
Encoding Modal Logics in Logical Frameworks?

Arnon Avron2, Furio Honsell3, Marino Miculan3 and Cristian Paravano3

June 10, 1997

Abstract

We present and discuss various formalizations of Modal Logics in Logical Frame-
works based on Type Theories. We consider both Hilbert- and Natural Deduction-style
proof systems for representing both truth (local) and validity (global) consequence re-
lations for various Modal Logics. We introduce several techniques for encoding the
structural peculiarities of necessitation rules, in the typed λ-calculus metalanguage of
the Logical Frameworks. These formalizations yield readily proof-editors for Modal
Logics when implemented in Proof Development Environments, such as Coq or LEGO.

Keywords: Hilbert and Natural-Deduction proof systems for Modal Logics, Logical
Frameworks, Typed λ-calculus, Proof Assistants.

Introduction

In this paper we discuss the possibility of designing generalized Natural Deduction-style sys-
tems for the important class of non-classical logics, consisting of modal logics. As definition of
generalized Natural Deduction-style (ND-style), we take the one provided by type-theoretical
Logical Frameworks, such as the Edinburgh Logical Framework, the Calculus of Inductive
Constructions or Martin-Löf predicative Type Theory [15, 7, 33, 25]. These frameworks
are based on the notions of hypothetico-general judgement [20] and the judgements-as-types,
λ-terms-as-proofs paradigm [15]. ND-style systems in this sense are, possibly multiple-
judgement, reflective1 logical systems which try to incorporate the process of assuming and
discharging hypotheses. This quite broad definition subsumes “standard” ND-style systems
(e.g. as introduced by Gentzen and Prawitz [13, 27]); see Section 1.4 for more discussion of
what are generalized ND-style systems.

The investigation carried out here can have also a significant practical aspect. In fact,
Logical Frameworks (LF’s) are the “logic specification” metalanguages of proof development
environments (i.e. proof editors or, even better, proof assistants) in the style of [8, 19].
The systems we discuss, ultimately, are specifications (or encodings, or formalizations, or
representations,. . .) of Modal Logics in the typed metalanguage of LF, and hence readily
provide interactive proof assistants tailored to these logics.

The main challenge in encoding Modal Logics in Logical Frameworks is that of enforcing
the side conditions on the application of the proper modal rules, i.e. rules of proof or more

?Partially supported by EC HCM Project No. CHRX-CT92.0046, Lambda-Calcul Typé, MURST 40%,
CNR CC 94.0073.CT01.

2Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel. mailto:aa@math.tau.ac.il
3Dipartimento di Matematica e Informatica, Università di Udine. Via delle Scienze 206, I-33100 Udine,

Italy. mailto:{honsell,miculan,paravano}@dimi.uniud.it, http://www.dimi.uniud.it/SLP
1i.e., capable of referring to their own proofs.

1

generally “impure rules” in the sense of [2]. Such rules, in fact, cannot be applied uniformly
to any set of premises, but are subject to various forms of restrictions, e.g.: the premises
depend on no assumption; or depend only on assumptions of a certain shape (boxed, es-
sentially boxed, etc.); or even, the premises have been derived only by proofs of a certain
special shape (see Prawitz’s third version of S4).

We introduce and study various encodings, in dependent typed λ-calculus, of Hilbert- and
ND-style systems for both the consequence relations of validity and truth of K, KT, K4,
KT4 (S4), KT45 (S5), KJ1. In particular, we extend and generalize the methodology
developed in [3], by using judgements on proofs or exploiting the underlying λ-calculus
structure of the metalanguage. For each encoding we state the appropriate faithfulness and
adequacy theorem.

The reason for considering first Hilbert-style systems is that, in this more elementary set-
ting vis-à-vis the management of assumptions, we can concentrate on the subtleties brought
about by proof rules. Furthermore, it is likely that the generic user of modal systems, being
more familiar with Hilbert-style systems, might be interested in proof editors supporting
this style.

Some claims (or disclaimers) on our work are in order. Our objective is not that of extend-
ing to modal logics the “proposition-as-types”, “generalized λ-terms-as-proofs” paradigm,
as is the case in [21, 26]. We explore, rather, the possibility of extending to modal logics
the “judgements-as-dependent types”, “λ-terms-as-ND-proofs” paradigm of [15]. To this end
we do not try to invent radically new deductive systems or new proof figures as in [21, 26],
possibly using special extensions of the λ-calculus. These systems, albeit very interesting
for the new insights that they can provide in the conceptual understanding of modality, and
the conceptual meaning of the corresponding normalization procedure, are beyond the scope
of this paper. These systems use “non-standard” metatheories, and hence they do not fall
immediately under the formalization of Natural Deduction we consider; moreover, they are
not directly amenable to an encoding in existing general proof assistants.

In this paper we rather try to provide natural encodings of existing and classical systems
of modal logic (or very slight extensions of them). We want to produce natural editors,
which do not force upon the user the overhead of unfamiliar, indirect encodings, or the
burden of learning an altogether new system. A user of the original logic should transfer
immediately to an editor, based on our encodings, his practical experience and “trade tricks”.
The only possible novelty, that he could experience would arise from the fact that the
specification methodology of Logical Frameworks forces him to make precise and explicit
all tacit conventions. Our approach therefore differs substantially from that of [21, 26], e.g.
β-reductions of the λ-terms which encode proofs in our systems, do not represent steps of the
proof normalization procedure, but only instantiation and application of Lemmata, i.e. the
transitivity of the consequence relations. Of course, when we speak of “natural” encodings,
we are well beyond what was called “naturalness” in [12], but this is the whole point of the
paper: Modal Logics are prima facie problematic to represent in standard type-theoretic
Logical Frameworks. What we show in this paper is that not only adequate type-theoretic
encodings of Modal Logics are possible, but also that they provide an analysis of Modal
Systems from a yet unexplored perspective.

In our view, the interest of this paper goes beyond that of merely tailoring Logical
Frameworks to the peculiarities and idiosyncrasies of Modal Logics. LF’s naturally suggest
systems based on the natural deduction mechanism of assuming-discharging assumptions.
Moreover, LF’s allow to conceive systems which manipulate multiple judgements on formulæ
and/or reason directly on their own proofs. Hence, some of the systems and encodings that
we introduce and analyze, are interesting also from the purely logical point of view in that

2

they suggest natural alternative presentations of Modal Logics. In particular, the ND-style
systems with multiple consequence relations that we introduce are new, as far as we know.

The paper is organized as follows. In Section 1 we recall the basic syntactical and
semantical definitions of Modal Logic and we present the classical Hilbert systems and the
classical (together with some not so classical) ND-style systems for K, KT, K4, KT4 (S4),
KT45 (S5), KJ1. In Section 2 we present briefly the main features and applications of
Logical Frameworks. The encoding of the syntax of Modal Logic appears in Section 3. The
encodings of the Hilbert-style systems and the ND-style systems in LF appear in Sections
4, and 5 respectively. In each section we discuss first systems for validity, then systems for
truth; on several occasions we discuss more than one technique for implementing a given
system. In Section 6 we relate formally these different tecniques. Final remarks, applications,
and related work are discussed in Section 7. Proofs of theorems appear in the Appendix A.

We thank the anonymous referees for their helpful criticism.

1 Modal Logics

In this section, we briefly recall the basic notions of Modal Logics (see e.g. [18, 31]); we
present Hilbert- and ND-style systems for representing truth and validity consequence rela-
tions for various modal logics.

1.1 Syntax and Semantics

The formulæ of the basic modal propositional language ϕ ∈ Φ are defined as follows:

ϕ ::= x | ϕ ⊃ ψ | 2ϕ

where x ranges over the set of atomic proposition, denoted by Φa. The constant ff ∈
Φa denotes the always false proposition. Given ϕ ∈ Φ, we denote by FV(ϕ) the set of
(free) atomic predicate variables, defined as usual; the notion of FV is extended to sets of
formulæ: FV(Γ) = ∪ϕ∈ΓFV(ϕ). By ϕ[x1, . . . , xn] we denote a formula ϕ such that FV(ϕ) ⊆

{x1, . . . , xn}; we define ΦX
def
= {ϕ ∈ Φ | FV(ϕ) ⊆ X}. Finally, we take ¬ϕ and 3ϕ as

syntactic shorthands for ϕ ⊃ ff and ¬2¬ϕ, respectively.
Although the systems we will present are not committed to any particular semantics, for

definiteness we recall the most common interpretation of modal logics, based on Kripke’s
frames and models. A frame is a pair F = 〈W,→〉 where W is the domain and →⊆W ×W
is the accessibility relation. Elements of W are called states, and are denoted by s. A model
is a triple M = 〈W,→, ρ〉 where 〈W,→〉 is a frame, and ρ : Φa → P(W) is a valuation.

Given a formula ϕ, a model M and a state s, we define when ϕ is true in s (s |=M ϕ)
inductively on the structure of the formula, as usual. In particular, s |=M 2ϕ ⇐⇒ ∀s′.s→
s′ ⇒ s′ |=M ϕ. If ϕ is true in every state of M, we say that ϕ is valid in M (|=M ϕ).

1.2 Consequence Relations

According to [2, 24, 31], the semantic interpretation of formulæ gives rise to (at least) two
(logical) consequence relations (CR’s).

Definition 1.1 (Truth and Validity Consequence Relations) Given Γ ⊆ Φ, ϕ ∈ Φ,
and M class of models, we say that

• ϕ is true in Γ w.r.t. M (Γ |=M ϕ) if ∀M ∈M.∀s ∈M.s |=M Γ ⇒ s |=M ϕ;

3

Axiom Schemata
K : 2(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 2ψ)
T : 2ϕ ⊃ ϕ

4 : 2ϕ ⊃ 22ϕ

5 : 3ϕ ⊃ 23ϕ

J1 : 2(2(ϕ ⊃ 2ϕ) ⊃ ϕ) ⊃ ϕ

Inference Rules

Nec
ϕ

2ϕ

ϕ does not depend
on any assumption

Nec’
ϕ

2ϕ

Validity Truth
K′ = C +K + Nec’ K = C +K + Nec

KT′ = K′ + T KT = K + T

K4′ = K′ + 4 K4 = K + 4
KT4′ = KT′ + 4 KT4 = KT + 4
KT45′ = KT4′ + 5 KT45 = KT4 + 5
KJ1′ = K′ + J1 KJ1 = K + J1

Figure 1: Axioms, rules and Hilbert-style systems for Modal Logics.

• ϕ is true in Γ (Γ |= ϕ) if ∀M∀s ∈M.s |=M Γ ⇒ s |=M ϕ;

• ϕ is valid in Γ w.r.t. M (Γ ||=M ϕ) if ∀M ∈M. |=M Γ ⇒|=M ϕ;

• ϕ is valid in Γ (Γ ||= ϕ) if ∀M. |=M Γ ⇒|=M ϕ.

These definitions are extended straightforwardly to sets of formulæ, and subclasses of models:
given M a set of models, we define |=M=

⋂

M∈M |=M, ||=M=
⋂

M∈M ||=M.
These CR’s correspond to the (model) global relation and the (model) local relation of

[31], respectively. They differ on the relevance given to assumptions: in the validity CR,
formulæ of Γ are seen as theorems, true in every state, while in the truth CR they are
assumptions, locally true in each state we consider. This difference is made apparent in

Theorem 1.2 ([31]) For Γ ⊆ Φ, ϕ ∈ Φ: Γ ||= ϕ ⇐⇒ {2nψ | ψ ∈ Γ, n ∈ N} |= ϕ.

Moreover, the usual “deduction theorem” (“Γ, ϕ |= ψ ⇐⇒ Γ |= ϕ ⊃ ψ”) holds only for the
true CR’s: it is easy to see that x ||= 2x, but of course 6||= x ⊃ 2x.

1.3 Hilbert-style systems

Hilbert-style systems have been (and still are) very important tools in investigating axiom-
atizations of Modal Logics. Several kinds of such systems have been proposed; they differ
essentially on the class of Kripke frames they axiomatize implicitly, and on the represented
CR. All of them extend the following basic propositional calculus, which we denote by C:

C
def
=

A1 : ϕ ⊃ (ψ ⊃ ϕ)
A2 : (ϕ ⊃ (ψ ⊃ ϑ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ))
A3 : (¬ψ ⊃ ¬ϕ) ⊃ ((¬ψ ⊃ ϕ) ⊃ ψ)

+ MP
ϕ ϕ ⊃ ψ

ψ

In Figure 1 we list the axioms and rules schemata which can be added to C in order to
obtain any of the modal logics we shall focus on, namely K, KT, K4, KT4 (S4), KT45
(S5), KJ1 (In naming the systems we follow Lemmon’s convention. Axiom J1 is known also
as Grz, after Grzegorczyk.) We could have considered many other axioms and discussed also

4

other modal logics. In fact, most of what appears in this paper can be readily adapted to any
other system of modal logic. For ease of reading, we preferred to focus on this representative
sample. Instantiation of these schemata will be denoted by subscripts; e.g., A1ϕ,x⊃ϕ denotes
the formula ϕ ⊃ ((x ⊃ ϕ) ⊃ ϕ).

These systems fall into two categories, depending on which CR is represented. These
correspond to adopting different necessitation rules: the pure rule Nec’ yields systems which
are sound and complete only w.r.t. the validity CR’s. If we are interested in the truth CR’s,
we need the impure rule Nec. Hilbert type systems are not always taken with assumptions,
however, having in mind implementations of Hilbert systems, we take them into account from
the very beginning. In fact, the possibility of managing assumptions and using previously
proved Lemmata (i.e., applying the deduction theorem), is central in the process of proof
development.

The basic concept of a proof of a formula ϕ in a Hilbert-type system S is that of a
labelled tree. The labels are formulæ, and the formula which labels a node which is not a
leaf should follow from the formulæ which label its successors by one of the rules of S. A
formula ϕ follows in S from a set of formulæ ∆ (written ∆ `S ϕ) iff there is a proof-tree π
(of the kind just described) in which every leaf is labelled by an axiom of S or by an element
of ∆, and the root is labelled by ϕ. (In ∆, therefore, there may be formulæ which do not
label any leaf of π.) This is denoted by π : ∆ `S ϕ; the set of free variables in π is denoted
by FV(π).

Definition 1.3 (Valid Proofs) Given X ⊆ Φa,∆ ⊆ ΦX , ϕ ∈ ΦX we say that π is a valid
proof (in the system S) of ϕ w.r.t. (X,∆) (denoted by (X,∆) |=S π : ϕ) if π : ∆ `S ϕ and
FV(π) ⊆ X.

Theorem 1.4 (Completeness of Hilbert-style systems) For Γ ⊆ Φ, ϕ ∈ Φ:

1. For S ∈ {K,KT,K4,KT4,KT45,KJ1} : Γ `S ϕ ⇐⇒ Γ |=M(S) ϕ;

2. For S ∈ {K′,KT′,K4′,KT4′,KT45′,KJ1′} : Γ `S ϕ ⇐⇒ Γ ||=M(S) ϕ;

where M(S) denotes the class of models corresponding to the axioms characterizing S.

1.4 Natural Deduction-style systems

In this subsection we introduce ND-style systems for both validity and truth CR’s. All these
systems extend the usual ND-style system for propositional classic logic NC [27]:

NC
def
=

Γ, ϕ ` ϕ Weak
Γ ` ϕ

Γ,∆ ` ϕ
Raa

Γ,¬ϕ ` ff

Γ ` ϕ

⊃-I
Γ, ϕ ` ψ

Γ ` ϕ ⊃ ψ
⊃-E

Γ ` ϕ ⊃ ψ Γ ` ϕ

Γ ` ψ

ff -I
Γ ` ϕ Γ ` ¬ϕ

Γ ` ff
ff -E

Γ ` ff

Γ ` ϕ

We make extensive use of ND-style systems with multiple consequence relations. We do
not give here a detailed presentation of them, because we feel that their “working” is self-
evident; see [24, Chapter 3] for further details. We need them in order to capture systems
for validity for logics weaker than S4. Moreover, they allow to achieve a sharpening of the
adequacy theorems appearing in [3]. In Section 5.2.5 we briefly outline how to introduce
multiple CR systems for truth, extending those for validity. All the systems for truth
appearing elsewhere in the paper are classical.

5

2-I
2Γ ` ϕ

2Γ ` 2ϕ
⊃2-E

Γ ` 2(ϕ ⊃ ψ) Γ ` 2ϕ

Γ ` 2ψ
2-E

Γ ` 2ϕ

Γ ` ϕ

2
′
-I

∅ ` ϕ

∅ ` 2ϕ
⊃′-E

Γ `̀ ϕ ⊃ ψ Γ `̀ ϕ

Γ `̀ ψ
22-I

Γ ` 2ϕ

Γ ` 22ϕ

2
′′
-I

Γ ` ϕ

Γ `̀ 2ϕ
⊃′′-E

Γ ` ϕ ⊃ ψ Γ `̀ ϕ

Γ `̀ ψ
23-I

Γ ` 3ϕ

Γ ` 23ϕ

2
′′′
-I

Γ `̀ ϕ

Γ `̀ 2ϕ
⊃′′′-E

Γ `̀ ϕ ⊃ ψ Γ ` ϕ

Γ `̀ ψ
2⊃-E

Γ ` 2(2(ϕ ⊃ 2ϕ) ⊃ ϕ)

Γ ` ϕ

Validity Truth
NK′ = NC +⊃2-E + 2

′′
-I + 2

′′′
-I NS4 = NC + 2-I + 2-E

+⊃′-E +⊃′′-E +⊃′′′-E NK = NC +⊃2-E + 2
′
-I

NKT′ = NK′ + 2-E NKT = NK + 2-E

NK4′ = NK′ + 22-I NK4 = NK + 22-I

NKT4′ = NKT′ + 22-I NKT4 = NKT + 22-I

NKT45′ = NKT4′ + 23-I NKT45 = NKT4 + 23-I

NKJ1′ = NK′ + 2⊃-E NKJ1 = NK + 2⊃-E

Figure 2: Rules and ND-style systems for Modal Logics.

Systems are displayed in a linearized sequent-like fashion. We denote by π : Γ `iS ϕ the
proof π of the fact that ϕ is entailed by the assumptions Γ, accordingly to the i-th CR of
the system S.

In Figure 2 we display the rules which can be added to NC in order to obtain ND-style
versions of the Modal Logics K, KT, K4, KT4 (S4), KT45 (S5), KJ1. In naming these
systems we extend Lemmon’s convention for Hilbert-style systems.

These systems count as ND-style systems, in that their rules follow the general schema

∀Γ1, . . . ,Γn
Γ1,∆1 `

i1 ϕ1 . . . Γn,∆n `
in ϕn

∪ni=1Γi `
i ϕ

C

where C is a possible side condition, that is a restriction on the applicability of the schemata,
and i, i1, . . . , in ∈ {1, . . . ,m} where `1, . . . ,`m are the m CR of the system S. In this view,
ND-style systems are characterized by the fact that one does not focus only on theorems
but rather on assumption-conclusion dependencies. Rules are monotone with respect to sets
of assumptions and possibly exploit assumption-discharging mechanisms. Notice that the
structural rule of weakening is assumed at the outset.

Some of the readers may object that we use a non-standard definition of “natural-
deduction style systems” and that our definition is liberal enough that systems in either
Hilbert style or in “two-sided sequent style” (i.e. with left and right rules) would qualify.
The last claim is false, since the definition above does not allow the introduction of new
formulæ on the l.h.s. which were not already there in at least one of the premises. The
possibility of doing so is the main characteristic of real two-sided sequent systems. In Nat-
ural Deduction systems, in contrast, all the “activity” is done on the r.h.s.! Our definition
indeed implies that Hilbert-type systems are in principle a special case of Natural Deduction
systems. After all, in the very first natural deduction formulation of classical logic [13], an
axiom is used (namely, the excluded middle axiom). The difference between Hilbert-type
systems and good natural deduction systems is in the spirit, it is not a formal one (except,
of course, that Hilbert-type systems do not allow rules in which some assumption is dis-

6

charged). The spirit of Natural Deduction systems is to use succinct, natural rules, in which
certain connectives are either introduced or eliminated.2 We believe that this is the case
with our systems. They are not as close to the ideal as, say, the natural deduction system
of intuitionistic logic, but this seems to be forced by the nature of modal logic. Another
possible objection may be that we use rules which involve many connectives, and so do not
fit the form of either an introduction or an elimination rule. Again, this complaint is based
on a confusion between the essence of an introduction rule and properties of an ideal such
rule. Having introduction rules which involve more than one connective is a very common,
unavoidable phenomenon. Thus, in usual natural deduction systems for 3-valued logics,
rules that involve a combination of negation with some other connective are standard (see,
e.g., that given in [4] for an extension of Kleene’s three-valued logic).

The systems in Figure 2 fall into two categories, depending on which CR is represented.
NS4, NK,. . . , NJ1 represent the truth CR’s while NK′,. . . , NKJ1′ represent the validity
CR’s. ND-style systems are best suited to represent the truth consequence relation, since
the ⊃-I rule wraps up the deduction theorem in the system. Prawitz’ system NS4 is a good
example of how to take full advantage of this [27].

On the other hand, ND-style systems for validity are cumbersome: since the deduction
theorem does not hold for ||=, we can no longer adopt the usual introduction rule for impli-
cation. A possible solution for overcoming this problem appears in the system NK′ that we
introduce here. This system uses two different CR’s, i.e. `, `̀ , whose intended meaning is:

• Γ ` ϕ iff “there is a proof of ϕ from Γ which does not use the 2
′′
-I, 2

′′′
-I rules” (these

derivations are said box-intro free);

• Γ `̀ ϕ iff “there is a proof of ϕ from Γ which does use the 2
′′
-I, 2

′′′
-I rules”.

Box-intro free proofs can be used in deriving valid consequences, but not the converse. The
connection between these two notions of derivation is clear in the box introduction rules:
we can “box” a valid formula still obtaining a valid formula (rule 2

′′′
-I), but if we “box” a

formula obtained on the ` level, we obtain a valid formula (2′′
-I). The rules ⊃′-E, ⊃′′-E,

⊃′′′-E allow for the “modus ponens” between valid and box-intro free derived formulæ. The

rule Embed
Γ ` ϕ

Γ `̀ ϕ
is however derivable:

⊃′′-E

2
′′′
-I

Γ ` true

Γ `̀ 2true
⊃-I

Weak
Γ ` ϕ

Γ,2true ` ϕ

Γ ` 2true ⊃ ϕ

Γ `̀ ϕ

where true denotes any propositional tautology, e.g. ϕ ⊃ ϕ (its derivation is omitted).

The rule ⊃2-E corresponds to the K axiom of Hilbert-style systems. The other rules for
`̀ (⊃′-E, 2

′′
-I) correspond to the modus ponens and the necessitation rules, respectively.

Rules corresponding to the axioms of the extensions of NK′, are added at the level of `.

Of course, instead of introducing rules 2-E, 22-I, 23-I, 2⊃-E, we could have postulated
directly the corresponding axioms. These two choices are completely equivalent; our rules
are perhaps more “natural” in view of proof search.

Notation for proofs and free variables of proofs are the same of Hibert-style systems.

2Gentzen introduced Natural Deduction as “a formalism that reflects as accurately as possible the actual
logical reasoning involved in mathematical proofs” [13, Section 2.1].

7

Theorem 1.5 (Completeness of ND-style systems) For Γ ⊆ Φ, ϕ ∈ Φ:

1. For S ∈ {NK,NKT,NK4,NKT4,NKT45,NKJ1,NS4} : Γ `S ϕ ⇐⇒ Γ |=M(S) ϕ;

2. For S ∈ {NK′,NKT′,NK4′,NKT4′,NKT45′,NKJ1′}:

(a) Γ `̀ S ϕ ⇐⇒ Γ ||=M(S) ϕ

(b) Γ `S ϕ ⇐⇒ Γ |=M∗
ϕ

where M(S) denotes the class of models corresponding to the rules characterizing S, and

M∗ is the class of models on the trivial frame F∗
def
= 〈{∗}, {(∗, ∗)}〉.

Proof. (Sketch) 1., 2.a: Each axiom and rule is easily proved to be sound. Completeness is
proved by deriving a suitable complete Hilbert-style system found in literature.

2.b: In every model of the trivial frame F∗, the formulæ 2ϕ,3ϕ are equivalent to ϕ,
because the only world ∗ is also its only own successor. Therefore, we can erase the 2’s
and 3’s from formulæ and rules, obtaining equivalent formulæ and rules which are purely
propositional. Hence, the ` rules of a system S are adequate with respect to M∗ iff their
“erased” versions are adequate wrt the class of propositional models. This is easily proved
to hold for every S ∈ {NK′,NKT′,NK4′,NKT4′,NKT45′,NKJ1′}. ut

2 Logical Frameworks

Type Theories, such as the Edinburgh Logical Framework [15, 3] or the Calculus of Induc-
tive Constructions [7, 33] were especially designed, or can be fruitfully used, as a general
logic specification language, i.e. as a Logical Framework. In an LF, we can represent faith-
fully and uniformly all the relevant concepts of the inference process in a logical system:
syntactic categories, terms, assertions, axiom schemata, rule schemata, tactics, etc. via the
“judgements-as-types λ-terms-as-proofs” paradigm. The key concept is that of hypothetico-
general judgement [20], which is rendered as a type of the dependent typed λ-calculus of the
Logical Framework. The λ-calculus metalanguage of an LF supports higher order syntax.
Substitution, α-conversion of bound variables and instantiation of schemata are also taken
care of uniformly by the metalanguage. Since LF’s allow for higher order assertions (judge-
ments) one can treat on a par axioms and rules, theorems and derived rules, and hence
encode also generalized natural deduction systems in the sense of [28].

Encodings in LF’s often provide the “normative” formalization of logic under consider-
ation. The specification methodology of LF’s, in fact, forces the user to make precise all
tacit, or informal, conventions, which always accompany any presentation of a logic.

Any interactive proof development environment for the type theoretic metalanguage of
an LF (e.g. Coq [8], LEGO [19]), can be readily turned into one for a specific logic. We
need only to fix a suitable environment (the signature), i.e. a declaration of typed constants
corresponding to the syntactic categories, term constructors, judgements, and rule schemata.
Such an LF-generated editor allows the user to reason “under assumptions” and go about in
developing a proof the way mathematicians normally reason: using hypotheses, formulating
conjectures, storing and retrieving lemmata, often in top-down, goal-directed fashion. It is
worth noticing that the LF feature of supporting reasoning under assumptions necessarily
gives a ND-style flavour to any encoding of a logic in LF.

LF provide a common medium for integrating different systems. Hence LF-derived edi-
tors rival special purpose editors when efficiency can be increased by integrating independent
logical systems. LF-generated editors are natural. A user of the original logic can transfer

8

immediately to them his practical experience and “trade tricks.” They do not force upon
the user the overhead of unfamiliar indirect encodings, as would editors, say derived from
FOL editors, via an encoding.

The wide conceptual universe provided by LF allows, on various occasions, to device
genuinely new presentations of the logics. This will be the case for some of the encodings
for Modal Logics in this paper. In particular, we shall capitalize on the feature of LF’s of
treating simultaneously different judgements and of treating proofs as first-class objects.

In this paper, we work in the Edinburgh Logical Framework, as presented in [15].

3 Encoding of the Syntax

In encoding the language of Modal Logic we follow the LF paradigm [15, Section 3]: the
syntactic category Φ is represented by the type o of propositions; for each syntactic con-
structor, we introduce a corresponding constructor over o. Propositional variables (x, y, . . .),
are directly represented by metalogical variables of LF (x, y , . . .). The signature Σ(Φ) for
the language and the encoding function εX : ΦX → o appears below:

Σ(Φ) =

o : Type

ff : o

2 : o→ o

⊃ : o→ o→ o

εX(x)
def
= x if x ∈ X

εX(ff)
def
= ff

εX(2ϕ)
def
= 2εX(ϕ)

εX(ϕ ⊃ ψ)
def
= ⊃ εX(ϕ) εX(ψ)

Given a set X = {x1, . . . , xn} of propositional variables, we denote by ΓX the context
〈x1 : o, . . . , xn : o〉.

Theorem 3.1 Given X ⊆ Φa, the function εX is a compositional bijection between ΦX
and the canonical forms3 of type o in Σ(Φ),ΓX . Moreover, the encoding is compositional in
the sense that for X = {x1, . . . , xn}, Y ⊆ Φa, ϕ ∈ ΦX and ϕ1, . . . , ϕn ∈ ΦY : εY (ϕ[x1 :=
ϕ1, . . . , xn := ϕn]) = εX(ϕ)[x1 := εY (ϕ1), . . . , xn := εY (ϕn)].

All the systems we shall deal with have the same language. Hence, the signatures, that
we will introduce in the rest of the paper, will include Σ(Φ) without explicit mention.

4 Encodings of Hilbert-style systems

4.1 Systems for validity

The encodings of these systems follow the LF paradigm for specifying a logical system [15,
Section 4]. In Figure 3 we give the signature Σ(K′) for the Hilbert-style system K, and its
extensions for other systems (K4′, . . .).

Given ∆ ⊆ ΦX , we define the LF context γV (∆) as follows:

γV (∆)
def
=

{

〈〉 if ∆ ≡ ∅
γV (∆′), v : (V εX(ϕ)) if ∆ ≡ ∆′, ϕ and v fresh for γV (∆′)

Henceforth, as a syntactic shorthand, we will denote by vϕ the (unique) variable v such that
(v:(V εX(ϕ))) ∈ γV (∆), for ϕ ∈ ∆. We will adopt this notation also in later encodings
(where, of course, the involved judgement may be different from V).

3The notion of canonical form is very close to that of long βη-normal form; see [15] for details.

9

Judgements
V : o→ Type

Axioms and Rules
A1 :

∏

x,y:o(V ε{x,y}(A1x,y)) Similarly for A2x,y,z , A3x,y,Kx,y.

MP :
∏

x,y:o(V x) → (V (⊃ xy)) → (V x),

NEC :
∏

x:o(V x) → (V (2x))

4 :
∏

x:o(V ε{x}(4x)) Similarly for Tx, 5x, J1x.

Figure 3: Σ(K′) and its extensions for K4′,. . . .

We can then define the encoding function ε
Σ(K′)
X,∆ , where X ⊆ Φa, ∆ ⊆ ΦX ; such function

maps proofs π of K′ such that FV(π) ⊆ X to canonical forms of type (V εX(ϕ)), for ϕ ∈ ΦX ,
in the environment Σ(K′),ΓX , γV (∆):

ε
Σ(K′)
X,∆ : {π | (X,∆) |=K′ π : ϕ,ϕ ∈ ΦX} →

{

t | ΓX , γV (∆) `Σ(K′) t : (V εX(ϕ)), ϕ ∈ ΦX
}

ε
Σ(K′)
X,∆ (ϕ)

def
= vϕ if ϕ ∈ ∆

ε
Σ(K′)
X,∆ (A1ϕ,ψ)

def
= A1 εX(ϕ) εX(ψ) similarly for A2, A3,K

ε
Σ(K′)
X,∆ (Necϕ(π))

def
= NEC εX(ϕ) ε

Σ(K′)
X,∆ (π)

ε
Σ(K′)
X,∆ (MPϕ,ψ(π, π′))

def
= MP εX(ϕ) εX(ψ) ε

Σ(K′)
X,∆ (π) ε

Σ(K′)
X,∆ (π′)

Theorem 4.1 The function ε
Σ(K′)
X,∆ is a compositional bijection between proofs π, such that

(X,∆) |=K′ π : ϕ, and canonical terms p,4 such that ΓX , γV (∆) `Σ(K′) p : (V εX(ϕ)).

4.2 Systems for truth

In encoding these systems, we have to deal with the problematic issue of enforcing the
side condition of the necessitation rule. Hence, we have to extend accordingly the LF
methodology for encoding assertions. Here we consider three solutions. In the first, we add
a new parameter to the basic judgement, i.e. T : U → o → Type, where U is a type on
which no constructor is defined. In the second, we introduce a new judgement on proof terms,
corresponding to the metatheoretic notion that “the proof depends on no assumption.” The
third solution makes use of two judgements over formulæ, Ta, V : o → Type. It follows
closely the one in [3, Section 4.1]. In Section 6 we shall elaborate on the connection between
these three solutions.

4.2.1 World parameters

In Figure 4 we give the signature Σw(K) for the Hilbert-style system K, and its extensions
for other systems (K4, KT, . . .). The extra sort U (the universe) has no constructors:
therefore, the only terms inhabiting U are variables, which have to be assumed in the typing
context. These variables are called suggestively “worlds” (of the universe). It should be
noticed, however, that this terminology is chosen only for its intuitive appeal, and there is
no direct connection with Kripke semantics of modal logics. Indeed, we do not introduce any

4In the following, we denote generic terms by t, proof forms by p, proofs of no-assumption judgement by
n, proofs of closed judgement by c,. . .

10

Syntactic Categories
U : Type

Judgements
T : U → o→ Type

Axioms and Rules
A1 :

∏

x,y:o

∏

w:U (T w (ε{x,y}(A1x,y)) Similarly for A2x,y,z, A3x,y,Kx,y

MP :
∏

x,y:o

∏

w:U (T w x) → (T w (⊃ xy)) → (T w y)

NEC :
∏

x:o (
∏

w:U (T w x)) →
∏

w:U (T w (2x))

4 :
∏

x:o

∏

w:U (T w ε{x}(4x)) Similarly for Tx, 5x, J1x.

Figure 4: Σw(K), and its extensions for K4,. . .

accessibility relation (as it is done in semantic embeddings, e.g. [5]). Hence, this approach is
general enough to allow to encode easily any proof rule, also in Logics whose semantics does
not rely upon Kripke frames (such as, e.g., Linear Logic; see also [17, 24] for applications to
Dynamic Logic and Hoare Logic).

The idea behind the use of the extra world parameter is purely syntactical. By means
of this extra parameter we succeed in representing the side condition of “no assumptions”
in proof rules, in terms of the metalogical condition of “no free variables” in proof terms.
In making an assumption, we are forced to assume the existence of a world, say w, and to
instantiate the truth judgement T also on w. This judgement appears also as an hypothesis
on w. Hence, deriving as premise a judgement, which is universally quantified with respect
to U , amounts to establishing the judgement for a generic world on which no assumptions
are made, i.e. on no assumptions.

The encoding function ε
Σw(K)
X,∆,w is inductively defined on the structure of proofs: given a

proof π : ∆ `K ϕ, ε
Σw(K)
X,∆,w (π) is the proof term corresponding to π, where X = FV(π).

ε
Σw(K)
X,∆,w (ϕ)

def
= vϕ if ϕ ∈ ∆

ε
Σw(K)
X,∆,w (A1,ϕψ)

def
= A1 εX(ϕ) εX(ψ) w similarly for A2, A3,K

ε
Σw(K)
X,∆,w (Necϕ(π))

def
= NEC εX(ϕ) (λw′:U.ε

Σw(K)
X,∅,w′

(π)) w

ε
Σw(K)
X,∆,w (MPϕψ(π, π′))

def
= MP εX(ϕ) εX(ψ) w ε

Σw(K)
X,∆,w (π) ε

Σw(K)
X,∆,w (π′)

Given a variable w of type U , ∆ ⊆ Φ with FV(∆) ⊆ X, we define the LF context γw(∆)
as follows:

γw(∆)
def
=

{

w : U if ∆ ≡ ∅
γw(∆′), v : (T w εX(ϕ)) if ∆ ≡ ∆′, ϕ and v fresh for γw(∆′)

Theorem 4.2 The function ε
Σw(K)
X,∆,w is a compositional bijection between proofs π, such that

(X,∆) |=K π : ϕ, and canonical terms t, such that ΓX , γw(∆) `Σw(K) t : (T w εX(ϕ)).

4.2.2 “No Assumptions”-judgement

In Figure 5 we give the signature ΣNa(K) and its extensions for the systems K4, KT, . . .
Given ∆ ⊆ Φ with FV(∆) ⊆ X, we define the LF context γT (∆) as follows:

γT (∆)
def
=

{

〈〉 if ∆ ≡ ∅
γT (∆′), v : (T εX(ϕ)) if ∆ ≡ ∆′, ϕ and v fresh for γT (∆′)

11

Judgements
T :o→ Type

Na:
∏

x:o Tx → Type

Axioms and Rules
A1:

∏

x,y:o(T (ε{x,y}(A1x,y)) Similarly for A2x,y,z, A3x,y,Kx,y

MP :
∏

x,y:o(T (⊃ xy)) → (T x) → (T y)

NEC :
∏

x:o

∏

d:(T x)(Na x d) → (T 2x)

NaA1
:
∏

x,y:o(Na ε{x,y}(A1x,y) (A1 x y)), Similarly for A2x,y,z, A3x,y,Kx,y

NaNEC :
∏

x:o

∏

d:(T x)

∏

n:(Na x d)(Na 2x (NEC x d n))

NaMP :
∏

x,y:o

∏

d1:(T x)

∏

d2:(T (⊃xy))

(Na x d1) → (Na (⊃ xy) d2) → (Na y (MP x y d2 d1))

4:
∏

x:o(T ε{x}(4x))
Na4:

∏

x:o(Na ε{x}(4x) (4 x)) Similarly for Tx, 5x, J1x

Figure 5: ΣNa(K) and its extensions for K4,. . . .

The adequacy theorem relies on two technical lemmata (the second is in Section A.2.4):

Lemma 4.3 ∀t, p canonical forms: ΓX `ΣNa(K) p:(T t) ⇒ ∃n.ΓX `ΣNa(K) n:(Na p t).

Following the steps of the proof of Lemma 4.3, it is easy to define a function α which
maps each canonical form p, such that ΓX `ΣNa(K) p : (T t) to the corresponding proof
term n such that ΓX `ΣNa(K) n : (Na p t). Then we can define the encoding function for
ΣNa(K) as follows5:

ε
ΣNa(K)
X,∆ (ϕ)

def
= vϕ if ϕ ∈ ∆

ε
ΣNa(K)
X,∆ (A1ϕψ)

def
= A1 εX(ϕ) εX(ψ) similarly for A2ϕ,ψ,ϑ, A3ϕ,ψ,Kϕ,ψ

ε
ΣNa(K)
X,∆ (Necϕ(π))

def
= NEC εX(ϕ)ε

ΣNa(K)
X,∅ (π) α

(

ε
ΣNa(K)
X,∅ (π)

)

ε
ΣNa(K)
X,∆ (MPϕ,ψ(π, π′))

def
= MP εX(ϕ) εX(ψ) ε

ΣNa(K)
X,∆ (π) ε

ΣNa(K)
X,∆ (π′)

Theorem 4.4 The function ε
ΣNa(K)
X,∆ is a compositional bijection between valid proofs π,

such that (X,∆) |=K π : ϕ, and canonical terms p, such that ΓX , γT (∆) `ΣNa(K) p :
(T εX(ϕ)).

Notice that, in order to use the above signature faithfully to the original system, the user
should not assume any Na assertion.

4.2.3 Two-judgements systems

We next describe a method in which the two consequence relations, validity and truth, are
handled together, in one comprehensive system. The method is rather general, and can be
used for every Hilbert-type system in which the rules are divided into rules of derivation
and rules of proof.

We start with the following observation. Recall that a proof of a formula ϕ in a Hilbert-
type system H is a labelled tree. A formula ϕ follows in H from a set of formulæ ∆ (written
∆ `H ϕ) iff there is a proof-tree π in which every leaf is labelled by an axiom of H or by an
element of ∆, the root is labelled by ϕ, and the following condition is be satisfied:

5Recall that vϕ is the unique variable v such that (v:(T εX(ϕ))) ∈ γT (∆).

12

• The formula which labels a node which is not a leaf should follow from the formulæ
which label its successors by one of the rules of H.

Now the main property of a pure Hilbert-type system is that for such a system the condition
above has a local character. By this we mean that all we need to know in order to check it
at a certain node, are the formulæ which label that node and its successors. This is not the
case, e.g. if one of the rule is a rule of proof. Checking validity of a node which is justified by
such a rule requires (among other things) checking the leaves of all the branches which pass
through that node and see that they all are labelled by axioms. This is a global condition
on the subtree of which that node is the root!

The solution to this problem is to arrange things so that all the data which is needed
for checking validity of a node would be found at that node and its successors. For rules
of proof this can be achieved rather easily by adding to each node a second label. This
second label is either the word valid or the word true. Officially, therefore, each node is
labelled by a pair 〈ϕ, l〉, where ϕ is a formula and l ∈{true,valid}. Let us call a tree π of
such pairs a generalized H-proof of 〈ϕ, l〉 from the set of assumptions 〈ϕ1, l1〉, . . . , 〈ϕn, ln〉,
(written π : 〈ϕ1, l1〉, . . . , 〈ϕn, ln〉 `H′ 〈ϕ, l〉) if the following conditions are satisfied:

• As a tree of formulæ, the tree is a legitimate proof-tree of the system H
′

, which is
obtained from H by turning any rule of proof into a rule of derivation.

• A leaf 〈ψ, h〉 has h = valid if ψ is an axiom of H.

• A node which is not a leaf is labelled valid iff all its successors are labelled valid.

• A node which is derived by a rule of proof of H should be labelled valid (hence so
should also be the case for every node in the subtree which is generated by it).

It is a straightforward task now to prove the following

Lemma 4.5 The erasing of the second label is a compositional bijection between:

1. proofs in H
′

and generalized H-proofs, in which all nodes are labelled valid.

2. (ordinary) proofs in H and generalized H-proofs, in which all leaves which are not
labelled by axioms are labelled true.

It is obvious, therefore, that generalized H-proofs subsume ordinary proofs in both H and
H

′

. On the other hand they behave nicely from the LF point of view, and so can easily be
represented. One possibility is to view generalized H-proofs as ordinary proofs of a pure
Hilbert-type system of signed formulæ (where the signs are true and valid). An equivalent
approach which is perhaps more intuitive is to introduce two judgements, “T” (for “truth”)
and “V ” (for “validity”). The corresponding obvious representation in the case of the modal
logics treated above is given in Figure 6.

Theorem 4.6 There is a compositional bijection between generalized H-proofs (where H =
K,K4, etc.) of 〈ϕ1, l1〉, . . . , 〈ϕn, ln〉 `H 〈ψ, l〉 and canonical terms t such that

ΓX , γV ({ϕi | li = valid}), γT ({ϕi | li = true}) `Σ2j(H) t : (J εX(ψ))

where J = T if l = true, V otherwise.

Corollary 4.7 Suppose {ϕ1, . . . , ϕn, ψ} ⊆ ΦX .

13

Judgments
T, V : o→ Type

Axioms and Rules
A1 :

∏

x,y:o(V ε{x,y}(A1x,y)) Similarly for A2x,y,z , A3x,y,Kx,y

MPT,T :
∏

x,y:o(T (⊃ xy)) → (T x) → (T y)

MPV,V :
∏

x,y:o(V (⊃ xy)) → (V x) → (V y)

MPT,V :
∏

x,y:o(T (⊃ xy)) → (V x) → (T y)

MPV,T :
∏

x,y:o(V (⊃ xy)) → (T x) → (T y)

NEC :
∏

x:o(V x) → (V (2x))

4 :
∏

x:o(V ε{x}(4x)) Similarly for Tx, 5x, J1x.

Figure 6: Σ2j(K) and its extensions for K4,. . .

1. There is a compositional bijection between proofs in H
′

(where H = K,K4, etc.)
of ϕ1 . . . ϕn `H ψ and canonical terms t such that ΓX , γV ({ϕ1, . . . , ϕn}) `Σ2j(H) t :
(V εX(ψ)).

2. There is a compositional bijection between proofs in H (where H = K,K4, etc.) of
ϕ1 . . . ϕn `H ψ and canonical terms t such that ΓX , γT ({ϕ1, . . . , ϕn}) `Σ2j(H) t : (J ψ),
where J is V if dom(γT ({ϕ1, . . . , ϕn})) ∩ FV(t) = ∅, T otherwise.

The last corollary is nice, but it is obvious that generalized H-proofs define, in fact,
something which is stronger than both H and H

′

. What naturally corresponds to them is
a sort of a triple consequence relation, that is, we write ∆; Ξ `H ϕ iff there is a generalized
H-proof in which the root is labelled by ϕ, while every leaf is either labelled by an axiom,
or by an element of ∆ and valid, or by an element of Ξ and true. This is the case, it should
be emphasized, for any Hilbert-type system of the kind we treat here. In the case of modal
logics, however, this triple consequence relation has a clear semantic interpretation (and has
already been used, e.g., in [9], where it is denoted like this: ∆ |=H Ξ −→ ϕ):

∆; Ξ `H ϕ ⇐⇒ ∀M ∈M.∀s ∈M.(|=M ∆ ∧ s |=M Ξ) ⇒ s |=M ϕ

It is clear that what we have constructed is a representation of this triple consequence
relation. It is easy, in fact, to show the following generalization of the previous corollary:

Theorem 4.8 There is a compositional bijection between generalized H-proofs of ∆; Ξ `H ϕ

and canonical terms t such that ΓX , γV (∆), γT (Ξ) `Σ2j(H) t : (J εX(ϕ)) where J is V if
dom(γT (Ξ)) ∩ FV(t) = ∅, T otherwise.

Remark. In our representation the MP rule has been represented by four constants, each
with a different type. In general, a rule of derivation R with n premises will be represented
by 2n constants (while a rule of proof will need just one). We can, in fact, represent any
such rule by just two (RV,...,V and RT,...,T), provided we introduce the following extra global
constant:

C :
∏

x:o

(V x) → (T x)

Using this constant we can define, e.g., MPT,V and MPV,T as follows:

MPT,V
def
= λx, y : o.λt : (T (⊃ xy)).λs : (V x).(MPT,T t (C s))

MPV,T
def
= λx, y : o.λt : (T (⊃ xy)).λs : (V x).(MPT,T (C t) s)

14

Judgements
Ta, V : o→ Type

Rules
⊃-I :

∏

x,y:o((Ta x) → (Ta y)) → (Ta(⊃ x ψ))

2Ta-I :
∏

x:o(Ta x) → (V 2x)
⊃-ETa,Ta :

∏

x,y:o(Ta(⊃ x y)) → (Ta x) → (Ta y)

2V -I :
∏

x:o(V x) → (V 2x)
⊃-EV,Ta :

∏

x,y:o(V (⊃ x y)) → (Ta x) → (V y)

⊃-ETa,V :
∏

x,y:o(Ta (⊃ x y)) → (V x) → (V y)

⊃-EV,V :
∏

x,y:o(V (⊃ x y)) → (V x) → (V y)

⊃2-E :
∏

x,y:o(Ta 2(⊃ x y)) → (Ta 2x) → (Ta 2y)

2-E :
∏

x:o(Ta 2x) → (Ta x)
22-I :

∏

x:o(Ta 2x) → (Ta 22x)
23-I :

∏

x:o(Ta 3x) → (Ta 23x)
2⊃-E :

∏

x:o(Ta 2(⊃ 2(⊃ x 2x) x) → (Ta x)

Figure 7: Σ2j(NK′) and its extensions for NK4′,. . .

Similar treatment can be given to any rule of derivation. This approach has the advantage
that we can require J (in Corollary 4.7 and Theorem 4.8) to be simply T , which is rather
intuitive. The disadvantage is that we lose the bijection between proofs and terms: there is
some amount of freedom concerning where to apply C, and so more than one term corre-
sponds to a given proof. This can be remedied, e.g., by requiring that in canonical terms C
will be applied as late as possible.

5 Encodings of Natural Deduction-style systems

Throughout this section, we shall encode only the “minimal” fragment of the modal logics.
It should be straightforward to extend the signatures to the full systems.

5.1 Systems for validity

We use an extension of the two-judgements technique seen above. In Figure 7 we give the
signature Σ2j(NK′) and its extension for systems NK4′, NKT′,

Given ∆ ⊆ Φ with FV(∆) ⊆ X, we define the LF context γTa(∆) as follows:

γTa(∆)
def
=

{

〈〉 if ∆ ≡ ∅
γTa(∆

′), v : (Ta εX(ϕ)) if ∆ ≡ ∆′, ϕ and v fresh for γTa(∆
′)

Theorem 5.1 For X ⊂ Φa, ∆ ⊆ ΦX , ϕ ∈ ΦX :

• There exists a compositional bijection between proofs π, such that (X,∆) |=NK′ π : ϕ,
and canonical terms p, such that ΓX , γTa(∆) `Σ2j(NK′) p : (Ta εX(ϕ)).

• There exists a compositional bijection between proofs π, such that (X,∆) ||=NK′ π : ϕ,
and canonical terms p, such that ΓX , γTa(∆) `Σ2j(NK′) p : (V εX(ϕ)).

15

Special system for NS4. We can get an alternative Natural Deduction-style system
NS4′ for NKT4′, closer in spirit to Prawitz’ first system for S4 [27], by replacing ⊃2-E

and 22-I by the rule

⊃2-I
Γ,2ϕ `̀ ψ

Γ `̀ 2ϕ ⊃ ψ

The resulting system is NS4′
def
= NC + ⊃2-I + 2-E. In this system, ⊃2 and 22-I are

derivable on the level of `̀ , not `.
The encoding of system NS4′ is straightforward, and we get a compositional bijection.

This is an improvement of the encoding used in [3, Section 4.2].
One can get an analogue of Prawitz’ second system for S4 (see [27]) by using the rule

⊃EM -I
Γ, ϕ `̀ ψ

Γ `̀ 2ϕ ⊃ ψ
ϕ is essentially-modal

The side condition can be handled, like in [3], by introducing a special judgement, EM :
o → Type, which corresponds to the property of being “essentially modal” (see [27] for
definitions).

5.2 Systems for truth

We present two general solutions for handling the necessitation rule in the classical systems
presented in Section 1.4: the first is based on world parameters, the second makes use of a
“closed assumption”-judgement. The signatures obtained using these two approaches allow
to derive the corresponding ones introduced for the Hilbert-style case in Section 4.2, and
hence they are strictly stronger. In Section 5.2.5 we sketch also yet another general solution
which makes use of three judgements on formulæ. Strictly speaking, this is an encoding of
novel multiple CR systems for the truth CR of Modal Logics.

For the special system NS4 introduced by Prawitz [27], we consider two more encodings.
These adopt an auxiliary judgement on proofs for enforcing Prawitz’s conditions (“boxed
assumptions” and “boxed-fringe”, respectively). Also in this section, we restrict ourselves
to the “minimal” fragment of modal logic.

5.2.1 World parameters

In Figure 8 we give the signature Σw(NK) and its extensions for the other systems (NK4,

. . .). The encoding function ε
Σw(NK)
X,∆,w is defined on the structure of proofs of NK: given a

proof π : ∆ `NK ϕ, ε
Σw(NK)
X,∆,w (π) is the proof term corresponding to π.

ε
Σw(NK)
X,∆,w (ϕ)

def
= vϕ if ϕ ∈ ∆

ε
Σw(NK)
X,∆,w (2′-Iϕ(π′))

def
= 2-I εX(ϕ) (λw′ : U.ε

Σw(NK)
X,∅,w′ (π′)) w

ε
Σw(NK)
X,∆,w (⊃-Iϕψ(π′))

def
= ⊃-I εX(ϕ) εX(ψ) w(λv:(T w εX(ϕ)).ε

Σw(NK)
X,(∆,ϕ),w(π′))

ε
Σw(NK)
X,∆,w (⊃-Eϕψ(π′, π′′))

def
= ⊃-E εX(ϕ) εX(ψ) w ε

Σw(NK)
X,∆,w (π′) ε

Σw(NK)
X,∆,w (π′′)

ε
Σw(NK)
X,∆,w (⊃2-Eϕψ(π′, π′′))

def
= ⊃2-E εX(ϕ) εX(ψ) w ε

Σw(NK)
X,∆,w (π′) ε

Σw(NK)
X,∆,w (π′′)

Theorem 5.2 The function ε
Σw(NK)
X,∆,w is a compositional bijection between proofs π, such that

(X,∆) |=NK π : ϕ, and canonical terms t, such that ΓX , γw(∆) `Σw(NK) t : (T w εX(ϕ)).

16

Syntactic Categories
U : Type

Judgements
T : U → o→ Type

Axioms and Rules
⊃-I :

∏

x,y:o

∏

w:U ((T w x) → (T w y)) → (T w (⊃ xy))

⊃-E :
∏

x,y:o

∏

w:U (T w (⊃ xy)) → (T w x) → (T w y)

⊃2-E :
∏

x,y:o

∏

w:U (T w 2(⊃ xy)) → (T w 2x) → (T w 2y)

2
′
-I :

∏

x:o (
∏

w:U (T w x)) →
∏

w:U (T w (2x))

2-E :
∏

x:o

∏

w:U (T w 2x) → (T w x)
22-I :

∏

x:o

∏

w:U (T w 2x) → (T w 22x)
23-I :

∏

x:o

∏

w:U (T w 3x) → (T w 23x)
2⊃-E :

∏

x:o

∏

w:U (T w 2(⊃ 2(⊃ x 2x) x) → (T w x)

Figure 8: Σw(NK) and its extensions for NK4,. . .

5.2.2 “Closed Assumptions”-judgement

In Figure 9 we give the signature ΣCl(NK) and its extensions for the other truth systems
(NK4, NKT, . . .). Notice that there is a rule for establishing the “closed assumption”-
judgement corresponding to each proof constructor, i.e. for each rule in NK.

The existence and definition of the encoding function relies upon two technical lemmata:

Lemma 5.3 ∀p canonical form, if ΓX ,∆ `ΣCl(NK) p : (T t) then ∃c.ΓX ,∆,Ξp(∆) `ΣCl(NK)

c : (Cl t p), where Ξp(∆)
def
= {c:(Cl t x) | x ∈ FV(p) ∧ (x:(T t)) ∈ ∆}.

Lemma 5.3 defines naturally a function from canonical proof forms p : (T t) to canonical
forms of type (Cl t p), in the same environment expanded with the “closed assumptions”
for the free variables of p. Let us denote such function by α.

Lemma 5.4 ∀c canonical form, if ΓX ,∆,Ξ `ΣCl(NK) c:(Cl t p) then ΓX ,∆
′,Ξ `ΣCl(NK)

c:(Cl t p), where Ξ contains all and only the Cl assertions, and ∆′ = {x:(T t)|(Cl t x) ∈
=(Ξ)}.

We can now define the encoding function ε
ΣCl(NK)
X,∆ , which relies on the α above men-

tioned.

ε
ΣCl(NK)
X,∆ (ϕ)

def
= vϕ , if ϕ ∈ ∆

ε
ΣCl(NK)
X,∆ (⊃-Iϕ,ψ(π))

def
= ⊃-I εX(ϕ) εX(ψ) (λv:(T εX(ϕ)).ε

ΣCl(NK)
X,(∆,ϕ) (π))

ε
ΣCl(NK)
X,∆ (⊃-Eϕ,ψ(π′, π′′))

def
= ⊃-E εX(ϕ) εX(ψ) ε

ΣCl(NK)
X,∆ (π′) ε

ΣCl(NK)
X,∆ (π′′)

ε
ΣCl(NK)
X,∆ (⊃2-Eϕ,ψ(π′, π′′))

def
= ⊃2-E εX(ϕ) εX(ψ) ε

ΣCl(NK)
X,∆ (π′) ε

ΣCl(NK)
X,∆ (π′′)

ε
ΣCl(NK)
X,∆ (2′-Iϕ(π))

def
= 2

′
-I εX(ϕ) ε

ΣCl(NK)
X,∅ (π) α

(

ε
ΣCl(NK)
X,∅ (π)

)

Theorem 5.5 The function ε
ΣCl(NK)
X,∆ is a compositional bijection between proofs π, such

that (X,∆) |=NK π:ϕ, and canonical terms t, such that ΓX , γT (∆) `ΣCl(NK) t:(T εX(ϕ)).

17

Judgements
T :o→ Type

Cl:
∏

x:o(T x) → Type

Axioms and Rules
⊃2-E:

∏

x,y:o(T 2(⊃ xy)) → (T 2x) → (T 2y)

⊃-I:
∏

x,y:o((T x) → (T y)) → (T (⊃ xy))

⊃-E:
∏

x,y:o(T (⊃ xy)) → (T x) → (T y)

2
′
-I:

∏

x:o

∏

d:(T x)(Cl x d) → (T (2x))

Cl
2
′
-I

:
∏

x:o

∏

d1:(T x)

∏

c1:(Cl x d1)
(Cl (2x) (2′-I x d1 c1))

Cl⊃-I:
∏

x,y:o

∏

d:(T x)→(T y)

(

∏

a:(T x)(Cl x a) → (Cl y (da))
)

→ (Cl y (⊃-I x y d))

Cl⊃-E:
∏

x,y:o

∏

d1:(T (⊃ x y))

∏

d2:(T x)

(Cl x d2) → (Cl (⊃ x y) d1) → (Cl y (⊃-E x y d1 d2))
Cl⊃2-E:

∏

x,y:o

∏

d1:(T 2(⊃xy))

∏

d2:(T 2x)

(Cl 2(⊃ xy) d1) → (Cl 2x d2) → (Cl 2y (⊃2-E x y d1 d2))

2-E:
∏

x:o(T 2x) → (T x)
Cl2-E:

∏

x:o

∏

d:(T 2x)(Cl 2ϕ d) → (Cl x (2-E x d))

.

Figure 9: ΣCl(NK) and its extensions for NKT,

5.2.3 “Boxed Assumptions”-judgement

In Figure 10 we give the signature Σ2(NS4), which adopts a special technique for imple-
menting Prawitz’ system NS4 [27].

Given ∆ ⊆ Φ with FV(∆) ⊆ X, we define the LF context γ2(∆) as follows:

γ2(∆)
def
=

〈〉 if ∆ ≡ ∅
γ2(∆′), v : (T εX(ϕ)) if ∆ ≡ ∆′, ϕ, ϕ is not boxed and v fresh for γ2(∆′)
γ2(∆′), v : (T εX(ϕ)), u : (Bx εX(ϕ) v)

if ∆ ≡ ∆′, ϕ, ϕ is boxed and v, u are fresh for γ2(∆′)

The long proof of adequacy relies upon some very technical lemmata. We report here
only those needed for defining the encoding function; the others are in Section A.3.8. For
sake of simplicity, we adopt the following definition: for p proof term and Γ context,

C(p,Γ)
def
= for all v ∈ FV(p), if (v:(T εX(ψ))) ∈ Γ then ∃u.(u:(Bx εX(ψ) v)) ∈ Γ

Lemma 5.6 Given a canonical term p s.t. ΓX , γ2(∆) `Σ2(NS4) p : (T t), if C(p, γ2(∆))
holds then there is a canonical term b such that ΓX , γ2(∆) `Σ2(NS4) b : (Bx t p).

A consequence of this lemma is the existence of a function β∆ : Λ → Λ, where ∆ is a LF
context, inductively defined as follows:

β∆(v)
def
= u if there exists t such that (u:(Bx t v)) ∈ ∆

β∆(⊃-I t t′ (λv:(T t).p))
def
= (Bx⊃-I t t

′ (λv:(T t).p)(λv:(T t)λu:(Bx t v).β∆,(u:(Bx t v)(p)))

β∆(⊃-E t t′ p1 p2)
def
= (Bx⊃-E t t′ p1 p2 β∆(p1) β∆(p2))

β∆(2-I t p b)
def
= (Bx2-I t p b) β∆(2-E t p)

def
= (Bx2-E t p β∆(p))

β∆(⊃2-I t t′ p′)
def
= (Bx⊃2-I t t

′ p′ (λv:(T t)λu:(Bx t v).β∆,(u:(Bx t v)(p)))

where p′
def
= λv:(T t)λu:(Bx t v).p

18

Judgements
T :o→ Type

Bx:
∏

x:o(T x) → Type

Axioms and Rules
⊃-I:

∏

x,y:o((T x) → (T y)) → (T (⊃ x y))

⊃2-I:
∏

x,y:o

(

∏

d:(T 2x)(Bx 2x d) → (T y)
)

→ (T (⊃ 2x y))

⊃-E:
∏

x,y:o(T (⊃ x y)) → (T x) → (T y)

2-I:
∏

x:o

∏

d:(T x)(Bx x d) → (T (2x))

2-E:
∏

x:o(T (2x)) → (T x)

Bx⊃2-I:
∏

x,y:o

∏

d:(
∏

a:(T 2x)
(Bx 2x a)→(T y))

∏

a:(T 2x)

∏

b:(Bx 2x a)

(Bx y (d a b))

→ (Bx (⊃ 2x y) (⊃2-I x y d))

Bx⊃-I:
∏

x,y:o

∏

d:(T x)→(T y)

∏

a:(T x)

(Bx x a) → (Bx y (da))

→ (Bx (⊃ x y) (⊃-I x y d))

Bx⊃-E:
∏

x,y:o

∏

d1:(T (⊃x y))

∏

d2:(T x)

(Bx (⊃ x y) d1) → (Bx x d2) → (Bx y (⊃-E x y d1 d2))

Bx2-I:
∏

x:o

∏

d:(T x)

∏

b:(Bx x d)(Bx 2x (2-Ix d b))

Bx2-E:
∏

x:o

∏

d:(T 2x)(Bx 2x d) → (Bx x (2-E x d))

Figure 10: Σ2(NS4).

This function maps each proof term p whose free variables are “boxed” (i.e., for each v:(T t)
free in p there is an assumption u:(Bx t v) in ∆) in the corresponding proof term witnessing
that p depends only on boxed assumptions. This function is well defined, because the v’s of
the pairs we introduce in ∆ at the cases for ⊃-I, ⊃2-I are “fresh”.

Lemma 5.7 ∀X,∆, ϕ, if (X,∆) |=NS4 π : ϕ then there exists a canonical form p such that
ΓX , γ2(∆) `Σ2(NS4) p : (T εX(ϕ)).

A consequence of this lemma is the existence of the function ε
Σ2(NS4)
X,∆ , which maps proofs

of NS4 to canonical proof terms. This function is inductively defined as follows.

ε
Σ2(NS4)
X,∆ (ϕ)

def
= vϕ

ε
Σ2(NS4)
X,∆ (⊃-Iϕψ(π′))

def
=

(⊃2-I εX(ϕ) εX(ψ)

(λv:(T εX(ϕ))λu:(BxεX(ϕ)v).ε
Σ2(NS4)
X,∆,ϕ (π′))) if ϕ boxed

(⊃-I εX(ϕ) εX(ψ) (λv:(TεX(ϕ)).ε
Σ2(NS4)
X,∆,ϕ (π′))) if ϕ not boxed

ε
Σ2(NS4)
X,∆ (⊃-Eϕ,ψ(π′, π′′))

def
= (⊃-E εX(ϕ) εX(ψ) ε

Σ2(NS4)
X,∆ (π′′) ε

Σ2(NS4)
X,∆ (π′))

ε
Σ2(NS4)
X,∆ (2-Iϕ(π′))

def
= (2-I εX(ϕ) εX,∆(π′) βγ2(∆)(ε

Σ2(NS4)
X,∆ (π′)))

ε
Σ2(NS4)
X,∆ (2-Eϕ(π′))

def
= (2-E εX(ϕ) ε

Σ2(NS4)
X,∆ (π′))

Theorem 5.8 The function ε
Σ2(NS4)
X,∆ is a compositional bijection between proofs π, such

that (X,∆) |=NS4 π : ϕ, and canonical terms t, such that ΓX , γ2(∆) `Σ2(NS4) t : (T εX(ϕ)).

In this signature, besides a rule for establishing the “boxed assumption”-judgement cor-
responding to each rule in NS4, there is also an extra rule, namely ⊃2-I. This subtle rule is
necessary in order to discharge “boxed assumption”-judgements: see the following example.

19

Judgements
T :o→ Type

BF :
∏

x:o(T x) → Type

Axioms and Rules
⊃-I:

∏

x,y:o((T x) → (T y)) → (T (⊃ x y))

⊃2-I:
∏

x,y:o

(

∏

d:(T 2x)(BF 2x d) → (T y)
)

→ (T (⊃ 2x y))

⊃-E:
∏

x,y:o(T (⊃ x y)) → (T x) → (T y)

2-I:
∏

x:o

∏

d:(T x)(BF x d) → (T (2x))

2-E:
∏

x:o(T 2x) → (T x)

BF⊃2-I:
∏

x,y:o

∏

d:
∏

a:(T 2x)
(BF 2x a)→(T y)

∏

a:(T 2x)

∏

b:(BF 2x a)

(BF y (d a b))

→ (BF (⊃ 2x y) (⊃2-I x y d))

BF⊃-I:
∏

x,y:o

∏

d:(T x)→(T y)

∏

a:(T x)

(BF x a) → (BF y (d a))

→ (BF (⊃ x y) (⊃-I x y d))

BF⊃-E:
∏

x,y:o

∏

d1:(T (⊃ x y))

∏

d2:(T x)

(BF (⊃ x y) d1) → (BF x d2) → (BF y (⊃-E x y d1 d2))

BF ′⊃-E
:
∏

x,y:o

∏

d1:(T (⊃ x 2y))

∏

d2:(T x)(BF 2y (⊃-E x 2y d1 d2))

BF2-I:
∏

x:o

∏

d:(T x)

∏

b:(BF x d)(BF 2x (2-I x d b))

BF2-E:
∏

x:o

∏

d:(T 2x)(BF x (2-E x d))

Figure 11: ΣFr(NS4).

Example 5.1 We show the derivation of axiom 4 : 2ϕ ⊃ 22ϕ, both in NS4 and in LF
(for typographical reasons, we omit the function εX).

2ϕ ` 2ϕ

2ϕ ` 22ϕ
2-I

` 2ϕ ⊃ 22ϕ
⊃-I

` ΓX , v:(T 2ϕ), u:(Bx 2ϕ u)

ΓX , v:(T 2ϕ), u:(Bx 2ϕ u) ` (2-I 2ϕ v u) : (T 22ϕ)
1

ΓX ` λv:(T 2ϕ)λu:(Bx 2ϕ v).(2-I 2ϕ v u) :
∏

v:(T 2ϕ)

∏

u:(Bx 2ϕ v)

(T 22ϕ)
2

ΓX ` (⊃2-I ϕ 22ϕ λv:(T 2ϕ)λu:(Bx 2ϕ v).(2-I 2ϕ v u)):(T (2ϕ ⊃ 22ϕ))
3

where 1 = app(2-I); 2 = 2× abs; 3 = app(⊃2-I).

5.2.4 “Boxed Fringe”-judgement

For the sake of completeness we sketch here how to encode Prawitz’s third version of system
NS4 [27]. The signature ΣFr(NS4) appears in Figure 11.

The judgement BF :
∏

x:o(T x) → Type holds only on proofs with a fringe of boxed
formulæ (in the minimal fragment of modal logic, boxed formulæ are all the essentially
modal formulæ). In the system there are rules for establishing the “boxed fringe” judgement
corresponding to each rule in NS4. Additional rules for BF can be induced by elimination
rules whenever the inferred formula is boxed (and hence belongs to the fringe). This is the
case, e.g., of ⊃-E.

20

Σ2j(NK′)+

Judgements
Ta, V, T : o→ Type

Axioms and Rules
C :

∏

x:o(V x) → (T x)
⊃T -I :

∏

x,y:o((T x) → (T y)) → (T (⊃ xy))

⊃T -E :
∏

x,y:o(T (⊃ xy)) → (T x) → (T y)

. . . similarly for negation and ff .

2-E :
∏

x:o(Ta 2x) → (Ta x)
22-I :

∏

x:o(Ta 2x) → (Ta 22x)
23-I :

∏

x:o(Ta 3x) → (Ta 23x)
2⊃-E :

∏

x:o(Ta 2(⊃ 2(⊃ x 2x) x)) → (Ta x)

Figure 12: Σ3j(NK′′) and its extensions for NK4′′,. . .

5.2.5 Three-judgements

We can introduce ND-style systems for “truth” based on the multiple CR ND-style system
NK′ for validity. We need only to add a third consequence relation, namely `̀̀ , with exactly
the same rules as `, and in addition the rule Embed’. The whole system is called NK′′:

NK′′ def
= NK′ +

⊃T -I
Γ, ϕ `̀̀ ψ

Γ `̀̀ ϕ ⊃ ψ
⊃T -E

Γ `̀̀ ϕ ⊃ ψ Γ `̀̀ ϕ

Γ `̀̀ ψ
RaaT

Γ,¬ϕ `̀̀ ff

Γ `̀̀ ϕ

Γ, ϕ `̀̀ ϕ ff T -I
Γ `̀̀ ϕ Γ `̀̀ ¬ϕ

Γ `̀̀ ff
ff T -E

Γ `̀̀ ff

Γ `̀̀ ϕ
Embed’

`̀ ϕ

`̀̀ ϕ

Soundness of NK′′ is obvious; completeness follows from the fact that ϕ1, . . . , ϕn |= ϕ

iff ϕ1 ⊃ . . . ⊃ ϕn ⊃ ϕ is valid.
In order to encode this system we add a judgement T : o → Type, whose constructors

are like those of Ta plus a constant C which represents the Embed’ rule (Figure 12). We
can prove then

Theorem 5.9 There is a compositional bijection between proofs π : ∆ `NK′′ ϕ with FV(π) ⊆
X and canonical terms t such that ΓX , γT (∆) `Σ3j(NK′′) t : (T εX(ϕ)).

Again, similarly to the case of two-judgement system for K (see Section 4.2.3), the
resulting system is more powerful than this result points out, since it can deal with both truth
and validity notions, at the same time. A suitable semantic counterpart of such a system
is a multiple consequence relation (see [24, Chapter 3]), which combines those presented in
Definition 1.1 with the “triple consequence relation” of Section 4.2.3. We introduce a pair
of consequence relations as follows:

Definition 5.10 Let ϕ range over formulæ and ∆,Ξ over sets of formulæ.

• the multiple consequence relation with respect to a model M is (|=T
M, |=V

M) where the
two components are defined as follows:

∆; Ξ |=T
M ϕ ⇐⇒ (∀s.s |=M ∆) ⇒ (∀s.s |=M Ξ ⇒ s |=M ϕ)

∆; Ξ |=V
M ϕ ⇐⇒ (∀s.s |=M ∆) ⇒ (∀s.s |=M ϕ)

• the (absolute) MCR consists of the relations |=T def
=

⋂

M |=T
M, |=V def

=
⋂

M |=V
M, where

M ranges over all modal models.

21

This semantic consequence relation combines validity and truth CR’s, faithfully to what is
done by NK′′ at the syntactical level:

Theorem 5.11 For X ⊂ Φa, ∆,Ξ ⊆ ΦX , ϕ ∈ ΦX , J ∈ {T, V }, the following are equivalent:

1. ∃t canonical term such that ΓX , γTa(∆), γT (Ξ) `Σ2(NK) t : (J εX(ϕ));

2. ∆; Ξ |=J ϕ.

The proof of this theorem follows the standard paradigm.

6 Cross soundness

As we have seen, different techniques can be used for encoding the same system; for in-
stance, K can be encoded by using either “world parameters” (Σw(K)) or “no assumption”-
judgements (ΣNa(K)), or “two-judgments” (Σ2j(K)). Morally, these techniques are closely
related: for instance, (the encoding of) a proof has no assumptions (in ΣCl(NK)) iff it can
be carried out from no assumptions (in Σw(NK)).

Theorem 6.1 (Cross-soundness for K) For X ⊂ Φa, ∆ ⊆ ΦX , ϕ ∈ ΦX , the following
are equivalent:

1. ∃t.ΓX , γw(∅) `Σw(K) t : (T w εX(ϕ))

2. ∃t′, n.ΓX , γT (∆) `ΣNa(K) n : (Na εX(ϕ) t′)

3. ∃v.ΓX , γT (∆) `Σ2j(K) v : (V εX(ϕ))

Theorem 6.2 (Cross-soundness for NK) For X ⊂ Φa, ∆ ⊆ ΦX , ϕ ∈ ΦX , the following
are equivalent:

1. ∃t.ΓX , γw(∅) `Σw(NK) t : (T w εX(ϕ))

2. ∃t′, n.ΓX , γT (∆) `ΣCl(NK) n : (Cl εX(ϕ) t′)

3. ∃v.ΓX , γTa(∆) `Σ3j(NK) v : (V εX(ϕ))

These results can be seen as “internal proofs” of adequacy of the encodings. Similar con-
nections can be formulated with respect to other techniques appearing in this paper. These
metatheoretic results could be proved formally within some Logical Framework, e.g. Coq.

7 Final Remarks

The work presented in this paper is essentially an anthology of encodings of Modal Logics
in Logical Frameworks based on dependent-typed λ-calculus. In this sense it is part of a
general project that we have carried out over the past ten years [15, 3, 17, 23, 24] aiming at
exploring the expressive power of LF’s. The implications and limitations of this approach to
building proof assistants are not completely well-understood yet. As far as modal logics are
concerned, many more practical experiments are called for. The various signatures presented
in this paper should be compared between themselves and all of them should be compared
with existing alternative implementations based on different philosophies.

However, we think that the practice of encoding logics in LF’s has established at least
one point. At the metalogical level, LF’s are powerful tools for analyzing the compatibility of

22

a given logic with the process of assuming and discharging hypothesis as well as the extent
to which its rules can be presented schematically with respect to the constructors of the
syntax. And taking into account these two aspects is essential in designing a nice ND-style
system.

Finally, we feel that LF encodings can be naturally used also to teach logics, since LF
provides a natural language for describing uniformly all the aspects of a logic, down to the
tiniest detail.

Applications. Modalities are a common feature of most program logics [14, 16, 30], hence,
the techniques we have presented here can be fruitfully employed in developing proof assis-
tants for program logics. The “world parameter” technique was used for encoding a ND-style
system for Dynamic Logic [17]. Applications of the other techniques presented in this papers
deserve further investigations.

Comparison with Related Work. In recent years, several researches have addressed
the problem of computer assisted proof search in the context of modal logics. For instance,
Fitting, Simpson, Wallen have built new systems for modal logics which could be used as the
basis of proof development environments, or even, theorem provers [10, 11, 29, 32]. Basin
et.al., Coen, Merz have developed packages for using Modal Logics and Temporal Logics
within existing Logical Frameworks (namely, Isabelle) [5, 6, 22].

These approaches either utilize special formats or they are based on representations of
Kripke semantics, or they do not address explicitly ND-style presentations. Truly sequent-
like formats or tableaux formats are used in [6, 11, 32], while accessibility relations are
exploited in [5, 29].

For instance, a thorough treatment of modal logics based on semantics is the one carried
out by Basin and his co-authors in [5]. In this paper, Kripke semantics is built-in the calculus
from the outset with great ingenuity: worlds are reified, and a first order proposition R over
worlds is introduced in order to represent the accessibility relation. Introduction of modal-
ities is then reduced to a quantification over accessible worlds; different axiomatizations of
R are used to represent the various logics.

The work presented in this paper differs quite substantially from all these approaches.
First of all we want to use a standard general Logical Framework so that we can re-use in
our implementations pre-existing proof search tools, possibly developed for different sys-
tems. Moreover we work at a purely syntactical level. We try to achieve generality and
independence from peculiar ad hoc mathematical constructions, which can be rather foreign
to the proof developing experience.

Of course, it would be worthed exploring to what extent our rules could be derivable
in semantically based frameworks. This would be especially interesting if the semantical
apparatus, working in the background, could even be hidden from the user. Our feeling is
that this is not so immediate in existing frameworks. This is the case of most proof rules;
e.g., Prawitz’s rule 2-I for S4 (see Figure 2) is admissible but not derivable in a system
such as the one of [5].

A Proofs

A.1 Proof of Theorems of Section 3

A.1.1 Proof of Theorem 3.1

The encoding function εX is clearly injective. It is easy to show by induction on the structure
of formulæ that εX yields a canonical form of the appropriate type. Surjectivity is established

23

by defining a decoding map δX that is left-inverse to εX . The decoding δX is defined by
induction on the structure of the canonical forms as follows:

δX(x)
def
= x if x ∈ X

δX(ff)
def
= ff

δX(¬ϕ)
def
= ¬δX(ϕ)

δX(2ϕ)
def
= 2δX(ϕ)

δX(⊃ ϕ ψ)
def
= δX(ϕ) ⊃ δX(ψ)

Such δX is total, for [15, Lemma 2.4.4] and inspection of Σ(Φ) and ΓX .
The compositionality property is established by a straightforward induction on the struc-

ture of modal formulæ (omitted). ut

A.2 Proofs of Theorems of Section 4

A.2.1 Proof of Theorem 4.1

It is straightforward to verify by induction on the structure of proofs that, given the hy-

pothesis of the theorem, ε
Σ(K′)
X,∆ (π) is a canonical term of type (V εX(ϕ)) in Σ(K′) and

ΓX , γV (∆). It is a routine matter to show by induction on proofs that ε
Σ(K′)
X,∆ is injective. To

establish surjectivity we exhibit a left-inverse δ
Σ(K′)
X,∆ defined by induction on the structure

of the canonical forms as follows:

δ
Σ(K′)
X,∆ (v)

def
= δX(t), if (v:(V t)) ∈ γV (∆).

δ
Σ(K′)
X,∆ (A1 t

′ t′′)
def
= A1δX(t′),δX(t′′), Similarly for A2, A3,K.

δ
Σ(K′)
X,∆ (NEC t p)

def
= NecδX(t)

(

δ
Σ(K′)
X,∆ (p)

)

δ
Σ(K′)
X,∆ (MP t t′ p p′)

def
= MPδX(t),δX(t′)

(

δ
Σ(K′)
X,∆ (p), δ

Σ(K′)
X,∆ (p′)

)

This function is clearly total and well-defined. It remains to show that δ
Σ(K′)
X,∆

(

ε
Σ(K′)
X,∆ (π)

)

=

π and compositionality of the encoding; this is established by induction on the proofs. ut

A.2.2 Proof of Theorem 4.2

We verify by induction on the structure of proofs that ε
Σw(K)
X,∆,w (π) is a canonical term of type

(T w εX(ϕ)) in Σw(K) and ΓX , γw(∆).
Base Step. We have two cases. If π is instance of an axiom, say π = A1ψ,ϑ, then it is

straightforward to prove that ΓX , γw(∆) `Σw(K) ε
Σw(K)
X,∆,w (A1ψ,ϑ): (T w εX(ψ ⊃ (ϑ ⊃ ψ))) .

The cases of A2, A3,K are similar.

Otherwise, ϕ ∈ ∆ is an assumption. Since ε
Σw(K)
X,∆,w (ϕ) = vϕ ∈ γw(∆), immediately

ΓX , γw(∆) `Σw(K) vϕ:(T w εX(ϕ)).
Inductive Step. By cases on the last rule applied.

If π ≡ MPψ,ϕ(π′, π′′), then π′, π′′ are respectively valid proofs of ψ ⊃ ϕ, ψ w.r.t. (X,∆).

By inductive hypothesis, ΓX , γw(∆) `Σw(K) ε
Σw(K)
X,∆,w (π′) : (T w εX(ψ)) and

ΓX , γw(∆) `Σw(K) ε
Σw(K)
X,∆,w (π′′) : (T w εX(ψ ⊃ ϕ)). Therefore, we have immediately,

ΓX , γw(∆) `Σw(K)

(

MP εX(ψ) εX(ϕ) w ε
Σw(K)
X,∆,w (π′) ε

Σw(K)
X,∆,w (π′′)

)

: (T w εX(ϕ)).

24

Otherwise, π ≡ Necϕ(π′); then π′ is a valid proof of ϕ w.r.t. (X, ∅). By IH, we

have that ΓX , γw(∅) `Σw(K) ε
Σw(K)
X,∅,w (π′) : (T w εX(ϕ)). By abstracting on w we have

ΓX `Σw(K)

(

λw′:U.ε
Σw(K)
X,∅,w′

(π′)
)

:
∏

w′:U

(T w′ εX(ϕ)). Therefore, we have immediately

ΓX , γw(∅) `Σw(K)

(

NEC εX(ϕ) (λw′:U.ε
Σw(K)
X,∅,w′

(π′)) w
)

: (T w 2εX(ϕ)).

By the above steps, it is easy to show that ε
Σw(K)
X,∆,w is injective. Surjectivity is established

by exhibiting a left-inverse δ
Σw(K)
X,∆,w , defined by induction on the structure of the canonical

forms as follows:

δ
Σw(K)
X,∆,w (vϕ)

def
= ϕ, if vϕ ∈ dom(γw(∆))

δ
Σw(K)
X,∆,w (A1 t t

′ w)
def
= A1δX(t),δX(t′), similarly for A2, A3,K

δ
Σw(K)
X,∆,w (MP t t′ w p p′)

def
= MPδX(t),δX(t′)

(

δ
Σw(K)
X,∆,w (p), δ

Σw(K)
X,∆,w (p′)

)

δ
Σw(K)
X,∆,w (NEC t (λw′:U.p) w)

def
= NecδX(t)

(

δ
Σw(K)
X,∅,w (p)

)

The decoding map δ
Σw(K)
X,∆,w is total and well-defined by the definition of canonical forms

and inspection of the signature Σw(K). By the lemma of characterization, a canonical form
p of type (T w t) must have the shape (ζM1 . . .Mk), where k is the arity of ζ. By inspection
of Σw(K) and ΓX , γw(∆) we see that the only choices are ζ ∈ {vϕ, A1, A2, A3,K,MP,NEC}.
Base Step. We have two cases. If p ≡ vϕ : (T w εX(ϕ)) then, taken π = ϕ we have a valid
proof of ϕ w.r.t. (X,∆). Otherwise, p ∈ {A1, A2, A3,K}, say t ≡ A1 t

′ t′′ w : (T w(⊃ t′(⊃
t′′t′))). Then we consider π = A1δX(t′),δX(t′′). Similarly in the case p is A2, A3,K.

Inductive Step. We have two cases. If p ≡ (MP t′ t′′ w p′ p′′):(T w t′′), since p is well-
typed, we have that ΓX , γw(∆) `Σw(K) p

′:(T w t′) and ΓX , γw(∆) `Σw(K) p
′′:(T w (⊃

t′ t′′)). By IH there are two proofs such that (X,∆) |=K δ
Σw(K)
X,∆,w (p′):δX(t′) and (X,∆) |=K

δ
Σw(K)
X,∆,w (p′′):δX(⊃ t′ t′′). Therefore by applying MP we obtain (X,∆) |=K π:δX(t′′).

Otherwise, p ≡ (NEC t′ (λw′:U.p′)w) : (T w (2t′)). Since p is well-typed, we have
that ΓX , γw(∆) `Σw(K) (λw′:U.p′):

∏

w′:U (Tw′t′). Notice that each canonical term p of
type (T w t) has exactly one free variable of type U , namely w. This can be proved
by induction on the structure of p (look at the previous steps). Hence, (λw ′:U.p′) has
no free variable of type U . We can drop therefore the hypotheses γw(∆), since if they
appear free in p there should be two free variables of type U in p′ — a contradiction.
Hence, ΓX `Σw(K) (λw′:U.p′):

∏

w′:U (T w′ t′), that is ΓX , w
′:U `Σw(K) p

′:(T w′ t′). By

IH there is a valid proof (X, ∅) |=K δ
Σw(K)
X,∅,w′

(p′):δX(t′). Hence by applying Nec we obtain

(X,∆) |=Σw(K) π:δX(2t′).

It remains to show that δ
Σw(K)
X,∆,w

(

ε
Σw(K)
X,∆,w (π)

)

= π, and that ε
Σw(K)
X,∆,w is compositional. This

is proved by induction on the structure of π, following the steps above. ut

A.2.3 Proof of Lemma 4.3

By lemma of characterization, a canonical form p of type (T t) must have the form ζM1 . . .Mk,
where k is the arity of ζ. By inspection of ΣNa(K) and ΓX we see that the only choices for
ζ are ζ ∈ {A1, A2, A3,K,MP,NEC}.
Base Step: p is an instance of an axiom scheme; say p ≡ (A1 t t

′); we take n = (NaA1
t t′).

The cases of schemata A2, A3,K are similar.

25

Inductive Step. We have two cases.
If p ≡ (MP t t′ p′ p′′), since p is well-typed we have that ΓX `ΣNa(K) p

′:(T (⊃ t t′))
and ΓX `ΣNa(K) p′′:(T t). By IH there are n′, n′′ such that ΓX `ΣNa(K) n′:(Na (⊃
t t′) p′) and ΓX `ΣNa(K) n

′′:(Na t p′′). Then, ΓX `ΣNa(K) (NaMP t t′ p′′ p′ n′′ n′) :
(Na t (MP t t′ p′ p′′)).

Otherwise, p ≡ (NEC t p′ n); since p is well-typed we have that ΓX `ΣNa(K) p
′:(T t)

and ΓX `ΣNa(K) n:(Na t p′). Then ΓX `ΣNa(K) (NaNEC t p′ n):(Na 2t (NEC t p′ n)). ut

A.2.4 Proof of Theorem 4.4

It is straightforward to verify by induction on the structure of proofs that ε
ΣNa(K)
X,∆ (π) is a

canonical term of type (T εX(ϕ)) in ΣNa(K) and ΓX , γT (∆).
Base Step. We have two cases. If ϕ is an axiom instance, say π ≡ A1ψ,ϑ, then we take

p = ε
ΣNa(K)
X,∆ (A1ψ,ϑ), it is straightforward to prove that ΓX , γT (∆) `ΣNa(K) p:(T εX(ψ ⊃

(ϑ ⊃ ψ))). Similarly in the cases A2, A3,K.

Otherwise, ϕ is an assumption, say π = ϕ con ϕ ∈ ∆; then we take p = vϕ = ε
ΣNa(K)
X,∆ (ϕ).

It is straightforward to prove that ΓX , γT (∆) `ΣNa(K) p:(T εX(ϕ)).
Inductive Step. By cases on the last rule applied.

If π ≡ MPψ,ϕ(π′, π′′), then π′, π′′ are respectively valid proofs of ψ ⊃ ϕ, ψ w.r.t.

(X,∆). By IH there are two canonical terms such that ΓX , γT (∆) `ΣNa(K) ε
ΣNa(K)
X,∆ (π′) :

(TεX(ψ ⊃ ϕ)) and ΓX , γT (∆) `ΣNa(K) ε
ΣNa(K)
X,∆ (π′′):(TwεX(ψ)). Therefore, we have imme-

diately, ΓX , γT (∆) `ΣNa(K) MP εX(ψ) εX(ϕ) ε
ΣNa(K)
X,∆ (π′′) ε

ΣNa(K)
X,∆ (π′):(T εX(ϕ)).

Otherwise, π ≡ Necϕ(π′); then, we have that π′ is a valid proof of ϕ w.r.t. (X, ∅). So

by IH, ΓX , γT (∅) `ΣNa(K) ε
ΣNa(K)
X,∅ (π′) : (T εX(ϕ)). Now, by Lemma 4.3 we obtain that

there exists a term n such that ΓX `ΣNa(K) n :
(

Na εX(ϕ) ε
ΣNa(K)
X,∅ (π′)

)

. Then we have

ΓX , γ(∆) `ΣNa(K)

(

NEC εX(ϕ) ε
ΣNa(K)
X,∅ (π′) n

)

: (T 2εX(ϕ)).

By above, ε
ΣNa(K)
X,∆ is injective. Surjectivity is established by exhibiting a left-inverse

δ
ΣNa(K)
X,∆ , defined by induction on canonical forms as follows:

δ
ΣNa(K)
X,∆ (v)

def
= δX(t) if (v:(T t)) ∈ γT (∆)

δ
ΣNa(K)
X,∆ (A1 t

′ t′′)
def
= A1δX(t′),δX(t′′), similarly for A2, A3,K.

δ
ΣNa(K)
X,∆ (NEC t p n)

def
= NecδX(t)(δ

ΣNa(K)
X,∅ (β(n)))

δ
ΣNa(K)
X,∆ (MP t t′ p p′)

def
= MPδX(t),δX(t′)

(

δ
ΣNa(K)
X,∆ (p), δ

ΣNa(K)
X,∆ (p′)

)

where β is the inverse of α (which is defined after Lemma 4.3), and maps each canonical
proof term n such that ΓX `ΣNa(K) n : (Na p t), to the corresponding proof term p, such
that ΓX `ΣNa(K) p : (T t). The definition of β follows the steps of the technical Lemma A.1
(see below), which can be seen as the converse of Lemma 4.3. By induction one can prove
that α and β are inverses.

The decoding map δ
ΣNa(K)
X,∆ is total and well-defined by the definition of canonical forms

and inspection of the signature ΣNa(K). By lemma of characterization, a canonical form p

of type (T t) must have the form ζM1 . . .Mk, where k is the arity of ζ. By inspection of
ΣNa(K) and ΓX , γT (∆) we see that the only choices are ζ ∈ {vϕ, A1, A2, A3,K,MP,NEC}.
Base Step. We have two cases. If ϕ is an assumption, say p ≡ vϕ:(T w εX(ϕ)), then, taken
π = ϕ we have a valid proof of ϕ w.r.t. (X,∆).

26

Otherwise, p ∈ {A1, A2, A3,K}; say p ≡ (A1 t′ t′′):(T (⊃ t′(⊃ t′′t′)). Then we take
π = A1δX(t′),δX(t′′). Similarly in the other cases.
Inductive Step. We have two cases.

If p ≡ (MP t′ t′′ p′ p′′):(T w t′′), since p is well-typed, ΓX , γT (∆) `ΣNa(K) p
′:(T (⊃

t′ t′′)) and ΓX , γT (∆) `ΣNa(K) p
′′:(T t′). By IH there are two proofs such that (X,∆) |=K

δ
ΣNa(K)
X,∆ (p′) : δX(⊃ t′ t′′) and (X,∆) |=K δ

ΣNa(K)
X,∆ (p′′) : δX(t′). By applying MP we obtain

(X,∆) |=K π:δX(t′′).
Otherwise, p ≡ (NEC t′ p′ n) : (T (2t′)); then, since p is well-typed, ΓX , γT (∆) `ΣNa(K)

p′:(T t′) and ΓX , γT (∆) `ΣNa(K) n:(Na t′ p′). By Lemma A.1 there is π′ such that (X, ∅) |=K

π′ : δX(t′). By applying Nec to π′ we obtain (X,∆) |=K π:δX(2t′).

It remains to show that δ
ΣNa(K)
X,∆

(

ε
ΣNa(K)
X,∆ (π)

)

= π, and that ε
ΣNa(K)
X,∆ is compositional.

This is proved by induction on the structure of proofs. ut

Lemma A.1 ∀n canonical: ΓX , γT (∆) `ΣNa(K) n : (Na t p) ⇒ ∃π.(X, ∅) |=K π : δX(t).

Proof. By lemma of characterization, a canonical form p of type (Na t p) must have the
form ζM1 . . .Mk, where k is the arity of ζ. By inspection of ΣNa(K) and ΓX , γT (∆) we see
that the only choices are ζ ∈ {NaA1

, NaA2
, NaA3

, NaK , NaMP , NaNEC}.
Base Step: n is one of NaA1

, NaA2
, NaK , say n = (NaA1

t t′). Then, ΓX , γT (∆) `ΣNa(K)

n:(Na (⊃ t (⊃ t′ t)) (A1 t t
′)); hence we take π = A1δX(t),δX(t). The cases of other schemata

are similar.
Inductive Step. We have two cases.

If n ≡ (NaMP t t
′ p p′ n′ n′′), then since n is well-typed we have that ΓX , γT (∆) `ΣNa(K)

n′ : (Na t p) and ΓX , γT (∆) `ΣNa(K) n
′′:(Na (⊃ t t′) p′). By IH (X, ∅) |=K π′:δX(t) and

(X, ∅) |=K π′′:δX(⊃ t t′). Then we take π = MPδX(t),δX(t′)(π
′, π′′) with (X, ∅) |=K π:δX(t′).

Otherwise, n ≡ (NaNEC t p n′); since n is well-typed we have that ΓX , γT (∆) `ΣNa(K)

n′:(Na t p). By IH, (X, ∅) |=K π′:δX(t); then we take π = NecδX(t)(π
′) with (X, ∅) |=K

π:δX(2t). ut

A.2.5 Proof of Theorem 4.6

Similar to that of Theorem 4.1. ut

A.3 Proofs of Theorems of Section 5

A.3.1 Proof of Theorem 5.1

The proof follows the standard methodology of [15]. We exhibit the encoding function, and
its inverse, for the ` CR (the case of validity CR is similar). These functions are defined by
induction on the proofs in NK′ and on the terms of Σ2j(NK′) respectively.

α
Σ2j(NK

′)
X,∆ (ϕ)

def
= v s.t. (v:(Ta εX(ϕ))) ∈ γTa(∆)

α
Σ2j(NK

′)
X,∆ (⊃-Iϕ,ψ(π))

def
= ⊃-I εX(ϕ) εX(ψ) λv:(Ta εX(ϕ)).α

Σ2j(NK
′)

X,(∆,ϕ) (π)

α
Σ2j(NK

′)
X,∆ (⊃-Eϕ,ψ(π′, π′′))

def
= ⊃-ETa,Ta εX(ϕ) εX(ψ) α

Σ2j(NK
′)

X,∆ (π′) α
Σ2j(NK

′)
X,∆ (π′′)

α
Σ2j(NK

′)
X,∆ (⊃2-Eϕ,ψ(π′, π′′))

def
= ⊃2-E εX(ϕ) εX(ψ) α

Σ2j(NK
′)

X,∆ (π′) α
Σ2j(NK

′)
X,∆ (π′′)

β
Σ2j(NK

′)
X,∆;Ψ (v)

def
= δX(t) such that (v:Ta t) ∈ γTa(∆) ∪Ψ

β
Σ2j(NK

′)
X,∆;Ψ (⊃-I t t′ λv:(Ta t).p)

def
= ⊃-IδX(t),δX(t′)(β

Σ2j(NK
′)

X,∆;Ψ,(v,t)(p))

β
Σ2j(NK

′)
X,∆,Ψ (⊃-ETa,Ta t t

′ p p′)
def
= ⊃-EδX(t),δX(t′)(β

Σ2j(NK
′)

X,∆,Ψ (p), β
Σ2j(NK

′)
X,∆,Ψ (p′))

β
Σ2j(NK

′)
X,∆,Ψ (⊃2-E t t′ p p′)

def
= ⊃2-EδX(t),δX(t′)(β

Σ2j(NK
′)

X,∆,Ψ (p), β
Σ2j(NK

′)
X,∆,Ψ (p′))

27

A.3.2 Proof of Theorem 5.2

Very similar to Theorem 4.2. We have only to take care of the ⊃-I rule, which involves a
discharge, as a new case of inductive steps.

If π ≡ ⊃-Iϕ,ψ(π′), then (X, (∆, ϕ)) |=NK π′:ψ. By IH, we have ΓX , γw(∆, ϕ) `Σw(NK)

ε
Σw(NK)
X,(∆,ϕ),w(π′) : (T w εX(ψ)). By abstracting on vϕ, we obtain

ΓX , γw(∆) `Σw(NK) (λv:(T w εX(ϕ)).ε
Σw(NK)
X,(∆,ϕ),w(π′)) :

∏

v:(T w εX(ϕ))

(T w εX(ψ)).

By applying the constant ⊃-I, we obtain

ΓX , γw(∆) `Σw(NK) ⊃-I εX(ϕ) εX(ψ) w (λv:(T w εX(ϕ)).ε
Σw(NK)
X,(∆,ϕ),w(π′)) : (T w εX(⊃ ϕ ψ)).

The rest of the proof follows closely that of Theorem 4.2. We show just the left-inverse:

δ
Σw(NK)
X,∆,w (ϕ)

def
= δ

Σw(NK)
X,∆,w;∅ (ϕ)

δ
Σw(NK)
X,∆,w;Ψ(v)

def
= δX(t) , if (v:(T w t)) ∈ γw(∆) ∪Ψ

δ
Σw(NK)
X,∆,w;Ψ(⊃-I t t′ w (λv:(T w t).p′))

def
= ⊃-IδX(t),δX(t′)

(

δ
Σw(NK)
X,∆,w;Ψ,(v:(T w t))(p

′)
)

δ
Σw(NK)
X,∆,w;Ψ(⊃2-E t t′ w p p′)

def
= ⊃2-EδX(t),δX(t′)

(

δ
Σw(NK)
X,∆,w;Ψ(p), δ

Σw(NK)
X,∆,w;Ψ(p′)

)

δ
Σw(NK)
X,∆,w;Ψ(⊃-E t t′ w p p′)

def
= ⊃-EδX(t),δX(t′)

(

δ
Σw(NK)
X,∆,w;Ψ(p), δ

Σw(NK)
X,∆,w;Ψ(p′)

)

δ
Σw(NK)
X,∆,w;Ψ(2′-I t (λw′:U.p) w)

def
= 2

′
-IδX(t)

(

δ
Σw(NK)
X,∅,w′;∅ (p)

)

ut

A.3.3 Proof of Lemma 5.3

By lemma of characterization, a canonical form p of type (T t) must be ζM1 . . .Mk, where
k is the arity of ζ. By inspection of ΣCl(NK) and ΓX , γT (∆), we see that the only choices
for ζ are ζ ∈ {vϕ,⊃-I,⊃-E,2′-I,⊃2-E . . .}.
Base Step. If p is an assumption of type (p:(T t)) ∈ ∆ then we have p ∈ FV(p) and hence
c:(Cl t p) ∈ Ξp(∆).
Inductive Step. By cases on the last rule applied. We will see only some significant cases,
the other being similar.

•p ≡ (⊃-E t t′ p′ p′′): since p is well-typed we have that ΓX ,∆ `ΣCl(NK) p
′:(T (⊃ t t′))

and ΓX ,∆ `ΣCl(NK) p′′:(T t). By IH, ΓX ,∆,Ξp′(∆) `ΣCl(NK) c′:(Cl (⊃ t t′) p′) and
ΓX ,∆,Ξp′′(∆) `ΣCl(NK) c

′′:(Cl t p′′). Since Ξp(∆) ⊇ Ξp′(∆),Ξp′′(∆), then
ΓX ,∆,Ξp(∆) `ΣCl(NK) (Cl⊃-E t t′ p′ p′′ c′′ c′) : (Cl t′ (⊃-Et t′ p′ p′′)).

•p ≡ (⊃-I t t′ p′): since p is well-typed we have ΓX ,∆ `ΣCl(NK) p
′:(T t) → (T t′). Since

p′ is a canonical form, it must be p′ = λx : (T t).p′′, where ΓX ,∆, x:(T t) `ΣCl(NK) p
′′ :

(T t′). By IH, ΓX ,∆, x:(T t),Ξp′′(∆, x:(T t)) `ΣCl(NK) c
′′:(Cl t′ p′′). Now we have that

Ξp′′(∆, x:(T t)) ⊆ Ξp′′(∆), c′:(Cl t x), then by abstracting on c′ and x we obtain

ΓX ,∆,Ξp′′(∆) `ΣCl(NK) (λx:(T t).λc′:(Cl t x).c′′) :
∏

x:(T t)

(Cl t x) → (Cl t′ p′′).

Moreover we have that Ξp(∆) = Ξp′′(∆) because FV(p) = FV(p′′)\{x} and x:(T t) 6∈ ∆ (oth-

erwise ∆, x:(T t) would be not a valid context). Then, defining t1
def
= (λx:(T t)λc′:(Cl t x).c′′),

we have ΓX ,∆,Ξp(∆) `ΣCl(NK) t1 :
∏

x:(T t)(Cl t x) → (Cl t′ p′′). We apply now Cl⊃-I

obtaining ΓX ,∆,Ξp(∆) `ΣCl(NK) (Cl⊃-I t t
′ p′ t1) : (Cl t′ (⊃-I t t′ p′)).

28

•p ≡ (2′-I t p′ c′): since p is well-typed we have ΓX ,∆ `ΣCl(NK) p′ : (T t) and
ΓX ,∆ `ΣCl(NK) c

′ : (Cl t p′). Then we apply 2
′
-I obtaining

ΓX ,∆ `ΣCl(NK) (Cl
2
′
-I
t p′ c′) : (Cl (2t)(2′-I t p′ c′))

and therefore ΓX ,∆,Ξp(∆) `ΣCl(NK) (Cl
2
′
-I
t p′ c′) : (Cl (2t) (2′-I t p′ c′)). ut

A.3.4 Proof of Lemma 5.4

By lemma of characterization, c of type (Cl t p) is of the form ζM1 . . .Mk, where k is
the arity of ζ. By inspection of ΣCl(NK) and ΓX , γT (∆) we see that the only choices are
ζ ∈ dom(Ξ) ∪ {Cl⊃-I, Cl⊃-E, Cl2′-I, Cl⊃2-E . . .}.

Base Step: c:(Cl t′ p)) ∈ Ξ; then, the claim is trivial.
Inductive Step: by cases on the top constructor. We see only some significant cases, the
other being similar.

•c ≡ (Cl⊃-I t t′ p t′′) : (Cl t′ (⊃-I t t′ p)): since c is well-typed we have that
ΓX ,∆,Ξ `ΣCl(NK) p:(T t) → (T t′) and ΓX ,∆,Ξ `ΣCl(NK) t

′′ :
∏

x:t(Cl t x) → (Cl t′ (p x)).
Since t′′ is a canonical form then it must be t′′ = λx:(T t)λc′:(Cl t x).t′′′. Then by some
introductions we obtain ΓX ,∆, x:(T t),Ξ, c′:(Cl t x) `ΣCl(NK) t

′′′:(Cl t′ (p x)). By the IH

we know ΓX ,∆
′′,Ξ, c′:(Cl t x) `ΣCl(NK) t

′′′:(Cl t′ (p x)), where ∆′′ def
= {p:(T t′)|(Cl t′ p) ∈

=(Ξ, c′:(Cl t x))} = ∆′ ∪ {x:(T t)}. Then, by abstracting on x, c′ we find that
ΓX ,∆

′,Ξ `ΣCl(NK) t
′′ :

∏

x:(T t)(Cl t x) → (Cl t′ (p x)). Finally, by applying Cl⊃-I we

obtain ΓX ,∆
′,Ξ `ΣCl(NK) (Cl⊃-I t t

′ p t′′):(Cl t′ (⊃-I t t′ p)).
•c ≡ (Cl

2
′
-I

t p c′) : (Cl 2t (2′-I t p c′)): since c is well-typed we have that
ΓX ,∆,Ξ `ΣCl(NK) p:(T t) and ΓX ,∆,Ξ `ΣCl(NK) c

′:(Cl t p). By IH we have that
ΓX ,∆

′,Ξ `ΣCl(NK) c
′:(Cl t p). Hence, ΓX ,∆

′,Ξ `ΣCl(NK) p:(T t). Then we apply Cl
2
′
-I

obtaining ΓX ,∆
′,Ξ `ΣCl(NK) (Cl

2
′
-I
t p c′) : (Cl 2t (2′-I t p c′)).

•c ≡ (Cl⊃2-E t t′ p p′ c′ c′′): an immediate application of IH on c′, c′′. ut

A.3.5 Proof of Theorem 5.5

It is straightforward to verify by induction on the structure of proofs that, given the hy-

pothesis of the theorem, ε
ΣCl(NK)
X,∆ (π) is a canonical term of type (T εX(ϕ)) in ΣCl(NK)

and ΓX , γT (∆).
Base Step: ϕ is an assumption, i.e. π = ϕ ∈ ∆. Then immediately ΓX , γT (∆) `ΣCl(NK)

vϕ:(T εX(ϕ)).
Inductive Step. By cases on the last rule applied. We see only some significant cases, the
other being similar.

•π ≡ ⊃-Iϕ,ψ(π′): then (X, (∆, ϕ)) |=NK π′:ψ. By IH we have that

ΓX , γT (∆, ϕ) `ΣCl(NK) t
′:(T εX(ψ)). Let t′′

def
= λvϕ:(T εX(ϕ)).t′; then ΓX , γT (∆) `ΣCl(NK)

t′′ :
∏

vϕ:(T εX(ϕ))(T εX(ψ)). By applying ⊃-I we obtain

ΓX , γT (∆) `ΣCl(NK) (⊃-I εX(ϕ) εX(ψ) t′′):(T (⊃ εX(ϕ) εX(ψ))).
•π ≡ ⊃-Eϕ,ψ(π′, π′′): then (X,∆) |=NK π′ : ϕ ⊃ ψ and (X,∆) |=NK π′′ : ϕ. By IH,

ΓX , γT (∆) `ΣCl(NK) t
′ : (T εX(ϕ ⊃ ψ)) and ΓX , γT (∆) `ΣCl(NK) t

′′ : (T εX(ϕ)). Therefore
by applying ⊃-E we obtain ΓX , γT (∆) `ΣCl(NK) (⊃-E εX(ϕ) εX(ψ) t′ t′′):(T εX(ψ)).

•π ≡ 2
′
-Iϕ(π′): then (X, ∅) |=NK π′ : ϕ. By IH, ΓX `ΣCl(NK) t1 : (T εX(ϕ)), and hence

by Lemma 5.3 there is a term ct1 such that ΓX `ΣCl(NK) ct1 :(Cl εX(ϕ) t1). Therefore, by
applying 2

′
-I, we obtain ΓX , γT (∆) `ΣCl(NK) (2′-I εX(ϕ) t1 ct1) : (T 2εX(ϕ)).

By the above steps, it is easy to see that ε
ΣCl(NK)
X,∆ is injective. Surjectivity is established

by exhibiting a left-inverse δ
ΣCl(NK)
X,∆ , defined by induction on the structure of the canonical

29

forms as follows:

δ
ΣCl(NK)
X,∆ (ϕ)

def
= δ

ΣCl(NK)
X,∆;∅ (ϕ)

δ
ΣCl(NK)
X,∆;Ψ (v)

def
= δX(t) , if (v:(T t)) ∈ γT (∆) ∪Ψ

δ
ΣCl(NK)
X,∆;Ψ (2′-I t p c)

def
= 2

′
-IδX(t)(δ

ΣCl(NK)
X,∅;∅ (p))

δ
ΣCl(NK)
X,∆;Ψ (⊃-I t t′ (λv:(T t).p))

def
= ⊃-IδX(t),δX(t′)(δ

ΣCl(NK)
X,∆;Ψ,(v:(T t))(p))

δ
ΣCl(NK)
X,∆;Ψ (⊃-E t t′ p p′)

def
= ⊃-EδX(t),δX(t′)(δ

ΣCl(NK)
X,∆;Ψ (p), δ

ΣCl(NK)
X,∆;Ψ (p′))

δ
ΣCl(NK)
X,∆;Ψ (⊃2-E t t′ p p′)

def
= ⊃2-EδX(t),δX(t′)(δ

ΣCl(NK)
X,∆;Ψ (p), δ

ΣCl(NK)
X,∆;Ψ (p′))

The map δ
ΣCl(NK)
X,∆ is total and well-defined for the definition of canonical forms and in-

spection of the signature ΣCl(NK). The application of 2
′
-I is sound, for the presence of

c : (Cl δX(t) p) and the fact that no Cl assumptions are made by the encoding of the context
(γT (∆)).

By lemma of characterization, a canonical form p of type (T t) must be ζM1 . . .Mk,
where k is the arity of ζ. By inspection of ΣCl(NK),ΓX , γT (∆) we see that the only choices
for ζ are ζ ∈ {vϕ,2

′
-I,⊃-I,⊃-E,⊃2-E . . .}.

Base Step: p = vϕ ∈ γT (∆), then we take π = ϕ.
Inductive Step: we see only some significant cases.

•p ≡ 2
′
-I t p′ c: since p is well-typed we have that ΓX , γT (∆) `ΣCl(NK) p

′ : (T t) and
ΓX , γT (∆) `ΣCl(NK) c : (Cl t p′). By Lemma 5.4, there is a term c such that ΓX , ∅ `ΣCl(NK)

c : (Cl t p′); since c is well-typed, ΓX , ∅ `ΣCl(NK) p
′:(T t). By the IH, we obtain that there

exists π′ such that (X, ∅) |=NK π′ : δX(t) and hence we conclude π = 2
′
-IδX(t)(π

′).
•p ≡ ⊃-I t t′ p′: since p is well-typed, ΓX , γT (∆) `ΣCl(NK) p

′ : (T t) → (T t′), then
ΓX , γT (∆), a : (T t) `ΣCl(NK) p

′a : (T t′). By IH there exists π′ such that (X, (∆, δX(t))) |=NK

π′:δX(t′), and hence we conclude taking π = ⊃-IδX(t),δX(t′)(π
′).

•p ≡ ⊃-E t t′ p′ p′′: since p is well-typed, ΓX , γT (∆) `ΣCl(NK) p
′ : (T (⊃ t t′)) and

ΓX , γT (∆) `ΣCl(NK) p
′′:(T t). By IH there exist π′, π′′ such that (X,∆) |=NK π′ : δX(⊃ t t′)

and (X,∆) |=NK π′′ : δX(t). We conclude taking π = ⊃-EδX(t),δX(t′)(π
′, π′′). ut

A.3.6 Proof of Lemma 5.6

By the lemma of characterization, a canonical form p of type (T t) is ζM1 . . .Mk, where k
is the arity of ζ, which is ζ ∈ {vϕ,⊃-I,⊃-E,2-I,2-E,⊃2-I . . .}.
Base Step: p ≡ v : (T t). By definition of γ2, C(p, γ2(∆)) holds, then there is the assumption
(u:(Bx t vδX(t))) ∈ γ2(∆). Hence, ΓX , γ2(∆) `Σ2(NS4) u : (Bx t v).
Inductive Step: we see only some significant cases.

•p ≡ (2-I t p1 b) : (T 2t). Since p is well-typed, we have ΓX , γ2(∆) `Σ2(NS4) p1 : (T t)
and ΓX , γ2(∆) `Σ2(NS4) b : (Bx t p1). Hence ΓX , γ2(∆) `Σ2(NS4) (Bx2-I t p1 b) :
(Bx 2t (2-I t p1 b)).

•p ≡ (⊃-I t t′ (λv:(T t).p1)) : (T (⊃ t t′)): since p is well-typed, ΓX , γ2(∆) `Σ2(NS4)

(λv:(T t).p1) : (Πv:(T t)(T t′)), that is ΓX , γ2(∆), v : (T t) `Σ2(NS4) p1 : (T t′). Moreover,
chosen a fresh variable u, C (p1, (γ(∆), v : (T t), u : (Bx t v))) holds. Then, by IH there is
b1 such that ΓX , γ2(∆), v:(T t), u:(Bx t v) `Σ2(NS4) b1:(Bx t

′ p1), and hence

ΓX , γ2(∆) `Σ2(NS4) t
′′ :

∏

v:(T t)

∏

u:(Bx t v)

(Bx t′ p1),

where t′′
def
= λv:(T t)λu:(Bx t v).b1. Then, finally

ΓX , γ2(∆) `Σ2(NS4) (Bx⊃-I t t
′ (λv:(T t).p1)t

′′) : (Bx (⊃ t t′) (⊃-I t t′ (λv:(T t).p1))).

30

•p ≡ (⊃-E t t′p1 p2) : (T t′): since p is well-typed, ΓX , γ2(∆) `Σ2(NS4) p1 : (T (⊃ t t′))
and ΓX , γ2(∆) `Σ2(NS4) p2 : (T t). Since FV(p1),FV(p2) ⊆ FV(p), then both C(p1, γ2(∆))
and C(p2, γ2(∆)) hold. Then, by IH there exist b1, b2 such that ΓX , γ2(∆) `Σ2(NS4) b1 :
(Bx (⊃ t t′) p1) and ΓX , γ2(∆) `Σ2(NS4) b2 : (Bx t p2). Therefore ΓX , γ2(∆) `Σ2(NS4)

(Bx⊃-E t t′ p1 p2 b1 b2) : (Bx t′ (⊃-E t t′ p1 p2)).
•p ≡ (⊃2-I t t′ (λv:(T 2t)λu:(Bx 2t v).p1) : (T (⊃ 2t t′))): since p is well-typed,

ΓX , γ2(∆), v:(T 2t), u:(Bx 2t v) `Σ2(NS4) p1 : (T t′). Moreover, the property

C (p1, (γ2(∆), v:(T 2t), u:(Bx 2t v)))

holds. Then by IH there exists b1 such that ΓX , γ2(∆), v:(T 2 t), u:(Bx 2t v) `Σ2(NS4) b1 :
(Bx t′ p1). By abstracting we obtain

ΓX , γ2(∆) `Σ2(NS4) t
′′ :

∏

v:(T 2t)

∏

u:(Bx 2t v)

(Bx t′ p1).

where t′′
def
= λv:(T 2t)λu:(Bx 2t v).b1. Then

ΓX , γ2(∆) `Σ2(NS4) (Bx⊃2-I t t
′(λv:(T 2t).λu:(Bx 2t v).p1)(t

′′)) :

(Bx (⊃ 2t t′) (⊃2-I t t′ (λv:(T 2t)λu:(Bx 2t v).p1))).

ut

A.3.7 Proof of Lemma 5.7

By induction on the structure of π.
Base Step: ϕ is an assumption, i.e. ϕ ∈ ∆. Then we take p = vϕ ∈ dom(γ2(∆)).
Inductive Step: by cases on the last rule applied. We see only some significant cases, the
other being similar.

•π ≡ ⊃-Iψθ(π
′): then (X, (∆, ψ)) |=NS4 π

′ : θ and hence by IH there exists a canonical
term p such that ΓX , γ2(∆, ψ) `Σ2(NS4) p : (T εX(θ)). Now there are two cases, depending
on whether ψ is boxed or not.

• if ψ is boxed, then γ2({ψ}) = v:(T εX(ψ)), u:(Bx εX(ψ) v). Then

ΓX , γ2(∆) `Σ2(NS4) t :
∏

v:(T εX(ψ))

∏

u(Bx εX(ψ) v)

(T εX(θ))

where t
def
= λv:(T εX(ψ)).λu:(Bx εX(ψ) v).p. Hence

ΓX , γ2(∆) `Σ2(NS4) (⊃2-I εX(ψ) εX(θ) t):(T (⊃ εX(ϕ) εX(θ)))

• otherwise, ψ is not boxed; then γ2({ψ}) = v:(T εX(ψ)). Then ΓX , γ2(∆) `Σ2(NS4)

(λv:(T εX(ψ)).p) : (Πv:(T εX(ψ))).(T εX(θ)). Hence immediately
ΓX , γ2(∆) `Σ2(NS4) (⊃-I εX(ψ)εX(θ)(λv:(TεX(ψ)).p)) : (T (⊃ εX(ψ) εX(θ))).

•π ≡ 2-Iψ(π′); then (X,2∆) |=NS4 π
′ : ψ. By IH there exists a canonical term p1 such

that ΓX , γ2(2∆) `Σ2(NS4) p1 : (T εX(ψ)). Since C(p1, γ2(2∆)) always holds, by Lemma
5.6 there exists a canonical term b1 such that ΓX , γ2(2∆) `Σ2(NS4) b1 : (Bx εX(ψ) p1).
Hence ΓX , γ2(2∆) `Σ2(NS4) (2-I εX(ψ) p1 b1) : (T 2εX(ψ)).

•π ≡ ⊃-Eψ,ϕ(π′, π′′): then (X,∆) |=NS4 π
′ : ψ and (X,∆) |=NS4 π

′′ : ψ ⊃ ϕ. There-
fore by IH there exist two canonical terms p1, p2 such that ΓX , γ2(2∆) `Σ2(NS4) p1 :
(T εX(ψ)) and ΓX , γ2(2∆) `Σ2(NS4) p2 : (T εX(ψ ⊃ ϕ)). Then, ΓX , γ2(2∆) `Σ2(NS4)

(⊃-E εX(ψ) εX(ϕ) p2 p1) : (TεX(ϕ)) ut

31

A.3.8 Proof of Theorem 5.8

The result follows immediately from Lemma 5.7 and the following two technical Lemma A.2,
A.3. For sake of simplicity, we adopt the following definitions: for p term and Γ context

C ′(p,Γ)
def
= for all c ∈ FV(p), for all (c:(T t)) ∈ Γ, there exists (b:(Bx t c)) ∈ Γ

αp(Γ)
def
= {ϕ | (v:(T εX(ϕ))) ∈ Γ and v ∈ FV(p)}.

Intuitively, the set αp(Γ) contains the “active assumptions” in the context Γ for p.

Lemma A.2 If there is a canonical term b such that ΓX , γ2(∆) `Σ2(NS4) b : (Bx ϕ p) then
C ′(p, γ∆(∆)) holds.

Proof. By lemma of characterization, a canonical form d of type (Bx ϕ p) must be
ζM1 . . .Mk, where k is the arity of ζ. By inspection of Σ2(NS4) and ΓX , γ2(∆) we see that
the only choices are ζ ∈ {uϕ, Bx⊃-I, Bx⊃-E, Bx2-I, Bx2-E, . . .}.
Base Step: b = uϕ ∈ γ2(∆); then, immediately, vϕ ∈ γ2(∆) and hence C ′(p, γ2(∆)) holds.
Inductive Step: we see some significant cases, the other being similar.

•b ≡ (Bx⊃-I t t
′(λv:(T t).p1)(λv:(T t)λu:(Bx t v).b1)): then ΓX , γ2(∆) `Σ2(NS4) b :

(Bx (⊃ t t′) p). Since b is well-typed we have that

ΓX , γ2(∆), v : (T t), u : (Bx t v) `Σ2(NS4) b1 : (Bx t′ p1).

By IH C ′(p1, (γ2(∆), v : (T t), u : (Bx t v))). Since p ≡ ⊃-I t t′(λv : (T t).p1), we have
FV(p) = FV(p1) \ {v}, therefore C ′(p, γ(∆)) holds.

•b ≡ (Bx⊃-E t t′ p1 p2 b1 b2): then ΓX , γ2(∆) `Σ2(NS4) b : (Bx t′ p) where p
def
=

(⊃-E t t′ p1 p2). Since b is well-typed we have that ΓX , γ2(∆) `Σ2(NS4) b1 : (Bx (⊃ t t′) p1)
and ΓX , γ2(∆) `Σ2(NS4) b2 : (Bx t p2). By IH, C ′(p1, γ2(∆)) and C ′(p2, γ2(∆)) hold; then
C ′(p, γ2(∆)) holds, since FV(p1) ∪ FV(p2) = FV(p).

•b ≡ (Bx⊃2-I t t′ p1 p2), where p1
def
= λv:(T 2t).λu:(Bx 2t v).p′1 and p2

def
= λv :

(T 2t).λu:(Bx 2t v).b1. Then ΓX , γ2(∆) `Σ2(NS4) b : (Bx (⊃ 2t t′) p) where p ≡
(⊃2-I t t′ p1). Since b is well-typed we have that

ΓX , γ2(∆), v : (T 2t), u : (Bx 2t v) `Σ2(NS4) b1:(Bx t
′ p′1).

By IH, C ′(p′1, (γ2(∆), v:(T 2t), u : (Bx 2t v))) holds, and then C ′(p1, γ2(∆)) holds too.
Therefore C ′(p, γ2(∆)) holds.

•b ≡ (Bx2-I t p1 b1): then ΓX , γ2(∆) `Σ2(NS4) b : (Bx (2t) p) with p ≡ (2-I t p1 b1).
Since b is well-typed we have ΓX , γ2(∆) `Σ2(NS4) b1 : (Bx t p1), and hence by IH C ′(p1, γ(∆))
holds. Therefore C ′(p, γ(∆)) holds as well, because the free variables in b1 are typed in γ(∆)
only by the Bx judgement. ut

Lemma A.3 Given a canonical term p such that ΓX , γ2(∆) `Σ2(NS4) p : (T t), there exists
a proof π such that (X,αp(γ2(∆))) |=NS4 π : δX(t).

Proof. By lemma of characterization, a canonical form p of type (T t) must be ζM1 . . .Mk,
where k is the arity of ζ. By inspection of Σ2(NS4) e ΓX , γ2(∆) we see that the only
choices for ζ are ζ ∈ {vϕ,⊃-I,⊃-E,2-I,2-E,⊃2-I . . .}. We proceed by induction.
Base Step: p = v. Then, ΓX , γ2(∆) `Σ2(NS4) p : (T t) and moreover we have that
αp(γ2(∆)) = {δX(t)}. Taken π = δX(t), we obtain (X, δX(t)) |=NS4 π : δX(t).
Inductive Step. We see only some significant cases.

•p ≡ (⊃-E t t′ p1 p2): then ΓX , γ2(∆) `Σ2(NS4) p : (T t′). Since p is well-typed we have
that ΓX , γ2(∆) `Σ2(NS4) p1:(T (⊃ t t′)) and ΓX , γ2(∆) `Σ2(NS4) p2 : (T t). By IH there

32

exist π′, π′′ such that (X,αp1(γ2(∆))) |=NS4 π′ : δX(⊃ t t′) and (X,αp2(γ2(∆))) |=NS4

π′′ : δX(t). Then taken π = ⊃-EδX(t),δX(t′)(π
′, π′′) we obtain that (X,αp(γ2(∆))) |=NS4 π :

δX(t′).

•p ≡ (⊃-I t t′(λv : (T t).p1)): then, ΓX , γ2(∆) `Σ2(NS4) p : (T (⊃ t t′)). Since p is
well-typed we have that ΓX , γ2(∆), v:(T t) `Σ2(NS4) p1 : (T t′)
(i.e. ΓX , γ2(∆, δX(t)) `Σ2(NS4) p1 : (T t′) because γ2(∆, δX(t)) ⊇ γ2(∆), v : (T t)). By IH
there exists π′ such that (X,αp1 (γ2(∆, δX(t)))) |=NS4 π

′:δX(t′). Moreover,
αp1(γ2(∆, δX(t))) ⊆ αp(γ(∆)), δX(t) since FV(p1) ⊆ FV(p) ∪ {v}. Then
(X,αp(γ2(∆)), δX(t)) |=NS4 π′:δX(t′); taken π = ⊃-IδX(t),δX(t′)(π

′), we finally obtain
(X,αp(γ2(∆))) |=NS4 π : δX(⊃ t t′).

•p ≡ (⊃2-I t t′ (λv:(T t)λu:(Bx t v).p1)): then ΓX , γ2(∆) `Σ2(NS4) p : (T (⊃ t t′)).
Since p is well-typed we have

ΓX , γ2(∆), v:(T t), u:(Bx t v) `Σ2(NS4) p1 : (T t′).

Moreover, since δX(t) is boxed, it is ΓX , γ2(∆, δX(t)) `Σ2(NS4) p1 : (T t′). By IH there exists
π′ such that (X,αp1(γ2(∆, δX(t)))) |=NS4 π

′:δX(t′). Now, αp1(γ2(∆, δX(t))) ⊆ αp(γ2(∆))∪
{δX(A)}, since FV(p1) ⊆ FV(p) ∪ {v, u}. Then (X,αp(γ2(∆)), δX(t)) |=NS4 π′ : δX(t′).
Taken π = ⊃2-IδX(t),δX(t′)(π

′) we obtain that (X,αp(γ2(∆))) |=NS4 π : δX(⊃ t t′).

•p ≡ (2-I t p1 b1): then ΓX , γ2(∆) `Σ2(NS4) p : (T (2t)). Since p is well-typed we
have ΓX , γ2(∆) `Σ2(NS4) b1 : (Bx t p1) and ΓX , γ2(∆) `Σ2(NS4) p1 : (T t). By IH there
exists π′ such that (X,αp1(γ(∆))) |=NS4 π

′:δX(t). By the lemma A.2, C ′(p1, γ2(∆)) holds.
Now, for each ψ ∈ αp1(γ2(∆)), by definition of α there is an assumption (v:(T εX(ψ))) ∈
γ2(∆) such that v ∈ FV(p1). Since C ′(p1, γ2(∆)) holds, we have that there is an assump-
tion (u : (Bx εX(ψ) v)) ∈ γ2(∆), but by definition of γ2, this means that ψ is boxed.
Then αp1(γ2(∆)) contains only boxed formulæ. Then we can take π = 2-I(π ′) obtaining
(X,αp(γ2(∆))) |=NS4 π : 2δX(t). ut

From Lemma A.3 follows the definition of the decoding function δ
Σ2(NS4)
X,∆ :

δ
Σ2(NS4)
X,∆ (ϕ)

def
= δ

Σ2(NS4)
X,∆;∅ (ϕ)

δ
Σ2(NS4)
X,∆;Ψ (v)

def
= δX(t) for (v:(T t)) ∈ γ2(∆) ∪Ψ.

δ
Σ2(NS4)
X,∆;Ψ (⊃-E t t′ p1 p2)

def
= ⊃-EδX(t),δX(t′)(δ

Σ2(NS4)
X,∆;Ψ (p1), δ

Σ2(NS4)
X,∆;Ψ (p2))

δX,∆;Ψ(⊃-I t t′(λv:(T t).p))
def
= ⊃-IδX(t),δX(t′)(δ

Σ2(NS4)
X,∆;Ψ,(v:(T t))(p))

δ
Σ2(NS4)
X,∆;Ψ (⊃2-I t t′ (λv:(T t)λu:(Bx t v).p))

def
= ⊃2-IδX(t),δX(t′)(δ

Σ2(NS4)
X,∆;Ψ,(v:t)(p))

δ
Σ2(NS4)
X,∆;Ψ (2-I t p b)

def
= 2-I(δ

Σ2(NS4)
X,∆;Ψ (p))

δX,∆(2-E t p)
def
= 2-E(δ

Σ2(NS4)
X,∆;Ψ (p))

A.3.9 Proof of Theorem 6.1

Hints:

• 1 ⇒ 2: by induction on t.

• 2 ⇒ 3: by induction on n.

• 3 ⇒ 1: by induction on v. Alternatively, replace (V εX(ψ)) by
∏

w:U (T w εX(ψ)),
and (T εX(ψ)) by (T w εX(ψ)), everywhere.

33

• 3 ⇒ 2: it is possible to express V in terms of Na, by means of Σ-types: (V εX(ϕ)) =
∑

x:(T εX(ϕ))(Cl εX(ϕ) x). Hence, proof of (V εX(ϕ)) is, a proof of (T εX(ϕ)) together
with the proof that it does not depend on any assumptions. This is not possible in LF
but it is in some higher-order logical framework, such as CIC. ut

A.3.10 Proof of Theorem 6.2

Similar to Theorem 6.1.

References

[1] S. Abramsky, D. Gabbay, and T. Maibaum, editors. Handbook of Logic in Computer
Science. Oxford University Press, 1992.

[2] A. Avron. Simple consequence relations. Infor. Comp., 92:105–139, Jan. 1991.

[3] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using Typed Lambda Calculus to
implement formal systems on a machine. J. Automated Reasoning, 9:309–354, 1992.

[4] H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering undefiness in program
proofs. Acta Informatica, 21:251–269, 1984.

[5] D. Basin, S. Matthews, and L. Viganó. A modular presentation of modal logics in a
logical framework. This volume.

[6] M. Coen. Interactive Program Derivation. PhD thesis, University of Cambridge, 1992.

[7] T. Coquand and G. Huet. The calculus of constructions. Information and Control,
76:95–120, 1988.

[8] C. Cornes, J. Courant, J.-C. Fillâtre, G. Huet, P. Manoury, C. Muñoz, C. Murthy,
C. Parent, C. Paulin-Mohring, A. Säıbi, and B. Werner. The Coq Proof Assistant
Reference Manual - Version 5.10. INRIA, Rocquencourt, July 1995. Available at
ftp://ftp.inria.fr/INRIA/coq/V5.10/doc/Reference-Manual.dvi.Z.

[9] M. Fitting. Proof Methods for Modal and Intuitionistic Logic, volume 109 of Synthese
Library. Reidel, 1983.

[10] M. Fitting. Tableaus for many-valued modal logic. Studia Logica, 55:63–87, 1995.

[11] M. Fitting. leanTAP revisited. Unpublished notes, Mar. 1997. Available at
ftp://gillet3.lehman.cuny.edu/pub/fitting/leantap.ps.gz

[12] P. Gardner. Equivalence between logics and their representing type theories. Mathe-
matical Structures in Computer Science, 5:323–349, 1995.

[13] G. Gentzen. Investigations into logical deduction. In M. Szabo, editor, The collected
papers of Gerhard Gentzen, pages 68–131. North Holland, 1969.

[14] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume II, pages 497–604. Reidel, 1984.

[15] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM,
40(1):143–184, Jan. 1993.

34

[16] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Jour-
nal of ACM, 32:137–162, 1985.

[17] F. Honsell and M. Miculan. A natural deduction approach to dynamic logics. In S. Be-
rardi and M. Coppo, editors, Proc. of TYPES’95, LNCS number 1158, pages 165–182,
Turin, Mar. 1995. Springer-Verlag, 1996. A preliminar version has been communicated
to the TYPES’94 Annual Workshop, B̊astad, July 1994.

[18] G. E. Hughes and M. J. Cresswell. A companion to Modal Logic. Methuen, 1984.

[19] Z. Luo, R. Pollack, and P. Taylor. How to use LEGO (A Preliminary User’s Manual).
Department of Computer Science, University of Edinburgh, Oct. 1989.

[20] P. Martin-Löf. On the meaning of the logical constants and the justifications of the
logic laws. Technical Report 2, Scuola di Specializzazione in Logica Matematica, Di-
partimento di Matematica, Università di Siena, 1985.

[21] S. Martini and A. Masini. A computational interpretation of modal proofs. In H. Wans-
ing, editor, Proof theory of Modal Logics. Kluwer, 1994.

[22] S. Merz. Mechanizing TLA in Isabelle. In R. Rodošek, editor, Workshop on Verification
in New Orientations, pages 54–74, Maribor, July 1995. Univ. of Maribor.

[23] M. Miculan. The expressive power of structural operational semantics with explicit
assumptions. In H. Barendregt and T. Nipkow, editors, Proceedings of TYPES’93,
LNCS number 806, pages 292–320. Springer-Verlag, 1994.

[24] M. Miculan. Encoding Logical Theories of Programs. PhD thesis, Dipartimento di
Informatica, Università di Pisa, Italy, Mar. 1997.

[25] B. Nordström, K. Petersson, and J. M. Smith. Martin-Löf’s type theory. In Abramsky
et al. [1].

[26] F. Pfenning and H.-C. Wong. On a modal λ-calculus for S4. In Proc. MFPS’95, 1995.

[27] D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965.

[28] P. Schroeder-Heister. A natural extension of natural deduction. J. Symbolic Logic,
49(4):1284–1300, 1984.

[29] A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
University of Edinburgh, 1993.

[30] C. Stirling. Modal and Temporal Logics. In Abramsky et al. [1], pages 477–563.

[31] J. van Benthem. Modal logic and classical logic, volume 3 of Monographs in philosophical
logic and formal linguistics. Bibliopolis, Napoli, 1983.

[32] L. A. Wallen. Automated Proof Search in Non-Classical Logics. MIT Press, 1990.

[33] B. Werner. Une théorie des constructions inductives. PhD thesis, Univ. Paris 7, 1994.

35

