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Abstract

We present a large and we think also significant case-study in computer
assisted formal reasoning. We start by giving a higher order abstract syn-
tax encoding of π-calculus in the higher-order inductive/coinductive type
theories CIC and CC(Co)Ind. This encoding gives rise to a full-fledged
proof editor/proof assistant for the π-calculus, once we embed it in Coq,
an interactive proof-development environment for CC(Co)Ind. Using this
computerized assistant we prove formally a substantial chapter of the
theory of strong late bisimilarity, which amounts essentially to Section 2
of A calculus of mobile processes by Milner, Parrow, and Walker. This
task is greatly simplified by the use of higher order syntax. In fact, not
only we can delegate conveniently to the metalanguage α-conversion and
substitution, but, introducing a suitable axiomatization of the theory of
contexts, we can accommodate also the machinery for generating new
names. The axiomatization we introduce is quite general and should be
easily portable to other formalizations based on higher order syntax. The
use of coinductive types and corresponding tactics allows to give alterna-
tive, and possibly more natural, proofs of many properties of strong late
bisimilarity, w.r.t. those originally given by Milner, Parrow, and Walker.
Keywords: higher-order abstract syntax, π-calculus, proof checking,
Logical Frameworks, typed λ-calculus.

Introduction
The goal of this paper is to present an interactive proof assistant for Milner’s
π-calculus, based on a higher-order abstract syntax (HOAS) presentation of

the calculus in the Intuitionistic Coinductive Type Theory CC(Co)Ind [2]. The
utility and flexibility of this proof assistant is illustrated by developing the
formal theory of strong late bisimilarity as presented in Section 2 of A calculus
of mobile processes by Milner, Parrow, and Walker [25].

The π-calculus is a process algebra which models communicating systems
which can dynamically change the topology of the channels. It is widely accepted
as a theoretical model for concurrency, and is intended to play the same rôle
the λ-calculus plays for functional programming. Like many other processes
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algebras, however, the π-calculus is a rather intricate formal system in itself.
It is very easy to overlook some detail when carrying out by hand even an
elementary derivation. Informal arguments for equivalence of processes are error
prone, since exhaustive case analyses on possible transitions are elusive. Hence,
this calculus, as all the field of formal methods for reasoning on concurrent
systems, seems particularly in need of practical computer assisted proof editors.

Building an implementation of a particular version of the π-calculus, and a
given notion of process equivalence, from scratch does not seem to be a tenable
approach. The variability in the presentations and the wide range of equiva-
lences under consideration, do not make it worth to put so much effort in an
enterprise which is so particular. Hence, in order to achieve more generality, we
have explored the possibility of tailoring a generic proof editor to the π-calculus
using an HOAS encoding, which subsumes a number of different presentations,
and which can serve as a paradigm for the plethora of π-calculi.

A generic proof development environment is a proof development environ-
ment for a particular system which can play the rôle of a logic specification
language, i.e. of a Logical Framework [18, 12]. Since the ’80’s, higher order
predicative, or impredicative, intuitionistic type theories have been success-
fully experimented as Logical Frameworks [12, 1, 6, 22]. In these theories one
can represent (formalize) faithfully and uniformly all the relevant notions and
aspects of the inference process in an arbitrary system: syntactic categories,
terms, assertions, axiom schemata, rule schemata, tactics. The basic idea is the
“judgements-as-types, λ-terms-as-proofs” paradigm.

Nowadays we have a very good choice of generic proof development envi-
ronments based on type theory, e.g. NuPRL, Alf, Lego, Coq, Isabelle, which
implement respectively Martin-Löf Type Theory, the Calculus of (Co)Inductive
Constructions, and Higher Order Logic [31, 28, 2, 27].

Following this line of research, our interactive proof assistant for the π-
calculus, is obtained directly from Coq [2], which is the full-fledged computer-

ized proof environment for CC(Co)Ind, developed at INRIA. The crucial step is
the specification in CC(Co)Ind of an adequate encoding of the π-calculus. Our
encoding builds upon a higher order abstract syntax (HOAS) presentation of the
π-calculus, in the style of Church, whereby binding operators are represented
by constructors of higher order type [12, 6, 22].

We think that we offer a substantial case study in computer assisted formal
reasoning which is significant for various reasons.

First, we illustrate, building on ideas in [14], how even a complex formal
system such as π-calculus can benefit from an HOAS presentation. This al-
lows to delegate conveniently to the metalanguage the details of many syntactic
manipulations, which, in the case of the π-calculus, include, e.g. α-conversion
of binders, substitution of names and the machinery for generating fresh local
names. Previous approaches in the literature, to the implementation of the π-
calculus, had adopted either a direct first-order encoding, or had dropped names
tout court in favour of de Brujin indexes [13, 20]. In both approaches one then
needs to implement explicitly the machinery for dealing with names. The user is
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hence overwhelmed by technical details and lemmata about α-equivalence, free
names operators, substitution functions and so on. In [13], 600 out of 800 proved
lemmata concern the technical details of index handling. On the other hand, we
delegate all these to the functional metalanguage. But moreover, HOAS allows
us to construe many phrases of the system in terms of new binding operators.
This is how we treat, for instance, bound transitions in the π-calculus. The
system thus appears in a purified form. One can clearly single out the essential
idiosyncrasies in the treatment of bound names, and explain away the many
inessential side conditions which normally infest its rules.

Secondly, following the approach pioneered in [3, 11, 10], we investigate
the possibility of reasoning on infinite and circular objects using proposition-
as-coinductive types. Thus, coinduction proofs are rendered as infinite proof
objects, and bisimulations need not be exhibited at the outset, but can be built
incrementally using natural tactics. This approach turns out to be extraordinar-
ily successful. However, in order to provide more elbow room in carrying out
proofs, we represent process equivalence also in a more traditional axiomatic
way, and we prove formally the equivalence between the two approaches.

The use of HOAS is critical when reflecting on those properties which HOAS
delegates to the metalanguage, namely, substitution, α-conversion and freshness
of names. This is the case of many of the Lemmata and propositions in [25,
Section 2]. In order to prove such properties, we need to extend the encoding
with new postulates which reify at the object level, some of the details that
HOAS delegates at the metalanguage. These postulates are intended to capture,
in a natural way, the basic theory of contexts, when using HOAS. They are quite
general and hence easily portable to other encodings based on HOAS. They have
been formulated with the attitude of committing ourselves in the least possible
way, while still being able to carry out the operations normally carried out with
“real life” contexts. This “minimalistic attitude” is the one we should normally
have in applying the axiomatic method.

We have tried to isolate a restricted set of general properties capturing a
general theory of contexts. These should be quite general and portable to other
encodings based on HOAS.

This paper is part of an ongoing research programme at the Computer Sci-
ence Department of the University of Udine on proof editors, started in 1992
[21, 15, 22], based on HOAS encodings in dependent typed λ-calculus for pro-
gram logics1. Our experience, which is nicely confirmed also in dealing with
π-calculus, is that Logical Frameworks allow to encode faithfully the formal
systems under consideration, without imposing on the user of the proof editor
the burden of cumbersome encodings. We can honestly say that we have a real,
user-friendly interactive system for proving bisimilarities of processes.

Proof editors and Logical Frameworks are still under development however.
We think that their construction will benefit from extensive case studies and
applications, like the one presented here.

1Some of the material contained in this paper is the object of three Laurea thesis at the
University of Udine [32, 8, 34].
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Structure of this paper. In Section 1 we recall the theory of (monadic) π-
calculus and the theory of strong late bisimilarity. In Section 2 we briefly discuss
the basic ideas underlying (co)inductive type theory and logical Frameworks.
We give also a short introduction to the Coq proof assistant. The encodings
of the syntax of the π-calculus, of its operational semantics and of strong late
bisimilarity appear in Section 3. In Section 4 the formal verification, carried out
in Coq, of the theory of strong late bisimilarity presented in [25, Section 2] is
discussed and compared to its “informal” counterpart. Conclusions, comparison
with related work, and directions for future work appear in Section 5.

Complete Coq signatures, the lists of statements formally proved, and ex-
cerpts from verification sessions appear in the Appendix A.

Throughout the paper we use freely notions and definitions of type theory,
Coq and π-calculus. The user can refer to [2, 12, 25] for more details.

1 The π-calculus
In this section we introduce briefly the π-calculus, see [25] for more details.
In particular, we introduce the syntax of the language, the late operational
semantics, and the relation of strong late bisimilarity.

In the π-calculus there are only two primitive entities: names and processes
(or agents). Let N be a infinite set of names, ranged over by x, y. The set of
processes P, ranged over by P , Q, is defined by the following abstract syntax:

P ::= 0 | x̄y.P | x(y).P | τ.P | (νx)P | !P | P1|P2 | P1 + P2 | [x = y]P | [x 6= y]P

The operators are listed in decreasing order of precedence. The input prefix
operator x(y) and the restriction operator (νx) bind the occurrences of y in
x(y).P and (νy)P respectively. Thus, for each process P we can define the sets

of its free names fn(P ), bound names bn(P ) and names n(P )
def
= fn(P )∪bn(P ).

Alpha equivalence of processes is defined as expected, and it is denoted by ≡α.
Let X ⊂ N ; PX denotes the set {P ⊂ P | fn(P ) ⊆ X}. Traditionally, pro-
cesses are not taken up to α-equivalence. Capture-avoiding substitution of a
single name y in place of x in P is denoted by P{y/x}; we do not need simul-
taneous substitutions, because we shall not consider identifiers and definitional
equations.

The above language is the language of π-calculus originally introduced in
[25], apart from the replication operator “!” in place of identifiers and recursive
rules, and the presence of the mismatch operator “6=.” We refer to [25] for
an intuitive explanation of the meaning of the basic constructs. The process
!P behaves essentially as P |P |P | . . .; it can be used to implement recursive
processes. The process [x 6= y]P behaves as P if x and y are different names,
and as 0 otherwise. This operator is particularly useful in applications; in
Section 3 we will see that its encoding raises some interesting issues.

There are four actions in π-calculus, defined by the syntax α ::= τ | x(z) |
x̄y | x̄(z). Their intuitive meaning is the following:

1. “silent” action: P
τ
−→ Q means that P can reduce itself to Q without

interacting with other processes;
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2. “free output:” P
x̄y
−→ Q means that P can reduce itself to Q emitting the

name y on the channel x;

3. “input:” P
x(z)
−→ Q means that P can receive from the channel x any name

w and then evolve into Q{w/z};

4. “bound output:” P
x(z)
−→ Q means that P can evolve into Q emitting on

the channel x a name z, which is bound in P .

The channel x is called the subject, while z, y are the objects, or parameters.
The functions fn(·) and bn(·) are extended to actions, as follows:

fn(x(z)) = fn(x̄(z)) = {x} fn(x̄y) = {x, y}
fn(τ) = bn(τ) = bn(x̄y) = ∅ bn(x(z)) = bn(x̄(z)) = {z}

As usual, n(α)
def
= fn(α)∪ bn(α). The τ and free output actions are called free,

the remaining ones are called bound.
The operational semantics of π-calculus can be given either as a labelled

transition system (LTS), as in [25], or as a reduction system together with
a structural congruence relation over processes, which identifies processes up
to some “syntactic” detail (e.g., α-conversion, monoidal laws of the sum and
parallel composition,. . . ), as in [23]. In our encoding of the π-calculus in view
of its use as a specification for an interactive proof development editor, we find
it more convenient to give an LTS semantics. Congruence rules, in fact, are
problematic from the point of view of top-down proof search—see Section 4.4
for more details.

There is a plethora of slightly different labelled transition systems for the
late operational semantics of π-calculus, e.g. [25, 23, 33]. Here, we present the

original one in [25]: the relation
α
−→ is the smallest relation over processes,

satisfying the rules in Figure 1.
There are a number of different notions of observational equality that can

be considered over processes. We shall focus only on strong late bisimilarity,
which is the one most extensively discussed in the original paper on π-calculus
[25]. It is defined as follows:

Definition 1 (Strong Late Bisimilarity) A binary relation S on processes
is a strong late simulation iff, for all P, Q processes, if P S Q then

1. if P
α
−→ P ′ and α is a free action, then for some Q′, Q

α
−→ Q′ and P ′ S Q′;

2. if P
x(y)
−→ P ′ and y 6∈ n(P, Q), then for some Q′, Q

x(y)
−→ Q′ and for all w ∈ N :

P ′{w/y} S Q′{w/y};

3. if P
x(y)
−→ P ′ and y 6∈ n(P, Q), then for some Q′, Q

x(y)
−→ Q′ and P ′ S Q′.

S is a strong late bisimulation if both S and S−1 are strong late simulations.
The strong late bisimilarity is the binary relation

.
∼ defined by

P
.
∼ Q ⇐⇒ ∃S.S strong late bisimulation and (P S Q) .

It is well-known that strong late bisimilarity can be defined as the greatest fixed
point of a suitable monotonic operator over subsets of P × P.

5



IN
−

x(z).P
x(w)
−→ P{w/z}

w 6∈ fn((νz)P ) OUT
−

xy.P
xy
−→ P

PAR1
P

α
−→ P ′

P |Q
α
−→ P ′|Q

bn(α) ∩ fn(Q) = ∅ SUM1
P

α
−→ P ′

P + Q
α
−→ P ′

PAR2
Q

α
−→ Q′

P |Q
α
−→ P |Q′

bn(α) ∩ fn(P ) = ∅ SUM2
Q

α
−→ Q′

P + Q
α
−→ Q′

COM1
P

x(z)
−→ P ′ Q

xy
−→ Q′

P |Q
τ
−→ P ′{y/z}|Q′

COM2
P

xy
−→ P ′ Q

x(z)
−→ Q′

P |Q
τ
−→ P ′|Q′{y/z}

RES
P

α
−→ P ′

(νy)P
α
−→ (νy)P ′

y 6∈ n(α) REPL
P |!P

α
−→ Q

!P
α
−→ Q

MATCH
P

α
−→ P ′

[x = x]P
α
−→ P ′

MISMATCH
P

α
−→ P ′

[x 6= y]P
α
−→ P ′

x 6= y

OPEN
P

xy
−→ P ′

(νy)P
x(w)
−→ P ′{w/y}

y 6= x
w 6∈ fn((νy)P ′)

TAU
−

τ.P
τ
−→ P

CLOSE1
P

x(w)
−→ P ′ Q

x(w)
−→ Q′

P |Q
τ
−→ (νw)(P ′|Q′)

CLOSE2
P

x(w)
−→ P ′ Q

x(w)
−→ Q′

P |Q
τ
−→ (νw)(P ′|Q′)

Figure 1: Late operational semantics of π-calculus.

2 (Co)Inductive Type Theories as Logical Fra-
meworks

In this section we present succinctly the logical and technological tools which
will be used in the following sections. More specifically, we shall recall the
main features of the proof assistant Coq, which is based on the type theory
called Calculus of (Co)Inductive Constructions (briefly, CC(Co)Ind), introduced
by Coquand and Huet and further extended by Paulin and Giménez. We refer
the reader to [2] for further details.

In this paper we utilize the Calculus of (Co)Inductive Constructions as a
Logical Framework [12], hence we shall end this section with a short discussion
of the basic ideas of generic logical specification languages.

2.1 (Co)Inductive Type Theory

CC(Co)Ind is an impredicative intuitionistic type theory, with dependent induc-
tive and coinductive types. Formally, it is a system for deriving assertions of
the shape Γ `Σ M : T , where Γ is a list of type assignments to variables,
i.e. x1 : t1, . . . , xn : tn; Σ is the signature (i.e, a list of typed constants); M is a
λ-term and T is its type.

Using the propositions-as-types, λ-terms-as-proofs paradigm, CC(Co)Ind can
be viewed as a system for representing assertions of a higher-order intuitionistic
logic and their proofs. This implies that valid assertions correspond to inhabited
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types (i.e., types for which there exists a closed term of that type), and moreover
proof checking corresponds to type checking.

For lack of space, we shall not describe in detail the rich language of terms
and types of CC(Co)Ind or its properties. We shall only point out the important
property of CC(Co)Ind, namely that checking whether a given term has a given
type in CC(Co)Ind is decidable. This is the crucial property which makes it
possible to use CC(Co)Ind as the core of a proof checker.

We shall now discuss briefly some features of CC(Co)Ind. Simple inductive
types can be defined as follows:

Inductive ident : term := ident1 : term1 | ... | identn : termn.

The name ident is the name of the inductively defined object, and term is
its type. The constructors of ident are ident1,. . . ,identn, whose types are
term1,. . . ,termn, respectively. For instance, the set of natural numbers is de-
fined as Inductive nat : Set := O : nat | S : nat -> nat.

Types of constructors have to satisfy a positivity condition, which, roughly,
requires that ident may occur only in strictly positive positions in the types of
the arguments of ident1,. . . ,identn. This condition ensures the soundness of the
definition; for further details, see [2]. For instance, the following definition is
not accepted:

Inductive D : Set := lam : (D -> nat) -> D.

Inductive definitions automatically provide induction and recursion princi-
ples over the defined type. These principles state that elements of the type
are only those built by the given constructors. For instance, the automatically
generated induction principle for nat is the well-known Peano principle:

nat_ind : (P:nat->Prop)(P O) ->

((n:nat)(P n)->(P (S n))) -> (n:nat)(P n)

Objects of inductive types are well-founded, that is, they are always built
by a finite unlimited number of constructors. Coinductive types arise by re-
laxing this condition: coinductive objects, in fact, can be non-wellfounded, in
that they can have an infinite number of constructors in their structure. Hence,
coinductive objects are specified by means of non-ending (but effective) pro-
cesses of construction, expressed as “circular definitions.” For example, the set
of streams of natural numbers, is defined as

CoInductive Stream : Set := seq : nat -> Stream -> Stream.

and the stream of all zeros is given by

CoFixpoint allzeros : Stream := (seq O allzeros).

Of course, since coinductive types are non-wellfounded, they do not have any
induction principle. The only way for manipulating coinductive objects is by
means of case analysis on the form of the outermost constructor. In order to
ensure soundness of corecursive definitions, these have to satisfy a guardedness
condition [2, 11, 10]. Roughly, the constant being defined may appear in the
defining equation only within an argument of some of its constructors. “Short-
circuit” definitions like CoFixpoint X : Stream := X. are not allowed.
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An interesting possibility arises in CC(Co)Ind, in connection with the propo-
sitions-as-types paradigm, due to the fact that proofs are first-class objects.
Coinductive predicates can be rendered as coinductive types, and then these
are propositions which have infinitely long (or circular) proofs. The guardedness
condition on the well-formedness of infinite objects allows to make sense of such
infinitely regressing proof arguments. One can consistently assume his thesis as
a hypothesis provided its applications appear in the proof only when guarded
by a constructor of the corresponding type. This is the propositional version of
the guarded induction principle introduced by Coquand and Giménez [3, 11, 10]
for reasoning on coinductive objects, and it is the constructive counterpart of
coinductive proofs.

See Appendix A.9 for an extended example of how to use guarded induction
in proof search.

2.2 The Coq proof assistant

Coq is an interactive proof assistant for the type theory CC(Co)Ind, developed
by the INRIA and other institutes. For a complete description, we refer to [2]
and to the online documentation at http://pauillac.inria.fr/coq/. More
specifically, Coq is an editor for interactively searching for an inhabitant of a
type, in a top-down fashion by applying tactics step-by-step, backtracking if
needed, and for verifying correctness of typing judgements.

Coq’s specification language, Gallina, allows to express the type theory
CC(Co)Ind in pure ASCII text, as follows:

λx : M.N is written [x:M]N
∏

x:M N is written (x:M)N

(M N) is written (M N) M → N is written M -> N

We will not give an independent syntax for CC(Co)Ind, but we will use its
Gallina formulation.

Given a signature written in Gallina, a proof search starts by entering

Lemma ident : goal.

where goal is the type representing the proposition to prove. At this point,
Coq waits for commands from the user, in order to build the proof term which
inhabits goal (i.e., the proof). To this end, Coq offers a rich set of tactics, e.g.,
introduction and application of assumptions, application of rules and previously
proved lemmata, elimination of inductive objects, inversion of (co)inductive
hypotheses and so on. These tactics allow the user to proceed in his proof search
much like he would do informally. At every step, the type checking algorithm
ensures the soundness of the proof. When the proof term is completed, it can
be saved (by the command Qed) for future applications.

2.3 Logical Frameworks

Type Theories, such as the Edinburgh Logical Framework [12, 1] or the Calculus
of (Co)Inductive Constructions [2] were especially designed, or can be fruitfully
used, as a general logic specification language, i.e. as a Logical Framework (LF).
In an LF, we can represent faithfully and uniformly all the relevant concepts of
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the inferential process in a logical system (syntactic categories, terms, variables,
contexts, assertions, axiom schemata, rule schemata, instantiation, tactics, etc.)
via the “judgements-as-types λ-terms-as-proofs” paradigm.

The key concept for representing assertions and rules is that of Martin-Löf’s
hypothetico-general judgement [18], which is rendered as a type of the dependent
typed λ-calculus of the Logical Framework. The λ-calculus metalanguage of an
LF supports higher order abstract syntax (HOAS) à la Church, i.e., syntax where
language constructors may have higher order types. Using HOAS, substitution,
α-conversion of bound variables and instantiation of schemata can be safely
taken care of uniformly by the metalanguage [30].

Since LF’s allow for higher order assertions (judgements) one can treat on
a par axioms and rules, theorems and derived rules, and hence encode also
generalized natural deduction systems in the sense of [35].

Encodings in LF’s often provide the “normative” formalization of the system
under consideration. The specification methodology of LF’s, in fact, forces the
user to make precise all tacit, or informal, conventions, which always accompany
any presentation of a system.

Any interactive proof development environment for the type theoretic met-
alanguage of an LF (e.g. Coq [2], LEGO [31]), can be readily turned into one
for a specific logic. We need only to fix a suitable environment (the signature),
i.e. a declaration of typed constants corresponding to the syntactic categories,
term constructors, judgements, and rule schemata. Such a generated editor
allows the user to reason “under assumptions” and go about in developing a
proof the way mathematicians normally reason: using hypotheses, formulating
conjectures, storing and retrieving lemmata, often in top-down, goal-directed
fashion.

3 Σπ: A HOAS Formalization of π-calculus
In this section we describe Σπ, a signature which encodes the theory of π-
calculus. The formal proof development environment that it induces in Coq is
adequate for reasoning in the π-calculus, i.e., for representing every processes
and proving correctness of their transitions and equivalences. In Section 4.2
we will introduce a signature Σπ+, extending Σπ, appropriate also for meta-
reasoning on the π-calculus.

We will present Σπ in three stages: in Section 3.1 we describe the signature
Σπ

1 , which encodes the syntax of processes; in Section 3.2 we extend Σπ
1 to

Σπ
2 , which allows for the encoding of the labelled transition system. Finally,

in Section 3.3 we further extend Σπ
2 to Σπ so as to represent the strong late

equivalence
.
∼.

3.1 Encoding the syntax of the language
In order to take best advantage of the features of Coq, we use HOAS and
inductive definitions as much as possible.

The first declaration in the signature Σπ corresponds to N , the set of names:

Parameter name : Set.
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In view of the fact that binding operators are represented by higher-order terms,
we cannot take name to be inductive. Otherwise, non-relevant, “exotic” parasite
terms would arise [6, 22].

As far as the encoding of the theory of π-calculus is concerned, no other
property about name is needed (Some properties will be eventually needed when
dealing with the metatheory). The set name has no constructors; hence, names

of π-calculus are represented by variables of CC(Co)Ind of type name.
The next declaration in Σπ is the inductive type representing the set of

processes P:

Inductive proc : Set :=

nil : proc

| bang : proc -> proc

| tau_pref : proc -> proc

| par : proc -> proc -> proc

| sum : proc -> proc -> proc

| nu : (name -> proc) -> proc

| match : name -> name -> proc -> proc

| mismatch : name -> name -> proc -> proc

| in_pref : name -> (name -> proc) -> proc

| out_pref : name -> name -> proc -> proc.

Names of constructors of the above type recall the operators they encode; the
suffix _pref in tau_pref, in_pref and out_pref distinguishes the latter from
the analogous constructors for actions (see Section 3.2).

Following the principles of HOAS, we encode the binding operators ν and x(·)
as functions over the higher-order type name->proc. This allows us to delegate
directly to the metalanguage of CC(Co)Ind α-conversion and capture-avoiding
substitution. Hence, we do not need to implement explicitly an α-conversion
mechanism, as instead is done in [13, 20] (see Section 5). Actually, the ν can
be seen as “half λ”: both ensure the freshness of bound names with respect to
existing ones, but there is no notion of substitution on names bound by ν.

The encoding outlined above is not the only possible one—e.g., following
a “pure LF” approach like in [14] (which inspired ours), we could encode the
syntax of π-calculus without using any Inductive definitions, by taking each
constructor as an Axiomatized constant. However, in order to deal with strong
late equivalences between processes in a “pure LF” approach, we have then to
axiomatize the discrimination and injection principles for process constructors,2

as well as the induction principle over processes. On the other hand, such prin-
ciples are immediately made available by the mechanism of inductive definitions
in Coq.

Let Σπ
1 be the signature consisting of the declarations given up to now in this

section, and for X = {x1, . . . , xn} ⊂ N , let ΓX
def
= x1 : name, . . . , xn : name, and

2For instance, the discrimination principle between “+” and “|” is ∀P, Q ∈ P : P + Q 6=
P |Q; the injection principle for “!” is ∀P, Q ∈ P :!P =!Q ⇒ P = Q (where = is the syntactic
equality, rendered in Coq by Leibniz equivalence). Of course, there is a discrimination principle
for each pair of different constructors, and an injection principle for each constructor but 0.

10



εX : PX → procX

εX(0) = nil

εX(!P ) = (bang εX(P ))
εX(τ.P ) = (tau pref εX(P ))
εX(P |Q) = (par εX(P ) εX(Q))

εX(P + Q) = (sum εX(P ) εX(Q))
εX((νx)P ) = (nu [x:name]εX,x(P ))

εX([x = y]P ) = (match x y εX(P ))
εX([x 6= y]P ) = (mismatch x y εX(P ))

εX(x(y).P ) = (in pref x [y:name]εX,y(P ))
εX(x̄y.P ) = (out pref x y εX(P ))

δX : procX → PX

δX(nil) = 0
δX(bang t) = !δX(t)

δX(tau pref t) = τ.δX(t)
δX(par t1 t2) = δX(t1)|δX(t2)
δX(sum t1 t2) = δX(t1) + δX(t2)

δX(nu t) = (νz)δX,z(t z) z = fresh(X)
δX(match x y t) = [x = y]δX(t)

δX(mismatch x y t) = [x 6= y]δX(t)
δX(in pref x t) = x(z).δX,z(t z) z = fresh(X)

δX(out pref x y t) = x̄y.δX(t)

Figure 2: The encoding and decoding functions for the syntax of π-calculus.

let procX
def
= {t | ΓX ` t : proc, t canonical} (where by “canonical term” we

mean essentially long βη-head normal form, in the sense of [12]). The encoding

and decoding functions ε
Σπ

1

X , δ
Σπ

1

X can be defined as in Figure 2 (for sake of simplic-
ity, in the following we will drop the exponents). The map fresh : P<ω(N ) → N
is a fixed “fresh name selection” function; the only condition fresh has to satisfy
is that for any X ⊂ N finite, fresh(X) 6∈ X. A possible definition for fresh is the
following: given an enumeration ni of N , let fresh(X) = nmax{i|ni∈X}+1. Our
encoding of processes is faithful to the original system in the sense formalized
by the following Theorem:

Theorem 1 (Adequacy of syntax) For X ⊂ N finite:

1. εX is a compositional surjection from PX to procX ;

2. δX is a compositional injection from procX to PX ;

3. εX ◦ δX = idproc
X

4. ∀P ∈ PX .(δX ◦ εX)(P )≡αP

Proof. Standard, using induction on the structure of processes and of normal
forms of type proc. ut

11



As a consequence of the above Theorem, we have that α-equivalent processes
are encoded by the same λ-term:

Corollary 1 For all P1, P2 ∈ PX : P1≡αP2 ⇐⇒ εX(P1) = εX(P2).

This can be considered to be a slightly non-standard feature of our presenta-
tion of the π-calculus. In fact, in the original system [25], α-equivalent processes
are taken to be distinct. It is a matter of discussion whether this is essential.

Finally, we introduce in the signature two inductive predicates isin and
notin, which reflect at the level of the language the metatheoretic properties
of occurrence and non occurrence of a variable; their Coq code is reported in
Appendix A.1. Roughly, (isin x p) holds iff the name x occurs free within the
process p; dually for notin, which encodes the “freshness” of names in processes.
It is interesting to point out that such predicates would not be needed if we were
interested only in reasoning on the evaluation of processes without “mismatch”
operators [14].

3.2 Encoding Late Operational Semantics

In this section we describe the encoding of the transition system in Figure 1.
Differently from other approaches [13, 20], our encoding of the transition relation
is higher-order and it follows the one in [14]. Here, moreover, we take advantage

also of the inductive features of CC(Co)Ind.
The transition relation is rendered by two mutually defined inductive predi-

cates ftrans, btrans, which take care of transitions involving free actions and
bound actions, respectively. In the latter case, the result of the transition is
not a process but a process context, i.e. a process with a hole, conveniently rep-
resented by a function name->proc. Their arity is therefore the following (the
complete code appears in Section A.2):

Mutual Inductive ftrans : proc -> f_act -> proc -> Prop := ...

with btrans : proc -> b_act -> (name -> proc) -> Prop := ...

where f_act, b_act are two inductive sets representing free actions and bound
actions, respectively:

Inductive f_act:Set := tau : f_act | Out : name -> name -> f_act.

Inductive b_act:Set := In : name -> b_act | bOut : name -> b_act.

Notice that constructors of the sets defined above are all first-order, that is
they do not bind any name in actions. In bound actions, only free names are
mentioned, bound names (i.e., the objects [25]) are represented indirectly as the
“holes” of the result process of the bound transition.

Our choice of formalizing the transition relation by means of two predicates
forces us to duplicate the rules (schemas) of Figure 1 which involve the schematic
variable α. We have to formalize both a version for ftrans and one for btrans.

In our view, HOAS leads to a substantial clarification of the original syntax
of π-calculus. Indeed, most of the side conditions in Figure 1 do not need to be
explicitly encoded since they are automatically taken care of at the metalevel.

12



In our view, this use of HOAS lets us focus on the essence of π-calculus, and do
away with tedious and unnatural bureaucratical details concerning names. This
is the case, for instance, of the scope extrusion rule (CLOSE2), which using first
order syntax can be given in many different, albeit equivalent, forms, such as
[25, rule (9)]. HOAS allows us to delegate to the metalanguage all freshness and
non-occurrence issues, hence the formalizations of all these rules collapse into
the same term of the metalanguage (viz., CLOSE2 of ftrans).

The way the metalanguage deals with fresh variables, however, needs some
care. It is true that every time a new variable of type name is introduced in
the proof environment, it is automatically chosen, by the metalanguage, to be
different from any other pre-existent variable. However, this fact is not explicit
(“known”) at the object level. This information is not necessary in many uses of
HOAS, e.g. in first order logic or in evaluating processes of π-calculus without
mismatch. And we do not need any isin/notin predicates in this case. But
in reasoning about many other aspects of π-calculus, such as the mismatch
operator, strong late bisimilarity of processes, and especially for reasoning “on”
the π-calculus itself, such explicit information is indispensable. In fact, many
features and properties of π-calculus deal explicitly with freshness of names.
Therefore, we need to reflect (“reify”) this information at the object level. We
achieve this by introducing freshness hypotheses (i.e., notin assumptions) on
the locally quantified name. This amounts to strengthening the encoded versions
of the rules to match the strength of the original ones. The most complex case
is the encoding of the RES rule, which for ftrans is as follows:

fRES : (p1,p2:name -> proc)(a:f_act)(l:Nlist)

((y:name)(notin y (nu p1)) -> (notin y (nu p2)) ->

(Nlist_notin y l) -> (f_act_notin y a) ->

(ftrans (p1 y) a (p2 y)))

-> (ftrans (nu p1) a (nu p2))

When we apply this rule, the locally bound variable y is automatically chosen
different from all other variables. In order to reflect this fact at the object level,
however, we need to introduce four extra assumptions. Those mentioning notin

and f act notin state that y does not appear in p1, p2 and a. The assumption
(Nlist notin y l) allows us to specify a finite set (actually, a list) of names
the variable y has to differ from. This is sound because y is locally bound after
l, and therefore y differs from all variables in l.

Of course, if we do not consider the mismatch operator or we are not inter-
ested in discussing in Coq strong late bisimilarity, the extra hypotheses can be
safely dropped as in [14].

As was the case for the encoding of the syntax of the language in Section 3.1,
also in the case of the operational semantics, the use of a Coq inductive definition
is profitable. For instance, elimination and inversion tactics are immediately
made available to us. Of course, at the price of some extra encoding or more
elaborate proof search, the operational semantics could have been encoded also
in a “pure LF” approach or using second order quantification.
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Let Σπ
2 be the signature declared so far; it is adequate in the sense given by

the following theorem:

Theorem 2 (Adequacy of ftrans, btrans)
Completeness: Let X ⊂ N finite, x, y ∈ N ;

1. For all P1, P2 ∈ PX , if P1
τ
−→ P2 then there exists t canonical such that

ΓX `Σπ

2
t : (ftrans εX(P1) tau εX(P2));

2. For all P1, P2 ∈ PX , if P1
x̄y
−→ P2 then there exists t canonical such that

ΓX `Σπ

2
t : (ftrans εX(P1) (Out x y) εX(P2));

3. For all P1 ∈ PX and P2 ∈ PX,y, if P1
x(y)
−→ P2 then there exists t canonical

such that ΓX `Σπ

2
t : (btrans εX(P1) (In x) [y :name]εX,y(P2))

4. For all P1 ∈ PX and P2 ∈ PX,y, if P1
x̄(y)
−→ P2 then there exists t canonical

such that ΓX `Σπ

2
t : (btrans εX(P1) (bOut x) [y :name]εX,y(P2))

Soundness: Let X ⊂ N finite, and x, y ∈ N ;

1. For all P1, P2 ∈ PX , if there exists t canonical such that
ΓX `Σπ

2
t : (ftrans εX(P1) tau εX(P2)), then there exists P ′

2 ∈ PX such

that P ′
2≡αP2 and P1

τ
−→ P ′

2;

2. For all P1, P2 ∈ PX , if there exists t canonical such that
ΓX `Σπ

2
t : (ftrans εX(P1) (Out x y) εX(P2)), then there exists P ′

2 ∈ PX

such that P ′
2≡αP2 and P1

x̄y
−→ P ′

2;

3. For all P1 ∈ PX , P2 ∈ PX,y, if there exists t canonical such that
ΓX `Σπ

2
t : (btrans εX(P1) (In x) [y : name]εX,y(P2)), then there exist

z ∈ N and P ′
2 ∈ PX,z such that (νz)P ′

2≡α(νy)P2 and P1
x(z)
−→ P ′

2;

4. For all P1 ∈ PX , P2 ∈ PX,y, if there exists t canonical such that
ΓX `Σπ

2
t : (btrans εX(P1) (bOut x) [y : name]εX,y(P2)), then there exist

z ∈ N and P ′
2 ∈ PX,z such that (νz)P ′

2≡α(νy)P2 and P1
x̄(z)
−→ P ′

2;

The proof of this result is by a long induction on the structure of derivations
(⇒), and on the structure of normal forms (⇐).

The adequacy result is rather elaborate since the decoding of a successful
transition is only “up-to α-equivalence” on the resulting process (see Corollary
1). The root of this awkwardness is in the fact that judgements in the original
presentation of π-calculus in [25] are not closed under α conversion. For instance,

no transition of the shape (νx)P
α
−→ (νw)P ′, with x 6= w can be derived in

that system. But even more subtle failures of closure under α-conversion can
arise in connection with rule RES. Consider the formal lemma weird in Figure
3.a. A näıve interpretation of weird would be the derivation in Figure 3.b, but
such a derivation is unsound because in the application of RES, w appears in
x(w). However a sound decoding of weird is the derivation in Figure 3.c.
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a)

Variable x : name.

Lemma weird : (btrans (nu [w:name](in_pref x [z:name]nil))

(In x)

[w:name](nu [w:name]nil)).

Apply bRES with p2:=[u,v:name]nil l:=empty; Intros; Apply IN.

Qed.

b) RES

IN
−

x(z)
x(w)
−→ 0

(νw)x(z)
x(w)
−→ (νw)0

c) RES

IN
−

x(z)
x(z)
−→ 0

(νw)x(z)
x(z)
−→ (νw)0

Figure 3: Failure of closure under α-conversion.

3.3 Encoding of Strong Late Bisimilarity

In this section, we discuss the encoding of strong late bisimilarity of processes.
In CC(Co)Ind this can be done in various ways. We can either define strong
late bisimilarity as a coinductive binary predicate over processes, or as the
greatest fixed point, à la Tarski, of the appropriate operator on binary relations
(over processes). Moreover, this latter approach can be carried out either using
inductive definitions or using straight higher order logic. One can prove formally
in Coq that these three approaches are equivalent as far as provability. However,
they differ substantially from the point of view of practical proof search. Coq, in
fact, provides different sets of built-in tactics for inductive and coinductive types,
and for the case of the pure higher order definition, everything has to be derived
from first principles. The three approaches therefore lead to different proof
developments. Of course, the two versions of the greatest fixed point approach
differ only in the amount of work that the user has to make. We present and
discuss in detail the coinductive and the greatest fixed point approach (inductive
version), which are the ones for which Coqprovides practical elimination and
inversion tactics, and are therefore more appropriate from the point of view
of proof development. We prove formally in CC(Co)Ind their equivalence. In
Section 4.3 we shall compare them also from a practical point of view.

3.3.1 The Guarded Approach

A key feature of CC(Co)Ind (implemented by Coq V5.10 and later versions)
with respect to its predecessors (LF [12], CC [4], CIC [29]) is the possibility of
defining coinductive types [2, 11, 10]. We can take full advantage of this feature
by defining directly the coinductive property of strong late bisimilarity. This
can be achieved by means of just one CoInductive definition, which defines
a class of coinductive sets parametrized on pairs of processes (P, Q): for all
processes P and Q, it contains the set of all, either finitary or infinitary, proofs
of equivalence of P and Q. The formal definition of the coinductive predicate
StBisim representing strong late bisimilarity is given in Section A.3. Such a
predicate has only one introduction rule, sb, which is the natural one derived
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from the definition of strong late bisimilarity (Definition 1): two processes p,q
are bisimilar if, when one of them makes a transition, also the other does the
same, and the reducts are still bisimilar.

Let Σπ
3 be the signature defined so far extended by the declaration given in

Section A.3; the soundness of our encoding is given by the following theorem:

Theorem 3 (Soundness) For all processes P, Q with fn(P, Q) ⊆ X , if there
exists a term t such that ΓX `Σπ

3
t : (StBisim εX(P ) εX(Q)), then P and Q

are strongly bisimilar (P
.
∼ Q).

Proof. Let R ⊆ P × P be defined as follows:

R
def
= {(P, Q) | there exists t such that ΓX `Σπ

3
t : (StBisim εX(P ) εX(Q))}.

We prove that R is a bisimulation according to Definition 1. Let (P, Q) ∈ R

and P
α
−→ P ′ for some P ′ ∈ P and α free action, then by Theorems 1, 2 and

by the definition of R, there exist t and t′ such that

ΓX `Σπ

3
t : (ftrans εX(P ) a εX(P ′)), ΓX `Σπ

3
t′ : (StBisim εX(P ) εX(Q))

where a is tau if α = τ or (Out x y) if α = x̄y. Hence, by the introduction
rule of StBisim, there exists canonical terms q′, t′′ and a term t′′′ such that:

ΓX `Σπ

3
t′′ : (ftrans εX(Q) a q′), ΓX `Σπ

3
t′′′ : (StBisim εX(P ′) q′).

Hence, exploiting the definition of R and Theorems 1, 2, there exists Q′ ∈ P
such that εX(Q′) = q′, Q

α
−→ Q′ and (P ′, Q′) ∈ R. The case Q

α
−→ Q′

is dealt with similarly. The case of bound actions follows closely that of free
actions, using btrans in place of ftrans. So R is a bisimulation, whence for all
(P, Q) ∈ P × P, if P R Q then P

.
∼ Q. ut

It is worthwhile noticing that this soundness result does not depend on the
particular formalization of the syntax and the operational semantics we have
adopted, provided they are adequate. Indeed, we can change the encoding of
the theory of π-calculus, e.g. by sticking to a pure LF approach (i.e., without
using Inductive definitions), as in [14]. Nevertheless, as long as the adequacy
results hold (Theorems 1, 2), also Theorem 3 holds.

The completeness of the encoding (i.e., the converse of Theorem 3) does not
hold. Actually,

.
∼ cannot be faithfully represented in any logical framework.

Suppose that there is a complete encoding of
.
∼; then, since type-checking is

decidable,
.
∼ would be semidecidable, which is absurd.

If we restrict ourselves to the set of processes without “!”, namely the finite
agents, then

.
∼ is decidable, and a complete axiomatization is available [25,

Section 3]. For such a fragment, our encoding of
.
∼ should be complete.

3.3.2 The Greatest Fixed Point Approach

The approach described above fits neatly with the notion of strong late bisim-
ilarity, but it can be carried out only in those intuitionistic logical frameworks
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featuring coinductive types, like CC(Co)Ind or Alf. An alternative and more
traditional approach is based on the fact that strong late bisimilarity can be
encoded by formulating in the logical framework the definition of greatest fixed
point in the style of Tarski. This approach has been adopted in many cases (see
e.g. [32, 13, 9]), due to its generality. To carry out this alternative encoding, we

need to use only the inductive fragment of CC(Co)Ind; therefore, this encoding
can be readily translated in many other logical frameworks, mutatis mutandis.

Formally, we proceed as follows. First, we define the monotone operator T
on relations between processes (see Section A.5). Notice that we could have
done away with the Inductive definitions of Op_StBisim and used instead a
simpler Definition, but the inductive version is more convenient with respect
to the proof tactics of Coq.

Then, we define the ordering between relations Inclus:

Definition Inclus :=

[R1,R2:proc->proc->Prop](P,Q:proc)(R1 P Q)->(R2 P Q).

Finally, we can characterize the strong late bisimilarity
.
∼ as the greatest fixed

point of Op_StBisim:

Inductive StBisim’ [P,Q:proc] : Prop :=

Co_Ind : (R:proc->proc->Prop)(Inclus R (Op_StBisim R)) ->

(R P Q) -> (StBisim’ P Q).

The above amounts to saying that in order to prove StBisim’ P Q, we have to
find a relation R which is included in (Op_StBisim R) and which holds on P,Q.

3.3.3 Internal (Cross) Adequacy

It is interesting to point out that, the two approaches outlined in the previous
paragraphs can be formally proved equivalent in Coq itself:

Lemma Soundness : (p1,p2:proc)(StBisim p1 p2)->(StBisim’ p1 p2).

Lemma Completeness:(p1,p2:proc)(StBisim’ p1 p2)->(StBisim p1 p2).

These results should be compared to the constructions carried out by Giménez
in [11, Section 4.3].

From the practical point of view the above Lemmata are very useful. They
imply that in order to prove a given bisimilarity, it does not matter which en-
coding we use. We can choose either the greatest fixed point or the coinductive
one, depending on which one we prefer or it is practically easier to use. Apply-
ing the proof terms of the cross adequacy Lemmata we can convert strong late
bisimulations of one kind into equivalent strong late bisimulations of the other
kind.

Finally, using the Completeness Lemma and Theorem 3, we prove the sound-
ness of the “greatest fixed point” encoding of strong late bisimilarity. Let Σπ be
the signature defined so far, extended by the declaration given in Section A.5
and those for the predicate is included and StBisim’:

Corollary 2 (Soundness, 2) For all processes P, Q with fn(P, Q) ⊆ X , if
there exists a term t such that ΓX `Σπ t : (StBisim′ εX(P ) εX(Q)), then P
and Q are strongly bisimilar (P

.
∼ Q).
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4 A Formal Verification of [25, Section 2] in Coq

This is one of the most important sections of the present paper. In it we re-
port on a very substantial case-study of formal verification development in Coq;
namely, the theory of π-calculus developed in [25, Section 2]. This enterprise is
significant from various viewpoints. To our knowledge, it is one of the largest
case-studies, involving coinductive types. But furthermore it is, perhaps, the
first serious attempt of using higher order syntax à la Church in metatheoretical
studies outside type theory.

In order to achieve satisfactorily this latter end, we have to devise a theory
of contexts for higher order syntax. The methodology that we follow in doing
this is axiomatic. We prefer to introduce directly the necessary properties as
axioms, rather than proving them on the basis of other, possibly inductive,
principles that should themselves require some form of justification. However,
at the end of Section 4.2 we shall briefly indicate possible ways for carrying out a
formal justification of them. Our axioms make explicit some general properties
of contexts and processes, which are normally taken for granted in informal
reasoning: e.g. no process can mention all names, a name which does not occur
is “generic”,. . .We feel that this axiomatic approach is the appropriate one in
formal verification, even if it leaves open the issue of justifying the axioms. But
this, as is the case since the birth of Geometry in ancient Greece, is another
story. A recommended methodological attitude is that of postulating only what
is “strictly necessary”, trying not to make unwanted ontological commitments.
Moreover, our axiomatization has a general flavour and can be readily adapted
to other metatheoretic treatments of systems in HOAS.

More specifically, in Section 4.1 we recall the theory of π-calculus appearing
in [25, Section 2]. In Section 4.2, we extend the signature Σπ to Σπ+; this
contains an axiomatization of the “theory of π-calculus contexts” to be used in
order to establish formally the properties under consideration. In Section 4.3 we
present the formal counterparts of [25, Section 2] that were actually formally
verified in Coq. Finally in Section 4.4 we report on the proper verification
activity, including statistical data, and we compare and contrast our formally
verified theory development to the development “by hand” presented in [25].

4.1 The Theory of π-calculus developed in [25, Section 2]

Section 2 of [25] is the standard reference for the basic properties of π-calculus
processes. It contains crucial Lemmata concerning the transition semantics of
π-calculus, and the basic algebraic theory of strong late bisimilarity. In order
to make it easier to follow the formal representation and verification of these
results, to be carried out in the following subsections, we recall them here.
Of course we have reformulated them, taking into account the fact that our
syntax contains the mismatch operator, and features “!” in place of the original
equational rewriting. We stick to the original numbering appearing in [25].

Theorem MPW 1 ≡α is a strong late bisimulation.
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Theorem MPW 2’ 1.
.
∼ is an equivalence relation

2. If P
.
∼ Q and α is a free action, then

α.P
.
∼ α.Q P + R

.
∼ Q + R P |R

.
∼ Q|R !P

.
∼!Q

[x = y]P
.
∼ [x = y]Q [x 6= y]P

.
∼ [x 6= y]Q (νw)P

.
∼ (νw)Q

3. If for all v ∈ fn(P, Q, y), P{v/y}
.
∼ Q{v/y}, then x(y).P

.
∼ x(y).Q

Theorem MPW 3 P + 0
.
∼ P P + P

.
∼ P

P + Q
.
∼ Q + P P + (Q + R)

.
∼ (P + Q) + R

Theorem MPW 4’ !P
.
∼ P |!P

Theorem MPW 5’ If x 6= y, then [x = y]P
.
∼ 0

.
∼ [x 6= x]P and [x = x]P

.
∼

P
.
∼ [x 6= y]P .

Theorems MPW 6, 7 (νy)P
.
∼ P if y 6∈ fn(P )

(νy)(νz)P
.
∼ (νz)(νy)P

(νy)(P + Q)
.
∼ (νy)P + (νy)Q

(νy)α.P
.
∼ α.(νy)P if y 6∈ n(α)

(νy)α.P
.
∼ 0 if y is the subject of α

Theorems MPW 8, 9 P |0
.
∼ P P |Q

.
∼ Q|P P |(Q|R)

.
∼ (P |Q)|R

(νy)(P |Q)
.
∼ (νy)P |Q if y 6∈ fn(Q)

(νy)(P |Q)
.
∼ (νy)P |(νy)Q if y 6∈ fn(P ) ∩ fn(Q)

In [25] the following technical lemmata are used:

Lemma 1 If P
α
−→ P ′ then fn(α) ⊆ fn(P ) and fn(P ′) ⊆ fn(P ) ∪ bn(α).

Lemma 2 If P
x(y)
−→ Q (respectively, P

x̄(y)
−→ Q), then for all z 6∈ n(P ) there

exists Q′ such that Q′≡αQ{z/y} and P
x(z)
−→ Q′ (respectively, P

x̄(z)
−→ Q′).

Lemma 3’ If P
α
−→ P ′, bn(α) ∩ fn(P ′{x/y}) = ∅, x 6∈ fn(P ) and y 6∈ bn(α),

then there exists P ′′ such that P ′′≡αP ′{x/y} and P{x/y}
α{x/y}
−→ P ′′.

Lemma 4 If P{x/y}
α
−→ P ′, x 6∈ fn(P ), bn(α)∩fn(P, x) = ∅, then there exist

Q, β such that Q{x/y}≡αP ′, β{x/y} = α and P
β
−→ Q.

Lemma 5 Let P≡αP ′; then, if α is a free action and P
α
−→ Q, then there

exists Q′ such that Q≡αQ′ and P ′ α
−→ Q′; if P

x(y)
−→ Q (respectively,

P
x̄(y)
−→ Q), then for all z 6∈ n(P ′) there exists Q′ such that Q{z/y}≡αQ′

and P ′ x(z)
−→ Q′ (respectively, P ′ x̄(z)

−→ Q′).

Lemma 6 If P
.
∼ Q and w 6∈ fn(P, Q), then P{w/x}

.
∼ Q{w/x}.
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Many of these lemmata are concerned with names and α-conversion. In
particular, Lemmata 5 and 6 state that

α
−→ and

.
∼ are preserved by α-conversion

and by substitution of fresh names, respectively. The freshness condition on y in
Lemma 3’ differs from the original one in [25, Lemma 3], because of the presence
of the mismatch operator in our syntax.

The basic technique used in [25] for proving these properties is that of ex-
hibiting explicitly suitable strong late bisimulations. In some cases, this is
achieved indirectly using appropriate alternative forms of bisimulations, such
as bisimulations “up to restriction”, which are subsequently proved to be in-
cluded in

.
∼. We shall not recall the many technical lemmata which appear in

[25, Section 2] concerning these alternative forms of bisimulations. The formally
verified proofs of the above results, which we will build using Coq will follow, in
fact, a completely different pattern, based on the guarded induction principle.

4.2 Σπ+: A signature for reasoning about the metatheory
of π-calculus

Establishing metatheoretic properties using the higher order encoding Σπ is
straightforward only in some cases, e.g. symmetry, reflexivity of

.
∼, and the

monoidal laws of + (see Section 4.3). In many other cases, the proofs of the
metatheoretic properties are problematic. This is especially the case when the
proofs “by hand” deal directly with those aspects, which HOAS encodings del-
egate to the metalanguage: namely, substitutions, freshness and α-conversion.
In proving that

.
∼ is transitive i.e. [25, Theorem 2(a)], for instance, when deal-

ing with the restriction operator, one reasons directly on explicit substitutions
of the bound name with a fresh one. This cannot be mimicked when using a
HOAS encoding, since bound names are not even directly visible.

In order to handle adequately, these “name-related” metatheoretical results,
we need to add to Σπ some new axioms concerning names, processes and actions.
Essentially, these reflect at the theory level the fact that our axiomatization
of isin and notin captures correctly the informal notions of occurrence and
non-occurrence (freshness), respectively. These axioms are all very natural and
general, and the process of singling them out is a fruitful conceptual analysis of
the informal use of terms and contexts.

As far as names are concerned, we postulate two axioms:

Axiom unsat : (p:proc)(Ex [x:name](notin x p)).

Axiom LEM_OC : (x:name)(p:proc)(isin x p) \/ (notin x p).

Axiom unsat states that no process can contain all the names; in other words,
for each process we can always choose a name which does not occur in it. This
is justified because in the π-calculus the set of names is assumed to be infi-
nite. Axiom LEM_OC states that a name either occurs or does not occur in a
given process. This adds a classical flavour to our encoding, allowing us to
prove properties by case analysis on the comparison of names (Some important
proofs proceed by case analysis on names—see, e.g., [25, Lemmata 3, 6]). This
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axiom is needed because name is not an inductive set, and there is no higher-
order induction principle over proc. The simpler law of excluded middle over
names, namely (x,y:name)(x=y)\/~(x=y), is derivable from LEM_OC, but not
vice versa. Notice that if one tries to derive LEM_OC by induction on the syntax
of processes, the case of the binding constructors fails.

As far as processes and actions are concerned, we have to deal with contexts.
In particular, in our experience, the following general properties seem to be
needed in proving the technical lemmata about

.
∼ and −→. By “phrase” we

intend expressions of both process and action type:

β-expansion: given a phrase p and a name x, there is a context q(·) such that
q(x) = p and x does not occur in q(·).

Extensionality of contexts: two contexts are equal if they are equal on a
fresh name; that is, if p(x) = q(x) and x 6∈ p(·), q(·), then p = q.

Monotonicity: if x does not appear in p(y), then it does not appear in p(·).

Clearly, the above hold for contexts (of processes and actions), and indeed they
can be informally proved by induction on the syntax. Nevertheless, most of their
instances cannot be proved in CC(Co)Ind. In fact in a higher order encoding,
contexts (of any syntactic sort) are represented as functions: e.g. a term of
type name -> proc stands for a process with a hole, to be filled in by names.
However there is no induction principle at the level of functional types in Type
Theory and hence the above have to be taken as Axioms.

The full list of such axioms is given in Appendix A.6, along with some
examples of their uses in proof developments.

In particular, as far as processes are regarded, the following have been as-
sumed:

Axiom proc_ext : (p,q:name->proc)(x:name)

(notin x (nu p)) -> (notin x (nu q)) -> (p x)=(q x) -> p=q.

Axiom proc_mono : (p:name->proc)(x,y:name)

(notin x (p y))->(notin x (nu p)).

Axiom proc ext could have been given equivalently over processes by formu-
lating the conclusion as ...->(nu p)=(nu q), using equality over proc instead
that over name->proc. The form we adopt highlights the equivalence of contexts,
and not simply of formulæ, and it is uniform with the formulation of the higher-
order instances of the same principle (see ho proc ext below). β-expansion can
be proved from the corresponding β-expansion law for higher-order processes
(processes with at most three holes):

Axiom ho_proc_exp: (p:name->proc)(x:name)

(Ex [q:name->name->proc]

(notin x (nu [y:name](nu (q y)))) /\ p=(q x)).

Axiom ho2_proc_exp : (p:name->name->proc)(x:name)

(Ex [q:name->name->name->proc]

(notin x (nu [y:name](nu [z:name](nu (q y z)))))/\p=(q x)).
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Axiom ho_proc_ext: (p,q:name->name->proc)(x:name)

(notin x (nu [y:name](nu (p y)))) ->

(notin x (nu [y:name](nu (q y)))) -> (p x)=(q x) -> p=q.

For free and bound actions, only the extensionality and monotonicity properties
have been postulated: in this case, the β-expansion law can be proved. These
properties capture the idea that functions of type name->proc are actually “pro-
cesses with a hole”, which can be just filled in by any name without changing
the structure of the process itself. This holds as long as name is not an inductive
set; otherwise, it is easy to get an inconsistency by defining “exotic” functions
by Case analysis. For instance, if we define name to be nat, we can take

x
def
= O y

def
= (S O) p

def
= [z : name]nil

q
def
= [z:name]<proc>Case z of nil [y:name](par nil nil) end

By these definitions, (p x)=(p y)=(q x)=nil, while (q y)=(par nil nil).
Then, by extensionality one can easily prove nil=(par nil nil), which is in-
consistent since proc is inductive.

It is worthwhile noticing that these axioms are not peculiar to the π-calculus.
On the contrary, they are proper to the HOAS approach itself, when one tries
to capture a general theory of contexts. Mutatis mutandis, this set of axioms
should be readily applicable to other formalizations based on HOAS, whenever
in need of reasoning on those details HOAS takes care of at the metalevel.

Of course, one can ask for a formal justification of the above axioms. First of
all we point out that, a model, based on categories of presheaves, which validates
these axioms has been just recently developed by Martin Hofmann [16]. Another
line of justification is the following. Consider the term model of the signature
Σπ, i.e., our basic signature without the axioms in question. In such model,
each type name->...->name->proc is interpreted by a set of canonical λ-terms,
without the Case constructor. It can be proved by induction on the syntax of
these terms, that our axioms hold in this model, i.e. the term model of Σπ is a
model for the axioms. Of course, in this model the types corresponding to the
axioms are not inhabited. But now, we can apply a strong form of “reflection”,
and internalize these properties by introducing the remaining axioms of Σπ+.
This is the kind of reflection principle that one would invoke, say, in claiming the
consistency of the existence of an inaccessible cardinal from the bare consistency
of the axioms of Set Theory.

Notice that, as pointed out by Hofmann, axioms proc ext, unsat and LEM OC

would be inconsistent if we assumed the Axiom of Unique Choice:

Axiom UC : (A,B:Set)(R:A->B->Prop)

((a:A)(EX b:B | (R a b)/\((b’:B)(R a b’)->b=b’)))

->(EX f:A->B | (a:A)(R a (f a))).

In Coq, axiom UC is not derivable. It could be derived only if the two
kinds Prop and Set were identified. But then, our metalogic would use quite
a weird notion of existential, far removed from standard intuition. No wonder
our axioms, dictated by ordinary reasoning, would then be inconsistent.
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4.3 Verifying [25, Section 2] using Σπ+

In this section we comment on the experiments on the formal theory of π-
calculus, which we have carried out in Coq using the encoding Σπ+, and in
particular on the computer assisted verification of all the formal counterpart of
[25, Section 2]. All the properties formally proved are listed in Appendix A.83.

The proofs of all these properties but for TRANS, the congruence of
.
∼ with

respect to the !-constructor and some laws about ν, are quite simple. First of
all we do not need to deal with low level details about names, and moreover,
by exploiting fully the coinductive features offered by Coq in combination with
top-down refinement, we can proceed directly without the need to introduce
auxiliary notions of bisimulations. This is the case, for instance, of the asso-
ciativity of |. In [25], this is proved by introducing a new kind of bisimulation,
called strong late bisimulation up to restriction and

.
∼, which has to be proved to

be a strong late bisimulation as well. In the encoding presented in this paper, in-
stead, we do not need to introduce any further notion of bisimilarity. A suitable
bisimulation between (P |Q)|R and P |(Q|R) can be built in Coq directly and
interactively, by means of guarded applications of the coinductive hypothesis,
i.e., by a “coinductive” (“circular”) argument (see Appendix A.9).

Both in the proof of transitivity of
.
∼ and of the commutativity of “|” we

use a coinductive argument which ultimately relies on [25, Lemma 6]. This is
rendered in Coq as follows:

Lemma Lemma6: (p,q:name->proc)(z:name)

(notin z (nu p)) -> (notin z (nu q)) ->

(StBisim (p z) (q z)) ->

(w:name)~(w=z)->(notin w (nu p)) -> (notin w (nu q)) ->

(StBisim (p w) (q w)).

Lemma 6 reflects a reasoning style which is used frequently when dealing with
“schematic derivations”: one freely replaces every occurrence of a given variable
by a fresh one. These are precisely the kind of properties which require the extra
axioms introduced in Section 4.2 in order to be proved. The (quite long) Coq

proof of Lemma6 has another peculiarity, in that it exploits the possibility of
switching between the greatest fixed point and coinductive encodings of

.
∼ by

means of the “cross adequacy” result of Section 3.3.3. Indeed, the proof of
(StBisim (p w) (q w)) is reduced to the existence of a bisimulation between
(p w) and (q w), which is built inductively following the sketch in [25]. One
may wonder whether Lemma6 could be proved directly by a coinductive proof.
Although the existence of a (coinductive) proof term for Lemma6 is eventually
proved, it is not easy to derive it directly by means of the Cofix tactic. The
main problem is that one would like to apply the coinductive hypothesis twice,
in a nested manner; but, this violates the restrictive guardedness conditions
enforced by Coq. Therefore, a direct, coinductive proof would not follow the
natural pattern one adopts informally, on the paper.

3The Coq code is available at http://www.dimi.uniud.it/~scagnett/pi-calculus.html
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It is interesting to point out that, because of our higher order encoding, we
may have to express and prove properties which have no natural correspondence
in the ordinary π-calculus. One of these is the fact that η-equivalence is a strong
late bisimulation:

Lemma eta_slb: (p:name->proc)(StBisim (nu p) (nu [x:name](p x))).

Although the decoding of (nu [x:name](p x)) is the same as that of (nu p),
this property is important in the formal reasoning because it allows to normalize
process encodings to their canonical form. This has turned out to be essential
in the proof of some laws about ν (e.g., Theorems 8, 9).

The use of HOAS clashes especially in connection with the fact that Coq

tactics do not deal adequately with higher order unification. For example, in
the proofs of Lemmata 3 and 4, one cannot simply rely on the mutual induction
principle generated by the system. These are too weak, and cannot be applied
to goals which involve context variables. In order to overcome this drawback,
we introduce by hand the appropriate unifications.

The proof of the congruence of
.
∼ with respect to the !-constructor needs

particular care because of the difficulty, which we pointed out earlier, related to
the use of top-down proof search in connection with rules which do not satisfy

a “sub-formula” property. In this case, the problematic rule is REPL P |!P
α

−→Q

!P
α

−→Q
.

Any inversion tactic introduces as subgoals new instances of the conclusion,
producing an infinite regress. We overcame this difficulty by proving in Coq the
(formal equivalent of the) following normal form theorem:4

Theorem 4 For P, Q ∈ P and α action such that !P
α
−→ Q, then

1. if α 6=τ then there exist Q′ such that P
α
−→Q′ and Q=P n|Q′|!P for some n;

2. if α = τ , then one of the following holds:

a) ∃Q′ such that P
τ
−→ Q′ and Q = P n|Q′|!P , for some n;

b) ∃Q′, Q′′ such that P
x̄y
−→ Q′, P

x(z)
−→ Q′′ and, for some n, m, Q =

Pn|(Q′|(Pm|(Q′′{y/z}|!P ))) or Q = P n|(Q′′{y/z}|(P m|(Q′|!P )));

c) ∃Q′, Q′′ such that P
x̄(y)
−→ Q′, P

x(z)
−→ Q′′ and, for some n, m, Q = P n|

(νy(Q′|(Pm|(Q′′{y/z}|!P )))) or Q = P n|(νy(Q′′{y/z}|(P m|(Q′|!P )))).

This theorem, which is proved by induction on the structure of Q, allows us to
invert effectively predicates of the shape !P

α
−→ P ′, deducing the structure of

P ′. This is crucial in the proof of the congruence of
.
∼ with respect to !.

Notice that the use of lists of variables in the encoding of the restriction
rule is necessary. Consider for example the proof of Lemma 3’. The argu-
ment goes, as usual, by induction on the depth of derivations of

·
−→; the

crucial step is in the case of RES rule. The hypotheses are P ≡ (νz)P1,

P ′ ≡ (νz)P ′
1, P

α
−→ P ′. Then, by inverting the latter, we have z 6∈ fn(α)

4For the sake of simplicity, in this proposition we denote P | . . . |P by P n.
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and P1
α
−→ P ′

1. Now, let z′ be a fresh name, i.e., z′ 6∈ fn((νz)P1, P1{x/y}, x).
Then, we have P{x/y} ≡ (νz′)P1{z

′/z}{x/y} and, by induction hypothe-

sis: P1{z′/z}{x/y}
α{x/y}
−→ P ′′

1 ≡α P ′
1{z

′/z}{x/y}. Hence, knowing that z′ 6∈

n(α{x/y}), we conclude P{x/y}
α{x/y}
−→ (νz′)P ′′

1 ≡α P ′{x/y}.
In formalizing the previous argument, we need to enrich the local environ-

ment of the (encoding of the) RES rule with a generic list of names, in order to
choose z′ such that z′ 6∈ fn((νz)P1, P1{x/y}, x). This list will contain all the
names which do not appear in the processes involved in the transition, but are in
the proof environment and may come into play later; hence, z ′ must be different
from these names as well. In the case of the proof of Lemma 3’, this list contains
only the name x, which is introduced in the processes by the substitution.

We conclude this section by giving some statistics on our formal development
in Coq. All data refer to the following environment: Sun Enterprise Server 450
with two UltraSPARC processors at 300MHz, 256MB RAM, 513MB swap space,
with almost no other process running; Coq V6.2, in native mode.

Number of proofs: 90
Size of source code: ∼350 kB

Length of proofs:







maximum: ∼ 57kB (Lemma 3)
average : ∼ 3.9kB
minimum : 178byte (Soundness)

Broadest proof tree: 42 main subgoals (ASS_PAR)

Times of compilation
Theory: 42.3 sec

Cross adequacy: 39 sec
Theory of contexts: 38 sec

Lemmata 1–6: 1h 2m 31sec
Metatheory: 1h 1m 19sec

Congruence of
.
∼ w.r.t. !: 11m 26sec

Maximum memory consumption: 187MB

4.4 Comparing [25, Sec. 2] and their formal counterparts
In this section we briefly compare our formal development of the basic theory
of

.
∼ to the “handmade” version appearing in [25, Section 2], emphasizing what

we have gained and learnt from this experience.
In the first place our formal development has forced us to spell out the proofs

in all details. In effect, we have found two imperfections in the proofs given in
[25]. First, in the proof of Lemma 3, in the RES case, the fact that z ′ 6∈ v(ασ)
does not follow from the hypotheses z′ 6∈ FV((νz)P1, P1σ) and z′σ = z′. Instead,
this z′ has to be chosen fresh also with respect to the names in ασ. The proof
can be easily fixed by requiring this extra condition explicitly (without any
loss of generality). In our formalization, this extra condition has been reflected
in the (encoding of the) rule RES, by introducing a generic list of names and
assuming that the bound variable does not appear in it. Secondly, a minor
omission appears in the proof of transitivity, which does not mention the use of
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Lemma 6. In our formalization this Lemma turns out to be indispensable in the
case of bound output transitions. Remarkably for hand made proofs, these are
the only imperfections that we found in the otherwise extraordinarily detailed
and exceptionally accurate and exhaustive proofs given in [25].

As we pointed out in the previous subsection, many of the formal proofs
adopt a completely different approach to that of [25]. This is the case of those
properties which are proved in [25] using bisimulations “up-to-something”, such
as commutativity of |, of ν, etc.. Using the Cofix tactic, one does not need to
introduce explicitly these auxiliary notions of bisimulations and to show that
they are included in

.
∼. One can directly prove the properties by means of

natural coinductive arguments, using the thesis as hypothesis, accordingly to
the Guarded Induction principle [3, 11, 10]. As remarked in [3], in a sense
such proofs are easier than the corresponding ones in [25, Section 2], because
they are directly guided by the definition of bisimulation. They all follow a
common pattern, given by the introduction rule of strong late bisimilarity (sb).
One does not need to produce in advance a bisimulation containing the two
processes. Such a bisimulation is gradually built interactively during the proof
in a way completely transparent for the user.

The use of HOAS has a tradeoff.
On one hand we have a simplification of many arguments. The most obvious

case is that of Theorem 1 of [25], which asserts that α-equivalence is a bisimu-
lation. This theorem simply disappears. The same happens for Lemma 2 and
Lemma 5. Another example is given by Lemma 3 which is stated in two different
ways in [25, 24]. These two versions differ only on a hypothesis about bound
names. Using HOAS these hypotheses do not need to be formulated explicitly
since they are enforced by the metalanguage itself. In our formal translation we
do not need to worry about which formulation to choose, since both versions
are formalized by the same type. For the same reason, Lemma 3 and Lemma 4
collapse into the same formalization.

On the other hand the use of HOAS is problematic when establishing meta-
theoretic properties involving exactly those notions which are delegated to the
metalanguage, e.g. substitution of names, freshness and α-conversion. To over-
come these difficulties, we had to introduce in Section 4.2 a partial axiomatiza-
tion of the theory of contexts (the full list appears in Section A.8). In informal
reasoning, these properties are usually taken for granted, but in a formal ap-
proach they have to be postulated.

Finally, we point out, once more, one of the main difference between the for-
mal top-down development and the version “by hand”, i.e. the impracticality of
a system based on structural congruences. In effect, in the literature, the oper-
ational semantics of π-calculus is given with the structural congruence relation,
but this is not suitable for semiautomatic proof search, because it can lead to

non-well founded proof trees. Rules like Eq
P≡P ′ P ′

α

−→Q′ Q′≡Q

P
α

−→Q
can always be

applied without reducing the complexity of the goal. Suppose we have to prove
a given goal by inverting the hypothesis H : (P

α
−→ Q), i.e., we want to reason

by case analysis on the way this hypothesis can be inferred. Since the Eq rule
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is always applicable, if we invert H we find ourselves back with a proof-search
problem similar to the one we started with. Namely, we have to prove the goal
in a context containing the premises of Eq, i.e. H1 : P ≡ P ′, H2 : P ′ α

−→ Q′,
H3 : Q′ ≡ Q. The inversion of H2 arises the same problem, while the inver-
sion of H1 leads us to apply ad infinitum the symmetry rule, switching between
P ≡ P ′ and P ′ ≡ P back and forth. Luckily there exist also purely transitional
presentations of π-calculus, which are the ones we have used.

5 Conclusions
In this paper we have presented a faithful HOAS encoding of the π-calculus,
inspired by [14], suitable for use in logical frameworks based on intuitionistic
type-theory. In our view, such a representation has several advantages when
compared to other more traditional approaches used in formal developments of
π-calculus, namely [20] and [13]. First of all, the extensive and careful use of the
higher order syntax frees us from the tedious encoding of the ordinary mecha-
nisms involved in the handling of bound names, because these are automatically
inherited from the metalevel. This solution offers a smooth and simple treat-
ment both of the syntax of processes and of transitions and produces what we
think is a clean and intuitive representation of the system. But moreover, when
we are indeed forced to mention explicitly, through the isin, notin predicates,
side conditions on freshness, we are sure that we are facing an essential pecu-
liarity of the π-calculus in the handling of bound variables. This is the case, for
instance, of the restriction operator.

The main drawback of HOAS is the difficulty of dealing with metatheoretic
issues concerning names in process contexts, i.e. terms of type name->proc.
As a consequence, some natural metatheoretic properties involving substitution
and freshness of names inside proofs and processes, cannot be proved inside
the framework and instead have to be postulated. Soundness and completeness
of our axiomatization of this elementary theory of contexts deserves further
investigation. In any case, Martin Hofmann has recently announced that our
axioms are validated in suitable pre-sheaves models [16].

We have investigated in detail two ways of encoding strong late bisimula-
tions: one by means of an inductive encoding of Tarski’s definition of greatest
fixed point and one by means of a CoInductive predicate. While the for-
mer approach is more widely applicable, the latter takes full advantage of the
pragmatic features offered by Coq’s coinductive tactics, based on the Guarded
Induction Principle of Coquand and Giménez [3, 11, 10]. As originally antic-
ipated by Coquand, this tactic allows for more straightforward development
of equivalence proofs, which does not force the user to produce in advance a
bisimulation. Moreover, we can also do without having to introduce auxiliary
generalized forms of strong late bisimulation, like the “up-to restriction and
strong late bisimilarity” bisimulation introduced in [25].

Finally, we have presented a formal development of a nontrivial fragment of
the theory of π-calculus in Coq, using our encoding, which essentially amounts
to [25, Section 2].
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In this paper we have dealt only with strong late bisimilarity. However, the
ideas and techniques that we have used are quite general and they can be readily
applied also to the case e.g. of strong early semantics (see Appendix A.4) or
weak semantics (see e.g. [17]).

Summing up, we can claim that we have not only a faithful proof editor for
π-calculus, but also a practical “workbench” for reasoning on the calculus itself.

Related work The solutions we have adopted are quite different from other
formal developments of π-calculus in proof development environments.

In [20], the π-calculus is encoded in Isabelle/HOL by means of a plain first-
order, inductive approach. Binding syntactic constructor (such as the input
prefix) are represented by first-order constructors; therefore, all syntactic op-
erations (such as substitution) cannot be delegated to the metalevel, but have
to be defined “by hand”. Bisimulations are defined by directly translating the
coinductive definitions in a inductive setting, as it is done in Section 3.3.2.

In [13], a fragment of the polyadic π-calculus is encoded in Coq using a radi-
cally different approach. Names are represented by means of de Bruijn indexes,
and therefore there is no need to introduce a specific set of names or higher-
order syntactic constructors. This encoding is not close to the intuitive syntax
of processes and a non trivial additional technical machinery is needed in order
to manipulate indexes during communications. The author proves formally, in
a purely inductive setting, a very interesting set of properties about the “!”
operator and the encoding of λ-calculus into the π-calculus, using Sangiorgi’s
theory of progressions and up-to-context techniques, in an inductive setting.

Formalized metatheoretic reasoning on systems in HOAS has been explored
by other authors, e.g. [3, 4, 14, 16, 28]. But apart from [16], none of their ap-
proaches, in their current state of development, appears to be general enough to
sustain the metatheoric investigations of the π-calculus presented in this paper.

Current and future work The encoding in CC(Co)Ind of the π-calculus
presented in this paper is only one step of a wider research programme on
building computerized tools for reasoning about processes algebras.

There are many open problems concerning the present system. We just recall
a few: a complete formal development in HOAS of a theory of contexts, and an
analysis of induction principles for higher order types.

There are also some pragmatic constraints on the current implementation
of Coq, which partially affect the friendliness of our workbench for π-calculus.
For instance we mention the fact that nested applications of the coinductive
hypotheses are not allowed, and that the available instances of higher order
unification are not sufficiently general. These limitations should be hopefully
removed in future releases of Coq.

The current multitude of variants of the π-calculus, brings about the serious
problem of how to develop a general proof editor for mobile processes. One
could think of considering encodings not only of weaker notions of bisimulation,
but also polyadic versions, and asynchronous versions of π-calculus, etc.. The
issue of building proofs systems for general action calculi should be addressed.
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For the time being we have considered only the polyadic π-calculus, as pre-
sented in [23]. However, the higher order presentation of this system seems to
bring forward a host of radically new delicate issues. The main issue we have to
face is the adequacy problem arising from the encoding of the five syntactic cat-
egories introduced by Milner in the original system (namely normal processes,
processes, abstractions, concretions and agents). These categories are defined
in a dependent mutual manner; so a normal process can also be considered as a
process or as an abstraction (whose arity is zero) and so on. The straightforward

way of encoding such dependencies in a dependent types theory, like CC(Co)Ind,
is by means of coercion operators. However this yields different canonical terms
(even belonging to the same type) representing the same object. Obviously a
“standard” form of adequacy cannot be achieved in this case (there cannot exist
a compositional bijection between the objects of the polyadic π-calculus and the
CC(Co)Ind terms representing them). Despite this problem, we can recover a
form of adequacy introducing the concept of encoding relations which are sim-
ply the formalization of the one-to-many correspondence between the syntactic
objects of the polyadic π-calculus and the CC(Co)Ind terms encoding them.

Another difficult problem arises in connection with the representation of
Milner’s pseudo-application which embodies the complexity of communicating
several names at the same time along a channel. In the original syntax this relies
on a multiple substitution of (data) names into (bound) names, but in CC(Co)Ind

abstractions and applications are monadic. Exploiting higher order syntax,
however, it is possible to decompose the polyadic communication into several
monadic ones, without the appearance of an unwelcomed composed substitution.
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Randy Pollack, Davide Sangiorgi and the anonymous referees for their helpful
hints and discussions. A preliminary version of this paper was presented at
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(Italy), 15-19 September 1997.

Note added in proof. While the present paper was in print, a flaw has
been discovered in the typing systems of Coq up to version 6.3. In these
systems, one can define non-normalizing terms by nesting coinductive defini-
tions. The typing system of the current version of Coq (V6.3.1) has been
therefore strengthened by ruling out nested coinductive terms altogether. As
a consequence, in many significant cases, which are nonetheless correct, one
cannot apply anymore a previously proved coinductive Lemma, inside another
coinductive proof. Hence, several “top-down” coinductive proofs developed in
Σπ+ under Coq V6.2 do not check any longer in the new version. Neverthe-
less, all these properties can be proved by using the internal adequacy result
(Section 3.3.3) and longer inductive arguments, this time possibly using “up-
to” techniques. Both the original and the updated Coq code are available at
http://www.dimi.uniud.it/~scagnett/pi-calculus.html .
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A Coq code

A.1 The “occur check” predicates

Inductive isin [x:name] : proc -> Prop :=

isin_bang : (p:proc)(isin x p) -> (isin x (bang p))

| isin_tau : (p:proc)(isin x p) -> (isin x (tau_pref p))

| isin_par1 : (p,q:proc)(isin x p) -> (isin x (par p q))

| isin_par2 : (p,q:proc)(isin x q) -> (isin x (par p q))

| isin_sum1 : (p,q:proc)(isin x p) -> (isin x (sum p q))

| isin_sum2 : (p,q:proc)(isin x q) -> (isin x (sum p q))

| isin_nu : (p:name->proc)

((z:name)(isin x (p z))) -> (isin x (nu p))

| isin_match1 : (p:proc)(y,z:name)

(isin x p) -> (isin x (match y z p))

| isin_match2 : (p:proc)(y:name)(isin x (match x y p))

| isin_match3 : (p:proc)(y:name)(isin x (match y x p))

| isin_mismatch1 : (p:proc)(y,z:name)

(isin x p) -> (isin x (mismatch y z p))

| isin_mismatch2 : (p:proc)(y:name)(isin x (mismatch x y p))

| isin_mismatch3 : (p:proc)(y:name)(isin x (mismatch y x p))

| isin_in1 : (p:name->proc)(y:name)

((z:name)(isin x (p z))) -> (isin x (in_pref y p))

| isin_in2 : (p:name->proc)(isin x (in_pref x p))

| isin_out1 : (p:proc)(y,z:name)

(isin x p) -> (isin x (out_pref y z p))

| isin_out2 : (p:proc)(y:name) (isin x (out_pref x y p))

| isin_out3 : (p:proc)(y:name) (isin x (out_pref y x p)).

Inductive notin [x:name] : proc -> Prop :=

notin_nil : (notin x nil)

| notin_bang : (p:proc)(notin x p) -> (notin x (bang p))

| notin_tau : (p:proc)(notin x p) -> (notin x (tau_pref p))

| notin_par : (p,q:proc)(notin x p)->(notin x q)->(notin x (par p q))

| notin_sum : (p,q:proc)(notin x p)->(notin x q)->(notin x (sum p q))

| notin_nu : (p:name->proc)

((z:name)~(x=z) -> (notin x (p z)))

-> (notin x (nu p))

| notin_match : (p:proc)(y,z:name) ~(x=y) -> ~(x=z) ->

(notin x p)->(notin x (match y z p))
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| notin_mismatch: (p:proc)(y,z:name) ~(x=y) -> ~(x=z) ->

(notin x p) -> (notin x (mismatch y z p))

| notin_in : (p:name->proc)(y:name) ~(x=y) ->

((z:name)~(x=z) -> (notin x (p z)))

-> (notin x (in_pref y p))

| notin_out : (p:proc)(y,z:name) ~(x=y) -> ~(x=z) ->

(notin x p) -> (notin x (out_pref y z p)).

Inductive f_act_notin [x:name] : f_act -> Prop :=

f_act_notin_tau : (f_act_notin x tau)

| f_act_notin_Out : (y,z:name)~x=y->~x=z->(f_act_notin x (Out y z)).

Definition f_act_notin_ho :=

[x:name][a:name->f_act]((y:name)~x=y->(f_act_notin x (a y))).

Inductive b_act_notin [x:name] : b_act -> Prop :=

b_act_notin_In : (y:name)~(x=y)->(b_act_notin x (In y))

| b_act_notin_bOut : (y:name)~(x=y)->(b_act_notin x (bOut y)).

Definition b_act_notin_ho :=

[x:name][a:name->b_act]((y:name)~x=y->(b_act_notin x (a y))).

A.2 The Transition System of π-calculus

Mutual Inductive ftrans : proc -> f_act -> proc -> Prop :=

TAU : (p:proc)(ftrans (tau_pref p) tau p)

| OUT : (p:proc)(x,y:name)

(ftrans (out_pref x y p) (Out x y) p)

| fSUM1 : (p1,p2,p:proc)(a:f_act)(ftrans p1 a p)

-> (ftrans (sum p1 p2) a p)

| fSUM2 : (p1,p2,p:proc)(a:f_act)(ftrans p2 a p)

-> (ftrans (sum p1 p2) a p)

| fPAR1 : (p1,p2,p:proc)(a:f_act)(ftrans p1 a p)

-> (ftrans (par p1 p2) a (par p p2))

| fPAR2 : (p1,p2,p:proc)(a:f_act)(ftrans p2 a p)

-> (ftrans (par p1 p2) a (par p1 p))

| fMATCH : (x:name)(p,q:proc)(a:f_act)

(ftrans p a q) -> (ftrans (match x x p) a q)

| fMISMATCH : (x,y:name)(p,q:proc)(a:f_act)~(x=y)

-> (ftrans p a q) -> (ftrans (mismatch x y p) a q)

| fBANG : (p,q:proc)(a:f_act)(ftrans (par p (bang p)) a q)

-> (ftrans (bang p) a q)

| COM1 : (p1,p2,q2:proc)(q1:name -> proc)(x,y:name)

(btrans p1 (In x) q1)

-> (ftrans p2 (Out x y) q2)

-> (ftrans (par p1 p2) tau (par (q1 y) q2))

| COM2 : (p1,p2,q1:proc)(q2:name -> proc)(x,y:name)

(ftrans p1 (Out x y) q1)

->(btrans p2 (In x) q2)

-> (ftrans (par p1 p2) tau (par q1 (q2 y)))
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| fRES : (p1,p2:name -> proc)(a:f_act)(l:Nlist)

((y:name)(notin y (nu p1)) -> (notin y (nu p2)) ->

(Nlist_notin y l) -> (f_act_notin y a) ->

(ftrans (p1 y) a (p2 y)))

-> (ftrans (nu p1) a (nu p2))

| CLOSE1 : (p1,p2:proc)(q1,q2:name -> proc)(x:name)

(btrans p1 (In x) q1) ->

(btrans p2 (bOut x) q2) ->

(ftrans (par p1 p2) tau (nu [z:name](par (q1 z)

(q2 z))))

| CLOSE2 : (p1,p2:proc)(q1,q2:name -> proc)(x:name)

(btrans p1 (bOut x) q1) ->

(btrans p2 (In x) q2) ->

(ftrans (par p1 p2) tau (nu [z:name](par (q1 z)

(q2 z))))

with btrans : proc -> b_act -> (name -> proc) -> Prop :=

IN : (p:name -> proc)(x:name)(btrans (in_pref x p) (In x) p)

| bSUM1 : (p1,p2:proc)(a:b_act)(p:name -> proc)

(btrans p1 a p) -> (btrans (sum p1 p2) a p)

| bSUM2 : (p1,p2:proc)(a:b_act)(p:name -> proc)

(btrans p2 a p) -> (btrans (sum p1 p2) a p)

| bPAR1 : (p1,p2:proc)(a:b_act)(p:name -> proc)(btrans p1 a p)

-> (btrans (par p1 p2) a [x: name](par (p x) p2))

| bPAR2 : (p1,p2:proc)(a:b_act)(p:name -> proc)(btrans p2 a p)

-> (btrans (par p1 p2) a [x: name](par p1 (p x)))

| bMATCH : (x:name)(p:proc)(a:b_act)(q:name -> proc)

(btrans p a q) -> (btrans (match x x p) a q)

| bMISMATCH : (x,y:name)(p:proc)(a:b_act)(q:name -> proc)

~(x=y) -> (btrans p a q) -> (btrans (mismatch x y p) a q)

| bBANG : (p:proc)(a:b_act)(q:name -> proc)

(btrans (par p (bang p)) a q) -> (btrans (bang p) a q)

| bRES : (p1:name -> proc)(a:b_act)

(p2:name -> name -> proc)(l:Nlist)

((y:name)(notin y (nu p1)) -> (Nlist_notin y l) ->

(notin y (nu [z:name](nu (p2 z)))) ->

(btrans (p1 y) a (p2 y)))

-> (btrans (nu p1) a [z:name](nu (p2 z)))

| OPEN : (p1,p2:name -> proc)(x:name)

((y:name)(notin y (nu p1)) -> (notin y (nu p2)) ->

~x=y -> (ftrans (p1 y) (Out x y) (p2 y)))

-> (btrans (nu p1) (bOut x) p2).

A.3 Coinductive encoding of Strong Late Bisimilarity

CoInductive StBisim : proc -> proc -> Prop :=

sb : (p,q:proc)

(((a:f_act)

(((p1:proc)(ftrans p a p1)->

(Ex [q1:proc]((ftrans q a q1) /\ (StBisim p1 q1))))

/\ ((q1:proc)(ftrans q a q1)->

(Ex [p1:proc]((ftrans p a p1) /\ (StBisim p1 q1))))))
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/\ ((x:name)

(((p1:name->proc)(btrans p (In x) p1)->

(Ex [q1:name->proc]((btrans q (In x) q1)

/\((y:name)(StBisim (p1 y) (q1 y))))))

/\((q1:name->proc)(btrans q (In x) q1)->

(Ex [p1:name->proc]((btrans p (In x) p1)

/\((y:name)(StBisim (p1 y) (q1 y))))))))

/\((x:name)

(((p1:name->proc)(btrans p (bOut x) p1)->

(Ex [q1:name->proc]((btrans q (bOut x) q1)

/\((y:name)(notin y (nu p1)) -> (notin y (nu q1))

-> (StBisim (p1 y) (q1 y))))))

/\((q1:name->proc)(btrans q (bOut x) q1)->

(Ex [p1:name->proc]((btrans p (bOut x) p1)

/\((y:name)(notin y (nu p1)) -> (notin y (nu q1))

-> (StBisim (p1 y) (q1 y))))))))

)->(StBisim p q).

A.4 Coinductive Encoding of Strong Early Bisimilarity

Early semantics P
α
−→e Q is obtained by replacing COM1, COM2 by the following:

E-IN
−

x(z).P
xy
−→e P{y/z}

E-COM1

P
xz
−→e P ′ Q

x̄z
−→e Q′

P |Q
τ
−→e P ′|Q′

E-COM2

P
xz
−→e P ′ Q

xz
−→e Q′

P |Q
τ
−→e P ′|Q′

These rules are encoded in the natural way; in the definition of ftrans, just replace
rules COM1, COM2 by the following:

EIN : (p:name->proc)(x,y:name)(ftrans (in_pref x p) (fIn x y) (p y))

| ECOM1 : (p1,p2,q1,q2:proc)(x,y:name)

(ftrans p1 (fIn x y) q1) -> (ftrans p2 (Out x y) q2)

-> (ftrans (par p1 p2) tau (par q1 q2))

| ECOM2 : (p1,p2,q1,q2:proc)(x,z:name)

(ftrans p1 (Out x z) q1) ->(ftrans p2 (fIn x z) q2)

-> (ftrans (par p1 p2) tau (par q1 q2))

where fIn : name -> name -> f_act is a new constructor of type f_act.

Definition 2 A binary relation S on processes is a strong early simulation if PSQ
implies that for all P ′, α such that P

α
−→e P ′ and bn(α) ∩ fn(P, Q) = ∅, there exists

Q′ such that Q
α
−→e Q′ and P ′SQ′.

The relation S is a strong early bisimulation if both S and S−1 are strong early
simulations. P , Q are strong early bisimilar (written P

.
≈ Q) if PSQ for some strong

early bisimilarity S.

Its encoding is the following:
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CoInductive StEBisim : proc -> proc -> Prop :=

seb : (p,q:proc)

( ((a:f_act)

(((p1:proc)(ftrans p a p1)->

(Ex [q1:proc]((ftrans q a q1) /\ (StEBisim p1 q1))))

/\ ((q1:proc)(ftrans q a q1)->

(Ex [p1:proc]((ftrans p a p1) /\ (StEBisim p1 q1))))))

/\((x:name)

((p1:name->proc)(btrans p (In x) p1)->

(Ex [q1:name->proc](btrans q (In x) q1)

/\((y:name)(notin y (nu p1)) -> (notin y (nu q1))

-> (StEBisim (p1 y) (q1 y)))))

/\((q1:name->proc)(btrans q (In x) q1)->

(Ex [p1:name->proc](btrans p (In x) p1)

/\((y:name)(notin y (nu p1)) -> (notin y (nu q1))

-> (StEBisim (p1 y) (q1 y))))))

/\((x:name)

((p1:name->proc)(btrans p (bOut x) p1)->

(Ex [q1:name->proc](btrans q (bOut x) q1)

/\((y:name)(notin y (nu p1)) -> (notin y (nu q1))

-> (StEBisim (p1 y) (q1 y)))))

/\((q1:name->proc)(btrans q (bOut x) q1)->

(Ex [p1:name->proc](btrans p (bOut x) p1)

/\((y:name)(notin y (nu p1)) -> (notin y (nu q1))

-> (StEBisim (p1 y) (q1 y))))))

) -> (StEBisim p q).

A.5 The operator T of Strong Late Bisimilarity

Inductive Op_StBisim [R:proc -> proc -> Prop] : proc -> proc -> Prop :=

op_sb : (p,q:proc)

(((a:f_act)

(((p1:proc)(ftrans p a p1)->

(Ex [q1:proc]((ftrans q a q1) /\ (R p1 q1))))

/\

((q1:proc)(ftrans q a q1)->

(Ex [p1:proc]((ftrans p a p1) /\ (R p1 q1))))))

/\((x:name)

(((p1:name->proc)(btrans p (In x) p1)->

(Ex [q1:name->proc]((btrans q (In x) q1)

/\((y:name)(R (p1 y) (q1 y))))))

/\

((q1:name->proc)(btrans q (In x) q1)->

(Ex [p1:name->proc]((btrans p (In x) p1)

/\((y:name)(R (p1 y) (q1 y))))))))

/\((x:name)

(((p1:name->proc)(btrans p (bOut x) p1)->

(Ex [q1:name->proc]((btrans q (bOut x) q1)

/\((y:name)(notin y (nu p1)) -> (notin y (nu q1))

-> (R (p1 y) (q1 y))))))

/\
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((q1:name->proc)(btrans q (bOut x) q1)->

(Ex [p1:name->proc]((btrans p (bOut x) p1)

/\((y:name)(notin y (nu p1)) -> (notin y (nu q1))

-> (R (p1 y) (q1 y))))))))

)->((Op_StBisim R) p q).

Definition Inclus := [R1,R2:proc->proc->Prop]

(p1,p2:proc)(R1 p1 p2)->(R2 p1 p2).

Inductive StBisim’ [p1,p2:proc] : Prop :=

Co_Ind : (R:proc->proc->Prop)

(Inclus R (Op_StBisim R)) ->

(R p1 p2) -> (StBisim’ p1 p2).

A.6 Theory of contexts
(* a process cannot contain all names *)

Axiom unsat : (p:proc)(Ex [x:name](notin x p)).

(* Law of excluded middle (decidability) of occur check predicates *)

Axiom LEM_OC : (x:name)(p:proc)(isin x p) \/ (notin x p).

(* Extensionality of contexts *)

Axiom proc_ext : (p,q:name->proc)(x:name)

(notin x (nu p)) -> (notin x (nu q)) -> (p x)=(q x) -> p=q.

(* If a name does not occur in an applied context,

then it cannot occur in the context itself *)

Axiom proc_mono :

(p:name->proc)(x,y:name)(notin x (p y))->(notin x (nu p)).

(* Same as above, for free actions *)

Axiom f_act_ext : (a,b:name->f_act)(x:name)

(f_act_notin_ho x a) -> (f_act_notin_ho x b)->

(a x)=(b x) -> a=b.

Axiom f_act_mono : (a:name->f_act)(x,y:name)

(f_act_notin x (a y)) -> (f_act_notin_ho x a).

(* Same as above, for bound actions *)

Axiom b_act_ext : (a,b:name->b_act)(x:name)

(b_act_notin_ho x a) -> (b_act_notin_ho x b)->

(a x)=(b x) -> a=b.

Axiom b_act_mono : (a:name->b_act)(x,y:name)

(b_act_notin x (a y)) -> (b_act_notin_ho x a).

(* Extensionality of processes contexts *)

Axiom ho_proc_ext: (p,q:name->name->proc)(x:name)

(notin x (nu [y:name](nu (p y)))) ->

(notin x (nu [y:name](nu (q y)))) -> (p x)=(q x) -> p=q.
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(* Beta expansions *)

Axiom ho_proc_exp : (p:name->proc)(x:name)

(Ex [q:name->name->proc]

(notin x (nu [y:name](nu (q y))))/\p=(q x)).

Axiom ho2_proc_exp : (p:name->name->proc)(x:name)

(Ex [q:name->name->name->proc]

(notin x (nu [y:name](nu [z:name](nu (q y z)))))/\p=(q x)).

In the following we present some uses of these axioms.

β-expansion. Let us consider the proof of the transitivity of
.
∼ (case of bound

output actions): we must prove ∀ x. x 6∈ P (·), R(·).P (x)
.
∼

.
∼ R(x) knowing that

∀ x. x 6∈ P (·), Q(·). P (x)
.
∼ Q(x) and ∀ x. x 6∈ Q(·), R(·). Q(x)

.
∼ R(x) hold.

Obviously, in order to prove this goal, it would be natural to show that P (x)
.
∼ Q(x)

and Q(x)
.
∼ R(x) hold (for x 6∈ P (·), R(·)). Since x 6∈ P (·), R(·) does not necessarily

imply x 6∈ Q(·), we need the expansion axiom (∀ Q(·). ∀ x. ∃Q′(·)(·). x 6∈ Q′(·)(·)∧Q ≡
Q′(x)) and Lemma 6.

So let Q′(·)(·) be a context such that x 6∈ Q′(·)(·) ∧ Q ≡ Q′(x). By definition
P (x)

.
∼

.
∼ R(x) iff there is some process P ′ such that P (x)

.
∼ P ′ and P ′ .

∼ R(x). We will
prove that such P ′ is indeed the process Q′(w)(x) where w 6= x, w 6∈ Q′(·)(·), P (·), R(·).
For the sake of simplicity we will prove only P (x)

.
∼ Q′(w)(x) (the other subgoal

being analogous). This is accomplished applying Lemma 6 with a fresh name z (where
z 6∈ P (·), Q′(·)(·), z 6= x, w), which yields the subgoal P (z)

.
∼ Q′(w)(z). Now we can

conclude applying again Lemma 6 to obtain P (z)
.
∼ Q′(x)(z), i.e., our hypothesis5.

Extensionality. Let us consider Lemma 3’: as usual for properties concerning the

LTS, we proceed by induction on the derivation depth of the judgement P
α
−→ Q. On

paper the proof of the case of a τ -transition is as follows: P ≡ τ.P0, so P{x/y} ≡

τ.P0{x/y}, hence we can infer P{x/y}
τ
−→ P0{x/y}.

In Coq the above argument is rendered as follows: the term p=(p’ y) coincides with
(tau pref p0), a=(a’ y) coincides with tau and q=(q’ y) coincides with p0. Hence
(p’ y)=(tau pref (q’ y)). To conclude we need extensionality (Axiom proc ext)
since we must prove the equivalent of P{x/y} = τ.P0{x/y}, i.e., (p’ x)=(tau pref

(q’ x)) (an analogous argument applies to the transition label).

Monotonicity. Let us consider the following lemma: if P
α
−→ P ′ and x 6∈ fn(P ),

then x 6∈ fn(α) ∪ fn(P ′). Again the proof is by induction on the derivation depth of
the transition judgement; when we deal with the case of the RES rule, we have that
(z)P1

α
−→ (z)P ′

1 (P ≡ (z)P1, P ′ ≡ (z)P ′
1), x 6∈ fn(P ). By inverting the hypothesis, we

deduce P1
α
−→ P ′

1 and z 6∈ n(α). By induction hypothesis we know that ∀ y 6∈ fn(P1)
we have that y 6∈ fn(α) ∪ fn(P ′

1). Using these two facts, we have then x 6∈ fn(α) ∪
fn((z)P ′

1).
The above argument is natural “on paper”, but in Coq P , P ′ correspond, respec-

tively, to (nu p1), (nu p1’). So P1 and P ′
1 are represented by (p1 x1), (p1’ x1)

where x1 satisfies the following properties of freshness: (notin x1 (nu p1)), (notin
x1 (nu p1’)), ~x1=x.

5Recall that P (z) =β ((λu : name. P (z)) w) and Q′(w)(z) =β ((λu : name. Q′(u)(z)) w).
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The part of the thesis regarding the transition label is easy (as on paper), but in
order to prove (notin x (nu p1’)) we need monotonicity (Axiom proc mono) since
we only know (notin x (nu p1)) (by hypothesis) and (notin x (p1’ x1)) (by in-
duction hypothesis).

A.7 Technical lemmata for the π-calculus

(* A form of Lemma 1 for free and bound transitions *)

Lemma FTR_L1: (p,q:proc)(a:f_act)(x:name)(notin x p)->

(ftrans p a q)->((f_act_notin x a)/\(notin x q)).

Lemma BTR_L1: (p:proc)(q:name->proc)(a:b_act)(x:name)(notin x p)->

(btrans p a q)->((b_act_notin x a)/\(notin x (nu q))).

(* Lemmata 3 and 4 for free and bound transitions*)

Lemma FTR_L3: (p,q:name->proc)(a:name->f_act)(x:name)

(notin x (nu p))->(notin x (nu q))->(f_act_notin_ho x a)

->(ftrans (p x) (a x) (q x))

->(y:name)

(notin y (nu p))->(notin y (nu q))->

(f_act_notin_ho y a)->(ftrans (p y) (a y) (q y)).

Lemma BTR_L3: (p:name->proc)(q:name->name->proc)(a:name->b_act)(x:name)

(notin x (nu p))->(notin x (nu [z:name](nu (q z))))->

(b_act_notin_ho x a)

->(btrans (p x) (a x) (q x))

->(y:name)

(notin y (nu p))->(notin y (nu [z:name](nu (q z))))->

(b_act_notin_ho y a)->(btrans (p y) (a y) (q y)).

(* Lemma 6 *)

Lemma L6: (p,q:name->proc)(z:name)

(notin z (nu p)) -> (notin z (nu q)) ->

(StBisim (p z) (q z)) ->

(w:name)~(w=z)->(notin w (nu p)) -> (notin w (nu q)) ->

(StBisim (p w) (q w)).

A.8 Toolkit for the π-calculus

Section equivalence. (* Theorem 2’.1 *)

Variables p,q,r : proc.

Lemma REF : (StBisim p p).

Lemma SYM : (StBisim p q) -> (StBisim q p).

Lemma TRANS : (StBisim p q) -> (StBisim q r) -> (StBisim p r).

End equivalence.

Section structural_congruence. (* Theorem 2’.2, 2’.3 *)

Variables p,q,r : proc.

Hypothesis H : (StBisim p q).

Lemma TAU_S : (StBisim (tau_pref p) (tau_pref q)).
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Lemma SUM_S : (StBisim (sum p r) (sum q r)).

Lemma PAR_S : (StBisim (par p r) (par q r)).

Lemma BANG_S : (StBisim (bang p) (bang q)).

Variables x,y : name.

Lemma MATCH_S : (StBisim (match x y p) (match x y q)).

Lemma MISMATCH_S : (StBisim (mismatch x y p) (mismatch x y q)).

Lemma OUT_S : (StBisim (out_pref x y p) (out_pref x y q)).

Variable p’,q’ : name->proc.

Lemma NU_S : ((z:name)(notin z (nu p’)) -> (notin z (nu q’))

-> (StBisim (p’ z) (q’ z)))

-> (StBisim (nu p’) (nu q’)).

Lemma IN_S: (notin y (nu p’)) -> (notin y (nu q’)) ->

((z:name)

((isin z (nu p’))\/(isin z (nu q’))\/z=y) ->

(StBisim (p’ z) (q’ z))) ->

(StBisim (in_pref x p’) (in_pref x q’)).

End structural_congruence.

Section monoidal_sum. (* Theorem 3 *)

Variables p,q,r : proc.

Lemma ID_SUM : (StBisim (sum p nil) p).

Lemma IDEM_SUM : (StBisim (sum p p) p).

Lemma COMM_SUM : (StBisim (sum p q) (sum q p)).

Lemma ASS_SUM : (StBisim (sum p (sum q r)) (sum (sum p q) r)).

End monoidal_sum.

Section bang_unfolding. (* Theorem 4’ *)

Lemma BANG_UNF : (p:proc)(StBisim (bang p) (par p (bang p))).

End bang_unfolding.

Section matching_laws. (* Theorem 5’ *)

Variables p : proc.

Variables x,y : name.

Lemma MATCH1 : (x=y)->(StBisim (match x y p) p).

Lemma MATCH2 : ~(x=y)->(StBisim (match x y p) nil).

Lemma MISMATCH1 : ~(x=y)->(StBisim (mismatch x y p) p).

Lemma MISMATCH2 : (x=y)->(StBisim (mismatch x y p) nil).

End matching_laws.

Section restriction_laws. (* Theorems 6, 7 *)

Variable p : proc.

Variable p’,q: name->proc.

Variable p’’: name->name->proc.

Lemma NU_P: (StBisim (nu [x:name]p) p).

Lemma NU_COMM:(StBisim (nu [y:name](nu [z:name](p’’ y z)))

(nu [z:name](nu [y:name](p’’ y z)))).

Lemma NU_SUM :(StBisim (nu [y:name](sum (p’ y) (q y)))
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(sum (nu p’) (nu q))).

Lemma NU_TAU_PREF: (StBisim (nu [x:name](tau_pref (p’ x)))

(tau_pref (nu p’))).

Lemma NU_OUT_PREF: (x,y:name)

(StBisim (nu [z:name](out_pref x y (p’ z)))

(out_pref x y (nu p’))).

Lemma NU_IN_PREF: (x:name)

(StBisim (nu [y:name](in_pref x (p’’ y)))

(in_pref x [z:name](nu [y:name](p’’ y z)))).

Lemma NU_NIL1: (x:name)(StBisim (nu [y:name](out_pref y x p)) nil).

Lemma NU_NIL2: (StBisim (nu [y:name](in_pref y p’)) nil).

End restriction_laws.

Section monoidal_par. (* Theorem 8 *)

Variables p,q,r : proc.

Lemma ID_PAR : (StBisim (par p nil) p).

Lemma COMM_PAR: (StBisim (par p q) (par q p)).

Lemma ASS_PAR : (StBisim (par (par p q) r) (par p (par q r))).

Variables p’ : name->proc.

Lemma NU_EXTR : (StBisim (nu [y:name](par (p’ y) q)) (par (nu p’) q)).

Lemma NU_PAR1 : (StBisim (nu [x:name](par (p’ x) q))

(par (nu p’) (nu [x:name]q))).

Lemma NU_PAR2 : (StBisim (nu [x:name](par p (p’ x)))

(par (nu [x:name]p) (nu p’))).

End monoidal_par.

A.9 An example proof in Σπ+

In this section, we develop formally one of the cases in the proof of the associativity
of |. In [25, Theorem 8(d)], this property is proved using a bisimulation up-to

.
∼ and

restriction. In our approach, instead, we take advantage of the Cofix tactic.
In order to make the proof fragment more readable and to allow a comparison

with the corresponding proof on paper, we insert comments to explain the effect of the
tactics applied, and we list the proof environments which are incrementally generated.
It is worthwhile noticing that the main difference between the formal development
of the proof in Coq and its “informal” counterpart is the incremental building of the
necessary bisimulation with no need of any explicit reference to bisimulations “up-to”.

Lemma ASS_PAR:(p,q,r:proc)(StBisim (par (par p q) r) (par p (par q r))).

Proof.

1 subgoal

============================

(p,q,r:proc)(StBisim (par (par p q) r) (par p (par q r)))

(* First of all we apply the Cofix tactic which introduces

* the thesis among the hypotheses; then we apply the introduction

* rule sb in order to ensure that all the subsequent applications

* of the thesis will be guarded, hence legal *)

ASS_PAR < Cofix; Intros; Apply sb; Do 3 Try (Split; Intros).

6 subgoals
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ASS_PAR : (p,q,r:proc)(StBisim (par (par p q) r) (par p (par q r)))

p : proc

q : proc

r : proc

a : f_act

p1 : proc

H : (ftrans (par (par p q) r) a p1)

============================

(EX q1:proc | (ftrans (par p (par q r)) a q1)/\(StBisim p1 q1))

subgoal 2 is:

(EX p1:proc | (ftrans (par (par p q) r) a p1)/\(StBisim p1 q1))

subgoal 3 is:

(EX q1:name->proc |

(btrans (par p (par q r)) (In x) q1)

/\((y:name)(StBisim (p1 y) (q1 y))))

subgoal 4 is:

(EX p1:name->proc |

(btrans (par (par p q) r) (In x) p1)

/\((y:name)(StBisim (p1 y) (q1 y))))

subgoal 5 is:

(EX q1:name->proc |

(btrans (par p (par q r)) (bOut x) q1)

/\((y:name)

(notin y (nu p1))->(notin y (nu q1))->(StBisim (p1 y) (q1 y))))

subgoal 6 is:

(EX p1:name->proc |

(btrans (par (par p q) r) (bOut x) p1)

/\((y:name)

(notin y (nu p1))->(notin y (nu q1))->(StBisim (p1 y) (q1 y))))

(* We now have 3 + 3 subgoals to consider (in fact each case comes

* with its symmetric) corresponding to the clauses in the

* definition of strong late bisimilarity *)

(* ...some cases omitted... *)

(* case 6 in Milner, Parrow, Walker, Appendix 4.2, Theorem 8(d) *)

subgoal 1 is:

ASS_PAR : (p,q,r:proc)(StBisim (par (par p q) r) (par p (par q r)))

p : proc

q : proc

r : proc

a : f_act

p1 : proc

p3 : proc

q1 : name->proc
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q2 : name->proc

x : name

H : (btrans p (bOut x) q1)

H1 : (btrans q (In x) q2)

============================

(EX q0:proc |

(ftrans (par p (par q r)) tau q0)

/\(StBisim (par (nu [z:name](par (q1 z) (q2 z))) r) q0))

(* Let (P|Q)|R --tau--> P’; we supply explicitly

* the process Q’ corresponding to P’ *)

ASS_PAR < Exists (nu [_:name](par (q1 _) (par (q2 _) r))); Split.

subgoal 1 is:

ASS_PAR : (p,q,r:proc)(StBisim (par (par p q) r) (par p (par q r)))

p : proc

q : proc

r : proc

a : f_act

p1 : proc

p3 : proc

q1 : name->proc

q2 : name->proc

x : name

H : (btrans p (bOut x) q1)

H1 : (btrans q (In x) q2)

============================

(ftrans (par p (par q r)) tau

(nu [_:name](par (q1 _) (par (q2 _) r))))

subgoal 2 is:

(StBisim (par (nu [z:name](par (q1 z) (q2 z))) r)

(nu [_:name](par (q1 _) (par (q2 _) r))))

(* we prove the first subgoal, which claims that P|(Q|R) --tau--> Q’ *)

ASS_PAR < Change (ftrans (par p (par q r)) tau

ASS_PAR < (nu [_:name](par (q1 _) ([u:name](par (q2 u) r) _))));

ASS_PAR < Apply CLOSE2 with x; [Assumption | Apply bPAR1; Assumption].

(* the remaining goal claims P’ ~ Q’: *)

subgoal 1 is:

ASS_PAR : (p,q,r:proc)(StBisim (par (par p q) r) (par p (par q r)))

p : proc

q : proc

r : proc

a : f_act

p1 : proc

p3 : proc

q1 : name->proc
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q2 : name->proc

x : name

H : (btrans p (bOut x) q1)

H1 : (btrans q (In x) q2)

============================

(StBisim (par (nu [z:name](par (q1 z) (q2 z))) r)

(nu [_:name](par (q1 _) (par (q2 _) r))))

(* Now we directly prove that P’ ~ Q’. Notice that we do not introduce

* any auxiliary notion of bisimulation "up-to": the necessary

* bisimulation is built implicitly by applying the coinductive

* hypothesis ASS_PAR *)

ASS_PAR < Apply SYM;

ASS_PAR < Apply TRANS with (nu [z:name](par (par (q1 z) (q2 z)) r)).

subgoal 1 is:

ASS_PAR : (p,q,r:proc)(StBisim (par (par p q) r) (par p (par q r)))

p : proc

q : proc

r : proc

a : f_act

p1 : proc

p3 : proc

q1 : name->proc

q2 : name->proc

x : name

H : (btrans p (bOut x) q1)

H1 : (btrans q (In x) q2)

============================

(StBisim (nu [_:name](par (q1 _) (par (q2 _) r)))

(nu [z:name](par (par (q1 z) (q2 z)) r)))

ASS_PAR < Apply NU_S; Intros; Apply SYM; Apply ASS_PAR.

(* where Lemma NU_S states that StBisim is a congruence with

* respect to nu, see Appendix A.8 *)

subgoal 1 is:

ASS_PAR : (p,q,r:proc)(StBisim (par (par p q) r) (par p (par q r)))

p : proc

q : proc

r : proc

a : f_act

p1 : proc

p3 : proc

q1 : name->proc

q2 : name->proc

x : name

H : (btrans p (bOut x) q1)

H1 : (btrans q (In x) q2)
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============================

(StBisim (nu [z:name](par (par (q1 z) (q2 z)) r))

(par (nu [z:name](par (q1 z) (q2 z))) r))

ASS_PAR < Change (StBisim (nu [z:name](par ([_:name](par (q1 _)

ASS_PAR < (q2 _) z) r))

ASS_PAR < (par (nu [z:name](par (q1 z) (q2 z))) r));

ASS_PAR < Apply NU_EXTR.

(* where NU_EXTR is the scope extrusion law, see Appendix A.8 *)

(* end of the case - other cases omitted *)

Qed.
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