
Electronic Notes in Theoretical Computer Science 58 No. 1 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume58.html 22 pages

Developing (Meta)Theory of λ-calculus
in the Theory of Contexts 1

Marino Miculan

Dipartimento di Matematica e Informatica, Università di Udine, Italy
mailto: miculan@ dimi. uniud. it

Abstract

We present a case study on the formal development of a non trivial (meta)theory in
the Theory of Contexts using the Coq proof assistant. The methodology underlying
the Theory of Contexts for reasoning on systems presented in HOAS is based on
an axiomatic syntactic standpoint. We feel that one of the main advantages of this
approach, is that it requires a very low logical overhead.

The object system we focus on is the lazy, call-by-name λ-calculus (λcbn), both
untyped and simply typed. We will see that the formal, fully detailed development
of the theory of λcbn in the Theory of Contexts introduces a small, sustainable
overhead with respect to the proofs “on the paper”. Moreover, this will allow for
comparison with similar case studies developed in other approaches to the metathe-
oretical reasoning in higher-order abstract syntax.

Keywords: higher-order abstract syntax, induction, logical frameworks.

Introduction

In recent years there has been growing interest in developing systems for defin-
ing and reasoning on languages featuring α-conversion. A promising line of
approach has focused on Higher-Order Abstract Syntax (HOAS) [13,24]. The
gyst of this approach is to delegate to type-theoretic metalanguages the burden
of dealing with binders. This approach however has some drawbacks. First of
all, being equated to metalanguage variables, object level variables cannot be
defined inductively without introducing exotic terms [7, 20]. A similar diffi-
culty arises with contexts, which are rendered as functional terms. Reasoning
by induction and definition by recursion on object level terms is therefore
problematic. Various approaches have been proposed to overcome these prob-
lems based on different techniques such as functor categories, permutation
models of ZF, etc. [9, 10, 14,11,19].

1 Work partially supported by Italian MURST project tosca and EC-WG types.

c©2001 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume58.html�
mailto:miculan@dimi.uniud.it�

In [15] another logical framework for reasoning on systems in HOAS is
presented, based on an axiomatic syntactic standpoint. This system stems
from the technique originally used in [16] for formally deriving in Coq [17]
the metatheory of strong late bisimilarity of the π-calculus. This framework
consists of a simple types theory à la Church extended with a set of axioms
called the Theory of Contexts, recursion operators and induction principles.
According to our experience, this framework is rather expressive. Higher Or-
der Logic allows for the impredicative definition of many relations, possibly
functional, the recursors and induction principles allow for the definition of
many important functions and properties over contexts, and most notably the
axioms in the Theory of Contexts allow for a smooth handling of schemata in
HOAS. In fact, we feel that one of the main advantages of the axiomatic ap-
proach of the Theory of Contexts, is that it requires a very low mathematical
and logical overhead.

Of course there are some tradeoffs. One of the major theoretical problems
concerning any axiomatic approach is the consistency of the axioms. In fact,
it is possible to prove that the Theory of Context is sound. We refer the reader
to [4], where a full proof of consistency of the Theory of Contexts is given,
using a model of functor categories along the line of [14].

From a practical point of view, however, the applicability of this approach
has to be tested by means of several cases studies. These are particularly useful
for discussing pragmatic issues which arise in developing real proofs in the
Theory of Contexts, addressing possible solutions and suggesting directions
for future developments. This is precisely the aim of this paper, where we
develop a non trivial (meta)theory of the lazy, call-by-name λ-calculus (λcbn),
both untyped and simply typed, in the Theory of Contexts within the Coq
proof assistant. We choose λcbn as the object of this case study for several
reasons. First, it is a well-known logic, so much that most works about λ-
calculus skim quickly standard definitions and basic proofs, sweeping many
details under the rug. We will see that the formal, fully detailed development
of the theory of λcbn in the Theory of Contexts introduces a small, sustainable
overhead with respect to the proofs “on the paper”. Moreover, λcbn owns some
features (as substitution of terms for variables, typing system,. . .) which are
somewhat complementary to those of π-calculus, which has been the object of
another large case study in the Theory of Context [16]. Finally, some variant
of the λ-calculus has been always taken as the traditional benchmark/example
of application of the many approaches to HOAS in the literature; see [13,2,7,
19,14,11,12] among the others.

It turns out that Theory of Contexts is quite successful in handling the
metatheory of λcbn. The encoding of the syntax, the semantics and the type
system is straightforward, and still we delegate the α-conversion to the met-
alevel. Only the encoding of substitution is not immediate, since we need
to represent it as a relation. However, this will allow us to state and prove
some fundamental results (i.e., functionality of substitution) which usually are

2

taken for granted in informal works on the λ-calculus. Moreover, these proofs
cast some light on the limits, and suggest possible solutions, of the Theory of
Contexts in Coq.

The Coq code is available at http://www.dimi.uniud.it/~miculan/HOAS/.

Synopsis. In Section 1 we recall briefly (that is, as in most works is done)
the object system λcbn. In Section 2 we give a brief presentation of the type
theory CIC and its implementation Coq. The HOAS encoding of syntax and
semantics of λcbn, and the formal development of its metatheory using the
Theory of Contexts, is described in Section 3. Practical issues which arise in
developing the proofs are discussed and, when possible, solutions are proposed.
In Section 4 we consider two extensions of the object system: applicative
bisimulation and observational equivalence, and a simple type system for λcbn.
Comparison with related work and conclusions are in Sections 5, 6 respectively.

1 The object system λcbn

In this section we give an intentionally brief (and somewhat sloppy) definition
of the lazy call-by-name λ-calculus λcbn, as it is usually given in most papers.
This will allow us to enlighten, in the following sections, how the formal rep-
resentation of the theory does not introduce a substantial overhead despite
the high level of detail required. We assume the reader familiar with the basic
notions of λ-calculus; for an introduction and a comprehensive development
of the theory of the λ-calculus, see [3].

The set Λ of terms of λcbn is defined by the following grammar:

M, N ::= x | (MN) | λx.M

where x, y, z, . . . range over an infinite set of variables. Terms are taken up-
to α-equivalence. We denote by M [N/x] the capture-avoiding substitution
of N for x in M . Contexts, i.e. terms with holes, are denoted by M(·). A
term is said to be a value if it is not an application. The notion of “free
variables” (FV) is defined as usual. For X a finite set of variables, we define
ΛX , {M ∈ Λ | FV (M) ⊆ X}. By Λ0 we denote Λ∅.

We consider two lazy operational semantics. The reduction (or small-step
semantics) is the smallest relation M −→ N defined by the following rules

(λx.M) N −→ M [N/x]

M −→ M ′

(M N) −→ (M ′ N)

We denote by −→∗ the reflexive and transitive closure of −→.

The evaluation (or big-step semantics) is the smallest relation M ⇓ N
defined by the following rules:

λx.M ⇓ λx.M

M ⇓ λx.M ′ M ′[N/x] ⇓ V

M N ⇓ V

3

http://www.dimi.uniud.it/~miculan/HOAS/�

2 The Calculus of Inductive Constructions

The Calculus of Inductive Constructions is an extension of the Calculus of
Constructions (CC), which can be defined as the PTS λC of Barendregt’s λ-
cube, with two sorts, Prop and Set . Under the proposition-as-types, proofs-as-
terms paradigm, there is an isomorphism between propositions of intuitionistic
higher-order logic and types of sort Prop. If A has type Prop then it represents
a logical proposition; the fact that A is inhabited by a term M represents the
fact that A holds. Each term M inhabiting A represents a proof of A. On
the other hand, the sort Set is supposed to be the type of datatypes, such as
naturals, lists, trees, booleans, etc. These types differ from those inhabiting
Prop for their constructive contents.

Therefore, CC, as many similar Type Theories, can be fruitfully used
as a general logic specification language, i.e. as a Logical Framework (LF)
[13, 22, 23]. In an LF, we can represent faithfully and uniformly all the rel-
evant concepts of the inferential process in a logical system (syntactic cate-
gories, terms, variables, contexts, assertions, axiom schemata, rule schemata,
instantiation, tactics, etc.).

The Calculus of Inductive Constructions (CIC) (implemented in the Coq
system [17]) extends CC with some special constants which represent the
definition, introduction and elimination of inductive types. For instance, the
following definition of natural numbers (written in Gallina, Coq’s specification
language)

Inductive nat : Set := O : nat | S : nat -> nat

allows to define terms by “case analysis”, like the following function:

Definition pred := [n:nat]Cases n of O => O | (S u) => u end.

where [n:nat] is Gallina notation for abstraction λn : nat. Using these elim-
ination schemata, Coq automatically states and proves the induction principle
for each inductively defined type. For instance, the above definition yields the
Peano induction principle “for free”:

nat_ind : (P:nat->Prop)(P O) ->

((n:nat)(P n)->(P (S n))) -> (n:nat)(P n)

where (n:nat) is the notation for dependent product
∏

n:nat. This feature has
been extensively used in the definition of logical connectives: we need only to
specify the introduction rules, and we can prove the elimination rules from
the elimination principle the system automatically provides us.

However, allowing for any inductive definition in CIC would yield non-
normalizing terms, thus invalidating the standard proof of consistency of the
system. Hence, inductive definitions are subject to the positivity condition,
which (roughly) requires that the type we are defining does not occur in neg-
ative position in the type of any argument of any constructor. This condition
ensures the soundness of the system, but it rules out also many sound inductive

4

definitions. For instance, the following definition of λ-terms in higher-order
abstract syntax

Inductive L : Set := lam : (L->L) -> L | app : L -> L -> L.

is not well-formed, due to the negative occurrence of L in the type L->L of the
argument of lam.

Another problem arising from the use of higher order abstract syntax to-
gether with inductive types is that of exotic terms. These are λ-terms which
do not correspond to any object “on the paper”, despite their types corre-
spond to some syntactic category. Exotic terms are generated when a type
has a higher-order constructor over an inductive type. A simple example is
the following fragment of first-order logic:

Inductive i : Set := zero : i | one : i.

Inductive o : Set := ff : o | eq : i->i->o | forall : (i->o)->o.

Definition weird : o := (forall [x:i](Cases x of

zero => ff

| one => (eq zero zero)

end)).

The term weird does not correspond to any proposition of first order logic:
there is no formula ∀xφ such that φ{0/x} and φ{1/x} are syntactically equal to
“ff ” and “0 = 0”, respectively. Exotic terms are problematic in establishing
the faithfulness of the formalization; usually, they have to be ruled out by
means of auxiliary “validity” judgements [7, 27]. Another approach, which
will be used in Section 3.1 is to have the higher order constructors to range
over types which are not defined as inductive, so that there is no Cases to use
as above.

A common implementation of CIC is Coq, an interactive proof assistant
developed by the INRIA and other institutes. For a complete description, we
refer to [17]. Coq is an editor for interactively searching for an inhabitant of
a type, in a top-down fashion by applying tactics step-by-step, backtracking
if needed, and for verifying correctness of typing judgements. A proof search
starts by entering

Lemma ident : goal.

where goal is the type representing the proposition to prove. At this point,
Coq waits for commands from the user, in order to build the proof term
which inhabits goal (i.e., the proof). To this end, Coq offers a rich set of
tactics, e.g., introduction and application of assumptions, application of rules
and previously proved lemmata, elimination of inductive objects, inversion of
(co)inductive hypotheses and so on. These tactics allow the user to proceed
in his proof search much like he would do informally. At every step, the type
checking algorithm ensures the soundness of the proof. When the proof term
is completed, it can be saved (by the command Qed) for future applications.

5

3 Formalizing and reasoning on λcbn in CIC

3.1 Encoding the syntax of λcbn

The HOAS representation of the syntax of λcbn is the following:

Parameter Var : Set.

Inductive tm : Set := var : Var -> tm

| app : tm -> tm -> tm

| lam : (Var -> tm) -> tm.

Coercion var : Var >-> tm.

Declaring var as a coercion allows us to inject implicitly terms from type Var

into tm, so that in the following this constructor may be omitted from terms.

Remark 3.1 We do not define Var as an inductive set. In fact, this is not
required by the syntax of λcbn, so there is no reason to bring in unnecessary
assumptions, i.e., the induction and recursion principles. Actually, these un-
wanted principles are not harmless, because they can be exploited for defining
exotic terms; hence, taking Var as inductive would be simply wrong.

Remark 3.2 Notice that lam is a higher-order constructor, that is it takes
a functional term as argument. In particular, terms of type Var->tm rep-
resent exactly the capture-avoiding contexts of the λ-calculus. This tech-
nique allows to inherit the α-equivalence on terms from the metalanguage,
and still to have an inductive definition for terms. For instance, λx.(xx) and
λy.(yy) are represented by (lam [x:Var](app (var x) (var x))) and (lam

[y:Var](app (var y) (var y))), respectively, which are the same term up-
to α-conversion. At the same time we can define functions by first-order re-
cursion or case analysis on the syntax of terms, like the following:

Definition isvalue := [M:tm]Cases M of

(var x) => False

| (lam t) => True

| (app t1 t2) => False

end.

The adequacy of this encoding is a consequence of [15, Theorem 1]. For
X = {x1, . . . , xn} a finite set of variables, let us define

ΓX , {x1 : Var, . . . , xn : Var} ∪ {dij : ˜(xi = xj) | 1 ≤ i < j ≤ n}
tmX , {M | ΓX ` M : tm, M in long βη-normal form}.

Proposition 3.3 For all X finite set of variables, there is a bijection εX

between ΛX and tmX . Moreover, this bijection is compositional, in the sense
that if M ∈ ΛX,x and N ∈ ΛX , then εX(M [N/x]) = εX,x(M)[εX(N)/(var x)].

As a corollary, a (capture-avoiding) context M(·) ∈ ΛX is naturally en-
coded as [z:Var]εX,z(M(z)), where the fresh variable z acts as a “placeholder”
for the hole. In fact, a bijection like in Proposition 3.3 can be established be-
tween contexts and terms of type Var->tm.

6

3.2 The Theory of Contexts for λcbn

Often, a HOAS encoding of an object system is not sufficient for handling the
metatheory of the system, that is to prove properties on the object system
itself. Since we aim to prove several results about λcbn, we need to introduce
the corresponding Theory of Contexts.

Given the signature of the syntax, the Theory of Contexts is composed
by two parts. The first contains the definitions of “occurrence” predicates.
These definitions are immediately derived from the signature of the language,
following the pattern in [16,15].

Inductive notin [x:Var] : tm -> Prop :=

notin_var : (y:Var)~x=y->(notin x y)

| notin_app : (M,N:tm)(notin x M) -> (notin x N)

-> (notin x (app M N))

| notin_lam : (M:Var->tm)((y:Var)~x=y->(notin x (M y)))

-> (notin x (lam M)).

Inductive isin [x:Var] : tm -> Prop :=

isin_var : (isin x x)

| isin_app1: (M,N:tm)(isin x M) -> (isin x (app M N))

| isin_app2: (M,N:tm)(isin x N) -> (isin x (app M N))

| isin_lam : (M:Var->tm)((y:Var)(isin x (M y)))

-> (isin x (lam M)).

The only thing we need to know about names (variables), is that equality
over Var is decidable. However, we do not need a full blown classical logic: it
is sufficient to have a classical behaviour on the occurrence check predicates.

Axiom LEM_OC: (M:tm)(x:Var)(isin x M)\/(notin x M).

This implies the decidability of (eq Var).

The second part of the Theory of Contexts consist of a set of axiom
schemata, which reflect at the theory level some fundamental properties of
the intuitive notion of “context” and “occurrence” of variables. Their infor-
mal meaning is the following:

Unsaturability of variables: no term can contain all variables; i.e., there
exists always a variable which does not occur free in a given term;

Extensionality of contexts: two contexts are equal if they are equal on a
fresh variable; that is, if M(x) = N(x) and x 6∈ M(·), N(·), then M = N .

More formally, these are the axioms of the Theory of Contexts we need:

Axiom unsat : (M:tm)(Ex [x:Var](notin x M)).

Axiom ext_tm : (M,N:Var->tm)(x:Var)

(notin x (lam M)) -> (notin x (lam N)) ->

(M x)=(N x) -> M=N.

Axiom ext_tm1 : (M,N:Var->Var->tm)(x:Var)

7

(notin x (lam [z:Var](lam (M z)))) ->

(notin x (lam [z:Var](lam (M z)))) ->

(M x)=(N x) -> M=N.

The following are immediate consequences of the Theory of Contexts and
the induction principles over tm.

Lemma differ : (x:Var)(Ex [y:Var]~x=y).

Lemma isin_notin_absurd : (x:Var)(M:tm)(isin x M)->(notin x M)->False.

Remark 3.4 In [15] also another axiom schema, called β-expansion, is pre-
sented. Informally, β-exp states that given a term M and a variable x,
there is a context N(·) such that N(x) = M and x does not occur in N(·).
This has been used several times in the development of the metatheory of
π-calculus [16]. On the other hand, it has not been needed in the present
work on λcbn. A possible motivation is that here we are allowed for higher-
order induction, while in [16] we had to recover it from induction over plain,
first-order terms.

Another useful application of β-exp which we have not used in this work is
the representation of variable-capturing contexts in HOAS. In general, this is
difficult because bound variables are not accessible from “outside” the abstrac-
tion, not even their names. In the Theory of Contexts, a context C[·] capturing
x can be represented as a term of type (var->tm)->tm, and the instantiation
requires a β-expansion of the inserted term. For instance, λx.([·] x) is repre-
sented as C’ = [N:(var->tm)](lam [x:Var](app (N x) (var x))). Con-
sider a term M with a free variable x which has to be captured: let M ′(·)
the context obtained by β-expansion over x (i.e., such that M ′(x) = M and x
does not appear free in M ′). Then, the variable-capturing instantiation C[M]
is rendered as (C’ M’).

Remark 3.5 As described in Section 2, Coq and similar systems provide
support for inductive types. However, this does not hold for higher-order types:
there is no induction principle over A->B, even if A and/or B are inductive.
This is because the intended meaning of A->B (usually, a function space) is not
an initial algebra. Thus, most proof editors give no induction principles, case
analysis, inversion predicates and similar tools for reasoning on terms of type
Var->tm, i.e., contexts. Nevertheless, it is possible to prove that types of the
form Var->...->Var->tm do have recursion and induction principles [14,4,15].
Hence, beside the simple Axioms of the Theory of Contexts above, we can
safely assume higher-order induction and recursion principles as needed, like
the following induction over Var->tm:

Axiom tm_ind1 : (P:(Var->tm)->Prop)

(P var) ->

((y:Var)(P [_:Var](var y))) ->

((M,N:Var->tm)(P M)->(P N)->(P [x:Var](app (M x) (N x)))) ->

((M:Var->Var->tm)

8

((y:Var)(P [x:Var](M x y)))->(P [x:Var](lam (M x))))

-> (M:Var->tm)(P M).

(notice how there are two base cases). In the following we may introduce also
others of these principles,

3.3 Formalizing the substitution

A drawback of using using a specific type for variables (a “weak HOAS” encod-
ing), is that we cannot delegate the substitution to the metalanguage. Instead,
we need to define it by hand, as a parametric relation between contexts and
terms:

Inductive subst [N:tm] : (Var->tm) -> tm -> Prop :=

subst_var : (subst N var N)

| subst_void : (y:Var)(subst N [_:Var]y y)

| subst_app : (M1,M2:Var->tm)(M1’,M2’:tm)

(subst N M1 M1’) -> (subst N M2 M2’) ->

(subst N [y:Var](app (M1 y) (M2 y)) (app M1’ M2’))

| subst_lam : (M:Var->Var->tm)(M’:Var->tm)

((z:Var)(subst N [y:Var](M y z) (M’ z))) ->

(subst N [y:Var](lam (M y)) (lam M’)).

Thus, a term M ′ is syntactically equal to the substitution M(x)[N/x] iff
(subst N M M’) holds. More formally:

Proposition 3.6 Let X be a finite set of variables and x a variable not in
X. Let N,M ′ ∈ ΛX and M ∈ ΛX]{x}. Then:

M [N/x] = M ′ ⇐⇒ ΓX ` : (subst εX(N) [x:Var]εX]{x}(M) εX(M ′))

Capture-avoiding substitution is naturally defined as a function, but in
fact its definition is seldom given in full detail—and we made no exception in
Section 1. Actually, the definition which is usually intended is not determin-
istic a priori, since it requires an arbitrary α-conversion of bound variables of
the context in order to avoid capturing free variables in the substituted term.
More complex languages (e.g., dynamic logic, Hoare logic [20]) may require
nonstandard substitutions involving contrived notions of conversion, not sim-
ply α-conversion. Representing the substitution in CIC as a relation, in fact,
gives raise to the possibility that it may be not total, that is for some N, M
there is no M ′ such that M ′ = M [N/x]. The fact that such a definition does
give a functional (i.e., deterministic and total) relation is a property which we
are going to prove explicitly using the Theory of Contexts.

Determinism of substitution

The property we want to prove is the following:

Parameter N:tm.

9

Lemma subst_is_det: (M:Var->tm)(M1:tm)(subst N M M1) ->

(M2:tm)(subst N M M2) -> (M1 = M2).

We give two proofs of this property. The first goes by induction on the deriva-
tion of (subst N M M1). This gives rise to four cases:

N : tm
M : var->tm
M2 : tm
H : (subst N Var M2)
============================
N=M2

subgoal 2 is:
(y)=M2
subgoal 3 is:
(app M1’ M2’)=M0

subgoal 4 is:
(lam M’)=M2

each of which should be dealt by inverting the hypothesis H (or corresponding).
Usually, such an inversion would eliminate automatically all absurd cases, but
this does not work when the terms which have to be discriminate are higher-
order. This is indeed the case, since the second argument of subst has type
Var->tm. The Inversion H tactic gives us four cases for the first goal, only
one of which is trivially true and the other are absurd:

subgoal 1 is:
N : tm
M : Var->tm
M2 : tm
H : (subst N var M2)
H0 : var=var
H1 : N=M2
============================
M2=M2

...

subgoal 2 is:
N : tm
M : Var->tm
M2 : tm
H : (subst N var M2)
y : Var
H1 : ([_:var](y))=var
H0 : (y)=M2
============================
N=(y)

Absurd cases are (tediously) eliminated by using the Theory of Contexts, in
particular the axiom of extensionality. The whole proof is 95 lines long, most
of which are dealing with the elimination of absurd cases.

Determinism of substitution, again
A much shorter proof can be obtained by proving a suitable higher-order

inversion lemma for substitution. In Coq, inversion lemmata are automatically
synthesized and proved on-the-fly from recursion principles by the Inversion
tactic, using the algorithm originally implemented by Murthy with subsequent
elaboration by Cornes and Terrasse [6]. However, this algorithm fails to give
the right inversion predicate when the datatype, which we have to discriminate
over, is higher-order, because usual inductive type theories do not recognize a
higher-order type as inductive. Nevertheless, we know that types of the form
Var->tm do have recursion principles [14, 4, 15]. Hence, we can consistently
introduce these principles (as Axioms) for the definition of the recursive map
needed in the inversion predicate:

Parameter subst_inv_fun : tm -> (Var->tm) -> tm -> Prop.
Axiom subst_inv_fun_var0 : (N,M:tm)(subst_inv_fun N var M)==(N=M).
Axiom subst_inv_fun_var1 :

10

(y:Var)(B,N:tm)(subst_inv_fun N [_:Var]y B)==((var y)=B).
Axiom subst_inv_fun_app : (A1,A2:Var->tm)(B,N:tm)

(subst_inv_fun N [x:Var](app (A1 x) (A2 x)) B) ==
(EX B1 | (EX B2 | (app B1 B2)=B /\ (subst N A1 B1)

/\ (subst N A2 B2))).
Axiom subst_inv_fun_lam : (A:Var->Var->tm)(B,N:tm)
(subst_inv_fun N [x:Var](lam (A x)) B) ==

(EX A1 | (lam A1)=B /\ (y:Var)(subst N [x:Var](A x y) (A1 y))).

Then, the higher-order inversion principle is “mechanically” claimed and
proved as follows:

Lemma subst_inv : (A:Var->tm)(B,N:tm)(subst N A B) -> (subst_inv_fun N A B).
Intros; Inversion_clear H.
Rewrite subst_inv_fun_var0; Reflexivity.
Rewrite subst_inv_fun_var1; Reflexivity.
Rewrite subst_inv_fun_app; Exists M1’; Exists M2’; Auto.
Rewrite subst_inv_fun_lam; Exists M’; Auto.
Qed.

Using this inversion lemma, the proof of determinism of substitution is
much easier—in fact, we “lift” at the level of context the syntactic machinery
of inversion tactics that Coq provides at the level of terms:

Lemma subst_is_det’: (M:Var->tm)(M1:tm)(subst N M M1) ->
(M2:tm)(subst N M M2) -> (M1 = M2).

Induction 1; Intros.
Generalize (subst_inv ? ? ? H0); Rewrite subst_inv_fun_var0; Trivial.
Generalize (subst_inv ? ? ? H0); Rewrite subst_inv_fun_var1; Trivial.
Generalize (subst_inv ? ? ? H4); Rewrite subst_inv_fun_app; Intros.
Inversion_clear H5; Inversion_clear H6; Inversion_clear H5; Inversion_clear H7.
Rewrite (H1 ? H5); Rewrite (H3 ? H8); Assumption.
Generalize (subst_inv ? ? ? H2); Rewrite subst_inv_fun_lam; Intros.
Inversion_clear H3; Inversion_clear H4; Inversion_clear H3.
Replace x with M’; Auto.
Elim (unsat (app (lam M’) (lam x))).
Intros; Inversion_clear H3.
Apply ext_tm with x0; Auto.
Qed.

As one can see, in this proof we used also the axioms of the Theory of
Contexts (unsat and ext tm).

Totality of substitution

The proof of totality is tricky due to some peculiarities of CIC. The lemma
we want to prove is

Lemma subst_is_total : (M:Var->tm)(EX M’ | (subst N M M’)).

Our intent is to prove this by higher-order induction over M. This fails in the
case of the lambda abstraction, which appears as follows:

11

N : tm

M : Var->tm

M0 : Var->Var->tm

H : (y:Var)(EX M’:tm | (subst N [x:Var](M0 x y) M’))

============================

(EX M’:tm | (subst N [x:Var](lam (M0 x)) M’))

The suitable term should be obtained from the hypothesis H. However, Coq
does not allow us to eliminate a Proposition (like H) to build a term in a Set
(M’ in tm). Such “eliminations of strong Σ-types” may lead to inconsistencies,
and hence are ruled out by the type theory CIC [5].

The solution we adopt is to move the whole proof in the Set realm, and
then to lift the result to Prop. Therefore, we introduce a Set-typed version of
the induction principle—which, equivalently, can be seen as a recursor with
dependent types:

Axiom tm_rec1 : (P:(Var->tm)->Set)

(P var) ->

((y:Var)(P [_:Var](var y))) ->

((M,N:Var->tm)(P M)->(P N)->(P [x:Var](app (M x) (N x)))) ->

((M:Var->Var->tm)

((y:Var)(P [x:Var](M x y)))->(P [x:Var](lam (M x))))

->

(M:Var->tm)(P M).

Then, we prove the totality in Set by higher-order dependent recursion:

Lemma sit: (N:tm)(M:Var->tm){M’:tm | (subst N M M’)}.

Intros; Pattern M; Apply tm_rec1; Intros; Clear M.

Split with N; Apply subst_var.

Exists (var y); Apply subst_void.

(Inversion_clear H; Inversion_clear H0).

Split with (app x x0); Apply subst_app; Assumption.

Exists (lam [y:Var](proj1_sig tm ? (H y))).

Apply subst_lam; Intros.

Apply proj2_sig.

Qed.

Notice that in the case of lambda, the required term is built by eliminating
(projecting) the Σ-type in the hypothesis H instantiated on a locally bound
(and hence, fresh) variable y.

Then, the totality theorem is just the extraction of the logical part from
the Σ-type (sit M):

Lemma subst_is_total : (M:Var->tm)(Ex [M’:tm](subst N M M’)).

Intros. Exists (proj1_sig ? ? (sit M)).

Apply proj2_sig.

Qed.

12

Extracting the substitution function

Lemma sit can be seen as the specification of the substitution function.
We can make it explicit by extracting the first component of the Σ-type (sit

N M):

Lemma subst_f : tm->(Var->tm)->tm.

Intros N M; Exact (proj1_sig ? ? (sit N M)).

Qed.

which, sweetened by a bit of syntactic sugar, takes the familiar form [], like
in the following “verification” and congruence properties:

Lemma subst_f_prop : (N:tm)(M:Var->tm)(subst N M M[N]).

Lemma subst_f_var : (N:tm)(var[N])=N.

Lemma subst_f_void : (N:tm)(y:Var)(([_:Var]y)[N])=y.

Lemma subst_f_app : (N:tm)(M1,M2:Var->tm)

(([x:Var](app (M1 x) (M2 x)))[N])=(app M1[N] M2[N]).

Lemma subst_f_lam : (N:tm)(M:Var->Var->tm)

(([x:Var](lam (M x)))[N]) = (lam ([y:Var](([x:Var](M x y))[N]))).

An interesting property of substitution is composition: for M,N, P terms
and x 6= y, we have that (P [Q/y])[M/x] = (P [M/x])[Q[M/x]/y]. The formal-
ization of this statement requires a context with 2 holes:

Lemma subst_f_comp : (M:tm)(Q:Var->tm)(P:Var->Var->tm)

(([x:Var]((P x)[(Q x)]))[M]) = ([y:Var]([x:Var](P x y))[M])[Q[M]]).

Beside using axioms ext_tm and —unsat—, the proof of this property goes
by structural induction over the structure of P ; thus we need to assume the
corresponding induction principle on Var->Var->tm:

Axiom tm_ind2 : (P:(Var->Var->tm)->Prop)
(P [x,y:Var]x) ->
(P [x,y:Var]y) ->
((z:Var)(P [_;_:Var](var z))) ->
((M,N:Var->Var->tm)(P M)->(P N)->(P [x,y:Var](app (M x y) (N x y)))) ->
((M:Var->Var->Var->tm)

((z:Var)(P [x,y:Var](M x y z)))->(P [x,y:Var](lam (M x y))))
->
(M:Var->Var->tm)(P M).

3.4 Formalizing the semantics of λcbn

The representation of both operational semantics is straightforward.

Inductive red : tm -> tm -> Prop :=

red_beta: (N:tm)(M:Var->tm)

(red (app (lam M) N) (subst_f N M))

| red_head: (M,N,M’:tm)

(red M M’) -> (red (app M N) (app M’ N)).

13

Inductive trred : tm -> tm -> Prop :=

| trred_ref : (M:tm)(trred M M)

| trred_trs : (M,N:tm)(red M N)->(P:tm)(trred N P)->(trred M P).

Inductive eval : tm -> tm -> Prop :=

eval_var : (x:Var)(eval x x)

| eval_lam : (M:Var->tm)(eval (lam M) (lam M))

| eval_app : (M,N,V:tm)(M’:Var->tm)

(eval M (lam M’)) -> (eval M’[N] V) ->

(eval (app M N) V).

Proposition 3.7 Let X be a finite set of variables; for all M, N ∈ ΛX , we
have:

(i) M −→ N ⇐⇒ ΓX ` : (red εX(M) εX(N))

(ii) M −→∗ N ⇐⇒ ΓX ` : (trred εX(M) εX(N))

(iii) M ⇓ N ⇐⇒ ΓX ` : (eval εX(M) εX(N))

Most interesting properties of small-step and big-step semantics can be
proved without using the Theory of Contexts. These properties include the
progress lemma, determinism of semantics, equivalence of big-step and small-
step semantics:

Definition closed : tm -> Prop := [M:tm](x:Var)(notin x M).

Lemma progress : (M:tm)(closed M)->(isvalue M)\/(EX N | (red M N)).

Lemma red_is_det : (M,V1:tm)(red M V1)->(V2:tm)(red M V2)->V1=V2.

Lemma eval_is_det : (M,V1:tm)(eval M V1)->(V2:tm)(eval M V2)->V1=V2.

Lemma red_eval : (M,N:tm)(red M N)->(V:tm)(eval N V)->(eval M V).

Lemma trred_eval : (M,V:tm)(trred M V)->(isvalue V)->(eval M V).

Lemma eval_trred : (M,N:tm)(eval M N) -> (trred M N).

These properties are proved by simple induction on the syntax of M and the
derivation of (red M V1), (eval M V1), (red M N), (trred M V), (eval M N),
respectively.

4 Extending the (meta)theory

In this section we consider two extensions of the λcbn: applicative bisimulation
and observational equivalence, and a simple type system. This allows us to
test the modularity of the Theory of Contexts. It turns out that, while in
the first case the Theory of Contexts previously introduced works fine, in the
latter case we have to modify slightly the unsat axiom, in order to take into
account the new behaviour of variables brought in by the type system.

4.1 Applicative Bisimulation and Observational Equivalence

In this section we extend the theory and the metatheory of λcbn by considering
two well-known equivalences over λcbn [1]:

14

Definition 4.1 The observational equivalence is the relation ≈o over Λ0 de-
fined as follows: M ≈o N iff for all C[·] ∈ Λ0, if C[M]⇓ then C[N]⇓.

The applicative bisimulation is the relation ≈a over Λ0 defined as follows:
M ≈a N iff if M ⇓ λxP for some P , then there exists Q such that N ⇓ λxQ
and for all R ∈ Λ0: P [R/x] ≈a Q[R/x].

Notice that the definition of the applicative bisimulation is coinductive.
There is also a “linearized” definition of the same relation, which we denote
by ≈′a: M ≈′a N iff for all n and R1, . . . , Rn ∈ Λ0: if (MR1 . . . Rn)⇓ then
(NR1 . . . Rn)⇓.

It is quite clear that ≈a=≈′a. A more interesting and important result is
the so called operational extensionality, that is ≈a=≈o [1]. The proof sketch
given in [1] consists in the proof of the following technical lemma:

M ≈a N ⇒ ∀n.∀C ∈ Λ0.C[M]⇓n ⇒ C[N]⇓n (1)

where ⇓n is a “indexed” version of the evaluation semantics. The intended
meaning of the index is the number of substitution performed in the evalua-
tion. The rules for ⇓n are the following:

λx.M ⇓0 λx.M

M ⇓m λx.M ′ M ′[N/x] ⇓n V

M N ⇓m+n+1 V

Our aim is to encode these relations in CIC and to prove formally their
equivalence. The formalization of ≈a and ≈o is not problematic; in particular,
we can take advantage of Coinductive types for encoding ≈a:

CoInductive appsim : tm -> tm -> Prop :=

appsim_coind : (M,N:tm)

((M’:Var->tm)(eval M (lam M’)) ->

(EX N’ | (eval N (lam N’)) /\

(L:tm)(closed L) -> (appsim M’[L] N’[L])

-> (appsim M N).

Definition conv := [M:tm](EX V | (eval M (lam V))).

Definition obseq : tm -> tm -> Prop := [M,N:tm](C:Var->tm)

(closed (lam C))-> (conv C[M]) -> (conv C[N]).

For ≈′a, on the other hand, we need to introduce the datatype of applicative
lists, and the operation of list application:

Inductive ltm : Set := nil : ltm | larg : ltm -> tm -> ltm.

Fixpoint lapp [M:tm;L:ltm] : tm :=

Cases L of nil => M

| (larg L’ N) => (app (lapp M L’) N)

end.

Definition appsim’ : tm -> tm -> Prop := [M,N:tm]

(L:ltm)(lclosed L)-> (conv (lapp M L)) -> (conv (lapp N L)).

15

Then, two implications are proved without using the Theory of Contexts:

Lemma obseq_appsim’ : (M,N:tm)(obseq M N) -> (appsim’ M N).

Lemma appsim’_appsim : (M,N:tm)(appsim’ M N) -> (appsim M N).

The former is proved by induction on the applicative list in the definition of
appsim’. The latter is proved by coinduction: using the tactic Cofix we can
“assume” the conclusion and apply the coinductive rule:

appsim’_appsim : (M,N:tm)(appsim’ M N)->(appsim M N)

M : tm

N : tm

H : (appsim’ M N)

P : Var->tm

H0 : (eval M (lam P))

============================

(EX Q:Var->tm |

(eval N (lam Q))/\((R:tm)(closed R)->(appsim P[R] Q[R])))

The proof proceeds then by elimination of the hypothesis H. Notice that for
these proofs we do not need the hypothesis that M,N are closed.

More difficult is the proof of the third inclusion, namely

Variable M,N: tm.

Hypothesis closedN : (closed N).

Hypothesis closedM : (closed M).

Lemma appsim_obseq : (appsim M N) -> (obseq M N).

For this end, we need to encode ⇓n and prove the property (1):

Inductive neval : nat -> tm -> tm -> Prop :=

neval_lam : (M:Var->tm)(neval O (lam M) (lam M))

| neval_app : (M,N,V:tm)(M’:Var->tm)(n,m:nat)

(neval n M (lam M’)) -> (neval m M’[N] V) ->

(neval (S (plus n m)) (app M N) V).

[...]

Lemma Context : (n:nat)(C:Var->tm)(closed (lam C)) ->

(V:tm)(neval n C[M] V) -> (conv C[N]).

Following [1], the proof is by induction on n. Induction over Var->tm is used
for destructing the context C in order to obtain the two cases mentioned in [1]:

• C[·] ≡ (λxP [·])(Q[·])R[·]
• C[·] ≡ [·](Q[·])R[·]
Beside these we obtain also other four cases which have been omitted in [1],
and which are easily dealt with. The proof proceeds by several technical
manipulations of applicative lists and some structural properties of indexed
evaluation, like the following

Lemma neval_one_step : (P:Var->tm)(Q:tm)(R:ltm)(V:tm)(n:nat)

16

(neval (S n) (lapp (app (lam P) Q) R) V) ->

(neval n (lapp P[Q] R) V).

In many points, the Theory of Contexts is used to prove easily equivalences
between contexts.

It should be noticed that the burden of the proofs is in the manipulation
of applicative lists, rather than in dealing with contexts. Many properties of
lists which are usually taken for granted, here must be spelled out and proved
in full detail.

4.2 Typing system

In this section we extend the theory and the metatheory of λcbn by adding
simple types. Simple types are defined by the grammar τ ::= u | τ → τ , where
u, v range over type variables. The typing judgement has the form Γ ` M : τ ,
where Γ is the typing base, that is a finite set of pairs x1 : τ1, . . . , xn : τn. The
usual typing rules are the following:

(x : τ) ∈ Γ

Γ ` x : τ

Γ ` M : σ → τ Γ ` N : σ

Γ ` (M N) : τ

Γ, x : σ ` M : τ

Γ ` λx.M : σ → τ
x 6∈ dom(Γ)

The syntax of simple types is encoded trivially:

Parameter tyVar : Set.

Inductive ty : Set := tvar : tyVar -> ty | arr : ty -> ty -> ty.

Coercion tvar : tyVar >-> ty.

The introduction of a typing system has a bearing on the structure of Var. In
the previous section, we assumed Var to be simply any set with the required
properties, i.e. the unsat axiom and, ultimately, decidability of equality. The
typing system, however, requires that every free variable is given a type. This
is reflected in the encoding by adding more structure to Var, i.e. by assuming
the existence of a type assignment and by requiring that every fresh variable
introduced by unsat must be given a type:

Parameter typevar : Var -> ty.

Axiom unsat_t : (M:tm)(s:ty)(EX x | (notin x M) /\ (typevar x)=s).

Then, the encoding of the typing system is straightforward:

Inductive type : tm -> ty -> Prop :=

type_var : (x:Var)(type (var x) (typevar x))

| type_app : (M,N:tm)(s,t:ty)(type M (arr s t)) ->

(type N s) -> (type (app M N) t)

| type_lam : (M:Var->tm)(s,t:ty)

((x:Var)((typevar x)=s) -> (type (M x) t))

-> (type (lam M) (arr s t)).

Notice that unsat_t entails unsat, so the results previously proved, still hold
with this axiom.

17

The first important property we need to prove is that substitution preserves
types of terms:

Lemma subst_preserves_types : (E:Var->tm)(N,M:tm)(subst N E M) ->

(s,t:ty)(type (lam E) (arr s t)) -> (type N s) -> (type M t).

This can be proved by induction on the derivation of (subst N E M), using
unsat_t for introducing fresh names with the right types and the following
lemma of type invariance under replacement of free variables:

Lemma type_invar : (M:Var->tm)(s,t:ty)

(x:Var)((typevar x)=s) -> (type (M x) t) ->

(y:Var)((typevar y)=s) -> (type (M y) t).

This lemma states a property of contexts, so it is natural to proceed “by higher-
order induction on M”. Indeed, using the higher-order induction principle
tm_ind1, the lemma type_invar can be proved straightforwardly. Then, all
subject reductions properties are simple consequences of subst_preserves_types:

Lemma SR_eval : (M,V:tm)(eval M V)->(s:ty)(type M s)->(type V s).

Induction 1; Clear H V M; Intros; Try Assumption.

Inversion_clear H4; Apply H3.

Apply subst_preserves_types with s:=s0 1:=H1; Auto.

Qed.

Lemma SR_red : (M,N:tm)(red M N)->(s:ty)(type M s)->(type N s).

Lemma SR_trred : (M,N:tm)(trred M N) -> (s:ty)(type M s) -> (type N s).

The proofs of the latter properties are similar to former’s.

5 Related work

The case study presented in this paper should be compared with similar de-
velopments on the λ-calculus in HOAS. Due to the lack of space, here we
can discuss briefly only some of them. Despeyroux et al. in [7] adopted an
approach similar to ours for reasoning on the (call-by-value) λ-calculus. The
main difference is that variables are represented by an inductive set (such as
nat). This allows to avoid to assume the properties of the Theory of Contexts
as axioms, but at the price to cope with exotic terms. These are ruled out by
means of a well-formedness predicate valid ; all arguments are then carried out
on terms which are extensionally equivalent to some valid term. Since CIC
is not extensional, this equivalence has to be embedded into valid explicitly.
Dealing with well-formedness predicats introduces a substantial overhead with
respect to informal proofs, although it is conceivable that much can be au-
tomatized by means of ad hoc tactics. The Coq code of [7] (covering syntax,
substitution, big-steps semantics, typing system and proof of subject reduc-
tion) is 500 lines long; the same theory, developed in the Theory of Contexts,
takes less than 300 lines.

18

On the other hand, Röckl et al. proved recently that the Theory of Con-
texts (for the π-calculus) can be derived from well-formedness predicates in
Isabelle [27]. In some sense, therefore, the Theory of Contexts can be seen as a
core set of basic properties capturing the essence of what a context is, without
assuming unnecessary assumptions. Further case studies like the present one
are needed, in order to verify the expressive power of this approach.

In [26], Pitts introduced the Nominal Logic, a first-order logic specifically
designed for reasoning on syntax involving variable bindings. The axioms of
Nominal Logic express the key properties of the FM-model of syntax intro-
duced in [11]. The main idea is to express and deal only with properties whose
validity is invariant under swapping of bindable names. It is interesting to see
that many principles are common to Nominal Logic and the Theory of Con-
texts (e.g., unsaturability of names, “structural induction modulo α”, . . .).
The exact connection between the two theories is still to be investigated.

As already pointed out, most nowadays proof editors, and in particular all
those based on type theory, lack of induction on higher order types. The prob-
lem of combining HOAS and induction, avoiding the arising of exotic terms,
has been addressed radically in [9, 8], where modal λ-calculi are proposed as
metalanguages in place of usual type theories. In fact, this approach is best
seen as a step towards a brand new generation of proof assistants, rather than
a way for dealing with HOAS in nowadays proof editors, as the Theory of
Contexts is intended to be.

In all these approaches, we reason on objects of the metalogic (CIC,
HOL,. . .), in the metalogic itself. A different perspective is to add explicitly an
extra logical level for reasoning over metalogics. One of these meta-metalogic
is FOλ∆N [19], a higher-order intuitionistic logic extended with definitions and
higher order quantification over simply typed λ-terms. Induction on types is
recovered from induction on natural numbers via appropriate notions of mea-
sure. Differently from the approach adopted in this work and in [7], in FOλ∆N

it is possible to delegate even the substitution to the metalanguage. FOλ∆N

has been successfully used to reason with typing and evaluation judgements
for the call-by-name λ-calculus, among other case studies. However, FOλ∆N

is more in the streamline of logic programming: it does not support a notion
of “proof object”, nor the typical judgements-as-types paradigm. Actually,
all the properties on λcbn proved in [19] have been proved also in the present
work using the Theory of Contexts and simple (i.e., structural) induction over
proofs. Due to its logic programming flavour, FOλ∆N seems more suited for
a complete automatization, i.e. the implementation of a theorem prover.

A similar attitude, but with different aims, is behind Schürmann’sM2 [25],
which is a constructive first-order logic based on the Edinburgh LF. At the
meta-metalevel, M2 offers higher-order induction and recursion for reasoning
over (possibly open) objects of a LF encoding. M2 is aimed to a complete au-
tomatization (it is implemented in the theorem prover Twelf), hence it is diffi-
cult to compare with interactive approaches like the ones previously discussed.

19

6 Conclusions

In this paper we have presented a non trivial case study of the (meta)theory
of λcbn using the Theory of Contexts in the Coq proof environment. This
approach allowed for a smooth treatment of the syntax up-to α-conversion,
substitution, small-step and big-step semantics and typing system of λcbn. We
have formally proved several metatheoretical properties such as functionality
of substitution, determinism of big-step semantics, equivalence of big-step
and small-step semantics, subject reductions for both semantics, equivalence
of applicative bisimulation and observational equivalence, etc.

In our opinion, the case study has been successful. The logical overhead
which is required to the user is acceptable, since the encodings are straigth-
forward and the user can directly transpose his/her intuition and hand-made
proofs about contexts in the proof editor. This case study has pointed out
also some weak points of the Theory of Contexts in the Coq system, in par-
ticular in connection with higher-order inversion principles. We have shown,
by means of an example, how suitable inversion principles over higher-order
types can be stated and derived.

Although in this work we have focused on the Coq system, all arguments
should be applicable to any other proof assistant based on inductive type
theories close to CIC, such as LEGO or Plastic. On the other hand, the
Theory of Contexts is inconsistent with the Axiom of Unique Choice (AC!)
[14]. In particular, this means that the approach we have adopted in this paper
cannot be adopted in Isabelle/HOL because the Description Axiom entailes
AC!. For a comparison of formalizations of languages with variable bindings
in Isabelle, see [21]. Nevertheless, it is still possible to use the Theory of
Contexts within classical HOL; see [15, 4] for an example metalanguage with
full classical higher-order logic, and the proof of its consistency.

Future work.

The present development of the metatheory of λcbn can be extended in
many directions. A possible future work could be the generalization of the
inversion algorithms presented in [6] to suitable higher-order types. From a
practical point of view, this would be particularly useful.

On the theoretical side, at least two interesting issues has arisen. The first
is that we have not needed the whole Theory of Contexts, since the axiom
of β-expansion has not been introduced. This seems to point out that the
properties of λcbn we dealt with do not rely on such kind of property. The
second issue is that, due to soundness constraints imposed by CIC, in order
to prove totality of substitution we introduced higher-order recursion with
dependent types. Known models of the Theory of Contexts validate plain
higher-order recursion; it is an open question if these models can be extended
to dependent type theory.

20

References

[1] Abramsky, S. and C.-H. L. Ong, Full abstraction in the lazy lambda calculus,
Information and Computation 105 (1993), pp. 159–267.

[2] Avron, A., F. Honsell, I. A. Mason and R. Pollack, Using Typed Lambda
Calculus to implement formal systems on a machine, Journal of Automated
Reasoning 9 (1992), pp. 309–354.

[3] Barendregt, H., “The lambda calculus: its syntax and its semantics,” Studies
in Logic and the Foundations of Mathematics, North-Holland, 1984.

[4] Bucalo, A., M. Hofmann, F. Honsell, M. Miculan and I. Scagnetto, Consistency
of the theory of contexts (2001), submitted.

[5] Coquand, T., Metamathematical investigations of a calculus of constructions, ,
31, Academic Press, 1990 pp. 91–122.

[6] Cornes, C. and D. Terrasse, Automating inversion of inductive predicates in
coq, in: S. Berardi and M. Coppo, editors, Proc. of TYPES’95, number 1158 in
Lecture Notes in Computer Science (1995), pp. 85–104.

[7] Despeyroux, J., A. Felty and A. Hirschowitz, Higher-order syntax in Coq, in:
Proc. of TLCA’95, Lecture Notes in Computer Science 905 (1995), also appears
as INRIA research report RR-2556, April 1995.

[8] Despeyroux, J. and P. Leleu, Primitive recursion for higher-order abstract
syntax with dependant types, in: FLoC’99 IMLA workshop, Trento, Italy, 1999.

[9] Despeyroux, J., F. Pfenning and C. Schürmann, Primitive recursion for higher
order abstract syntax, Technical Report CMU-CS-96-172, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213 (1996).

[10] Fiore, M. P., G. D. Plotkin and D. Turi, Abstract syntax and variable binding,
in: Longo [18], pp. 193–202.

[11] Gabbay, M. J. and A. M. Pitts, A new approach to abstract syntax with variable
binding, Formal Aspects of Computing ? (2001), pp. ?–?, special issue in honour
of Rod Burstall. To appear.

[12] Gordon, A. and T. Melham, Five axioms of alpha-conversion, in: Proc. of
TPHOL’96, number 1152 in Lecture Notes in Computer Science, 1996, pp.
173–190.

[13] Harper, R., F. Honsell and G. Plotkin, A framework for defining logics, Journal
of the ACM 40 (1993), pp. 143–184.

[14] Hofmann, M., Semantical analysis of higher-order abstract syntax, in: Longo
[18], pp. 204–213.

[15] Honsell, F., M. Miculan and I. Scagnetto,
An axiomatic approach to metareasoning on systems in higher-order abstract
syntax, in: Proc. ICALP’01, number 2076 in LNCS (2001), pp. 963–978, also
available at http://www.dimi.uniud.it/~miculan/Papers/.

21

[16] Honsell, F., M. Miculan and I. Scagnetto, π-calculus in (co)inductive type
theory, Theoretical Computer Science 253 (2001), pp. 239–285, first appeared
as a talk at TYPES’98 annual workshop.

[17] INRIA, “The Coq Proof Assistant,” (2000),
http://coq.inria.fr/doc/main.html .

[18] Longo, G., editor, “Proceedings, Fourteenth Annual IEEE Symposium on Logic
in Computer Science,” The Institute of Electrical and Electronics Engineers,
Inc., IEEE Computer Society Press, Trento, Italy, 1999.

[19] McDowell, R. and D. Miller, Reasoning with higher-order abstract syntax in
a logical framework, ACM Transactions on Computational Logic (2001), to
appear.

[20] Miculan, M., “Encoding Logical Theories of Programs,” Ph.D. thesis,
Dipartimento di Informatica, Università di Pisa, Italy (1997).

[21] Momigliano, A., S. Ambler and R. Crole, A comparison of formalizations of the
meta-theory of a language with variable bindings in Isabelle, Technical Report
2001/07, University of Leicester (2001).

[22] Paulin-Mohring, C., Inductive definitions in the system Coq; rules and
properties, in: M. Bezem and J. F. Groote, editors, Proc. of Conference on
Typed Lambda Calculi and Applications, Lecture Notes in Computer Science
664 (1993), pp. 328–345.

[23] Pfenning, F., The practice of Logical Frameworks, in: Proc. CAAP’96, number
1059 in Lecture Notes in Computer Science (1996), pp. 119–134.

[24] Pfenning, F. and C. Elliott, Higher-order abstract syntax, in: Proc. of ACM
SIGPLAN ’88 Symposium on Language Design and Implementation, The
Association for Computing Machinery, Atlanta, Georgia, 1988, pp. 199–208.

[25] Pfenning, F. and C. Schürmann, System description: Twelf — A meta-logical
framework for deductive systems, in: H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-16), number
1632 in LNAI (1999), pp. 202–206.
URL citeseer.nj.nec.com/pfenning99system.html

[26] Pitts, A., A first-order theory of names and binding, in: S. Ambler, R. Crole and
A. Momigliano, editors, Proc. MERLIN’01, Technical Report 2001/26 (2001),
pp. 1–13.

[27] Röckl, C., D. Hirschkoff and S. Berghofer, Higher-order abstract syntax with
induction in Isabelle/HOL: Formalising the π-calculus and mechanizing the
theory of contexts, in: F. Honsell and M. Miculan, editors, Proc. FOSSACS
2001, number 2030 in LNCS (2001), pp. 359–373.

22

citeseer.nj.nec.com/pfenning99system.html�

