
Translating Specifications from Nominal Logic
to CIC with the Theory of Contexts ∗

Marino Miculan Ivan Scagnetto Furio Honsell
Dept. of Mathematics and Computer Science, University of Udine

Via delle Scienze 206, I-33100 Udine, Italy.
{miculan,scagnett,honsell}@dimi.uniud.it

Abstract
We study the relation between Nominal Logic and the Theory
of Contexts, two approaches for specifying and reasoning about
datatypes with binders. We consider a natural-deduction style proof
system for intuitionistic nominal logic, called NINL, inspired by a
sequent proof system recently proposed by J. Cheney. We present
a translation of terms, formulas and judgments of NINL, into terms
and propositions of CIC, via a weak HOAS encoding. It turns out
that the (translation of the) axioms and rules of NINL are derivable
in CIC extended with the Theory of Contexts (CIC/ToC), and that
in the latter we can prove also sequents which are not derivable in
NINL. Thus, CIC/ToC can be seen as a strict extension of NINL.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Syntax; F.3.1 [Specifying and Reasoning about Pro-
grams]: Specification techniques; F.4.1 [Mathematical Logic]:
Lambda calculus and related systems; Mechanical theorem proving

General Terms Theory, Languages, Verification.

Keywords Languages with binders, Nominal Logics, Calculus of
Inductive Constructions, Theory of Contexts, logical expressivity.

1. Introduction
In recent years, many different logics for reasoning about languages
with binders have been proposed; see e.g. [4, 9, 3, 8] among others.
All these logics can be used as “metalogical specification systems”:
a generic object system (with binders) can be represented faithfully
in these logics (“encoded”), and then the logic provides tools and
techniques for reasoning about the object system. In spite of this
common aim, these logics differ in many aspects: the kind of the
logic (first-order, higher-order, type theory), the way binders are
represented (first-order, second-order, higher-order), the “intended
behavior” of the bound symbols (variables, names, linear names,
ordered names, . . .), etc. Thus, a given object system can be en-
coded in different logics, using different techniques, yielding quite
different metalogical systems for reasoning about it.

∗Work supported by EU CA FP6-IST-510996 “TYPES”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MERλIN’05 September 30, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-072-8/05/0009. . . $5.00.

A natural question which arises at this point is: how to compare
these logics for binders? A possible way is to check whether, for
a given object system S, all properties which can be proved in the
logic L1(S) can be proved also in the logic L2(S). More precisely,
this “expressiveness” comparison can be carried out by defining
a translation of the formulas of one system into the other’s, and
checking that the translation of properties derivable in L1(S) are
still derivable in L2(S). An example of this kind of translation is
in [1], where a conservative translation of Miller and Tiu’s FOλ∇

[8] into Nominal Logics is presented.
This is the subject of this paper. We describe a translation of

Nominal Logic [9] into the Calculus of Inductive Constructions
extended with the Theory of Contexts [4, 5].

In our opinion, this comparison is important for many reasons.
First, we can check if the target logic (CIC/ToC in this case) is “ex-
pressive enough” to cover all the properties derivable in the source
logic (Nominal Logic). In second place, the translation allows to
enlighten the similarities and differences between different logics.
Third, the translation will streamline an encoding methodology of
object systems in CIC/ToC. Moreover, since CIC/ToC is easily
implemented taking advantage of existing machine-assisted infras-
tructure (namely Coq [5, 6]), the translation can be used for imple-
menting NL specifications (albeit this implementation would not
be as “efficient” and full-fledged as specifically designed proof as-
sistants/theorem provers). Finally, a translation of Nominal Logic
into CIC/ToC can enlighten also the connections between FOλ∇

and CIC/ToC, in virtue of the translation given in [1].
Notice that we do not advocate a “reductionist” approach, aim-

ing to single out the “best” logic in which all the others can be
embedded–and thus discarded. Our opinion is that there is no “best
logic”; instead, the choice of which logic is “best” to reason about
a given object system is a trade-off, which depends ultimately on
how this logic would be used afterwords. Since these logics are of-
ten intended to be used in semi-automated proof assistants or theo-
rem provers, a complete comparison should take into account many
aspects beside logical expressiveness. For instance, what can and
can’t be proved about an object system depends also on the encod-
ing methodology. From a pragmatic point of view, it is important to
judge how close reasoning in a particular logic is to informal rea-
soning. Some other interesting aspects to consider are proof theory,
proof search, decidability, model theory, etc.

A such complete comparison between Nominal Logic and
CIC/ToC is out of the scope of this paper. Here, we focus on
the specific aspect of logic expressivity only.

In fact, the translation of terms and formulas from Nominal
Logics to CIC/ToCis not trivial, due to the quite different ap-
proaches adopted by the two systems. The first main difference
is in the treatment of terms with bound variables: as equivalence
classes of first-class terms in nominal logics, or as functional terms

in CIC/ToC according to the HOAS paradigm. Thus, a is free in
〈a〉t in NL, while it is not free in λa.t in CIC. As a consequence,
in nominal logics all constructors (also the binders) are represented
by first-order (i.e., non binding) constants; on the other hand, in
CIC/ToC they are represented by truly binding constructors.

Moreover, it is known that the Axiom of Unique Choice is con-
sistent with Nominal Logic, while it is not with CIC/ToC. As a
consequence, some functions allowed in Nominal Logic, are not
available as functions in CIC/ToC but still are available as rela-
tions. This means that the theory of a CIC/ToC specifications is
forced to have a relational rather than functional feel. The transla-
tion is tricky because it has to deal with all these mismatchings.

Nevertheless, we will show that the translation preserves the
derivability of properties, i.e., given a nominal signature, all prop-
erties which are derivable in NINL are still derivable in CIC/ToC.
The converse is not true: there are properties which can be proved
in CIC/ToC but not in NINL. This is not a big surprise, since NINL
is a first-order logic while CIC/ToC is higher-order.

Synopsis. We proceed as follows. In Section 2 we present the
notion of nominal signatures, that is signatures for defining (typed)
languages with name binders. In Section 3 we present NINL, a
proof system for Nominal Logic over a given nominal signature.
Similarly, Section 4 describes the encoding of a given nominal
signature in CIC/ToC, using the weak HOAS techniques. The
translation from specifications in Nominal Logic to CIC/ToC is
given in Section 5. In Section 6 we discuss the properties of this
translation. Conclusions and final remarks are in Section 7.

2. Nominal signatures
In this section we present the notion of nominal signatures, which
are intended to be a way for describing languages with name
binders, similarly to [4]. Notice that nominal signatures are dif-
ferent from binding signatures [2], because the latter are used for
describing languages with binders of variables instead of names.

Definition 1 (Nominal signatures) A nominal signature S is a tu-
ple S = (N,D,C, P) where

• N = {ν1, . . . , νn} is a collection of name types symbols,
ranged over by ν;

• D = {δ1, . . . , δm} is a collection of data types symbols,
ranged over by δ. The sorts σ and arities α are then defined
by the following grammar:

σ ::= () | ν, σ | 〈ν1 . . . νk〉δ, σ (k ≥ 0)

α ::= σ → δ

• C = {c1:α1, . . . , cj :αj} is a collection of data constructors,
where αi’s are arities

• P = {p1:σ1, . . . , pk:σk} is a collection of (atomic) predicate
symbols, where σi’s are sorts.

For sake of readibility, we write arities () → δ simply as δ.
We say that an arity (〈~ν1〉δ1, . . . , 〈~νn〉δn) → δ is a binding

arity if |~νi| > 0 for some i. Constructors of binding arities are
called binders. Notice that constructors and predicates are allowed
to take names as arguments, to bind names over datatypes, but not
to bind names over name types; for instance, a constructor of arity
〈ν〉ν → δ is not allowed.

The intuition behind nominal signatures is the following:

• name types are the sorts where variables, names, etc., are taken
from; these types do not have constructors, because variables,
names, etc, have no structure.

• Data types are the sorts inductively defined by a set of construc-
tors. The arguments of these constructors may be names, terms,

or terms abstracted over names, but cannot be terms abstracted
over terms.

• Predicate symbols are intended to represent relations between
terms, possibly abstracted over names.

This intuition is made precise in the following definition:

Definition 2 (Language of a nominal signature) Let S be a nom-
inal signature S = (N,D,C, P). A typing base for S is a list
Γ = n1:ν1, . . . , nk:νk where the ni are distinct abstract symbols.1

The language generated by S is the least set of (typed) terms,
taken up-to α-conversion of bound names, which is closed under
the following rules:

(n:ν) ∈ Γ

Γ ` n : ν
Start

Γ, ~n1 : ~ν1 ` t1 : δ1 . . . Γ, ~nk : ~νk ` tk : δk

Γ ` c((~n1)t1, . . . , (~nk)tk) : δ
Constrc

where c:(〈~ν1〉δ1, . . . , 〈~νk〉δk) → δ ∈ C

Γ, ~n1 : ~ν1 ` t1 : δ1 . . . Γ, ~nk : ~νk ` tk : δk

Γ ` p((~n1)t1, . . . , (~nk)tk) wf
Propp

where p:(〈~ν1〉δ1, . . . , 〈~νk〉δk) ∈ P .

Many systems can be specified by nominal signatures. For ex-
ample, the signature of untyped λ-calculus is

Sλ = ({ν}, {Λ}, {var:ν → Λ, λ:〈ν〉Λ → Λ, app:(Λ,Λ) → Λ},
{−→: (Λ,Λ)})

For instance, λ((x)app(var(x), var(x))) is the formal notation
for the usual λx.(x x).

Another interesting example is the signature for the π-calculus,
which has three datatypes (processes, free actions and bound ac-
tions) and two transition relations [7, 5]:

Sπ = ({ν}, {Π, FA,BA},
{0:Π, |:(Π,Π) → Π, .:(FA,Π) → Π, .:(BA, 〈ν〉Π) → Π,

= :(ν, ν,Π) → Π, ν:(〈ν〉Π) → Π, !:Π → Π

in:ν → BA, out:(ν, ν) → FA, τ :FA},
{−→: (Π, FA,Π),−→′: (Π, BA, 〈ν〉Π)}).

Therefore, in this signature the term .(in(n), (x)=(n, x, 0)) is the
formal notation for the process n(x).[n = x]0.

We refer the reader to [4] for further examples.

3. Nominal signatures in Nominal Logic
Given a nominal signature S, we can readily define a nominal logic
for reasoning about its properties. In this section we present NINL,
yet another proof system for (Intuitionistic) Nominal Logic.

Nominal Logic is a first order logic designed for reasoning
about data containing abstract symbols (“names”, “variables”, etc),
up-to α-conversion of bound symbols. The logic features a prim-
itive operation of name swapping, and it is required that all prop-
erties are preserved under permutation of bound symbols, i.e., they
are equivariant. A complete discussion of NINL is out of the scope
of this paper; we refer the reader to [9] for a detailed presentation.

The version we present, NINL, is directly inspired to the
sequent-style system NL⇒ presented in [1]; in fact, it can be seen
as the same system, turned in Natural Deduction style. This style
of presentation is closer to type theory and hence easier to compare
with the logic of CIC.

1 One may think of each ni as a different number, or string, etc.

3.1 Syntax of terms and formulas
NINL(S) is a first-order logic with equality over a simply-typed λ-
calculus with constants, parametric in a given nominal signature S.
(We drop the “(S)” when clear from the context). We recall briefly
the notation and syntax, following [1] with the difference that we
do not introduce an explicit type o of formulas.

For a given signature S = (N,D,C, P), the types τ of
NINL(S) are defined as follows

τ ::= δ | ν | τ → τ ′ | 〈ν〉τ
where δ ranges over D, and ν over N . Thus, an arity of the form
(〈~ν1〉δ1, . . . , 〈~νk〉δk) → δ is represented in currified form by the
type 〈~ν1〉δ1 → · · · → 〈~νk〉δk → δ.

Next, the terms t are defined as follows:

t, u ::= x | a | λx:τ.t | t u | c | swapντ | absντ

where variable symbols x, y are taken from a countably infinite set
V , and name symbols a, b from a disjoint countably infinite set A
of names. The constants c are the symbols in C; moreover, for each
ν, τ there are two constants

swapντ : ν → ν → τ → τ absντ : ν → τ → 〈ν〉τ
We will use the letters a, b to denote terms of some name-sort ν
(i.e., they are metavariables for names); on the other hand, a, b are
atomic constants. The notations (a b) · v and 〈a〉u are syntactic
sugar for the terms (swap a b v), and (abs a u), respectively.
Intuitively, (a b) · t represents the term obtained by swapping all
occurences of a and b in t; 〈a〉t represents the term obtained by
“abstracting” a in t, or better, the equivalence class of terms which
can be obtained replacing a in twith any fresh name. It is important
to notice that the only binder is λ, i.e., constants (and in particular
abs) are not binders. FV (t), FN(t), FV N(t) denote the sets of
free variables, name-symbols, or both variables and name-symbols
of term t. As usual, terms are taken up to αβη-equivalence.

The (typing) contexts are defined as follows:

Σ ::= 〈〉 | Σ, x:τ | Σ#a:ν

Intuitively, Σ#a:ν declares a variable a ranging over names which
do not “interfere” with those in Σ. For instance, a:ν#b:ν declares
two distinct “names”, or better, two variables (of type ν) which can-
not be instantiated with the same name. Similarly, x:τ#a:ν means
that for any t which can be assigned to x, amust be considered as a
name not occurring free in t. Therefore, contexts contain both typ-
ing information and “freshness” (or better, “distinctness”) assump-
tions about name-types variables. Notice that here a is a variable
symbol, on a par with x; we use the letters a, b instead of x, y for
denoting that these variables are subject to freshness constraints.

We write Σ ` t : τ to indicate that t is a well-formed term (of
type τ). Type-checking rules are as usual; freshness information is
irrelevant for typing terms. In particular, the rule for constants is
the following

(c:(τ1, . . . , τn) → δ) ∈ C
Σ ` c : τ1 → · · · → τn → δ

We denote by TmΣ = {t | Σ ` t : τ} the set of well-formed terms
in a context Σ.

Finally, the formulas of Nominal Logic are the following:

φ, ψ ::= > | ⊥ | p(~t) | φ ∧ ψ | φ ∨ ψ | φ ⊃ ψ

| t ≈ u | a#t | ∀x:τ.φ | ∃x:τ.φ | Иa:ν.φ
where p ranges over propositional symbols in P . The intuitive
meaning of the proposition a#t is “a is not free in t” (more
precisely, a is not in the support of t). In Иa:ν.φ, a is bound; notice
that the bound symbol is a variable a, not a constant a.

Well-formedness of formulas is denoted by the judgment Σ `
φ form. The rules are as usual; notice that freshness information in

(S1) (a a) · x ≈ x
(S2) (a b) · (a b) · x ≈ x
(S3) (a b) · a ≈ b
(E1) (a b) · c ≈ c
(E2) (a b) · (t u) ≈ ((a b) · t)((a b) · u)
(E3) p(~x) ⊃ p((a b) · ~x)
(E4) (a b) · λx:τ.t ≈ λx:τ.(a b) · t[((a b) · x)/x]
(F1) a#x ∧ b#x ⊃ (a b) · x ≈ x
(F2) a#b (a:ν, b:ν′, ν 6= ν′)
(F3) a#a ⊃ ⊥
(F4) a#b ∨ a ≈ b
(A1) a#y ∧ x ≈ (a b) · y ⊃ 〈a〉x ≈ 〈b〉y
(A2) 〈a〉x ≈ 〈b〉y ⊃ (a ≈ b ∧ x ≈ y) ∨ (a#y ∧ x ≈ (a b) · y)
(A3) ∀y : 〈ν〉τ∃a : ν∃x : τ.y ≈ 〈a〉x

Figure 1. Equational and freshness axioms of NINL.

Σ is not needed for typing atomic propositions, but it is essential
for typing the И quantifier:

Σ, ~n1 : ~ν1 ` t1 : δ1 . . . Σ, ~nk : ~νk ` tk : δk

Σ ` p(〈~n1〉t1, . . . , 〈~nk〉tk) form
Σ#a:ν ` φ form
Σ ` Иa:ν.φ form

where p:(〈~ν1〉δ1, . . . , 〈~νk〉δk) ∈ P .
For each context Σ, we denote by Σ# the set of freshness

formulas in Σ, defined inductively as follows:

〈〉# = ∅ (Σ, x:τ)# = Σ#

(Σ#a:ν)# = Σ# ∪ {a#t | t ∈ TmΣ}

For all φ : Σ#, it is Σ ` φ form. Σ# can be seen as the “closure” of
the freshness information declared in Σ to all terms which can be
defined in Σ. For instance, (x:τ#a:ν)# = {a#t | x:τ ` t : τ}.
Notice that the set Σ# is parametric in the given signature S.

The usual weakening and substitution lemmas hold [1].

3.2 The rules
The derivation judgments have the form Σ : Γ ⇒ φ, where Σ is a
context, Γ is a set of formulas and φ is a formula. The judgment is
well-formed if and only if for all formula ψ ∈ Γ, φ: Γ ` ψ form.

Similarly to NL⇒ [1], the proof system is composed by a(ny)
standard set of rules for intuitionistic first order logic with equality
(which we omit here), extended with

• a rule for introducing (instances of the) axioms about freshness,
equivariance and abstraction;

• a rule for introducing freshness formulas (Σ#);
• a structural rule for freshness (Fresh);
• two rules ИI, ИE for the И quantifier.

Axioms and rules are given in Figure 1 and 2 respectively. These
axioms and rules state the fundamental properties of swapping,
freshness and equivariance; for instance, E3 states that atomic
propositions of the given nominal signature must be equivariant
(i.e., they are not sensible to swapping of names in terms). Notice
that the proof system is parametric in the nominal signature, since
Σ# introduces formulas from the set Σ#.

It is easy to see that NINL is equivalent to the intuitionistic
version of NL⇒, in virtue of the cut elimination for the latter [1].
Therefore, NINL is a conservative extension of the original Pitts’
system for Nominal Logic [9]. One difference between NL⇒ and
NINL is that in the latter, A2 and A3 are axioms instead of rules.

Σ : Γ ⇒ φ
Ax φ instance of some axiom

Σ#a:ν : Γ ⇒ φ

Σ : Γ ⇒ φ
Fresh

φ ∈ Σ#

Σ : Γ ⇒ φ
Σ#

Σ#a:ν : Γ ⇒ φ

Σ : Γ ⇒ Иa.φ
ИI Σ : Γ ⇒ Иa.φ Σ#a:ν : Γ, φ⇒ ψ

Σ : Γ ⇒ ψ
ИE

Figure 2. Rules of NINL(S).

4. Nominal signatures in CIC/ToC
In this section, we present the encoding of a nominal signature as
a signature of the CIC type theory. The encoding is “shallow”, in
the sense that the logic for reasoning about terms of the nominal
signature will be the same logic of CIC.

Following [4], the encoding is in three steps:

1. the encoding of the syntax of terms and formulas;
2. the definition of the “non-occurrence predicates” notin which

is defined in a syntax-driven way;
3. the encoding of the axioms of the Theory of Contexts for the

given signature; these axioms use the notin predicates previ-
ously defined.

By adding the resulting signature to the CIC type theory we obtain
a proof system tailored for reasoning about the given nominal
signature S. We call this system CIC/ToC(S), and denote its typing
judgment as

x : t1, . . . , x : tn `ToC(S) d : t

In the rest of this section we review the three steps above; for the
sake of definiteness, we use the Coq syntax for CIC [6].

4.1 Syntax of terms and formulas
The first step for encoding a nominal signature S = (N,D,C, P)
in CIC is to introduce one parametric type for each of the νi ∈ N .
Thus we have the following declarations:

Parameter Name_1: Set.
Parameter Name_2: Set.
...
Parameter Name_n: Set.

Since we will represent binders following a “weak”-HOAS style,
none of the Name_i can be encoded by means of a (co)inductive
type in order to avoid “exotic” terms and inconsistencies with the
axioms of ToC. Names are then represented by CIC metavariables
of these types.

Then, for each δi ∈ D we introduce a (mutually) inductive type
delta_i of sort Set, in order to take advantage of the inductive
features offered by CIC (e.g., automatically generated induction
principles, case analysis etc.)2.

Mutual Inductive delta_1: Set := ...
...
with Inductive delta_j: Set := ...

Each constructor ci:σ → δ ∈ C allows to build terms of a data
type δ from other terms as specified by σ. Thus, each constructor
ci:σ → δ is represented by a constructor c_i:Curry(σ)->delta
in the declaration of the type delta, where the “curryfication”
function is as usual. For instance, the representation of the nominal
signature for the untyped λ-calculus given at the end of Section 2
can be expressed as follows:

2 We can consider also coinductive types, like e.g. streams, although they
are not covered by the current definition of nominal signatures.

Parameter Var: Set.
Inductive Term: Set :=

var: Var -> Term
| lam: (Var -> Term) -> Term
| app: Term -> Term -> Term.

Notice that, in order to rule out exotic terms, binders (as lam above)
are rendered by constants whose arguments are functions over the
open types of names, according to the weak HOAS paradigm.

Atomic predicates are represented similarly, i.e., by declaring
(possibly mutual) (co)inductive predicates p_i:Curry(σi)->Prop
corresponding to the propositional symbols pi:σi ∈ P . Since we
adopt a “shallow” encoding, we use the CIC sort Prop for repre-
senting propositions and predicates.

4.2 Non-occurrence predicates
In the previous subsection we have described how to represent a
nominal signature in CIC, using the “weak” higher-order abstract
syntax paradigm. In order to adequately reason about name prop-
erties, it is important to have the possibility to express statements
about the (free) occurrence/non-occurrence of names into terms or
contexts. This problem is addressed by defining a binary predicate
notin such that (notin x t) holds iff the name x does not occur
free into the term t. Clearly, we have to introduce a distinct notin
predicate for each data type symbol δi. Moreover, the introduction
clauses for the notin predicate at hand must be specified in a syn-
tax driven way, where each δi-constructor generates one or more
rules, according to the following definition:

Definition 3 Let S = (N,D,C, P) be a nominal signature, and
ν ∈ N , δ ∈ D a name type and data type respectively represented
in CIC/ToC(S) by Name and delta. The notin_delta predicate
is defined as follows:

Inductive notin_delta (x:Name): delta -> Prop :=
...
| notin_c_i: forall t1:tau1, ..., forall tk:tauk,

N_1 -> ... -> N_k ->
(notin_tau x (c_i t1 ... tk))

...

where for each constructor c_i:tau1->...->tauk->delta of
delta, there is a clause notin_c_i defined as follows:

• if tau_i = Name, then N_i,x<>ti;
• if tau_i = Name_i1 -> ... -> Name_ih -> delta_i,

then N_i is as follows:

forall y1:Name_i1,...,forall yh:Name_ih,
x<>y1 -> ... -> x<>yh ->
(notin_tau x (ti y1 ... yh))

For instance, in our running example about the untyped λ-
calculus, we have:

Inductive notin_Term (x:Var): Term -> Prop :=
notin_var: forall y:Var, x<>y ->

(notin_Term x (var y))
| notin_lam: forall t: Var -> Term,

(forall y:Var, x<>y ->
(notin_Term x (t y)))

-> (notin_Term x (lam t))
| notin_app: forall t1 t2: Term,

(notin_Term x t1) ->
(notin_Term x t2) ->
(notin_Term x (app t1 t2)).

4.3 The Theory of Contexts
The aim of the Theory of Contexts [4] is to reflect on a formal level
the structural properties of data structures with binders which are
taken for granted when reasoning “on paper”. In particular, the the-
ory consists of a small set of “natural” properties about names and
(syntactic) contexts, that is terms with “holes” which can be filled
with variables/names to become plain terms; in particular, these
contexts are represented as functions over sets of variables/names.

The first property we assume is that there is an infinite supply
of names of each name type; that is, given any term there exists
always a name fresh with respect to it (i.e. a name not occurring in
the given term):

Axiom fresh_i: forall t:tau, exists a:Name_i,
(notin_tau a t).

The intuition behind this axiom is that terms are finite objects;
hence, a single term cannot contain all the possible names. More-
over, since we are interested in meta-reasoning over nominal lan-
guages, we want the equality over names to be decidable. This
property can be stated formally as follows:

Axiom Name_i_dec_i: forall a b:Name_i, a=b \/ a<>b.

In a classical context, Name_i_dec is obviously an instance of the
law of excluded middle; in this case, we do not need to assume it
explicitly. On the other hand, in an intuitionistic setting it represents
the minimum classical flavour needed in order to allow a meta-
theoretic reasoning about encodings of nominal languages.

In the case of object systems with several name types, we have
also to assume that different name types are disjoint. For each
Name_i, Name_j previously declared, with i < j, we assume

Axiom Name_ij : forall a:Name_i, forall b:Name_j,
(notin a b).

Usually, the implementations of the most widely used Logical
Frameworks do not provide any support for reasoning about term
contexts, that is functional terms. In fact, neither induction nor
recursion principles over higher-order terms are available. Hence,
it is practically impossible to carry out formal proofs by reasoning
over the structure of contexts. In order to overcome this problem,
the Theory of Contexts assumes the the axioms of β-expansion and
extensionality over names:

Axiom tau_exp: forall t:tau, forall x:Name,
exists t’:Name->tau,
(notin_tau_ho x t’) /\ t=(t’ x).

Axiom tau_ext: forall f g:Name->tau,forall x:Name,
(notin_tau_ho x f) ->
(notin_tau_ho x g) ->
(f x)=(g x) -> f=g.

where notin_tau_ho is the following definition:

Definition notin_tau_ho:=
fun x:Name => fun f:Name->tau =>
(forall y: Name, x<>y -> (notin_tau x (f y))).

Intuitively, the axiom of β-expansion tau_exp allows to “split” a
term t into a context t’ for a given name x, whereas the axiom of
extensionality tau_ext allows to state the equality of two contexts
when their applications to a fresh name yield the same term. Thus,
we have a rather simple machinery allowing us to introduce and to
reason about syntactical properties of contexts.

It is worth noticing that the axioms of β-expansion and exten-
sionality can be generalized to contexts with an arbitrary number
of “holes”.

5. Translating NINL specifications to CIC/ToC
Let us denote by S = (N,D,C, P) a given nominal signature. In
this section we describe a translation of types, terms, formulas and
judgments of NINL over S into types, terms and propositions of
CIC/ToC with the signature of S, respectively.

5.1 Translation of types and signatures
Each type τ of NINL is easily translated into a type [[τ]] of sort Set
of CIC, as follows:

Translation of types

[[δi]] = delta i (δ ∈ D)
[[νi]] = Name i (νi ∈ N)

[[τ → τ ′]] = [[τ]]->[[τ ′]]
[[〈ν〉τ]] = [[ν]]->[[τ]]

where delta : Set is the Inductively-defined type in the signa-
ture of S corresponding to δ ∈ D (Section 4).

Proposition 1 For each type τ of NINL(S): `ToC(S) [[τ]] : Set.

A typing signature Σ of NINL is translated to a sequence of vari-
able declarations (i.e., a signature in CIC), equipped with suitable
assumptions for representing freshness information:

Translation of signatures

[[〈〉]] = ∅ (no declarations)
[[Σ, x : τ]] = [[Σ]] Variable x:[[τ]].

[[Σ#a : ν]] = [[Σ]] Variable a:[[ν]].
Hypothesis fresh a:
(notin a x1)/\.../\(notin a xn).
(where dom(Σ) = {x1, . . . , xn})

5.2 Translation of terms
Although most of the translation of terms is easy, it is here where
the difference between the first-order approach of NINL and the
second-order flavour of weak HOAS becomes evident. Let us dis-
cuss first the case of name abstraction. In nominal logics, names
are not bound by name abstractions: abs is a plain constructor, thus
a is free in 〈a〉b (actually, a can be any term of type ν, not only
a variable). On the other hand, in weak HOAS name abstraction
corresponds to functional abstraction (as reflected by the resulting
type Name->tau). Thus, a term 〈a〉tmust be mapped to some func-
tional term u of CIC, such that (u a) corresponds exactly to t and
moreover a does not appear free in u. The problem is, how to define
such u if t is not a closed term, e.g. if it is a variable? To circum-
vent this problem, we do not define this term u directly from t in the
translation; instead, we assume that it is provided (together with its
properties) by the (translation of the) formula surrounding the term.
For instance, the translation of a formula p((a b) · t, 〈c〉t′) will be
a proposition of the form

forall y:Name->Name->tau, (y a b)=t -> ... ->
forall z:Name->tau’, (z c)=t’ -> ... ->
(p (y b a) z)

(As we will see, the translation of formulas provides also suitable
“freshness” information about these functional variables, but this is
not relevant for translation of terms).

Therefore, the translation of a term is twofold: on one side, it
translates a NL term into a CIC expression; on the other, it produces
also a set of fresh variables and equational conditions, needed for
this expression to make sense.

Let us consider first the second part. Given a term t, we can
calculate the set of fresh variables and suitable equations by look-
ing at all name swapping and name abstractions occurring in t; if
these subterms occur within a λ-abstraction, then the correspond-
ing equations must be abstracted accordingly. More formally, for
each term t of NINL(S), we denote by E(t) a set of equational
proposition of the following forms:

λx1:τ1 . . . λxn:τn.(y x1 . . . xm a) = u

or λx1:τ1 . . . λxn:τn.(y x1 . . . xm a b) = u

where y is a variable and n ≥ m ≥ 0. E(t) is defined by induction
on the syntax of t, as follows:

Calculation of equational propositions

E(x) =E(a) = E(c) = ∅

E(t u) =E(t) ∪ E(u)

E(〈a〉t) =E(a) ∪ E(t) ∪ {(y a) = t}(y fresh)

E((a b) · t) =E(a) ∪ E(b) ∪ E(t) ∪ {(y a b) = t} (y fresh)

E(λx:τ.t) ={λx~z:τ~σ.(y x ~z a) = λx:τ.u |
(λ~z:~σ.(y ~z a) = u) ∈ E(t)}∪

{λx~z:τ~σ.(y x ~z a b) = λx:τ.u |
(λ~z:~σ.(y ~z a b) = u) ∈ E(t)}

(We can calculate from E(t) the set of fresh variables to allocate,
by collecting the head variables on the left hand side of equations.)

Then, we can define the function mapping well-formed terms of
NINL(S) into terms of CIC:

[[·]]ΦΣ : TmΣ → {t | t well-formed term of CIC/ToC(S)}

where Σ is a typing signature of NINL, and Φ is a set of equational
propositions rich enough to make the translation well-defined (like,
in particular, those calculated by E). The translation is defined by
induction on the typing derivations Σ ` t : τ , which in turn is by
induction on the syntax of t. Let us consider the interesting cases.

• A name abstraction 〈a〉t (of type 〈ν〉τ) is mapped to a term u
of type Name->tau, representing the term t where a has been
“taken away” (leaving an hole in it). Hence, u must appear in
the right hand side of an equation (u a) = t in Φ. Thus

[[〈a〉t]]ΦΣ = (y x1 . . . xm) for ((y x1 . . . xm a) = t) ∈ Φ

• The swapping (a b) · t can be seen as the result of “filling” the
two “holes” of a term t′ : ν → ν → τ , such that (t′ a b) = t,
with b and a respectively. Thus

[[(a b) · t]]ΦΣ = (y x1 . . . xm [[b]]ΦΣ [[a]]ΦΣ)

for ((y x1 . . . xm a b) = t) ∈ Φ

• The translation of a functional abstraction λx:τ.t adds a new,
local variable x to the signature used for translating t. This
variable can be used for instantiating equations in Φ about
abstracted terms. Thus

[[λx:τ.t]]ΦΣ = fun x:[[τ]] => [[t]]
Φ@(x:τ)
Σ,x:τ

where Φ@(x:τ) is an “instantiation” of propositions in Φ be-
tween abstracted terms (of the matching type):3

Φ@(x:τ) , Φ ∪ {(u x) = (t x) |
(u = t) ∈ Φ, u of type τ → τ ′ for some τ ′}

The remaining cases (variable, constants and application) are triv-
ial. Summarizing, we have:

Translation of terms

[[x]]ΦΣ = x

[[c]]ΦΣ = c (for c ∈ C)

[[a]]ΦΣ = a

[[tu]]ΦΣ = ([[t]]ΦΣ [[u]]ΦΣ)

[[λx:τ.t]]ΦΣ = fun x:[[τ]] => [[t]]
Φ@(x:τ)
Σ,x:τ

[[〈a〉t]]ΦΣ = [[u]]ΦΣ where ((u a) = t) ∈ Φ

[[(a b) · t]]ΦΣ = ([[u]]ΦΣ [[b]]ΦΣ [[a]]ΦΣ) where ((u a b) = t) ∈ Φ

Notice that the free variables of [[t]]ΦΣ may come either from Σ or
from Φ. Therefore, in order to state the adequacy property of this
translation, we need to define a map [[·]] from sets of equations Φ to
signatures of CIC containing both the declaration of variables, and
the freshness and equational properties:

• [[∅]]Σ = ∅ (the empty signature);
• for Σ ` u : ~σ → τ :

[[Φ, λ~x:~σ.(y ~x a)=u]]Σ =
[[Φ]]Σ
Variable y:[[~σ → ν → τ]].
Hypothesis y_eq:[[λ~x:~σ.(y ~x a)]]ΦΣ=[[u]]

Φ
Σ.

Hypothesis y_fresh:(notin [[a]]ΦΣ y).

• for Σ ` u : ~σ → τ :

[[Φ, λ~x:~σ.(y ~x a b)=u]]Σ =
[[Φ]]Σ
Variable y:[[~σ → ν → ν → τ]]
Hypothesis y_eq:[[λ~x:~σ.(y ~x a b)]]ΦΣ=[[u]]

Φ
Σ.

Hypothesis y_fresh1:(notin [[a]]ΦΣ y).

Hypothesis y_fresh2:(notin [[b]]ΦΣ y).

Freshness and equational properties will be needed in the next
sections; they are not needed for the following result:

Proposition 2 For all terms t ∈ TmΣ and types τ in NINL(S):
Σ ` t : τ iff [[Σ]], [[E(t)]]Σ `ToC(S) [[t]]

E(t)
Σ : [[τ]].

5.3 Translation of formulas
Formulas of NINL are translated to terms of CIC inhabiting the sort
Prop. The mapping is straightforward except for the И quantifier
and the base case.

3 The reader aware of Kripke models and/or presheaf models of variables,
will recognize here a similarity with Kripke semantics for S4. Indeed, the
Σ denotes the current world, and Φ the “level of knowledge” at the current
world. Equivalence about abstracted terms are equivalences about the in-
stantiated terms, in all reachable worlds. Entering a variable abstraction is
like moving to a new world, where the knowledge may change (consistently
with that of the world we come from), hence the instantiation.

Translation of formulas

[[>]]Σ = True

[[⊥]]Σ = False

[[φ ∧ ψ]]Σ = [[φ]]Σ /\ [[ψ]]Σ
[[φ ∨ ψ]]Σ = [[φ]]Σ \/ [[ψ]]Σ
[[φ ⊃ ψ]]Σ = [[φ]]Σ -> [[ψ]]Σ
[[∀x:τ.φ]]Σ = forall x:[[τ]], [[φ]]Σ,x:τ

[[∃x:τ.φ]]Σ = exists x:[[τ]], [[φ]]Σ,x:τ

[[Иa:ν.φ]]Σ = forall a:Name,
(notin a x1)->...->(notin a xn)->[[φ]]Σ,a:ν

where dom(Σ) = {x1, . . . , xn}
[[p(~t)]]Σ = (see below)

The translation of Иa:ν.φ is similar to that of fresh name vari-
ables in signatures, taking advantage of the “for all” flavor of И:
the fresh name is translated to a universally-quantified variable,
equipped with suitable freshness assumptions with respect to the
global context. Notice that in this case the local variable a is added
to the signature using a comma and not a #, because this freshness
information is already encoded by the local assumptions.

The translation of atomic propositions p(t1, . . . , tn) is more
subtle. We have to translate the terms t1, . . . , tn as well, and ac-
cording to the translation of Section 5.2, this requires to introduce
all the term schemata (i.e., term abstracted over Name), together
with the suitable hypothesis, needed for translating every name
swapping and name abstractions appearing in terms. For instance,
the translation of p((a b) · t, 〈c〉t′) will be

forall y:Name->Name->tau,
(y a b)=t -> (notin a y) -> (notin b y) ->

forall z:Name->tau’,
(z c)=t’ -> (notin c z) ->

(p (y b a) z)

In general, it is possible to determine the fresh variables and
local hypothesis required for translating an atomic proposition,
just by applying the function E of Section 5.2 to the inner terms
using. The complete set of equations required for translating the
proposition p(~t) is defined as Φ(~t) =

S
i E(ti). Given such a set

Φ, we define the

Translation of atomic propositions

[[p(~t)]]ΦΣ = (p [[t1]]
Φ
Σ . . . [[tn]]ΦΣ) where p ∈ P

[[a#t]]ΦΣ = (notin [[a]]ΦΣ [[t]]ΦΣ)

[[t1 ≈ t2]]
Φ
Σ = [[t1]]

Φ
Σ = [[t2]]

Φ
Σ

We have already defined the translation of sets of equational propo-
sitions into CIC signatures (Section 5.2). We have:

Proposition 3 For all p(~t) and Σ of NINL(S):
Σ ` p(~t) form if and only if [[Σ]], [[Φ]]Σ `ToC(S) [[p(~t)]]ΦΣ:Prop.

Notice that the translation of sets of equational propositions intro-
duces also the freshness and equational hypothesis. Thus:

the traslation [[p(~t)]] is defined as the Proposition obtained
by abstracting [[p(~t)]]ΦΣ over all the hypothesis in [[Φ]]Σ, so
that the only hypothesis on the left of `ToC(S) are [[Σ]].

In other words, for each equation in Φ we add in front of the
proposition [[p(~t)]]ΦΣ, a forall quantification together with two or
three equational and fresness hypothesis.

Proposition 4 For all p(~t) and Σ of NINL(S): Σ ` p(~t) form if
and only if [[Σ]] `ToC(S) [[p(~t)]]Σ : Prop.

Proposition 5 For all φ of NINL(S): Σ ` φ form if and only if
[[Σ]] `ToC(S) [[φ]]Σ : Prop.

6. The translation preserves derivability
Using the translation presented in Section 5, we can now state
formally the question:

Soundness: given a nominal signature S, can we prove
in CIC/ToC(S) all the properties that can be proved in
NINL(S)?

Let us introduce a notion of translation for sequents of NINL.
In the rest of the section, we suppose to fix a given signature S; we
will occasionally omit it from NINL(S) and CIC/ToC(S).

Definition 4 Let Σ : Γ ⇒ φ be a sequent of NINL(S). We say that
the sequent Σ : Γ ⇒ φ is derivable in CIC/ToC if there exists a
term d of CIC/ToC(S) such that [[Σ]] `ToC(S) d : [[

V
Γ ⊃ φ]]Σ.

If the propositions of the nominal signature are “well-behaved”,
i.e., they are equivariant, we have that the translation indeed pre-
serves derivability.

Theorem 1 For all Γ, φ in NINL, if Σ : Γ ⇒ φ is derivable in
NINL then Σ : Γ ⇒ φ is derivable in CIC/ToC.

If we think of the translation [[·]] as giving a semantics to NINL
within CIC/ToC, this property can be seen as a form of soundness
of NINL: everything derivable (in NINL) is true (in CIC/ToC).

The proof of the theorem consists in showing that the transla-
tions of all axioms and rules of NINL(S) are derivable (as Lemmata)
in CIC/ToC(S).4 Let us see the various cases.

6.1 Derivability of the axioms of NINL

Lemma 1 (Axioms) Let φ be an (universally closed) axiom of
NINL. Then, the sequent ∅ : ∅ ⇒ φ is derivable in CIC/ToC.

Actually, all the axioms of NINL apart from A1, A2 and E3 are
derivable directly from the axioms of the Theory of Contexts for a
generic data type tau, without using specific properties of the given
object language. For instance, let us see how the axioms S2 and F1

are rendered by our translation:

Lemma S2: forall x: tau, forall a b: Name,
forall y1: Name -> Name -> tau,
(notin_tau_ho2 a y1) ->
(notin_tau_ho2 b y1) ->
forall y2: Name -> Name -> tau,
(notin_tau_ho2 a y2) ->
(notin_tau_ho2 b y2) ->
(y2 a b)=x -> (y1 a b)=(y2 b a) ->
(y1 b a)=x.

Lemma F1: forall a b: Name, forall x: tau,
forall y: Name->Name->tau,
(notin_tau a x) -> (notin_tau b x) ->
(notin_tau_ho2 a y) ->
(notin_tau_ho2 b y) ->
(y a b)=x -> (y b a)=x.

4 See http://www.dimi.uniud.it/scagnett/Coq-Sources/nlintoc.v
for the Coq code of these proofs.

Axioms A1, A2 The proofs of A1 and A2 are similiar, and both
need the structural inductions on terms. Let us consider A1, which
is translated in CIC/ToCas follows:

Lemma A1: forall a:Name, forall b:Name,
forall x:tau, forall y:tau,
forall y’:Name->Name->tau,
(notin_tau a y) /\
(notin_tau a (lam (fun z:Name =>

(lam (y’ z))))) /\
(notin_tau b (lam (fun z:Name =>

(lam (y’ z))))) /\
x=(y’ b a) /\ y=(y’ a b) ->
exists x’:Name -> tau,
(notin_tau a (lam x’)) /\
x=(x’ a) /\
exists y’’:Name -> tau,
(notin_tau b (lam y’’)) /\
y=(y’’ b) /\
(fun a:Name=>(x’ a)) =

(fun b:Name => (y’’ b)).

The proof of this lemma relies on the following property, stating
that if a name a does not occur free in a context s’ instantiated
with a itself, then the “hole” of s’ must be “dummy”, in the sense
that, filling it with whatever distinct name b yields the same term:

Lemma dummy_ctxt:
forall s:tau, forall s’:Name->tau, forall a:Name,
s=(s’ a) -> (notin_tau a (s’ a)) ->
forall b:Name, ~a=b -> (s’ a)=(s’ b).

This property can be easily proved by structural induction on s,
using the extensionality axiom to “lift” the structural information
about s to s’. Thus, the proof of dummy_ctxt needs the induction
principle provided by CIC about the datatype tau. Hence, the
proof of (the translation of) A1 is parametric on the particular
object language we consider (For the sake of simplicity, we proved
A1 by taking tau as the data type Term of untyped λ-terms of
Section 4.1).

Axiom E3 The axiom E3 states the equivariance of atomic
propositions. Naively, one could try to prove E3 by proving a
Lemma like the following:

Lemma Equivariance: forall p:tau->Prop,
forall t:Name->tau, forall a b:Name,
(notin a t) -> (notin b t) ->
(p (t a)) -> (p (t b)).

However, it is clear that this Lemma does not hold: in general, it is
possible to define in CIC a non-equivariant predicate p over tau. In
fact, we do not need to prove Equivariance for a generic predi-
cate, but only for those defined by the given nominal signature. For
these predicates, we can check Equivariance by induction on the
derivation rules on a case-by-case basis. An example of this kind
of proofs is in [5], where equivariance is proved for the transition
relations and bisimilarity of π-calculus.

The definition of nominal signatures adopted in this paper (Def-
inition 2), does not considers also the issue of how atomic propo-
sitions are defined; thus, we cannot give a general proof of E3.
We defer this result to the full version of this work; for the mo-
ment, we assume that each atomic predicate is “well-behaved”, that
is, it is defined by an inductive definition in CIC/ToC, for which
Equivariance (and hence E3) is derivable. Actually, if some p of
a nominal signature S were not equivariant, then it would contra-
dict axiom E3 and therefore NINL(S) would be inconsistent.

6.2 Derivability of the rules of NINL

Lemma 2 (Fresh) If Σ#a : ν : Γ ⇒ φ is derivable in CIC/ToC,
then Σ : Γ ⇒ φ is derivable in CIC/ToC.

PROOF. An application of the fresh axiom of the ToC.

Lemma 3 (Σ#) Let Σ be a signature of NINL; then, for all t ∈
TmΣ, the sequent Σ#a:ν : ⇒ a#t is derivable in CIC/ToC.

PROOF. In principle, since Σ# can be infinite, we should prove
an infinite set of Lemma in Coq. Actually, it is sufficient to go by
induction, reflecting the definition of Σ#. In other words, we have
to prove one Lemma for each base case and for each inductive step
of term typing.

Let us fix the encoding of Σ#a:ν:

Variable x1:tau1. ... Variable xn:taun.
Variable a:Name.
Hypothesis fresh_a:(notin a x1)/\.../\(notin a xn).

The base cases involve variables and constants.

Lemma Sigma_hash_x1 : (notin a x1).
...
Lemma Sigma_hash_xn : (notin a xn).

which are trivial; then

Lemma Sigma_hash_c1 : (notin a c1).
...
Lemma Sigma_hash_ck : (notin a ck).

which follows from the definition of notin.
Then, the inductive steps are applications and λ-abstractions:

Lemma Sigma_hash_app:
forall t1:tau->sigma, forall t2:tau,
(notin a t1) -> (notin a t2) -> (notin a (t1 t2)).

for each base type τ . This Lemma can be proved by inverting the
hypothesis notin a t1. For λ-abstraction:

Lemma Sigma_hash_abs:
forall t:tau->sigma,
(forall x:tau.(notin a x) -> (notin a (t x)))
-> (notin a t).

which follows again from the definition of notin.

Lemma 4 (ИI) If Σ#a : ν : Γ ⇒ φ is derivable in CIC/ToC,
then Σ : Γ ⇒ Иa.φ is derivable in CIC/ToC.

This lemma is a consequence of the following lemma:

Variable x1:tau1. ... Variable xn:taun.
Variable a:Name.
Hypothesis fresh_a:(notin a x1)/\.../\(notin a xn).
Lemma new_intro : forall phi:Name->Prop,
(phi a) ->
(forall b:Name, (notin a x1)->...->(notin a xn)

-> (phi b)).

Essentially, this lemma says that phi is equivariant. As discussed
in the case of the axiom E3 above, this does not hold in general:
there exist propositions in CIC which are not equivariant. However,
we have assumed that equivariance can be proved for the atomic
propositions defined by the given nominal signature. Under this
assumption, new_intro is derivable in CIC/ToC.

Lemma 5 (ИE) If Σ : Γ ⇒ Иa.φ and Σ#a : ν : Γ, φ ⇒ ψ are
derivable in CIC/ToC, then Σ : Γ ⇒ ψ is derivable in CIC/ToC.

PROOF. The thesis is a consequence of the following lemma:

Variable x1:tau1. ... Variable xn:taun.
Variable a:Name.
Hypothesis fresh_a:(notin a x1)/\.../\(notin a xn).
Lemma new_elim : forall P:Name->Prop, Q:Prop,
(forall a:Name, (notin a x1)->...->(notin a xn)

-> (P a))
->
(forall a:Name, (notin a x1)->...->(notin a xn)

-> (P a) -> Q)
-> Q.

which is trivial.

6.3 Incompleteness of NINL with respect to CIC/ToC

Once proved that the translation preserves the derivability, i.e., that
NINL is correct with respect to CIC/ToC, it is natural to ask the
converse:

Completeness: given a nominal signature S, if a sequent
Σ : Γ ⇒ φ of NINL(S) is derivable in CIC/ToC(S), is it
derivable in NINL(S) as well?

The answer is negative, i.e., there exist formulas of NINL which
are not derivable in NINL, but whose translation is derivable in
CIC/ToC. More formally:

Proposition 6 There exists a signature S, a closed formula φ of
NINL(S) and a proof term d such that ∅ `ToC(S) d : [[φ]]∅∅ and
: ⇒ φ is not derivable in NINL.

The counterexample is very simple, and relies on the fact that
NINL is a first-order logic, while CIC is higher order—we do not
even need to consider the axioms and rules about atoms and con-
texts. Just take a first-order signature of natural numbers, i.e. S =
(∅, {nat}, {0 : nat, S : nat → nat}, ∅), and let φ be the for-
mula φ , (0 ≈ S(0)) ⊃ ⊥. It is clear that φ cannot be proved
in NINL(S), because NINL is a first order logic without induction
principles. On the other hand, the translation of φ is trivially deriv-
able in CIC, thanks to the inductive principle automatically pro-
vided by CIC for the datatype nat:

Lemma ZeroIsNotOne: O<>(S O).
Proof. auto. Qed.

One could argue that completeness may be achieved by “weaking”
the encoding in CIC/ToC. In fact, we can adopt an alternative
encoding of types of the signature using “open” types à la LF. For
instance, the type of λ-terms could be represented as follows:

Parameter Var: Set.
Parameter Term: Set.
Parameter var: Var -> Term.
Parameter lam: (Var -> Term) -> Term.
Parameter app: Term -> Term -> Term.

In this case, CIC would not provide any induction principle for
Term. Unfortunately, we need these induction principles for prov-
ing some axioms (e.g., A1, A2), hence if we adopt open types in-
stead of inductive types we are not able to prove Theorem 1.

7. Conclusions
In this paper, we have presented a work in progress about the com-
parison of Nominal Logics and the Theory of Contexts; in particu-
lar, we have focused on the logical expressivity of the two logics.
For a class of nominal signatures endowed with equivariant propo-
sitions, we have presented a translation of terms and formulas of

specifications in NL, to terms and types (of sort Prop) of the Cal-
culus of Inductive Constructions, respectively. As we have shown,
the translation is quite tricky due to the different nature of the two
logics (first-order vs. higher order, FM-binders vs. weak HOAS,
functional vs. relational approach).

We have proved that this translation preserves derivability, that
is, properties derivable in NL are still derivable in CIC/ToC. On
the other hand, being the former a higher-order logic with induc-
tive types, CIC/ToC allows easily to prove more properties than
Nominal Logic.

As future work, we plan to investigate some general criteria for
deciding wether a predicate definition is equivariant. One possibil-
ity is to extend the notion of nominal signatures to cover also the
definition of atomic predicates, and to give some syntactic restric-
tion on the format of these definitions. For instance, in the case that
atomic propositions denote operational semantics, we can consider
derivation rules in standardized formats like GSOS or safe tree. Un-
der suitable conditions about the format of these rules, it should be
possible to give a general way for proving equivariance of predi-
cates, and hence axiom E3 within CIC/ToC.

Another possible future work is to understand if, and how,
we can recover a completeness property of NINL with respect
to CIC/ToC. A quite radical attempt could be to turn Nominal
Logic into a full-fledged higher-order logic with equality, on a
par with CIC/ToC; however, in this way NL would miss many of
its interesting properties (such as decidability). Another possibility
could be the characterization of a restricted class of proof terms
in CIC/ToC (e.g., without applications of higher-order principles),
which can be translated back to proofs of NINL.

Acknowledgements The authors wish to thank Pietro Di Gianan-
tonio and the anonymous referees for their valuable suggestions.

References
[1] J. Cheney. A simpler proof theory for nominal logic. In V. Sassone,

editor, Proc. FoSSaCS, volume 3441 of Lecture Notes in Computer
Science, pages 379–394. Springer, 2005.

[2] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable
binding. In G. Longo, editor, Proc. 14th LICS, pages 193–202, Trento,
Italy, 1999. IEEE Computer Society Press.

[3] M. J. Gabbay. Fresh logic: a logic of FM. Submitted, 2003.
[4] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach

to metareasoning on systems in higher-order abstract syntax. In
Proc. ICALP’01, volume 2076 of Lecture Notes in Computer Science,
pages 963–978. Springer, 2001.

[5] F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in (co)inductive
type theory. Theoretical Computer Science, 253(2):239–285, 2001.

[6] INRIA. The Coq Proof Assistant, version 8, 2004. Available at
http://coq.inria.fr/doc/main.html .

[7] D. Miller and C. Palmidessi. Foundational aspects of syntax. ACM
Computing Surveys (CSUR), 31(3es):11, 1999.

[8] D. Miller and A. F. Tiu. A proof theory for generic judgments: An
extended abstract. In LICS 2003, pages 118–127, Ottawa, Canada,
June 2003. IEEE Computer Society.

[9] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computation, 186:165–193, 2003.

