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Metalogics for binders

Many logics for reasoning about object systems with binders:
Nominal Logics, CIC/ToC, Fresh Logic, FOλ∇, . . .

Intended to be metalogical specification systems:

a formalism (metalanguage) L equipped with an encoding
methodology
a given object system S (e.g., λ-calculus, π-calculus) can be
encoded, yielding a logic L(S), where tools and techniques are
provided for reasoning about it.

These logics differ in many aspects, e.g.:

kind of logic (first-order, higher-order, type theory,. . . )
how binders are represented (FO, SO, HO, eq. classes. . . )
“intended behaviour” of bound symbols (names, variables. . . )

⇒ One object system S, many different formalization and logics
L1(S),L2(S), . . .
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How to compare different metalogics?

In this work we consider logical expressivity:

Question

for any given object system S, can all properties derivable in L1(S)
be derived also in L2(S)?

Strategy

Define a translation of the terms and formulas of L1(S) into
L1(S), and check that the translation preserves derivability.

In this work

We define a translation from (Intuitionistic) Nominal Logic (NL) to
Calculus of Inductive Constructions with the Theory of Contexts
(CIC/ToC).
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Why?

Motivations:

compare the logical expressivity

enlighten similarities and differences

streamlining encoding methodologies in CIC/ToC

reusing existing implementations of CIC/ToC (i.e., Coq), for
NL (albeit not as efficient as specially-designed
implementations)

But notice: no reductionism intended! Many other theoretical and
pragmatical issues should be considered, including:

proof theory, proof search, decidability, model theory. . .

closeness to informal reasoning (cf. POPLMark challenge)
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For the impatient: the results

The translation from NL specifications into CIC/ToC works, i.e.:

there is a systematic way for transforming terms, formulas and
sequents of NL into terms and propositions of CIC/ToC, which
does preserve derivability of properties.

(Not surprisingly,) the translation is not conservative: there are
valid sequents, provable in CIC/ToC but not in NL.

End of the talk.

Still there? Ok: for the curious, in the rest of the talk we will enter
a bit in the details. . .
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NL vis-a-vis CIC/ToC

Let us compare some issues of the two frameworks:

NL CIC/ToC

logic first order higher order
abstractions equiv. classes true functions
binding operators first order second order
bound symbols a free in 〈a〉t x not free in λx .t
new quantifier Иx .A —
Axiom of Unique Choice consistent inconsistent

⇒ powerful func-
tional language

⇒ weak func-
tional language

The translation is going to be tricky, because of all these
differences.
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Nominal signatures

Definition (Nominal signatures)

A nominal signature is S = (N,D,C ,P) where

N = {ν1, . . . , νn} are the name types symbols;

D = {δ1, . . . , δm} are the data types symbols;
The sorts σ and arities α are defined as:

σ ::= () | ν, σ | 〈ν1 . . . νk〉δ, σ (k ≥ 0)

α ::= σ → δ

C = {c1:α1, . . . , cj :αj} are the data constructors.

P = {p1:σ1, . . . , pk :σk} are (atomic) predicate symbols.

Essentially, in sorts only name types may appear in negative
positions, denoting that binders act on names.
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Nominal signatures (cont.)

Example: untyped λ-calculus

Sλ = ({ν}, one sort of variables

{Λ}, one sort of terms. . .

{var :ν → Λ, . . . with three constructors

λ:〈ν〉Λ → Λ,

app:(Λ,Λ) → Λ},
{ −→: (Λ,Λ)}) and a binary predicate

Formal terms are generated by usual typing rules. In particular

Γ,~n1 : ~ν1 ` t1 : δ1 . . . Γ,~nk : ~νk ` tk : δk
Γ ` c((~n1)t1, . . . , (~nk)tk) : δ

Constrc

where c :(〈~ν1〉δ1, . . . , 〈~νk〉δk) → δ ∈ C .
E.g.: λ((x)app(var(x), var(x))) is the formal notation for λx .(x x).
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Nominal Logic of a Nominal Signature: types and terms

Given a signature S = (N,D,C ,P), we can define a nominal logic
for S NINL(S) (J.Cheney’s style).
Terms: a simply-typed λ-calculus with constants and types from S

types: for δ ∈ D and ν ∈ N: τ ::= δ | ν | τ → τ ′ | 〈ν〉τ
Arities of S are represented by types in currified form.

terms: for c ∈ C :

t, u ::= x | a | λx :τ.t | t u | c | swapντ | absντ

(swap a b v) (shortened (a b) · v) represents the term
obtained by swapping all occurences of a and b in t;
(abs a u) (shortened 〈a〉u), represents the term obtained by
“abstracting” a in t.
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Nominal Logic of a Nominal Signature: formulas

Formulas: first order logic, with atomic propositions from P.

φ, ψ ::= > | ⊥ | p(~t) | φ ∧ ψ | φ ∨ ψ | φ ⊃ ψ

| t ≈ u | a#t | ∀x :τ.φ | ∃x :τ.φ | Иa:ν.φ

Well-formedness of Иa.φ is subject to some freshness condition
about the bound variable:

Σ#a:ν ` φ form

Σ ` Иa:ν.φ form

To this end, the (typing) contexts may contain variables (of
names) subject to freshness informations:

Σ ::= 〈〉 | Σ, x :τ | Σ#a:ν

Σ#a:ν means “a is a variable to be instantiated with names
different from those used in Σ”.
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Nominal Logic of a Nominal Signature: axioms

(S1) (a a) · x ≈ x
(S2) (a b) · (a b) · x ≈ x
(S3) (a b) · a ≈ b
(E1) (a b) · c ≈ c
(E2) (a b) · (t u) ≈ ((a b) · t)((a b) · u)
(E3) p(~x) ⊃ p((a b) · ~x)
(E4) (a b) · λx :τ.t ≈ λx :τ.(a b) · t[((a b) · x)/x ]
(F1) a#x ∧ b#x ⊃ (a b) · x ≈ x
(F2) a#b (a:ν, b:ν ′, ν 6= ν ′)
(F3) a#a ⊃ ⊥
(F4) a#b ∨ a ≈ b
(A1) a#y ∧ x ≈ (a b) · y ⊃ 〈a〉x ≈ 〈b〉y
(A2) 〈a〉x ≈ 〈b〉y ⊃ (a ≈ b ∧ x ≈ y) ∨ (a#y ∧ x ≈ (a b) · y)
(A3) ∀y : 〈ν〉τ∃a : ν∃x : τ.y ≈ 〈a〉x
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Nominal Logic of a Nominal Signature: rules (in ND-style)

Σ : Γ ⇒ φ
Ax φ instance of some axiom

Σ#a:ν : Γ ⇒ φ

Σ : Γ ⇒ φ
Fresh

Σ#a:ν : Γ ⇒ φ

Σ : Γ ⇒ Иa.φ
ИI

Σ : Γ ⇒ Иa.φ Σ#a:ν : Γ, φ⇒ ψ

Σ : Γ ⇒ ψ
ИE

φ ∈ Σ#

Σ : Γ ⇒ φ
Σ#

where Σ# denotes the set of freshness formulas in Σ, i.e., the
formulas a#t “derivable” in Σ.

12 / 28



Metalogics Motivations Nominal signatures NS in NL NS in CIC/ToC NINL(S) into CIC/ToC(S) Derivability Conclusion

Nominal Signatures in CIC/ToC

A nominal signature S can be encoded in CIC in 4 easy steps:

1 encoding of the syntax of terms, using weak higher-order
abstract syntax;

2 syntax-driven definition of the “non-occurrence predicates”

3 atomic predicates are defined as (Co)Inductive propositions
(“shallow embedding”)

4 addition of the axioms of the Theory of Contexts for the given
signature (using the notin predicates previously defined).

The resulting system is denoted as CIC/ToC(S).
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Nominal Signatures in CIC/ToC (cont.)

For instance, the λ-calculus:

Parameter Var: Set.
Inductive Term: Set :=

var: Var -> Term
| lam: (Var -> Term) -> Term
| app: Term -> Term -> Term.

Inductive notin_Term (x:Var): Term -> Prop :=
notin_var: forall y:Var, x<>y -> (notin_Term x (var y))
|notin_lam: forall t: Var -> Term,

(forall y:Var, x<>y -> (notin_Term x (t y)))
-> (notin_Term x (lam t))

[...]

Formal meaning: (notin_Term x A) holds iff x 6∈ FV (A).
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The Theory of Contexts (ToC)

The Theory of Contexts is a set of axioms formalizing some simple
properties about variables (ranging over names) and term contexts
(i.e., terms with holes):

(* existence of fresh names *)
Axiom fresh_i: forall t:tau, exists a:Name_i, (notin a t).
(* decidability of equality of names *)
Axiom Name_i_dec_i: forall a b:Name_i, a=b \/ a<>b.
(* restricted beta-expansion *)
Axiom tau_exp: forall t:tau, forall x:Name,

exists t’:Name->tau, (notin x t’) /\ t=(t’ x).
(* restricted extensionality *)
Axiom tau_ext: forall f g:Name->tau,forall x:Name,

(notin x f) -> (notin x g) ->
(f x)=(g x) -> f=g.
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Translating NINL(S) into CIC/ToC(S)

The translation is defined by giving a series of maps.
Types:

JδiK = delta i (δ ∈ D)
JνiK = Name i (νi ∈ N)

Jτ → τ ′K = JτK -> Jτ ′K
J〈ν〉τK = JνK -> JτK

Signatures are also easy, but notice that

JΣ#a : νK = JΣK
Variablea : JνK
Hypothesis fresh a:(notin a x1)/\...(notin a xn).

(where dom(Σ) = {x1, . . . , xn})
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Translation of terms

Tricky, due to the fact that NINL has a first-order approach, while
CIC/ToC is second-order.
Consider the case 〈a〉t in some NINL(S).

Here, a is free (actually can be any term (of the right name
type))

But 〈a〉t should be mapped to some functional term
u:Name->tau in CIC/ToC(S), where

a 6∈ FV (u) and
such that (u JaK) corresponds to t.

How to define such u?
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Translation of terms

“Solution:” assume that the correct u is an auxiliary
contextual variable provided by a quantification outside the
atomic proposition containing 〈a〉t.
An atomic proposition p(〈a〉t) will be mapped to
forall u:Name->tau,(u a)=t ->(notin a u) -> (p u)
The local assumptions are essential.

The translation of swapping is similar: p((a b) · t) is mapped
to
forall u:Name->Name->tau,(u a b)=t -> (notin a u)
-> (notin b u) -> (p (u b a))

(Eventually, during the proofs, existence of such u’s can be
proved using the axiom of β-expansion.)

(This is the “relational feel” of CIC/ToC!).
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Translation of formulas

Mostly easy. Interesting cases:

JИa:ν.φKΣ =forall a:Name,

(notin a x1)->...->(notin a xn)-> JφKΣ,a:ν

where dom(Σ) = {x1, . . . , xn}
Ja#tKΦΣ =(notin JaKΦΣ JtKΦΣ)

Jt1 ≈ t2KΦΣ = Jt1KΦΣ = Jt2KΦΣ

For atomic proposition p(t1, . . . , tn), the translation must allocate
enough auxiliary contextual variables to make the translation of ti ’s
possible.
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The translation preserves derivability

Definition

A sequent Σ : Γ ⇒ φ of NINL(S) is derivable in CIC/ToC if there
is a term d of CIC/ToC(S) such that JΣK `ToC(S) d : J

∧
Γ ⊃ φKΣ.

Theorem

For all Γ, φ in NINL(S), if a sequent Σ : Γ ⇒ φ is derivable in NINL
then it is derivable in CIC/ToC.

Proved by showing that the translation of all rules and axioms of
NL are either derivable or admissible in CIC/ToC(S).
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Examples

Axiom (S2) : (a b) · (a b) · x ≈ x
translates into

Lemma S2: forall x: tau, forall a b: Name,
forall y1: Name -> Name -> tau,
(notin_tau_ho2 a y1) ->
(notin_tau_ho2 b y1) ->
forall y2: Name -> Name -> tau,
(notin_tau_ho2 a y2) ->
(notin_tau_ho2 b y2) ->
(y2 a b)=x -> (y1 a b)=(y2 b a) ->
(y1 b a)=x.
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What about completeness?

Question:

if a sequent Σ : Γ ⇒ φ of NINL(S) is derivable in CIC/ToC(S), is
it derivable in NINL(S) as well?

Answer

No, trivially. CIC/ToC is a higher-order logic, and we can prove,
e.g., Peano axioms for the signature of natural numbers.

Let S = (∅, {nat}, {0 : nat,S : nat → nat}, ∅),
and φ , (0 ≈ S(0)) ⊃ ⊥.
Then : ⇒ φ is not derivable in NINL, but it is derivable in
CIC/ToC.
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Completeness of the translation?

Completeness is hard to achieve. Two strategies:

1 Try to weaken CIC/ToC, e.g., by renouncing to HO features.
Too bad, Soundness fails because the proofs of lemmas rely
heavily on induction.

2 Try to strengthen NINL, to match the power used in
CIC/ToC. Second order with induction?
It may be sufficient, but then, will the good features of NL
(cut elim, decidibility, etc?) still hold?

3 Third possibility: who cares? They’re so different beasts. . .
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Final remarks

We have given a sound translation from NINL specifications
to CIC/ToC.

. . . but in CIC/ToC we can prove strictly more than in NINL.

Moral of the story:

if you look for a “package” for reasoning about binders in
your favorite HO logical framework (like Coq), CIC/ToC is a
reasonable possibility: simple, compact, deeply tied with
induction.

if you prefer working in FO logic, without induction, and
maybe looking for good proof theoretical properties: better if
you go for NL (or FOλ∇, but that’s another story).
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