm

| lam : (Var -> tm) -> tm.

Coercion var : Var >-> tm.

Declaring var as a coercion allows us to inject implicitly terms from type Var

into tm, so that in the following this constructor may be omitted from terms.

As in the FOAS encoding, we do not define Var as an inductive set in
order to be able to prove the adequacy of the representation and to avoid
inconsistencies with the Theory of Contexts.

Notice that lam is a higher-order constructor, that is it takes a functional
term as argument. In particular, terms of type Var->tm represent exactly
the capture-avoiding contexts of the λ-calculus. This technique allows to in-
herit the α-equivalence on terms from the metalanguage, and still to have
an inductive definition for terms. For instance, λx.(xx) and λy.(yy) are rep-
resented by (lam [x:Var](app (var x) (var x))) and (lam [y:Var](app

(var y) (var y))), respectively, which are the same term up-to α-conversion.
At the same time we can define functions by first-order recursion or case anal-
ysis on the syntax of terms.

The adequacy of this encoding, already proved in [17], is a consequence
of [11, Theorem 1]. For X = {x1, . . . , xn} a finite set of variables, recall that
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tmX , {M | ΓX ` M : tm,M in long βη-normal form}.
Proposition 3.1 For all X finite set of variables, there is a bijection εX be-
tween ΛX and tmX . Moreover, this bijection is compositional, in the sense that
if M ∈ ΛX,x and N ∈ ΛX , then εX(M [N/x]) = εX,x(M)[εX(N)/(var x)].

As a corollary, a (capture-avoiding) context M [·] ∈ ΛX is naturally encoded
as [z:Var]εX,z(M(z)), where the fresh variable z acts as a “placeholder” for
the hole. In fact, a bijection like in Proposition 3.1 can be established between
contexts and terms of type Var->tm.

3.2 Formalizing substitution

As for α-equivalence, capture-avoiding substitution is not always defined in
full detail. Typically it is intended to be a (parametric) function ·[N/x] :
Λ → Λ recursively defined on the syntax of terms, for instance as follows.

x[N/x] = N

y[N/x] = y (x 6= y)

(M1 M2)[N/x] = (M1[N/x] M2[N/x])

(λy.M)[N/x] = λy.(M [N/x]) (x 6= y)

It is important to notice that,
in order to have a total func-
tion, this definition has to be
taken up-to α-equivalence. This
means that in the case of λ-
abstraction, when y is exactly

x, there is a “silent” (i.e., hidden) conversion of (λy.M) into (λz.M [z/y]),
where z can be chosen arbitrarily fresh. Thus, the definition of capture-
avoiding substitution which is usually intended is not deterministic a priori,
since it requires an arbitrary α-conversion of bound variables of the context in
order to avoid capturing free variables in the substituted term. More complex
languages (e.g., dynamic logic, Hoare logic [16]) may require nonstandard sub-
stitutions involving contrived notions of conversion, not simply α-conversion.

Capture-avoiding substitution could be entirely delegated to the metalan-
guage of a Logical Framework, if we used a full HOAS encoding. In such
approach, there would be no specific type Var for variables, and the λ con-
structor would be rendered simply as lam : (tm -> tm) -> tm. Therefore,
a context would be represented as a map of type tm -> tm, and thus sub-
stitution becomes the application of the context to the substituting term.
However, full HOAS encodings are not compatible with inductive definitions
of Coq, because they do not satisfy the positivity condition, which (roughly)
requires that the type we are defining (tm) does not occur in negative position
in the type of any argument of any constructor. For this reason, we have
resorted to a weak HOAS encoding, as the one above. A drawback of this
solution, however, is that we cannot delegate the substitution to the meta-
language anymore. Instead, we need to define it by hand, as a parametric
relation between contexts and terms in a logic-programming style (as in [5]):

Inductive subst [N:tm] : (Var->tm) -> tm -> Prop :=

subst_var : (subst N var N)

| subst_void : (y:Var)(subst N [_:Var]y y)

10
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| subst_app : (M1,M2:Var->tm)(M1’,M2’:tm)

(subst N M1 M1’) -> (subst N M2 M2’) ->

(subst N [y:Var](app (M1 y) (M2 y)) (app M1’ M2’))

| subst_lam : (M:Var->Var->tm)(M’:Var->tm)

((z:Var)(subst N [y:Var](M y z) (M’ z))) ->

(subst N [y:Var](lam (M y)) (lam M’)).

Thus, a term M ′ is syntactically equal to the substitution M(x)[N/x] iff
(subst N M M’) holds. More formally, the (proof-irrelevant) adequacy of
subst is as follows:

Proposition 3.2 Let X be a finite set of variables and x a variable not in
X. Let N,M ′ ∈ ΛX and M ∈ ΛX]{x}. Then:

M [N/x] = M ′ ⇐⇒ ΓX ` : (subst εX(N) [x:Var]εX]{x}(M) εX(M ′))

Representing the substitution in CIC as a relation gives raise to the possi-
bility that it may be not total, that is for some N, M there is no M ′ such that
M ′ = M [N/x]. The fact that such a definition does give a functional (i.e.,
deterministic and total) relation is a property which we are going to prove
explicitly using the Theory of Contexts.

3.3 The Theory of Contexts for Λ in HOAS

Given the signature of the syntax, the Theory of Contexts is composed by two
parts. The first contains the definitions of “occurrence” predicates. These def-
initions are immediately derived from the signature of the language, following
the pattern in [12,11].

Inductive notin [x:Var] : tm -> Prop :=

notin_var : (y:Var)~x=y->(notin x y)

| notin_app : (M,N:tm)(notin x M) -> (notin x N)

-> (notin x (app M N))

| notin_lam : (M:Var->tm)((y:Var)~x=y->(notin x (M y)))

-> (notin x (lam M)).

Inductive isin [x:Var] : tm -> Prop :=

isin_var : (isin x x)

| isin_app1: (M,N:tm)(isin x M) -> (isin x (app M N))

| isin_app2: (M,N:tm)(isin x N) -> (isin x (app M N))

| isin_lam : (M:Var->tm)((y:Var)(isin x (M y)))

-> (isin x (lam M)).

The only thing we need to know about names (variables), is that equality
over Var is decidable. However, we do not need a full blown classical logic: it
is sufficient to have a classical behaviour on the occurrence check predicates.

Axiom LEM_OC: (M:tm)(x:Var)(isin x M)\/(notin x M).

This implies to the decidability of (eq Var).

11



Honsell et al.

Then we can assume the axioms of the Theory of Contexts we need:

Axiom unsat : (M:tm)(Ex [x:Var](notin x M)).

Axiom ext_tm : (M,N:Var->tm)(x:Var)

(notin x (lam M)) -> (notin x (lam N)) ->

(M x)=(N x) -> M=N.

Axiom ext_tm1 : (M,N:Var->Var->tm)(x:Var)

(notin x (lam [z:Var](lam (M z)))) ->

(notin x (lam [z:Var](lam (M z)))) ->

(M x)=(N x) -> M=N.

The following are immediate consequences of the Theory of Contexts and
the induction principles over tm.

Lemma differ : (x:Var)(Ex [y:Var]~x=y).

Lemma isin_notin_absurd : (x:Var)(M:tm)

(isin x M) -> (notin x M) -> False.

Coq and similar systems do not provide induction for higher-order types:
there is no induction principle over A->B, even if A and/or B are inductive.
This is because the intended meaning of A->B (usually, a function space) is
not an initial algebra. Thus, most proof editors give no induction principles,
case analysis, inversion predicates and similar tools for reasoning on terms
of type Var->tm, i.e., contexts. Nevertheless, it is possible to prove that
types of the form Var->...->Var->tm do have recursion and induction prin-
ciples [10,2,11,5]. Hence, beside the simple Axioms of the Theory of Contexts
above, we can safely assume higher-order induction and recursion principles
as needed (provided that Var is constructorless), like the following induction
over Var->tm (notice that there are two base cases):

Axiom tm_ind1 : (P:(Var->tm)->Prop)

(P var) ->

((y:Var)(P [_:Var](var y))) ->

((M,N:Var->tm)(P M)->(P N)->(P [x:Var](app (M x) (N x)))) ->

((M:Var->Var->tm)

((y:Var)(P [x:Var](M x y)))->(P [x:Var](lam (M x))))

-> (M:Var->tm)(P M).

Notice that we do not assume β-expansion. Informally, β-exp states that
given a term M and a variable x, there is a context N [·] such that N [x] =
M and x does not occur in N [·]. This has been used several times in the
development of the metatheory of π-calculus [12]. On the other hand, it has
not been needed in the present work on Λ. A possible motivation is that here
we allowed for higher-order induction, while in [12] we had to recover it from
induction over plain, first-order terms.

12
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3.4 (Meta)Theory of Substitution

3.4.1 Determinism of substitution

The property we want to prove is the following:

Parameter N:tm.

Lemma subst_is_det: (M:Var->tm)(M1:tm)(subst N M M1) ->

(M2:tm)(subst N M M2) -> (M1 = M2).

We give two proofs of this property. The first goes by induction on the deriva-
tion of (subst N M M1). This gives rise to four cases:

N : tm
M : var->tm
M2 : tm
H : (subst N Var M2)
============================
N=M2

subgoal 2 is:
(y)=M2

subgoal 3 is:
(app M1’ M2’)=M0
subgoal 4 is:
(lam M’)=M2

each of which should be dealt by inverting the hypothesis H (or corresponding).
Usually, such an inversion would eliminate automatically all absurd cases, but
this does not work when the terms which have to be discriminated are higher-
order. This is indeed the case, since the second argument of subst has type
Var->tm. The Inversion H tactic gives us four cases for the first goal, only
one of which is trivially true and the other are absurd:

subgoal 1 is:
N : tm
M : Var->tm
M2 : tm
H : (subst N var M2)
H0 : var=var
H1 : N=M2
============================
M2=M2

...

subgoal 2 is:
N : tm
M : Var->tm
M2 : tm
H : (subst N var M2)
y : Var
H1 : ([_:var](y))=var
H0 : (y)=M2
============================
N=(y)

Absurd cases are (tediously) eliminated by using the Theory of Contexts, in
particular the axiom of extensionality. The whole proof is 95 lines long, most
of which deal with the elimination of absurd cases.

3.4.2 Determinism of substitution, again
A much shorter proof can be obtained by proving a suitable higher-order
inversion lemma for substitution. In Coq, inversion lemmata are automatically
synthesized and proved on-the-fly from recursion principles by the Inversion
tactic, using the algorithm originally implemented by Murthy with subsequent
elaboration by Cornes and Terrasse [4]. However, this algorithm fails to give
the right inversion predicate when the datatype, which we have to discriminate
over, is higher-order, because usual inductive type theories do not recognize a
higher-order type as inductive. Nevertheless, we know that types of the form
Var->tm do have recursion principles [10, 2, 11]. Hence, we can consistently

13
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introduce these principles (as Axioms) for the definition of the recursive map
needed in the inversion predicate:

Parameter subst_inv_fun : tm -> (Var->tm) -> tm -> Prop.
Axiom subst_inv_fun_var0 : (N,M:tm)(subst_inv_fun N var M)==(N=M).
Axiom subst_inv_fun_var1 :

(y:Var)(B,N:tm)(subst_inv_fun N [_:Var]y B)==((var y)=B).
Axiom subst_inv_fun_app : (A1,A2:Var->tm)(B,N:tm)

(subst_inv_fun N [x:Var](app (A1 x) (A2 x)) B) ==
(EX B1 | (EX B2 | (app B1 B2)=B /\ (subst N A1 B1)

/\ (subst N A2 B2))).
Axiom subst_inv_fun_lam : (A:Var->Var->tm)(B,N:tm)
(subst_inv_fun N [x:Var](lam (A x)) B) ==

(EX A1 | (lam A1)=B /\ (y:Var)(subst N [x:Var](A x y) (A1 y))).

Then, the higher-order inversion principle is “mechanically” claimed and
proved as follows:

Lemma subst_inv:(A:Var->tm)(B,N:tm)(subst N A B)->(subst_inv_fun N A B).
Intros; Inversion_clear H. Rewrite subst_inv_fun_var0; Reflexivity.
[...]
Qed.

Using this inversion lemma, the proof of determinism of substitution is
much easier (12 lines). In fact, we “lift” at the level of context the syntactic
machinery of inversion tactics that Coq provides at the level of terms.

3.4.3 Totality of substitution

The proof of totality is tricky due to some peculiarities of CIC. The lemma
we want to prove is

Lemma subst_is_total : (M:Var->tm)(EX M’ | (subst N M M’)).

Our intent is to prove this by higher-order induction over M. This fails in the
case of the lambda abstraction, which appears as follows:

N : tm

M : Var->tm

M0 : Var->Var->tm

H : (y:Var)(EX M’:tm | (subst N [x:Var](M0 x y) M’))

============================

(EX M’:tm | (subst N [x:Var](lam (M0 x)) M’))

The suitable term should be obtained from the hypothesis H. However, Coq
does not allow us to eliminate a Proposition (like H) to build a term in a Set
(M’ in tm). Such “eliminations of strong Σ-types” may lead to inconsistencies,
and hence are ruled out by the type theory CIC [3].

The solution we adopt is to move the whole proof in the Set realm, and
then to lift the result to Prop. Therefore, we introduce a Set-typed version of
the induction principle—which, equivalently, can be seen as a recursor with

14
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dependent types:

Axiom tm_rec1 : (P:(Var->tm)->Set)

(P var) ->

((y:Var)(P [_:Var](var y))) ->

((M,N:Var->tm)(P M)->(P N)->(P [x:Var](app (M x) (N x)))) ->

((M:Var->Var->tm)

((y:Var)(P [x:Var](M x y)))->(P [x:Var](lam (M x))))

-> (M:Var->tm)(P M).

The soundness of such a principle can be established by porting to dependent
types the model construction in [10,2].

Then, we prove the totality in Set by higher-order dependent recursion:

Lemma sit: (N:tm)(M:Var->tm){M’:tm | (subst N M M’)}.

Intros; Pattern M; Apply tm_rec1; Intros; Clear M.

[...]

Qed.

Notice that in the case of lambda, the required term is built by eliminating
(projecting) the Σ-type in the hypothesis H instantiated on a locally bound
(and hence, fresh) variable y.

Then, the totality theorem is just the extraction of the logical part from
the Σ-type (sit M):

Lemma subst_is_total : (M:Var->tm)(Ex [M’:tm](subst N M M’)).

Intros. Exists (proj1_sig ? ? (sit M)). Apply proj2_sig.

Qed.

3.4.4 Extracting the substitution function

Lemma sit can be seen as the specification of the substitution function. We
can derive it by extracting the first component of the Σ-type (sit N M):

Lemma subst_f : tm->(Var->tm)->tm.

Intros N M; Exact (proj1_sig ? ? (sit N M)).

Qed.

which, sweetened with a bit of syntactic sugar, takes the familiar form [ ],
like in the following “verification” and congruence properties:

Lemma subst_f_verif: (N,V:tm)(M:Var->tm)(subst N M V) -> M[N]=V.

Lemma subst_f_var : (N:tm)(var[N])=N.

Intro; Apply subst_f_verif; Apply subst_var.

Qed.

Lemma subst_f_void : (N:tm)(y:Var)(([_:Var]z)[N])=z.

Lemma subst_f_app : (N:tm)(M1,M2:Var->tm)

(([x:Var](app (M1 x) (M2 x)))[N])=(app M1[N] M2[N]).

Lemma subst_f_lam : (N:tm)(M:Var->Var->tm)

(([x:Var](lam (M x)))[N]) = (lam ([y:Var](([x:Var](M x y))[N]))).
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Of course, the application of the function subst_f cannot be actually re-
duced, since the recursor tm_rec1 is an axiom and hence has no computa-
tional content. However, it is possible to “realize” it by means of an external
ML program, which goes “under the hood” of Coq by discriminating between
variables and abstractions. In such a case, subst_f would be the full-fledged
capture-avoiding substitution one has in mind.

An interesting property of substitution is composition: for M,N, P terms
and x 6= y, we have that (P [Q/y])[M/x] = (P [M/x])[Q[M/x]/y]. The formal-
ization of this statement requires a context with 2 holes:

Lemma subst_f_comp : (M:tm)(Q:Var->tm)(P:Var->Var->tm)

(([x:Var]((P x)[(Q x)]))[M]) = ([y:Var]([x:Var](P x y))[M])[Q[M]]).

Beside using axioms ext_tm and unsat, the proof of this property goes by
structural induction over the structure of P ; thus we need to assume the
corresponding induction principle on Var->Var->tm:

Axiom tm_ind2 : (P:(Var->Var->tm)->Prop)
(P [x,y:Var]x) ->
(P [x,y:Var]y) ->
((z:Var)(P [_;_:Var](var z))) ->
((M,N:Var->Var->tm)(P M)->(P N)->(P [x,y:Var](app (M x y) (N x y)))) ->
((M:Var->Var->Var->tm)

((z:Var)(P [x,y:Var](M x y z)))->(P [x,y:Var](lam (M x y))))
-> (M:Var->Var->tm)(P M).

4 Conclusions

In this paper we have briefly presented two case studies of the Theory of Con-
texts for dealing with properties of the syntax of λ-calculus. We have applied
the Theory of Contexts to both a first-order and a (weak) higher-order encod-
ings. In the first case, we have proved that three alternative presentations of
the α-equivalence are equivalent; in the latter, we have proved some properties
(such as functionality) of substitution, which has to be represented as a rela-
tion. Due to lack of space, we have not described the complete developments;
we refer the interested reader to [21,17].

It turns out that a HOAS-based approach towards substitution of vari-
ables for variables is very useful even when there are no binders in the object
language (or for some reason they are not encoded by means of the binder
of the metalanguage). Indeed, alphaGP, as an inductive definition, appears
to be more clean and elegant than alphaMKP; moreover, the former does not
depend on an auxiliary relation (alphaMKP, instead, depends on change var).

Hence, following this approach, we have to deal with higher-order terms
representing contexts, even if the syntax is represented in a plain, first-order
approach. In order to handle smoothly these contexts, we have used the
Theory of Contexts. This theory turned out to be particularly suited, because
it embeds at the logical level those natural notions that contexts enjoy.
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A The Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is an extension of the Calculus
of Constructions (CC), which can be defined as the PTS λC of Barendregt’s λ-
cube, with two sorts, Prop and Set . Under the proposition-as-types, proofs-as-
terms paradigm, there is an isomorphism between propositions of intuitionistic
higher-order logic and types of sort Prop. If A has type Prop then it represents
a logical proposition; the fact that A is inhabited by a term M represents the
fact that A holds. Each term M inhabiting A represents a proof of A. On
the other hand, the sort Set is supposed to be the type of datatypes, such as
naturals, lists, trees, booleans, etc. These types differ from those inhabiting
Prop for their constructive contents.

Therefore, CC, as many similar Type Theories, can be fruitfully used as
a general logic specification language, i.e. as a Logical Framework (LF) [8,18,
19]. In an LF, following the “judgment-as-types” paradigm, we can represent
faithfully and uniformly all the relevant concepts of the inferential process in
a logical system (syntactic categories, terms, variables, contexts, assertions,
axiom schemata, rule schemata, instantiation, tactics, etc.).

The Calculus of Inductive Constructions (implemented in the Coq system
[13]) extends CC with some special constants which represent the definition,
introduction and elimination of inductive types. For instance, the following
definition of natural numbers (written in Gallina, Coq’s specification language)

Inductive nat : Set := O : nat | S : nat -> nat

allows to define terms by “case analysis”, like the following function:

Definition pred := [n:nat]Cases n of O => O | (S u) => u end.

where [n:nat] is Gallina notation for abstraction λn : nat. Using these elim-
ination schemata, Coq automatically states and proves the induction principle
for each inductively defined type. For instance, the above definition yields the
Peano induction principle “for free”:

nat_ind : (P:nat->Prop)(P O) ->

((n:nat)(P n)->(P (S n))) -> (n:nat)(P n)

where (n:nat) is the notation for dependent product
∏

n:nat. This feature has
been extensively used in the definition of logical connectives: we need only to
specify the introduction rules, and we can prove the elimination rules from
the elimination principle the system automatically provides us.

However, allowing for any inductive definition in CIC would yield non-
normalizing terms, thus invalidating the standard proof of consistency of the
system. Hence, inductive definitions are subject to the positivity condition,
which (roughly) requires that the type we are defining does not occur in neg-
ative position in the type of any argument of any constructor. This condition
ensures the soundness of the system, but it rules out also many sound in-
ductive definitions. For instance, the following definition of λ-terms in (full)
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higher-order abstract syntax

Inductive L : Set := lam : (L->L) -> L | app : L -> L -> L.

is not well-formed, due to the negative occurrence of L in the type L->L of the
argument of lam.

Another problem arising from the use of higher order abstract syntax to-
gether with inductive types is that of exotic terms. These are λ-terms which
do not correspond to any object “on the paper”, despite their types corre-
spond to some syntactic category. Exotic terms are generated when a type
has a higher-order constructor over an inductive type. A simple example is
the following fragment of first-order logic:

Inductive i : Set := zero : i | one : i.

Inductive o : Set := ff : o | eq : i->i->o | forall : (i->o)->o.

Definition weird : o := (forall [x:i](Cases x of

zero => ff

| one => (eq zero zero)

end)).

The term weird does not correspond to any proposition of first order logic:
there is no formula ∀xφ such that φ{0/x} and φ{1/x} are syntactically equal to
“ff ” and “0 = 0”, respectively. Exotic terms are problematic in establishing
the faithfulness of the formalization; usually, they have to be ruled out by
means of auxiliary “validity” judgments [5, 20]. Another approach, which we
have used in this paper, is to have the higher order constructors to range over
types which are not inductive, so that there is no Cases to use as above.

A common implementation of CIC is Coq, an interactive proof assistant
developed by the INRIA and other institutes. For a complete description, we
refer to [13]. Coq is an editor for interactively searching for an inhabitant of
a type, in a top-down fashion by applying tactics step-by-step, backtracking
if needed, and for verifying correctness of typing judgments. A proof search
starts by entering

Lemma ident : goal.

where goal is the type representing the proposition to prove. At this point,
Coq waits for commands from the user, in order to build the proof term
which inhabits goal (i.e., the proof). To this end, Coq offers a rich set of
tactics, e.g., introduction and application of assumptions, application of rules
and previously proved lemmata, elimination of inductive objects, inversion of
(co)inductive hypotheses and so on. These tactics allow the user to proceed
in his proof search much like he would do informally. At every step, the type
checking algorithm ensures the soundness of the proof. When the proof term
is completed, it can be saved (by the command Qed) for future applications.
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Decidability of = ∀x, y.x = y ∨ x 6= y

Decidability of 6∈ ∀x,M.x ∈ M ∨ x 6∈ M

Unsaturation ∀M.∃x.x 6∈ fv(M)

Monotonicity of 6∈ ∀x, y, M.x ∈ M [y] ⇒ x 6∈ M [·]
β-expansion ∀M,x.∃N [·].x 6∈ fv(N [·]) ∧M = N [x]

Extensionality ∀M [·], N [·], x.x 6∈ fv(M [·]) ∪ fv(N [·]) ⇒
M [x] = N [X] ⇒ M [·] = N [·]

Fig. B.1. The Theory of Contexts.

B The Theory of Contexts

For the sake of completeness in Figure B.1 we list the properties of the Theory
of Contexts in full generality, i.e., without sticking to a particular logical
framework and/or encoding. Then we resume the instantiations we used in
the formal development outlined throughout the paper.

B.1 Axioms for the first case study (α-equivalence)

Axiom dec: (x,y:Var)x=y \/ ~x=y.

Axiom unsat: (M:tm)(Ex [x:Var](notin x M)).

Axiom ext: (F,G:Var->tm)(x:Var)(notin_context x F) ->

(notin_context x G) -> (F x)=(G x) -> F=G.

Axiom notin_mono: (M:Var->tm)(x,y:Var)

(notin x (M y)) -> (notin_context x M).

B.2 Axioms for the second case study (higher-order substitution)

Axiom LEM_OC: (M:tm)(x:Var)(isin x M)\/(notin x M).

Axiom unsat : (M:tm)(Ex [x:Var](notin x M)).

Axiom ext_tm : (M,N:Var->tm)(x:Var)

(notin x (lam M)) -> (notin x (lam N)) ->

(M x)=(N x) -> M=N.

Axiom ext_tm1 : (M,N:Var->Var->tm)(x:Var)

(notin x (lam [z:Var](lam (M z)))) ->

(notin x (lam [z:Var](lam (M z)))) ->

(M x)=(N x) -> M=N.
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