
MFPS 2007

Directed Bigraphs ?

Davide Grohmanna,1 Marino Miculana,2

a Department of Mathematics and Computer Science, University of Udine, Italy

Abstract

We introduce directed bigraphs, a bigraphical meta-model for describing computational paradigms dealing
with locations and resource communications. Directed bigraphs subsume and generalize both original
Milner’s and Sassone-Sobociński’s variants of bigraphs. The key novelty is that directed bigraphs take
account of the “resource request flow” inside link graphs, from controls to edges (through names), by means
of the new notion of directed link graph. We give RPO and IPO constructions for this model, generalizing and
unifying the constructions independently given by Jensen-Milner and Sassone-Sobociński in their respective
variants. Moreover, the very same construction can be used for calculating RPBs as well, and hence also
luxes (when these exist). Therefore, directed bigraphs can be used as a general theory for deriving labelled
transition systems (and congruence bisimulations) from (possibly open) reactive systems.

Keywords: Bigraphical models; Categorical models of concurrent, reactive, distributed, mobile systems.

1 Introduction

The fundamental importance of labelled transition systems (LTS) for defining the
dynamics of a calculus is well known. In spite of this, defining a satisfactory LTS for
a given calculus is not an easy task. Essentially, the problem boils down to identify
correctly the observations, that is, the “labels” of the LTS, which must represent
exactly (i.e., no more and no less) all possible interactions with any context which
can surround a system. Traditionally, LTSs are crafted “by hand”, but the more
complex is the calculus, the more difficult is to devise its LTS.

For this reason, often the semantics of a calculus is given by means of a reaction
(or reduction) system. Reaction systems are easier to define, understand and justify
than LTSs, but are not as useful in supporting tools and analytic techniques such as
bisimulations and model checking. Thus, a natural question is whether, and how, is
possible to construct a “good” labelled transitions system out of a reduction system.

In the last years much work has been spent in looking for general procedures for
deriving LTSs from reduction systems. Sewell [13] argued that the labels c of transi-
tions of a term t are the contexts c[·] such that c[t] yields a reaction; remarkably, the
bisimulation induced by a such LTS is always a congruence. However, we want to

? Work supported by Italian MIUR project 2005015824 Art.
1 Email: grohmann@dimi.uniud.it
2 Email: miculan@dimi.uniud.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:grohmann@dimi.uniud.it
mailto:miculan@dimi.uniud.it

Grohmann, Miculan

take as labels the contexts really relevant to t only, i.e., in c[t] the reaction has to in-
volve (part of) t and not only the surrounding context c. To this end, a major break-
through has been achieved by Leifer and Milner with the observation that a natural
concept of “minimal context” is elegantly expressed by the categorical notions of
relative pushout (RPO) and idem-relative pushout (IPO) [7,8]. The notion of RPO
has been later generalized to groupoidal RPO for dealing with syntactic congruences
[11], and dualized into (groupoidal) relative pullback (RPB) to take into account
also open (i.e., non-ground) terms and reaction rules. Eventually, RPO and RPB
have been merged into the single concept of locally universal hexagons (luxes) [5].

Now, given this general and elegant theory, we have to find the categories where
the calculi and systems used in Concurrency can be conveniently represented, and
RPOs, RPBs and luxes can be constructed.

To this end, an emerging meta-model are Milner’s bigraphs [9,10], for which
a construction of RPOs has been given in [3]. A bigraph is composed by two
orthogonal structures: a hierarchical place graph describing locations, and a link
(hyper-)graph describing connections. These structures allow to represent many
formalisms such as CCS, π-calculus, Ambients, and Petri nets among others. Thus,
bigraphs can be seen as a promising meta-model for Concurrency.

On the other hand, Sassone and Sobociński presented in [12] a general approach
for constructing RPOs in a wide range of models, namely those which can be ex-
pressed as input-linear cospans over adhesive categories [6]. Adhesive categories are
quite common in Computer Science; e.g., presheaf categories (and hence Set and
Graph) are adhesive. An input-linear cospan X � A ← Y represents a system
A whose input and output interfaces are X and Y , respectively. However, despite
its generality, this construction cannot be applied to Milner’s bigraphs, due to the
input-linearity condition: bigraphs are actually output-linear (and not input-linear)
cospans in an adhesive category of place-link graphs [12].

Summarizing, so far we have two kinds of bigraphs: “output-linear” (i.e. origi-
nal Milner’s) bigraphs, with Jensen-Milner’s RPO construction; and “input-linear”
bigraphs, with Sassone-Sobocińksi’s RPO construction. These two categories and
constructions do not generalize each other, although they agree on the intersection
(i.e., input- and output-linear bigraphs). A natural question then arises: is there
a generalization of both kinds of bigraphs, with an RPO construction subsuming
both Jensen-Milner’s and Sassone-Sobocińki’s constructions?

The answer is affirmative: in this paper we introduce directed bigraphs, which
subsume and generalize both previous theories. A directed bigraph is composed by
a place graph and a directed link graph, which is a natural generalization of input-
linear link graphs and output-linear link graphs. In this model, we give a construc-
tion of RPOs (and IPOs), generalizing and unifying the known constructions in the
previous models (Actually, the IPO construction for input-linear bigraphs obtained
in this way is the first one, up to our knowledge). Moreover, since the (pre)category
of directed link graphs turns out to be self-dual, the RPO construction can be used
for calculating RPBs as well, and hence for the construction of luxes.

Intuitively, the basic idea of directed ling graphs is to notice that names are not
resources on their own, but only a way for denoting (abstract) resources (here rep-
resented by the edges). In a system, a name may be not denoting any resource (i.e.,

2

Grohmann, Miculan

not associated to any edge); in this case, the name can be seen as a formal parameter
of the system which is asking through it for a resource from outside itself. Thus, we
can discern a “resource request flow” which starts from control ports, goes through
names and terminates in edges. In output-linear link graphs, this request flow en-
ters a system from its inner interface (i.e., the system offers its resources to inner
modules) and exits through its outer interface (i.e., the system asks for resources to
the outer environment); that is, the flow moves ascending the place graph hierarchy.
The converse happens in input-linear link graphs, where the requests flow descends
the place graph hierarchy. Therefore, we can generalize both situations by allowing
resource requests to go in both directions: a module may ask for resources and offer
resources on each interface at once. In order to avoid inconsistencies, however, we
must take care of the “polarity” of names in interfaces, according as their meaning
flows “upward” or “downward”—hence the adjective directed.

The rest of the paper is organized as follows. In Section 2 we present the
precategories ′DLG and ′DBig of directed link graphs and directed bigraphs, and
their basic properties. The constructions of RPOs and IPOs for directed link graphs
are described in Section 3. As an application, in Section 4 we show how input-linear
and output-linear link graphs are subsumed by directed link graphs. Due to lack
of space, we cannot describe how directed link graphs can be conveniently used
for representing specific calculi, even with binders (such as λ-calculus) without the
need of further extensions; we refer the interested reader to [1]. Conclusions and
directions for future work are in Section 5.

2 Directed link graphs and bigraphs

In this section we introduce directed link graphs, and present their main properties.
In order to allow a direct comparison with traditional (i.e., output-linear, Milner’s)
bigraphs, we work with precategories. We refer the reader to [4, §3] and [8] for an
introduction to the theory of supported monoidal precategories.

Let K be a given signature of controls.

Definition 2.1 A polarized interface X is a pair of disjoint sets of names X =
(X−, X+); the two components are called downward and upward faces, respectively.

A directed link graph A : X → Y is A = (V,E, ctrl, link) where X and Y

are the inner and outer interfaces, V is the set of nodes, E is the set of edges,
ctrl : V → K is the control map, and link : Pnt(A) → Lnk(A) is the link map,
where the ports, the points and the links of A are defined as follows:

Prt(A),
∑
v∈V

ar(ctrl(v)) Pnt(A) , X+] Y −] Prt(A) Lnk(A) , X−] Y +] E

The link map cannot connect downward and upward names of the same interface,
i.e., the following condition must hold: (link(X+) ∩X−) ∪ (link(Y −) ∩ Y +) = ∅.

Directed link graphs are graphically depicted much like ordinary link graphs,
with the difference that edges are explicitly represented as vertices of the graph, and
not as hyper-arcs connecting points and names; points and names are associated to
edges (or other names) by (simple, non hyper) directed arcs. Some examples are

3

Grohmann, Miculan

A : ({w}, ∅) → ({x, y, z}, ∅)

(a)

w

v0

z

v1

x y

e

B : (∅, {x, y, z}) → (∅, {w})

(b)

w

v0

z

v1

x y

e

C : (∅, {x, y}) → ({z, w}, ∅)

(c)

w z

x y

e

Fig. 1. Examples of directed link graphs.

given in Figure 1. This notation aims to make clear the “resource request flow”:
ports and names in the interfaces can be associated either to internal or to external
resources. In the first case, ports and names are connected to an edge; these names
are “inward” because they declare to the context how to get to an internal resource.
In the second case, the ports and names are connected to an outward name, which
is waiting to be plugged by the context into a resource.

Notice that input-linear (output-linear, respectively) link graphs are just special
cases of this definition: just restrict to empty upward (downward, respectively)
interfaces (Figure 1.a and b). However, there are directed link graphs which are
neither input-linear nor output-linear, nor any combination of these; e.g. C ,
(∅, {e}, ∅, {(x, e), (y, e), (z, e), (w, e)}) : {x, y} → {z, w} in Figure 1.c.

Directed link graphs can be alternatively defined as the composition of an input
linear link graph and an output linear link graph defined on the same support (as
suggested by R. Milner). Notice that to this end, control ports must be partitioned
in two subsets: those used in the input linear link graph and those used in the outer
linear link graph. This corresponds to assign a precise direction (either upward or
downward) to the connections. Notice in this way, the constraint that two names
of the same interface cannot be linked together, is automatically ensured.

In the following, by “interface” and “link graphs” we will intend “polarized
interface” and “directed link graphs” respectively, unless otherwise noted.

Definition 2.2 (′DLG) The precategory of directed link graphs has polarized in-
terfaces as objects, and directed link graphs as morphisms.

Given two directed link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Xi+1 (i = 0, 1),
the composition A1 ◦A0 : X0 → X2 is defined when the two link graphs have disjoint
nodes and edges. In this case, A1 ◦ A0 , (V,E, ctrl, link), where V , V0] V1,
ctrl , ctrl0]ctrl1, E , E0]E1 and link : X+

0]X−
2]P → E]X−

0]X+
2 is defined

as follows (where P = Prt(A0)] Prt(A1)):

link(p) ,

link0(p) if p ∈ X+

0] Prt(A0) and link0(p) ∈ E0]X−
0

link1(x) if p ∈ X+
0] Prt(A0) and link0(p) = x ∈ X+

1

link1(p) if p ∈ X−
2] Prt(A1) and link1(p) ∈ E1]X+

2

link0(x) if p ∈ X−
2] Prt(A1) and link1(p) = x ∈ X−

1 .

The identity link graph of X is idX , (∅, ∅, ∅K, IdX−]X+) : X → X.

4

Grohmann, Miculan

A
v

x y

B

w

x y

It is easy to check that composition is associative, and that given
a link graph A : X → Y , the compositions A ◦ idX and idY ◦A are
defined and equal to A. Definition 2.1 forbids connections between
names of the same interface in order to avoid undefined link maps
after compositions. An example is shown aside, where the compo-
sition of two apparently unproblematic directed link graphs A,B

would yield a “loop” and hence not a directed link graph.

Proposition 2.3 The precategory ′DLG is self-dual, that is ′DLG ∼= ′DLG
op.

Proof. We can define the functor () : ′DLG→ ′DLG
op on objects as (X−, X+) ,

(X+, X−), and on a morphism A = (V,E, ctrl, link) : X → Y as A itself but with
swapped interfaces: A , A : (V,E, ctrl, link) : Y → X. It is easy to check that this
is a full and faithful functor, and that A = A. 2

Definition 2.4 The support of a link graph A = (V,E, ctrl, link) : X → Y is the
set |A| = V ⊕ E.

Proposition 2.5 The precategory ′DLG is well supported.

Proof. A lengthy check that |A1 ◦ A2| = |A1|] |A2|, and that all the properties
about support translation are verified. 2

Definition 2.6 (idle, lean, open, closed, peer) Let A : X → Y be a link graph.
A link l ∈ Lnk(A) is idle if it is not in the image of the link map (i.e., l 6∈

link(Pnt(A))). The link graph A is lean if there are no idle links.
A link l is open if it is an inner downward name or an outer upward name (i.e.,

l ∈ X− ∪ Y +); it is closed if it is an edge.
A point p is open if link(p) is an open link; otherwise it is closed. Two points

p1, p2 are peer if they are mapped to the same link, that is, link(p1) = link(p2).

Proposition 2.7 A link graph A : X → Y is epi iff there are no peer names in Y −

and no idle names in Y +. Dually, A is mono iff there are no idle names in X−

and no peer names in X+.
A is an isomorphism iff it has no nodes, no edges, and its link map can be

decomposed in two bijections link+ : X+ → Y +, link− : Y − → X−.

Definition 2.8 The tensor product ⊗ in ′DLG is defined as follows. Given two
objects X, Y , if these are pairwise disjoint then X ⊗ Y , (X−] Y −, X+] Y +).
Given two link graphs Ai = (Vi, Ei, ctrli, linki) : Xi → Yi (i = 0, 1), if the tensor
products of the interfaces are defined and the sets of nodes and edges are pairwise
disjoint then the tensor product A0⊗A1 : X0⊗X1 → Y0⊗Y1 is defined as A0⊗A1 ,
(V0] V1, E0] E1, ctrl0] ctrl1, link0] link1).

It is not difficult to check |A1 ⊗A2| = |A1|] |A2| and the following proposition.

Proposition 2.9 ′DLG is a well-supported monoidal precategory.

Finally, we can define the directed bigraphs as the composition of standard place
graphs (see [4, §7] for definitions) and directed link graphs.

Definition 2.10 An interface is composed by a width (a finite ordinal) and by a
pair of finite sets of names (from a global set X).

5

Grohmann, Miculan

Let I = 〈m,X〉 and J = 〈n, Y 〉 be two interfaces. A directed bigraph G with
signature K from I to J is G = (V,E, ctrl, prnt, link) : I → J , where I and J are
its inner and outer interfaces, respectively. V and E are the sets of nodes and edges
respectively, and prnt, ctrl and link are the parent, control and link maps, such that
GP , (V, ctrl, prnt) : m → n is a place graph and GL , (V,E, ctrl, link) : X → Y

is a directed link graph.

We denote G as combination of GP and GL by G = 〈GP , GL〉. In this notation,
a place graph and a (directed) link graph can be put together iff they have the same
sets of nodes and edges.

Definition 2.11 (′DBig) The precategory ′DBig of directed bigraph with signature
K has interfaces I = 〈m,X〉 as objects and directed bigraphs G = 〈GP , GL〉 : I → J

as morphisms. If H : J → K is another directed bigraph with sets of nodes and edges
disjoint from V and E respectively, then their composition is defined by composing
their components, i.e.:

H ◦G , 〈HP ◦GP ,HL ◦GL〉 : I → K.

The identity directed bigraph of I = 〈m,X〉 is 〈idm, IdX−]X+〉 : I → I.

Proposition 2.12 A directed bigraph G in ′DBig is epi (respectively mono) iff its
two components GP and GL are epi (respectively mono).

The isomorphisms in ′DBig are all the combinations ι = 〈ιP , ιL〉 of an isomor-
phism in ′PLG and an isomorphism in ′DLG.

Definition 2.13 The tensor product ⊗ in ′DBig is defined as follows. Given I =
〈m,X〉 and J = 〈n, Y 〉, where X and Y are pairwise disjoint, then 〈m,X〉⊗〈n, Y 〉 ,
〈m + n, (X−] Y −, X+] Y +)〉. The tensor product of two bigraphs Gi : Ii → Ji is
defined when the tensor products of the interfaces are defined and the sets of nodes
and edges are pairwise disjoint, then:

G0 ⊗G1 , 〈GP
0 ⊗GP

1 , GL
0 ⊗GL

1 〉 : I0 ⊗ I1 → J0 ⊗ J1.

Proposition 2.14 For every signature K, the precategory ′DBig is wide monoidal;
the origin is ε = 〈0, (∅, ∅)〉 and the interface 〈n, X〉 has width n.

In virtue of this result, ′DBig can be used for applying the theory of wide reaction
systems and wide transition systems as developed by Jensen and Milner; see [4, §4,
§5] for details. To this end, we need to show that ′DBig has RPOs and IPOs. Since
place graphs are the usual ones, it suffices to show that directed link graphs have
RPOs and IPOs; this is the subject of the next section.

3 RPO and IPO for directed link graphs

3.1 Construction of relative pushouts and pullbacks

We first give an idea of how the construction works. Suppose D0 : X0 → Z,
D1 : X1 → Z is a bound for a span A0 : W → X0, A1 : W → X1 and we wish to
construct the RPO (B0, B1, B). In the following we will denote a pair (A0, A1) by ~A

and the link map of A simply by A. To form the pair ~B we truncate ~D by removing

6

Grohmann, Miculan

all the edges, nodes and ports not present in ~A. Then in the outer interface of ~B,
we create an outer name for each point unlinked by the truncation: the downward
names connected to the same link (name or edge) must be “bound together”, i.e.
we must consider all the possible ways to associate a downward name of A0 with
one of A1 and vice versa; further we must equate an upward name of A0 with one of
A1 only if they are both connected to a point shared between A0 and A1. Formally:

Construction 3.1 (RPOs in directed link graphs) A relative pushout (~B :
~X → X̂, B : X̂ → Z), for a pair ~A : W → ~X of link graphs relative to a bound
~D : ~X → Z, will be built in three stages. Since RPOs are preserved by isomor-
phisms, we can assume the components of X0 and X1 disjoint.

nodes and edges If Vi are the nodes of Ai (i = 0, 1), then the nodes of Di are
VDi = (Vī \ Vi)] V2 for some V2. Define the nodes of Bi and B to be VBi ,
Vī\Vi (i = 0, 1) and VB , V2. Edges Ei and ports Pi of Ai are treated analogously.

interface Construct the shared codomain X̂ = (X̂−, X̂+) of ~B as follows: first we
define the names in each Xi = (X−

i , X+
i), for i = 0, 1, that must be mapped into

X̂ = (X̂−, X̂+):

X ′−
i , {x ∈ X−

i | ∃y ∈ X−
ī

s.t. Ai(x) = Aī(y) or Ai(x) ∈ (Ei \ Eī)}
X ′+

i , {x ∈ X+
i | Di(x) ∈ (E2] Z+)} .

We define for each l ∈ (W−] (E0 ∩ E1)) the set of names in X ′−
i linked to l:

X ′−
i (l) , {x ∈ X ′−

i | Ai(x) = l} (i = 0, 1).

Now we must “bind together” names connected to the same link, so we create
all the possible pairs between a name in X ′−

0 and a name in X ′−
1 . Further we

must add to X̂− all the names in X ′−
i “not associable” to any name of X ′−

ī
. Then

the set of downward names of ~B is:

X̂− ,
⋃

l∈(W−](E0∩E1))

X ′−
0 (l)×X ′−

1 (l) ∪
∑

i∈{0,1}

⋃
e∈(Ei\Eī)

X ′−
i (e).

Next, on the disjoint sum X ′+
0 ⊕X ′+

1 , define ∼= to be the smallest equivalence for
which (0, x0) ∼= (1, x1) iff there exists p ∈ (W+] (P0 ∩P1)) such that A0(p) = x0

and A1(p) = x1. Then define:

X̂+ , (X ′+
0 ⊕X ′+

1)/∼=.

For each x ∈ X ′+
i we denote the equivalence class of (i, x) by î, x.

links Define the link maps of Bi as follows:

for x ∈ X+
i : Bi(x) ,

{
Di(x) if x ∈ (X+

i \X ′+
i)

î, x if x ∈ X ′+
i ;

for p ∈ (Pī \ Pi) : Bi(p) ,

{
Di(p) if Aī(p) /∈ X+

ī̂̄i, x if Aī(p) = x ∈ X+
ī

;

7

Grohmann, Miculan

for x̂ ∈ X̂− : Bi(x̂) ,

x if x̂ = (x, y) and i = 0
y if x̂ = (x, y) and i = 1
x̂ if x̂ ∈ (X̂− ∩X−

i)
Aī(x̂) if x̂ ∈ (X̂− ∩X−

ī
).

Finally we define the link map of B:

for x̂ ∈ X̂+ : B(x̂) , Di(x) where x̂ = î, x and x ∈ X+
i ;

for p ∈ (P2] Z−) : B(p) ,

Di(p) if Di(p) ∈ (E2] Z+)
Dī(p) if Di(p) ∈ (Eī \ Ei)
Di(p) if Dī(p) ∈ (Ei \ Eī)
(x, y) if D0(p) = x ∈ X−

0 and
D1(p) = y ∈ X−

1 .

Theorem 3.2 In ′DLG, whenever a pair ~A of link graphs has a bound ~D, there
exists an RPO (~B,B) for ~A to ~D, and Construction 3.1 yields such an RPO.

Proof. The proof is in two parts. First we have to check that (~B,B) is an RPO
candidate; this is done by long and tedious calculations.

Next, for any other candidate (~C, C), we have

(W−, W+)

(X−

0 , X+

0) (X−

1 , X+

1)(X̂−, X̂+)

(Ŷ −, Ŷ +)

(Z−, Z+)

A0 A1

B0 B1

C0 C1

D0 D1C
B

Ĉ

to construct the unique arrow Ĉ such that the di-
agram aside commutes. This link graph Ĉ can be
constructed as follows: let be VC the nodes of C, for
i = 0, 1 the set of nodes of Ci is VCi , (Vī \Vi)]V3,
where V3 is such that V2 = V3] VC ; edges ECi and
ports PCi of Ci are defined analogously. Then Ĉ

has V3, E3 and P3 as sets of nodes, edges and ports
respectively. Its link map is defined as follows:

for ĵ, x ∈ X̂+ : Ĉ(ĵ, x) , Cj(x);

for p ∈ (P3] Ŷ −) : Ĉ(p) ,

Ci(p) if Ci(p) ∈ (E3] Ŷ +)
C0(p) if C0(p) ∈ (X̂− ∩X−

0)
C1(p) if C1(p) ∈ (X̂− ∩X−

1)
(x, y) if C0(p) = x ∈ X−

0 and C1(p) = x ∈ X−
1 .

2

As an immediate consequence, we can calculate RPBs as well.

Corollary 3.3 In ′DLG, whenever a pair ~D : ~X → W of link graphs has a co-
bound ~A : Z → ~X, there exists an RPB (~B : X̂ → ~X,B : Z → X̂) for ~A to ~D, and
Construction 3.1 can be used for calculating such an RPB.

Proof. Consider the pair ~D : W → ~X, which is in ′DLG for Proposition 2.3; this
pair has the bound ~A : ~X → Z, and hence, for Theorem 3.2, Construction 3.1 yields
a RPO (~C : ~X → X̂, C : X̂ → Z). Then, take ~B , ~C and B , C. 2

8

Grohmann, Miculan

Finally, one may wonder whether this construction can be used for calculating
locally universal hexagons (luxes). Actually ′DLG does not have all luxes, although
it has RPOs and RPBs. In fact, it is easy to construct an hexagon such that its
RPO and RPB do not commute; the result follows from [5, Theorem 1].

However, there are two subprecategories of ′DLG where luxes do exist:

Proposition 3.4 Let ′MDLG be the wide subprecategory of ′DLG of mono directed
link graphs. Then, ′MDLG has luxes, which can be constructed using Construc-
tion 3.1 twice.

Proof. Follows from [5, Corollary 3], and previous results. 2

Clearly, the result applies also to ′EDLG = ′MDLG
op, the subprecategory of ′DLG

of epi directed link graphs. Notice that, by Proposition 2.7, mono and epi link
graphs are easy to recognize and single out.

3.2 Construction of idem-relative pushouts

We now proceed to characterise all the IPOs for a given pair ~A : W → ~X of link
graphs. The first step is to establish consistency conditions.

Definition 3.5 We define four consistency conditions on a pair ~A : W → ~X of
link graphs.

CDL0 ctrl0(v) = ctrl1(v) if v ∈ (V0 ∩ V1);

CDL1 if p ∈ (P0 ∩ P1) and Ai(p) ∈ ((E0 ∩ E1)]W−), then Aī(p) = Ai(p);

CDL2 if p2 ∈ (P0∩P1) and Ai(p2) ∈ (Ei\Eī), then Aī(p2) = xī for some xī ∈ X+
ī

,
and further if Aī(p) = Aī(p2) then p ∈ (W+] (P0 ∩ P1)) and Ai(p) = Ai(p2), or
p ∈ (Pī \ Pi) and exists xi ∈ X−

i such that Ai(xi) = Ai(p2);

CDL3 for each p ∈ (Pi \ Pī) such that Ai(p) ∈ (W−] (E0 ∩ E1)), then exists
xī ∈ X−

ī
such that Aī(xī) = Ai(p).

Informally, CDL1 says that if a shared point p in Ai is linked to a shared link l,
then in Aī the shared point p must be linked to the same link l. CDL2 says that if
the link of a shared point p2 in Ai is closed and unshared, then its link in Aī must
be an outer upward name, further any peer p of p2 in Aī must also be its peer in Ai,
or if p is not shared, then in Ai there exists an outer downward name linked to the
unshared edge of p2. Finally, CDL3 says that if an unshared point in Ai is linked to
a shared link, then in Aī there is an outer downward name linked to the shared link.

Proposition 3.6 If a pair of link graphs ~A has a bound, then the consistency con-
ditions hold.

Now, assuming the consistency conditions of Definition 3.5, we shall construct
a non-empty family of IPOs for ~A denoted by IPO(~A).

Construction 3.7 (IPOs in directed link graphs) Assume that the consisten-
cy conditions 3.5 hold for the pair ~A : W → ~X of link graphs. We define ~C : ~X → Y

an IPO for ~A as follows:

nodes and edges Define the nodes of Ci to be VCi , Vī \ Vi. Edges and ports of
Ci are defined analogously.

9

Grohmann, Miculan

interface For i = 0, 1 choose any subset L+
i of the names X+

i such that all members
of L+

i are idle. Define

P̃i , {p ∈ Pi \ Pī | Ai(p) ∈ X+
i and @p′ ∈ (Pi ∩ Pī)]W+ s.t. Ai(p) = Ai(p′)}

and choose Q+
i ⊆ Ai(P̃i)∩X+

i . Let K+
i , X+

i \ (L+
i ∪Q+

i) and let K ′+
i ⊆ K+

i be
the names to be mapped to the codomain Y +. We define (for i = 0, 1):

X ′−
i , {x ∈ X−

i | ∃y ∈ X−
ī

s.t. Ai(x) = Aī(y) or Ai(x) ∈ (Ei \ Eī)}
K ′+

i , {x ∈ K+
i | ∀p ∈ (W+] (P0 ∩ P1)).Ai(p) = x ∈ X+

i ⇒ Aī(p) ∈ X+
ī
} .

As in Construction 3.1, we define for each l ∈ (W−] (E0 ∩E1)) the set X ′−
i (l)

of names linked to l, and define:

Y − ,
⋃

l∈(W−](E0∩E1))

X ′−
0 (l)×X ′−

1 (l) ∪
∑

i∈{0,1}

⋃
e∈(Ei\Eī)

X ′−
i (e).

Next, on the disjoint sum K ′+
0 ⊕K ′+

1 , define ' to be the smallest equivalence for
which (0, x0) ' (1, x1) iff there exists p ∈ (W+] (P0 ∩P1)) such that A0(p) = x0

and A1(p) = x1. Then define:

Y + , (K ′+
0 ⊕K ′+

1)/'.

For each x ∈ K ′+
i we denote the equivalence class of (i, x) by î, x.

links For i = 0, 1, choose three arbitrary functions:

ηi : L+
i → Eī \ Ei;

ξi : Q+
i → {e ∈ Ei \ Eī | ∃x ∈ X−

i s.t. Ai(x) = e};

and for each l ∈ (W−](E0∩E1)) for which there exists xi ∈ X−
i and p ∈ (Pī \Pi)

such that Ai(xi) = l and Aī(p) = l, choose an arbitrary function:

θl
i : {p ∈ (Pī \ Pi) | Aī(p) = l} → X ′−

i (l).

Then define the link maps Ci : Xi → Y as follows:

for x ∈ X+
i : Ci(x) ,

Aī(p) if x ∈ (K+
i \K ′+

i), then
∃p ∈ (W+] (P0 ∩ P1)) s.t. Ai(p) = x

î, x if x ∈ K ′+
i

ηi(x) if x ∈ L+
i

ξi(x) if x ∈ Q+
i ;

for p ∈ (Pī \ Pi) : Ci(p) ,

Aī(p) if Aī(p) ∈ (Eī \ Ei)̂̄i, x if Aī(p) = x ∈ X+

ī
\Q+

ī

θl
i(p) if Aī(p) = l ∈ ((E0 ∩ E1)]W−)

θe
i (p) if p ∈ P̃ī and e = ξī(Aī(p));

10

Grohmann, Miculan

for y ∈ Y − : Ci(y) ,

x if x̂ = (x, y) and i = 0
y if x̂ = (x, y) and i = 1
y if y ∈ (Y − ∩X−

i)
Aī(y) if y ∈ (Y − ∩X−

ī
).

The maps ηi are called elision; this refers to the fact that the idle names L+
i in Ai

are not exported in the IPO interface Y , but instead mapped into Ci.
The maps ξi are called inversion; this refers to the fact that in the bound Cī

of Aī we can invert the direction of some link from upward to downward. In this
way we can connect a port p of Pi \Pī to an edge e in Eī \Ei also when there is no
shared port, connected to the same name of p, which is linked to e in Aī.

The maps θl
i are called random link ; this refers to the fact that if a link has

more then one name linked to it, then in the bound it is indifferent to which name
a point is linked to, because the effect of composition is the same.

There is a distinct IPO for each choice of L+
i , Q+

i , ηi, ξi and θl
i. When ~A are

both epi then there are no elisions of idle names and there not exists two different
names in X−

i that are peers, then the IPO is unique and hence a pushout.

Theorem 3.8 A pair ~C : ~X → Y is an IPO for ~A : W → ~X iff it is generated (up
to isomorphism) by Construction 3.7.

Proof. (⇒) ~B is an IPO for ~A iff it is the legs of an RPO w.r.t. some bound
~D. So we can assume w.l.g. that ~B is generated by Construction 3.1. Now apply
Construction 3.7 to create ~C by choosing ~L+, ~Q+, ~η, ~ξ and ~θl as in ~D. Then ~C

coincides with ~B.
(⇐) Consider any ~C generated by Construction 3.7. Now apply the Construc-

tion 3.1 to yield an RPO (~B,B) for ~A to ~C. Then ~B coincides with ~C. 2

4 Embedding output-linear and input-linear link graphs
in directed link graphs

In this section, we show how the previous theories of output-linear and input-linear
bigraphs are related to directed link graphs.

Let us first recall the definition of bigraphs, as given by Milner [10]. For clarity,
we add the adjective “output linear”.

Definition 4.1 An output-linear link graph is a tuple A = (V,E, ctrl, link) : X →
Y , where V is the set of nodes, E is the set of edges, and X and Y are the sets of
inner and outer names, respectively; ctrl : V → K is the control map, and finally
link : P]X → E] Y is the link map, where P ,

∑
v∈V ar(ctrl(v)) is the set of

ports of A. Inner names and ports are the points, while outer names and edges are
the links.

The support of the output-linear link graph A is the set |A| , V ⊕ E.

Then, we recall the definition of the category of output-linear link graphs (cf. [4,
Def. 8.3], there called ′Lig):

Definition 4.2 (′OLG) The precategory of output-linear link graphs ′OLG has

11

Grohmann, Miculan

sets of names as objects, and output-linear link graphs as morphisms. Composition
of two link graphs A0, A1 is defined when their supports are disjoint; in this case,
A1 ◦A0 , (V0]V1, E0]E1, ctrl0]ctrl1, link), where link : P]X0 → E]X2 (where
P = P0] P1) is defined as follows:

link(p) ,

link0(p) if p ∈ X0] P0 and link0(p) ∈ E0

link1(x) if p ∈ X0] P0 and link0(p) = x ∈ X1

link1(p) if p ∈ P1.

The identity link graph at X is idX , (∅, ∅, ∅K, IdX) : X → X.

The precategory ′OLG is well-supported; actually it is a well-supported monoidal
precategory. See [4] for details. Moreover, whenever a span ~A in ′OLG has a bound
~D, there exists an RPO for (~A, ~D); see [4, Construction 8.8].

The precategory ′ILG of input-linear link graphs is defined much like ′OLG, just
by swapping the input and output interfaces in the arity of the link functions (i.e.,
for A : X → Y , its link map is link : P] Y → E]X). The composition has to be
changed accordingly: given two input-linear link graphs A0 : X0 → X1, A1 : X1 →
X2 the composition A1 ◦A0 is defined when their supports are disjoint; in this case,
A1 ◦A0 , (V0]V1, E0]E1, ctrl0]ctrl1, link), where link : P]X2 → E]X0 (where
P = P0] P1) is defined as follows:

link(p) ,

link1(p) if p ∈ X2] P1 and link1(p) ∈ E1

link0(x) if p ∈ X2] P1 and link1(p) = x ∈ X1

link0(p) if p ∈ P0.

It is immediate to see that an output-linear link graph (V,E, ctrl, link : P]X →
E]Y) : X → Y is also an input-linear link graph (V,E, ctrl, link : P]X → E]Y) :
Y → X, and vice versa. Thus:

Proposition 4.3 ′OLG ∼= ′ILG
op.

Corollary 4.4 Let ~A be a span in ′OLG, with a bound ~D. A triple (~B,B) is an
RPO for (~A, ~D) in ′OLG iff (~Bop, Bop) is an RPB for (~Aop, ~Dop) in ′ILG.

As a consequence, the RPO construction in ′OLG can be used for constructing
RPBs in ′ILG, but it does not work for constructing RPOs. On the converse, an
RPOs construction in ′ILG would give an RPB construction in ′OLG for free.

Actually, an RPO construction in ′ILG can be recovered by noticing that input-
linear link graphs correspond to input-linear cospans over a certain adhesive cate-
gory LGraph of hypergraphs, as observed in [12]. Thus we can apply the general
(G)RPO construction presented in loc. cit. (and fully detailed in [14]). In this
paper, for a more direct comparison with the constructions in ′DLG and ′OLG (and
in order to avoid to introduce 2-categorical machinery), we present a version of this
construction tailored to the specific precategory ′ILG.

Construction 4.5 (RPOs in input-linear link graphs) An RPO in ′ILG is
built as follows:

12

Grohmann, Miculan

nodes and edges If Vi are the nodes of Ai (i = 0, 1); then the nodes of Di are
VDi = (Vī \ Vi)] V2 for some V2. Define the nodes of Bi and B to be VBi ,
Vī\Vi (i = 0, 1) and VB , V2. Edges Ei and ports Pi of Ai are treated analogously.

interface Construct the shared codomain X̂ of ~B as follows: first we define the
names in each Xi, for i = 0, 1, that must be mapped into X̂:

X ′
i , {x ∈ Xi | ∃y ∈ Xī s.t. Ai(x) = Aī(y) or Ai(x) ∈ (Ei \ Eī)} .

We define for each l ∈ (W] (E0 ∩ E1)) the set of names in X ′
i linked to l:

X ′
i(l) , {x ∈ X ′

i | Ai(x) = l} (i = 0, 1).

Now we must “bind together” names connected to the same link, so we create
all the possible pairs between a name in X ′

0 and a name in X ′
1. Further we must

add to X̂ all the names of X ′
i “not associable” to any name of X ′

ī
. Then the set

of outer names of ~B is:

X̂ ,
⋃

l∈(W](E0∩E1))

X ′
0(l)×X ′

1(l) ∪
∑

i∈{0,1}

⋃
e∈(Ei\Eī)

X ′
i(e).

links Define Bi as follows:

for p ∈ (Pī \ Pi) : Bi(p) , Di(p);

for x̂ ∈ X̂ : Bi(x̂) ,

x if x̂ = (x, y) and i = 0
y if x̂ = (x, y) and i = 1
x̂ if x̂ ∈ (X̂ ∩Xi)
Aī(x̂) if x̂ ∈ (X̂ ∩Xī).

Finally we define B:

for p ∈ (Z] P2) : B(p) ,

Di(p) if Di(p) ∈ E2

Dī(p) if Di(p) ∈ (Eī \ Ei)
Di(p) if Dī(p) ∈ (Ei \ Eī)
(x, y) if D0(p) = x and D1(p) = y.

Proposition 4.6 If a span ~A in ′ILG has a bound ~D, then there exists an RPO
for (~A, ~D), which is constructed by Construction 4.5.

Actually, both constructions in ′ILG and ′OLG are special cases of Construction
3.1 in ′DLG, since the former precategories are embedded in the latter:

Proposition 4.7 ′ILG and ′OLG are equivalent to two well-supported monoidal
subprecategories of ′DLG.

Proof. The monoidal embeddings FI : ′ILG → ′DLG and FO : ′OLG → ′DLG are
defined as obvious: on objects, FI(X) = (X, ∅) and FO(X) = (∅, X); on morphisms,
simply as FI(A) = FO(A) = A. It is easy to check that these are two faithful
functors, respecting supports and the monoidal operations. 2

13

Grohmann, Miculan

Proposition 4.8 Given a span ~A with a bound ~D in ′ILG, a triple (~B,B) is an
RPO for (~A, ~D) iff (FI(~B), FI(B)) is an RPO for (FI(~A), FI(~D)) in ′DLG.

Thus, in order to calculate an RPO for a square (~A, ~D) in either ′ILG or ′OLG, we
just embed the square in ′DLG, apply Construction 3.1, and drop the empty sets
from the interfaces of the resulting RPO.

This result, in virtue of the self-duality of ′DLG, extends to RPB as well, thus
we have an algorithm for calculating RPBs in ′ILG and ′OLG.

Proposition 4.9 Let ~A be a span with a bound ~D in ′ILG or ′OLG; then there
exists an RPB (~B,B) for (~A, ~D).

Proof. Consider the square (FI(~D), FI(~A)) in ′DLG. By applying Construction 3.1,
we get an RPO (~C, C) for it. Then, the RPB for (~A, ~D) is obtained by taking (~C, C),
and cancelling the empty sets from the interfaces. 2

Luxes
Since ′OLG and ′ILG have RPOs and RPBs, one may wonder whether we can

build luxes as well. The answer is the same of ′DLG: not always. In both categories
we can build hexagons which do not have luxes. However, if we restrict to either
all epi or all mono link graphs, luxes do exist, and can be calculated by embedding
an hexagon in ′DLG and applying Proposition 3.4.

IPOs
Also the consistency conditions and the construction of IPOs in ′OLG and ′ILG

are subsumed by Definition 3.5 and Construction 3.7. Let us recall the consistency
condition for output-linear graphs as in [4, Definition 8.10].

Definition 4.10 The three consistency conditions on a pair ~A : W → ~X of output-
linear link graphs are the following:

COL0 ctrl0(v) = ctrl1(v) if v ∈ (V0 ∩ V1);

COL1 if Ai(p) ∈ (E0 ∩ E1), then p ∈ (W] (P0 ∩ P1)) and Aī(p) = Ai(p);

COL2 for p2 ∈ (P0 ∩ P1), if Ai(p2) ∈ (Ei \ Eī) then Aī(p2) ∈ Xī, and if also
Aī(p) = Aī(p2) then p ∈ (W] (P0 ∩ P1)) and Ai(p) = Ai(p2).

On the other hand, the consistency conditions for input-linear graphs are quite
different:

Definition 4.11 The three consistency conditions on a pair ~A : W → ~X of input-
linear link graphs are the following:

CIL0 ctrl0(v) = ctrl1(v) if v ∈ (V0 ∩ V1);

CIL1 if p ∈ (P0 ∩ P1), then A0(p) = A1(p);

CIL2 for p ∈ (Pi \Pī) such that Ai(p) ∈ (W] (E0∩E1)), there exists xī ∈ Xī such
that Aī(xī) = Ai(p).

In both precategories, if a bound satisfies the relevant consistency conditions,
its IPOs can be calculated using Construction 3.7, in virtue of the following result:

14

Grohmann, Miculan

Proposition 4.12 Let ~A a span in ′OLG. If ~A satisfy the conditions in Defini-
tion 4.10 then IPO(~A) ∼= IPO(FO(~A)).

Let ~A a span in ′ILG. If ~A satisfy the conditions in Definition 4.11 then
IPO(~A) ∼= IPO(FI(~A)).

Thus, we have automatically an algorithm for calculating IPOs for a span of input-
linear link graphs ~A: just apply Construction 3.7 to FI(~A) and drop the empty sets
from the interfaces of the IPOs so obtained. As far as we know, these are the first
consistency conditions and IPO construction for input-linear link graphs, which we
give here for sake of completeness.

Construction 4.13 (IPOs in input-linear link graphs) Assume that the con-
sistency conditions 4.11 hold for the pair ~A : W → ~X of link graphs. We define
~C : ~X → Y an IPO for ~A as follows:

nodes and edges Define the nodes of Ci to be VCi , Vī \ Vi. Edges and ports of
Ci are defined analogously.

interface As in Construction 4.5, build the shared codomain Y of ~C as follows:

X ′
i , {x ∈ Xi | ∃y ∈ Xī s.t. Ai(x) = Aī(y) or Ai(x) ∈ (Ei \ Eī)} (i = 0, 1)

X ′
i(l) , {x ∈ X ′

i | Ai(x) = l} (i = 0, 1)

Y ,
⋃

l∈(W]E2)

X ′
0(l)×X ′

1(l) ∪
∑

i∈{0,1}

⋃
e∈(Ei\Eī)

X ′
i(e).

links For i = 0, 1 and for each l ∈ (W] E2) for which there exists xi ∈ Xi and
p ∈ (Pī \ Pi) such that Ai(xi) = l and Aī(p) = l, choose an arbitrary function:

θl
i : {p ∈ (Pī \ Pi) | Aī(p) = l} → X ′

i(l).

Then define the link maps Ci : Xi → Y as follows:

for p ∈ (Pī \ Pi) : Ci(p) ,

{
Aī(p) if Aī(p) ∈ (Eī \ Ei)
θl
i(p) if Aī(p) = l ∈ (W] E2);

for y ∈ Y : Ci(y) ,

x0 if y = (x0, x1) and i = 0
x1 if y = (x0, x1) and i = 1
y if y ∈ (Y ∩Xi)
Aī(y) if y ∈ (Y ∩Xī).

5 Conclusions

In this paper, we have presented the directed bigraphs, whose connection graphs,
called directed link graphs, generalize both output-linear (i.e., Milner’s) and input-
linear (i.e., Sassone-Sobocińki’s) link graphs. We have given a constructions of
RPOs generalizing and unifying the known constructions in the previous theories.
Moreover, the RPO construction can be used for calculating RPBs as well, and, in
suitable subcategories, also luxes. We have proposed new consistency conditions for
the existence of IPOs, and a general construction of IPOs, in directed link graphs.

15

Grohmann, Miculan

These conditions and construction subsume those proposed for Milner’s bigraphs;
moreover, these have been specialized to the input-linear case yielding the first
consistency conditions and IPO construction for this variant.

Due to lack of space, we cannot present here the algebraic theory of directed
bigraphs, and in particular the elementary constructors and a normal form for
′DBig. This theory will be useful for representing calculi in this framework; for
instance, the λ-calculus (among others) can be conveniently represented in directed
bigraphs without the need of further notions for dealing with binders (as it happens,
instead, with Milner’s binding bigraphs). We refer the interested reader to [1,2].

Future work We plan to use directed bigraphs for representing some calculi of inter-
est, in particular calculi with resources, locations, etc., which can be represented by
edges. It will be interesting to see which kind of wide transition system we would
obtain from our theory, in these cases.

Another future work is to move the theory of directed link graphs into the realm
of groupoidal 2-categories. Actually, due to their intrinsic bi-directional linearity,
representing directed link graphs simply as input-linear cospans in some adhesive
G-category does not seem feasible. We suppose that a generalization of input-linear
cospans, and the corresponding GRPO construction, will be required to this end.

Acknowledgements The authors wish to thank Robin Milner and the anonymous
referees for their helpful comments.

References

[1] Grohmann, D. and M. Miculan, Directed bigraphs: theory and applications, Technical Report
UDMI/12/2006/RR, University of Udine (2006), at http://www.dimi.uniud.it/miculan/Papers/.

[2] Grohmann, D. and M. Miculan, An algebra for directed bigraphs, in: I. Mackie and D. Plump, editors,
Pre-proceedings of TERMGRAPH 2007, ENTCS (2007), to appear.

[3] Jensen, O. H. and R. Milner, Bigraphs and transitions, in: Proc. POPL, 2003, pp. 38–49.

[4] Jensen, O. H. and R. Milner, Bigraphs and mobile processes (revised), Technical report UCAM-CL-
TR-580, Computer Laboratory, University of Cambridge (2004).

[5] Klin, B., V. Sassone and P. Sobociński, Labels from reductions: Towards a general theory, in:
Proc. CALCO, Lecture Notes in Computer Science 3629 (2005), pp. 30–50.

[6] Lack, S. and P. Sobociński, Adhesive categories, in: I. Walukiewicz, editor, Proc. FoSSaCS, Lecture
Notes in Computer Science 2987 (2004), pp. 273–288.

[7] Leifer, J. J. and R. Milner, Deriving bisimulation congruences for reactive systems, in: C. Palamidessi,
editor, Proc. CONCUR, Lecture Notes in Computer Science 1877 (2000), pp. 243–258.

[8] Leifer, J. J. and R. Milner, Transition systems, link graphs and petri nets, Mathematical Structures in
Computer Science 16 (2006), pp. 989–1047.

[9] Milner, R., Bigraphical reactive systems, in: K. G. Larsen and M. Nielsen, editors, Proc. 12th CONCUR,
Lecture Notes in Computer Science 2154 (2001), pp. 16–35.

[10] Milner, R., Pure bigraphs: Structure and dynamics, Inf. Comput. 204 (2006), pp. 60–122.

[11] Sassone, V. and P. Sobociński, Deriving bisimulation congruences: A 2-categorical approach, in:
Proc. EXPRESS’02, Electr. Notes Theor. Comput. Sci. 68(2), 2002.

[12] Sassone, V. and P. Sobociński, Reactive systems over cospans, in: Proc. LICS (2005), pp. 311–320.

[13] Sewell, P., From rewrite rules to bisimulation congruences, Theor. Comput. Sci. 274 (2002), 183–230.

[14] Sobociński, P., “Deriving process congruences from reaction rules,” Ph.D. thesis, BRICS, University of
Aarhus (2004).

16

http://www.dimi.uniud.it/miculan/Papers/

	Introduction
	Directed link graphs and bigraphs
	RPO and IPO for directed link graphs
	Construction of relative pushouts and pullbacks
	Construction of idem-relative pushouts

	Embedding output-linear and input-linear link graphs in directed link graphs
	Conclusions
	References

