Electronic Notes in Theoretical Computer Science 58 No. 1 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume58.html| 22 pages

Developing (Meta)Theory of A-calculus
in the Theory of Contexts'

Marino Miculan

Dipartimento di Matematica e Informatica, Universita di Udine, Italy
mailto: miculan@dimi. uniud. 1t

Abstract

We present a case study on the formal development of a non trivial (meta)theory in
the Theory of Contexts using the Coq proof assistant. The methodology underlying
the Theory of Contexts for reasoning on systems presented in HOAS is based on
an ariomatic syntactic standpoint. We feel that one of the main advantages of this
approach, is that it requires a very low logical overhead.

The object system we focus on is the lazy, call-by-name A\-calculus (Aepyn), both
untyped and simply typed. We will see that the formal, fully detailed development
of the theory of Acpn in the Theory of Contexts introduces a small, sustainable
overhead with respect to the proofs “on the paper”. Moreover, this will allow for
comparison with similar case studies developed in other approaches to the metathe-
oretical reasoning in higher-order abstract syntax.

Keywords: higher-order abstract syntax, induction, logical frameworks.

Introduction

In recent years there has been growing interest in developing systems for defin-
ing and reasoning on languages featuring a-conversion. A promising line of
approach has focused on Higher-Order Abstract Syntax (HOAS) [13,24]. The
gyst of this approach is to delegate to type-theoretic metalanguages the burden
of dealing with binders. This approach however has some drawbacks. First of
all, being equated to metalanguage variables, object level variables cannot be
defined inductively without introducing exotic terms [7,20]. A similar diffi-
culty arises with contexts, which are rendered as functional terms. Reasoning
by induction and definition by recursion on object level terms is therefore
problematic. Various approaches have been proposed to overcome these prob-
lems based on different techniques such as functor categories, permutation
models of ZF, etc. [9,[10,14,11],19].

I Work partially supported by Italian MURST project Tosca and EC-WG TYPES.
(©2001 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume58.html�
mailto:miculan@dimi.uniud.it�

In [15] another logical framework for reasoning on systems in HOAS is
presented, based on an azriomatic syntactic standpoint. This system stems
from the technique originally used in [16] for formally deriving in Coq [17]
the metatheory of strong late bisimilarity of the m-calculus. This framework
consists of a simple types theory a la Church extended with a set of axioms
called the Theory of Contexts, recursion operators and induction principles.
According to our experience, this framework is rather expressive. Higher Or-
der Logic allows for the impredicative definition of many relations, possibly
functional, the recursors and induction principles allow for the definition of
many important functions and properties over contexts, and most notably the
axioms in the Theory of Contexts allow for a smooth handling of schemata in
HOAS. In fact, we feel that one of the main advantages of the axiomatic ap-
proach of the Theory of Contexts, is that it requires a very low mathematical
and logical overhead.

Of course there are some tradeoffs. One of the major theoretical problems
concerning any axiomatic approach is the consistency of the axioms. In fact,
it is possible to prove that the Theory of Context is sound. We refer the reader
to [4], where a full proof of consistency of the Theory of Contexts is given,
using a model of functor categories along the line of [14].

From a practical point of view, however, the applicability of this approach
has to be tested by means of several cases studies. These are particularly useful
for discussing pragmatic issues which arise in developing real proofs in the
Theory of Contexts, addressing possible solutions and suggesting directions
for future developments. This is precisely the aim of this paper, where we
develop a non trivial (meta)theory of the lazy, call-by-name \-calculus (Aepn),
both untyped and simply typed, in the Theory of Contexts within the Coq
proof assistant. We choose A\, as the object of this case study for several
reasons. First, it is a well-known logic, so much that most works about \-
calculus skim quickly standard definitions and basic proofs, sweeping many
details under the rug. We will see that the formal, fully detailed development
of the theory of A\, in the Theory of Contexts introduces a small, sustainable
overhead with respect to the proofs “on the paper”. Moreover, A.,, owns some
features (as substitution of terms for variables, typing system,...) which are
somewhat complementary to those of m-calculus, which has been the object of
another large case study in the Theory of Context [16]. Finally, some variant
of the A-calculus has been always taken as the traditional benchmark/example
of application of the many approaches to HOAS in the literature; see [13,22,[7,
19,14,11,12] among the others.

It turns out that Theory of Contexts is quite successful in handling the
metatheory of A\.,,. The encoding of the syntax, the semantics and the type
system is straightforward, and still we delegate the a-conversion to the met-
alevel. Only the encoding of substitution is not immediate, since we need
to represent it as a relation. However, this will allow us to state and prove
some fundamental results (i.e., functionality of substitution) which usually are

2

taken for granted in informal works on the A-calculus. Moreover, these proofs
cast some light on the limits, and suggest possible solutions, of the Theory of
Contexts in Coq.

The Coq code is available at http://www.dimi.uniud.it/ “miculan/HOAS/.

Synopsis. In Section [1l we recall briefly (that is, as in most works is done)
the object system Aqn. In Section 2 we give a brief presentation of the type
theory CIC and its implementation Coq. The HOAS encoding of syntax and
semantics of A, and the formal development of its metatheory using the
Theory of Contexts, is described in Section [3. Practical issues which arise in
developing the proofs are discussed and, when possible, solutions are proposed.
In Section 4 we consider two extensions of the object system: applicative
bisimulation and observational equivalence, and a simple type system for Acp,.
Comparison with related work and conclusions are in Sections 5, 6 respectively.

1 The object system A¢pn

In this section we give an intentionally brief (and somewhat sloppy) definition
of the lazy call-by-name A-calculus Acpy, as it is usually given in most papers.
This will allow us to enlighten, in the following sections, how the formal rep-
resentation of the theory does not introduce a substantial overhead despite
the high level of detail required. We assume the reader familiar with the basic
notions of A-calculus; for an introduction and a comprehensive development
of the theory of the A-calculus, see [3].
The set A of terms of A\, is defined by the following grammar:

M,N =z |(MN) | Xx.M

where z,vy, z,... range over an infinite set of variables. Terms are taken up-
to a-equivalence. We denote by M[N/xz] the capture-avoiding substitution
of N for z in M. Contexts, i.e. terms with holes, are denoted by M(-). A
term is said to be a walue if it is not an application. The notion of “free
variables” (F'V') is defined as usual. For X a finite set of variables, we define
Ax 2{M € A| FV(M) C X}. By A° we denote Ag.

We consider two lazy operational semantics. The reduction (or small-step
semantics) is the smallest relation M — N defined by the following rules

M — M’
(AM.M) N— M[N/z] (M N)— (M'N)

We denote by —* the reflexive and transitive closure of —.
The evaluation (or big-step semantics) is the smallest relation M || N
defined by the following rules:

My Xe. M M'N/z| |V
Ax. M || Ax.M MN |V

http://www.dimi.uniud.it/~miculan/HOAS/�

2 The Calculus of Inductive Constructions

The Calculus of Inductive Constructions is an extension of the Calculus of
Constructions (CC), which can be defined as the PTS AC' of Barendregt’s \-
cube, with two sorts, Prop and Set. Under the proposition-as-types, proofs-as-
terms paradigm, there is an isomorphism between propositions of intuitionistic
higher-order logic and types of sort Prop. If A has type Prop then it represents
a logical proposition; the fact that A is inhabited by a term M represents the
fact that A holds. Each term M inhabiting A represents a proof of A. On
the other hand, the sort Set is supposed to be the type of datatypes, such as
naturals, lists, trees, booleans, etc. These types differ from those inhabiting
Prop for their constructive contents.

Therefore, CC, as many similar Type Theories, can be fruitfully used
as a general logic specification language, i.e. as a Logical Framework (LF)
[13,22,23]. In an LF, we can represent faithfully and uniformly all the rel-
evant concepts of the inferential process in a logical system (syntactic cate-
gories, terms, variables, contexts, assertions, axiom schemata, rule schemata,
instantiation, tactics, etc.).

The Calculus of Inductive Constructions (CIC) (implemented in the Coq
system [17]) extends CC with some special constants which represent the
definition, introduction and elimination of inductive types. For instance, the
following definition of natural numbers (written in Gallina, Coq’s specification
language)

Inductive nat : Set := 0 : nat | S : nat -> nat
allows to define terms by “case analysis”, like the following function:
Definition pred := [n:nat]Cases n of 0=>0 | (S u =>u end.

where [n:nat] is Gallina notation for abstraction An : nat. Using these elim-
ination schemata, Coq automatically states and proves the induction principle
for each inductively defined type. For instance, the above definition yields the
Peano induction principle “for free”:

nat_ind : (P:nat->Prop) (P 0) ->
((n:nat) (P n)->(P (S n))) —> (n:nat) (P n)

where (n:nat) is the notation for dependent product [, .. This feature has
been extensively used in the definition of logical connectives: we need only to
specify the introduction rules, and we can prove the elimination rules from
the elimination principle the system automatically provides us.

However, allowing for any inductive definition in CIC would yield non-
normalizing terms, thus invalidating the standard proof of consistency of the
system. Hence, inductive definitions are subject to the positivity condition,
which (roughly) requires that the type we are defining does not occur in neg-
ative position in the type of any argument of any constructor. This condition
ensures the soundness of the system, but it rules out also many sound inductive

4

definitions. For instance, the following definition of A-terms in higher-order
abstract syntax

Inductive L : Set := lam : (L->L) -> L | app : L -> L -> L.

is not well-formed, due to the negative occurrence of L in the type L->L of the
argument of lam.

Another problem arising from the use of higher order abstract syntax to-
gether with inductive types is that of exotic terms. These are A\-terms which
do not correspond to any object “on the paper”, despite their types corre-
spond to some syntactic category. Exotic terms are generated when a type
has a higher-order constructor over an inductive type. A simple example is
the following fragment of first-order logic:

Inductive i : Set zero : i | one : 1i.
Inductive o : Set := ff : o | eq : i->i->0 | forall : (i->o0)->o.
Definition weird : o := (forall [x:i](Cases x of
zero => ff
| one => (eq zero zero)
end)) .

The term weird does not correspond to any proposition of first order logic:
there is no formula V¢ such that ¢{0/z} and ¢{1/z} are syntactically equal to
“ff 7 and “0 = 07, respectively. Exotic terms are problematic in establishing
the faithfulness of the formalization; usually, they have to be ruled out by
means of auxiliary “validity” judgements [7,27]. Another approach, which
will be used in Section 3.1/ is to have the higher order constructors to range
over types which are not defined as inductive, so that there is no Cases to use
as above.

A common implementation of CIC is Coq, an interactive proof assistant
developed by the INRIA and other institutes. For a complete description, we
refer to [17]. Coq is an editor for interactively searching for an inhabitant of
a type, in a top-down fashion by applying tactics step-by-step, backtracking
if needed, and for verifying correctness of typing judgements. A proof search
starts by entering

Lemma ident : goal.

where goal is the type representing the proposition to prove. At this point,
Coq waits for commands from the user, in order to build the proof term
which inhabits goal (i.e., the proof). To this end, Coq offers a rich set of
tactics, e.g., introduction and application of assumptions, application of rules
and previously proved lemmata, elimination of inductive objects, inversion of
(co)inductive hypotheses and so on. These tactics allow the user to proceed
in his proof search much like he would do informally. At every step, the type
checking algorithm ensures the soundness of the proof. When the proof term
is completed, it can be saved (by the command Qed) for future applications.

3 Formalizing and reasoning on \.,, in CIC

3.1 Encoding the syntaz of Acpn
The HOAS representation of the syntax of A\, is the following:

Parameter Var : Set.
Inductive tm : Set := wvar : Var -> tm

| app : tm -> tm -> tm

| lam : (Var -> tm) —> tm.
Coercion var : Var >-> tm.

Declaring var as a coercion allows us to inject implicitly terms from type Var
into tm, so that in the following this constructor may be omitted from terms.

Remark 3.1 We do not define Var as an inductive set. In fact, this is not
required by the syntax of Ay, so there is no reason to bring in unnecessary
assumptions, i.e., the induction and recursion principles. Actually, these un-
wanted principles are not harmless, because they can be exploited for defining
exotic terms; hence, taking Var as inductive would be simply wrong.

Remark 3.2 Notice that lam is a higher-order constructor, that is it takes
a functional term as argument. In particular, terms of type Var->tm rep-
resent exactly the capture-avoiding contexts of the A-calculus. This tech-
nique allows to inherit the a-equivalence on terms from the metalanguage,
and still to have an inductive definition for terms. For instance, Az.(xx) and
Ay.(yy) are represented by (lam [x:Var] (app (var x) (var x))) and (lam
[y:Var] (app (var y) (var y))), respectively, which are the same term up-
to a-conversion. At the same time we can define functions by first-order re-
cursion or case analysis on the syntax of terms, like the following:

Definition isvalue := [M:tm]Cases M of
(var x) => False
| (lam t) => True

| (app t1 t2) => False
end.

The adequacy of this encoding is a consequence of [15, Theorem 1]. For
X ={xy,...,x,} a finite set of variables, let us define

[y = {x1:Var,...,xn:Var}U{dij: (xi =xj) |1 <i<j<n}
tmy 2 {M | Tx = M : tm, M in long Bn-normal form}.

Proposition 3.3 For all X finite set of variables, there is a bijection €ex

between Ax and tmyxy. Moreover, this bijection is compositional, in the sense
that if M € Ax . and N € Ax, then ex(M[N/z]) = ex.(M)[ex(N)/ (var z)].

As a corollary, a (capture-avoiding) context M(:) € Ay is naturally en-
coded as [z:Var]ex ,(M(z)), where the fresh variable z acts as a “placeholder”
for the hole. In fact, a bijection like in Proposition [3.3 can be established be-
tween contexts and terms of type Var->tm.

6

3.2 The Theory of Contexts for Ay,

Often, a HOAS encoding of an object system is not sufficient for handling the
metatheory of the system, that is to prove properties on the object system
itself. Since we aim to prove several results about A.,,, we need to introduce
the corresponding Theory of Contexts.

Given the signature of the syntax, the Theory of Contexts is composed
by two parts. The first contains the definitions of “occurrence” predicates.
These definitions are immediately derived from the signature of the language,
following the pattern in [16,15].

Inductive notin [x:Var] : tm -> Prop :=
notin_var : (y:Var) x=y->(notin x y)
| notin_app : (M,N:tm)(notin x M) -> (notin x N)
-> (notin x (app M N))
| notin_lam : (M:Var->tm) ((y:Var) “x=y->(notin x (M y)))
-> (notin x (lam M)).

Inductive isin [x:Var] : tm -> Prop :=
isin_var : (isin x x)
| isin_appl: (M,N:tm)(isin x M) -> (isin x (app M N))
| isin_app2: (M,N:tm)(isin x N) -> (isin x (app M N))
| isin_lam : (M:Var->tm) ((y:Var) (isin x (M y)))
-> (isin x (lam M)).

The only thing we need to know about names (variables), is that equality
over Var is decidable. However, we do not need a full blown classical logic: it
is sufficient to have a classical behaviour on the occurrence check predicates.

Axiom LEM_0C: (M:tm) (x:Var) (isin x M)\/(notin x M).

This implies the decidability of (eq Var).

The second part of the Theory of Contexts consist of a set of axiom
schemata, which reflect at the theory level some fundamental properties of
the intuitive notion of “context” and “occurrence” of variables. Their infor-
mal meaning is the following:

Unsaturability of variables: no term can contain all variables; i.e., there
exists always a variable which does not occur free in a given term;

Extensionality of contexts: two contexts are equal if they are equal on a
fresh variable; that is, if M (x) = N(x) and x &€ M(-), N(-), then M = N.

More formally, these are the axioms of the Theory of Contexts we need:
Axiom unsat : (M:tm) (Ex [x:Var] (notin x M)).
Axiom ext_tm : (M,N:Var->tm) (x:Var)

(notin x (lam M)) -> (notin x (lam N)) ->

M x)=(N x) -> M=N.
Axiom ext_tml : (M,N:Var->Var->tm) (x:Var)

7

(notin x (lam [z:Var](lam (M z)))) —>
(notin x (lam [z:Var](lam (M z)))) —>
(M x)=(N x) -> M=N.

The following are immediate consequences of the Theory of Contexts and
the induction principles over tm.

Lemma differ : (x:Var)(Ex [y:Var] x=y).
Lemma isin_notin_absurd : (x:Var) (M:tm) (isin x M)->(notin x M)->False.

Remark 3.4 In [I5] also another axiom schema, called [3-expansion, is pre-
sented. Informally, (-exp states that given a term M and a variable =,
there is a context N(-) such that N(z) = M and = does not occur in N(-).
This has been used several times in the development of the metatheory of
m-calculus [16]. On the other hand, it has not been needed in the present
work on Ag,,. A possible motivation is that here we are allowed for higher-
order induction, while in [16] we had to recover it from induction over plain,
first-order terms.

Another useful application of #-exp which we have not used in this work is
the representation of variable-capturing contexts in HOAS. In general, this is
difficult because bound variables are not accessible from “outside” the abstrac-
tion, not even their names. In the Theory of Contexts, a context C|-] capturing
x can be represented as a term of type (var->tm)->tm, and the instantiation
requires a (-expansion of the inserted term. For instance, Az.([-]) is repre-
sented as C’ = [N:(var->tm)] (lam [x:Var] (app (N x) (var x))). Con-
sider a term M with a free variable z which has to be captured: let M’(-)
the context obtained by [-expansion over z (i.e., such that M’'(x) = M and z
does not appear free in M’). Then, the variable-capturing instantiation C[M|
is rendered as (C’ M’).

Remark 3.5 As described in Section 2, Coq and similar systems provide
support for inductive types. However, this does not hold for higher-order types:
there is no induction principle over A->B, even if A and/or B are inductive.
This is because the intended meaning of A->B (usually, a function space) is not
an initial algebra. Thus, most proof editors give no induction principles, case
analysis, inversion predicates and similar tools for reasoning on terms of type
Var->tm, i.e., contexts. Nevertheless, it is possible to prove that types of the
form Var->...->Var->tm do have recursion and induction principles [14,4.[15].
Hence, beside the simple Axioms of the Theory of Contexts above, we can
safely assume higher-order induction and recursion principles as needed, like
the following induction over Var->tm:

Axiom tm_indl : (P:(Var->tm)->Prop)
(P var) ->
((y:Var) (P [_:Var](var y))) —->
((M,N:Var->tm) (P M)->(P N)->(P [x:Var](app (M x) (N x)))) ->
((M:Var->Var->tm)

((y:Var) (P [x:Var] (M x y)))->(P [x:Var](lam (M x))))
> (M:Var—>tm) (P M).

(notice how there are two base cases). In the following we may introduce also
others of these principles,

3.3 Formalizing the substitution

A drawback of using using a specific type for variables (a “weak HOAS” encod-
ing), is that we cannot delegate the substitution to the metalanguage. Instead,
we need to define it by hand, as a parametric relation between contexts and
terms:

Inductive subst [N:tm] : (Var->tm) -> tm -> Prop :=
subst_var : (subst N var N)

| subst_void : (y:Var)(subst N [_:Varly y)

| subst_app : (M1,M2:Var->tm)(M1’,M2’:tm)
(subst N M1 M1’) -> (subst N M2 M2’) ->
(subst N [y:Var](app (M1 y) (M2 y)) (app M1’ M2’))

| subst_lam : (M:Var->Var->tm)(M’:Var->tm)
((z:Var) (subst N [y:Var](M y z) (M’ z))) ->
(subst N [y:Var](lam (M y)) (lam M’)).

Thus, a term M’ is syntactically equal to the substitution M (z)[N/z| iff
(subst N M M’) holds. More formally:

Proposition 3.6 Let X be a finite set of variables and x a variable not in
X. Let NM'" € Ax and M € Axy(zy. Then:

M[N/z]| = M" <= T'x t _: (subst ex(N) [z:Varlexwp (M) ex(M'))

Capture-avoiding substitution is naturally defined as a function, but in
fact its definition is seldom given in full detail—and we made no exception in
Section 1. Actually, the definition which is usually intended is not determin-
istic a priori, since it requires an arbitrary a-conversion of bound variables of
the context in order to avoid capturing free variables in the substituted term.
More complex languages (e.g., dynamic logic, Hoare logic [20]) may require
nonstandard substitutions involving contrived notions of conversion, not sim-
ply a-conversion. Representing the substitution in CIC as a relation, in fact,
gives raise to the possibility that it may be not total, that is for some N, M
there is no M’ such that M’ = M[N/z]. The fact that such a definition does
give a functional (i.e., deterministic and total) relation is a property which we
are going to prove explicitly using the Theory of Contexts.

Determinism of substitution
The property we want to prove is the following:

Parameter N:tm.

Lemma subst_is_det: (M:Var->tm)(M1:tm)(subst N M M1) ->
(M2:tm) (subst N M M2) -> (M1 = M2).

We give two proofs of this property. The first goes by induction on the deriva-
tion of (subst N M M1). This gives rise to four cases:

N : tm subgoal 2 is:
M : var->tm (y)=M2
M2 : tm subgoal 3 is:
H : (subst N Var M2) (app M1’ M2’)=MO
subgoal 4 is:
N=M2 (lam M’)=M2

each of which should be dealt by inverting the hypothesis H (or corresponding).
Usually, such an inversion would eliminate automatically all absurd cases, but
this does not work when the terms which have to be discriminate are higher-
order. This is indeed the case, since the second argument of subst has type
Var->tm. The Inversion H tactic gives us four cases for the first goal, only
one of which is trivially true and the other are absurd:

subgoal 1 is: subgoal 2 is:

N : tm N : tm

M : Var->tm M : Var->tm

M2 : tm M2 : tm

H : (subst N var M2) H : (subst N var M2)

HO : var=var y : Var

H1 : N=M2 H1 : ([_:var](y))=var
HO : (y)=M2

M2=M2

N=(y)

Absurd cases are (tediously) eliminated by using the Theory of Contexts, in
particular the axiom of extensionality. The whole proof is 95 lines long, most
of which are dealing with the elimination of absurd cases.

Determinism of substitution, again

A much shorter proof can be obtained by proving a suitable higher-order
inwversion lemma for substitution. In Coq, inversion lemmata are automatically
synthesized and proved on-the-fly from recursion principles by the Inversion
tactic, using the algorithm originally implemented by Murthy with subsequent
elaboration by Cornes and Terrasse [6]. However, this algorithm fails to give
the right inversion predicate when the datatype, which we have to discriminate
over, is higher-order, because usual inductive type theories do not recognize a
higher-order type as inductive. Nevertheless, we know that types of the form
Var->tm do have recursion principles [14,4,[15]. Hence, we can consistently
introduce these principles (as Axioms) for the definition of the recursive map
needed in the inversion predicate:

Parameter subst_inv_fun : tm -> (Var->tm) -> tm -> Prop.
Axiom subst_inv_fun_var0O : (N,M:tm) (subst_inv_fun N var M)==(N=M).
Axiom subst_inv_fun_varl :

10

(y:Var) (B,N:tm) (subst_inv_fun N [_:Varly B)==((var y)=B).
Axiom subst_inv_fun_app : (A1l,A2:Var->tm) (B,N:tm)
(subst_inv_fun N [x:Var](app (A1l x) (A2 x)) B) ==
(EX B1 | (EX B2 | (app B1 B2)=B /\ (subst N A1 B1)
/\ (subst N A2 B2))).
Axiom subst_inv_fun_lam : (A:Var->Var->tm) (B,N:tm)
(subst_inv_fun N [x:Var](lam (A x)) B) ==
(EX A1 | (lam A1)=B /\ (y:Var)(subst N [x:Var](A x y) (Al y))).

Then, the higher-order inversion principle is “mechanically” claimed and
proved as follows:

Lemma subst_inv : (A:Var->tm) (B,N:tm) (subst N A B) -> (subst_inv_fun N A B).
Intros; Inversion_clear H.

Rewrite subst_inv_fun_var0O; Reflexivity.

Rewrite subst_inv_fun_varl; Reflexivity.

Rewrite subst_inv_fun_app; Exists M1’; Exists M2’; Auto.

Rewrite subst_inv_fun_lam; Exists M’; Auto.

Qed.

Using this inversion lemma, the proof of determinism of substitution is
much easier—in fact, we “lift” at the level of context the syntactic machinery
of inversion tactics that Coq provides at the level of terms:

Lemma subst_is_det’: (M:Var->tm) (M1:tm) (subst N M M1) ->

(M2:tm) (subst N M M2) -> (M1 = M2).
Induction 1; Intros.
Generalize (subst_inv ? ? 7 HO); Rewrite subst_inv_fun_varO; Trivial.
Generalize (subst_inv ? ? 7 HO); Rewrite subst_inv_fun_varl; Trivial.
Generalize (subst_inv ? 7 ? H4); Rewrite subst_inv_fun_app; Intros.
Inversion_clear H5; Inversion_clear H6; Inversion_clear H5; Inversion_clear HT.
Rewrite (H1 7 H5); Rewrite (H3 7 H8); Assumption.
Generalize (subst_inv ? ? 7 H2); Rewrite subst_inv_fun_lam; Intros.
Inversion_clear H3; Inversion_clear H4; Inversion_clear HS3.
Replace x with M’; Auto.
Elim (unsat (app (lam M’) (lam x))).
Intros; Inversion_clear H3.
Apply ext_tm with x0; Auto.
Qed.

As one can see, in this proof we used also the axioms of the Theory of
Contexts (unsat and ext_tm).

Totality of substitution
The proof of totality is tricky due to some peculiarities of CIC. The lemma
we want to prove is

Lemma subst_is_total : M:Var->tm)(EX M’ | (subst N M M’)).

Our intent is to prove this by higher-order induction over M. This fails in the
case of the lambda abstraction, which appears as follows:

11

N : tm

M : Var->tm

MO : Var->Var->tm

H: (y:Var) (EX M’:tm | (subst N [x:Var] (MO x y) M’))

(EX M’:tm | (subst N [x:Var](lam (MO x)) M’))

The suitable term should be obtained from the hypothesis H. However, Coq
does not allow us to eliminate a Proposition (like H) to build a term in a Set
(M’ in tm). Such “eliminations of strong >-types” may lead to inconsistencies,
and hence are ruled out by the type theory CIC [5].

The solution we adopt is to move the whole proof in the Set realm, and
then to lift the result to Prop. Therefore, we introduce a Set-typed version of
the induction principle—which, equivalently, can be seen as a recursor with
dependent types:

Axiom tm_recl : (P:(Var->tm)->Set)
(P var) ->
((y:Var) (P [_:Var](var y))) —->
((M,N:Var->tm) (P M)->(P N)->(P [x:Var](app (M x) (N x)))) ->
((M:Var->Var->tm)
((y:Var) (P [x:Var](M x y)))->(P [x:Var] (lam (M x))))
->
(M:Var->tm) (P M).

Then, we prove the totality in Set by higher-order dependent recursion:

Lemma sit: (N:tm)(M:Var->tm){M’:tm | (subst N M M’)}.
Intros; Pattern M; Apply tm_recl; Intros; Clear M.
Split with N; Apply subst_var.
Exists (var y); Apply subst_void.
(Inversion_clear H; Inversion_clear HO).
Split with (app x x0); Apply subst_app; Assumption.
Exists (lam [y:Var](projl_sig tm ? (H y))).
Apply subst_lam; Intros.
Apply proj2_sig.
Qed.
Notice that in the case of lambda, the required term is built by eliminating
(projecting) the >-type in the hypothesis H instantiated on a locally bound
(and hence, fresh) variable y.
Then, the totality theorem is just the extraction of the logical part from
the X-type (sit M):

Lemma subst_is_total : (M:Var->tm)(Ex [M’:tm] (subst N M M’)).
Intros. Exists (projl_sig 7 7 (sit M)).

Apply proj2_sig.
Qed.

12

Extracting the substitution function

Lemma sit can be seen as the specification of the substitution function.
We can make it explicit by extracting the first component of the X-type (sit
N M):

Lemma subst_f : tm—>(Var->tm)->tm.
Intros N M; Exact (projl_sig ? 7 (sit N M)).
Qed.

which, sweetened by a bit of syntactic sugar, takes the familiar form _[_], like
in the following “verification” and congruence properties:

Lemma subst_f_prop : (N:tm) (M:Var->tm) (subst N M M[N]).
Lemma subst_f_var : (N:tm) (var[N])=N.
Lemma subst_f_void : (N:tm) (y:Var) (([_:Var]y) [N])=y.
Lemma subst_f_app : (N:tm)(M1,M2:Var->tm)
(([x:Var] (app (M1 x) (M2 x))) [N])=(app M1[N] M2[N]).
Lemma subst_f_lam : (N:tm) (M:Var->Var->tm)
(([x:Var] (1am (M x))) [N]) = (lam ([y:Var] (([x:Var]M x y))[N1))).

An interesting property of substitution is composition: for M, N, P terms
and = # y, we have that (P[Q/y|)[M /x| = (P[M/x])[Q[M/z]/y]. The formal-
ization of this statement requires a context with 2 holes:

Lemma subst_f_comp : (M:tm) (Q:Var->tm) (P:Var->Var->tm)
(([x:Var] ((P x) [(Q x)1))M]) = ([ly:Var] ([x:Var] (P x y)) [M])[Q[M]]).

Beside using axioms ext_tm and —unsat—, the proof of this property goes
by structural induction over the structure of P; thus we need to assume the
corresponding induction principle on Var->Var->tm:

Axiom tm_ind2 : (P:(Var->Var->tm)->Prop)
(P [x,y:Varlx) ->
(P [x,y:Varly) ->
((z:Var) (P [_;_:Var](var z))) ->
((M,N:Var->Var->tm) (P M)->(P N)->(P [x,y:Var](app (M x y) (N x y)))) —>
((M:Var->Var->Var->tm)
((z:Var) (P [x,y:Var](M x y 2)))->(P [x,y:Var] (lam (M x y))))
->
(M:Var->Var->tm) (P M).

3.4 Formalizing the semantics of Acpn

The representation of both operational semantics is straightforward.

Inductive red : tm -> tm -> Prop :=
red_beta: (N:tm) (M:Var->tm)
(red (app (lam M) N) (subst_f N M))
| red_head: (M,N,M’:tm)
(red M M’) -> (red (app M N) (app M’ N)).

13

Inductive trred : tm -> tm -> Prop :=
| trred_ref : (M:tm) (trred M M)
| trred_trs : (M,N:tm)(red M N)->(P:tm) (trred N P)->(trred M P).
Inductive eval : tm -> tm -> Prop :=
eval_var : (x:Var)(eval x x)
| eval_lam : (M:Var->tm) (eval (lam M) (lam M))
| eval_app : (M,N,V:tm) (M’:Var->tm)
(eval M (lam M’)) -> (eval M’[N] V) ->
(eval (app M N) V).

Proposition 3.7 Let X be a finite set of variables; for all M, N € Ax, we
have:

(i) M — N < I'xF_:(red ex(M) ex(N))
(i) M —* N < DI'xF _:(trred ex(M) ex(N))
(i) My N <= DI'xF_:(eval ex(M) ex(N))

Most interesting properties of small-step and big-step semantics can be
proved without using the Theory of Contexts. These properties include the
progress lemma, determinism of semantics, equivalence of big-step and small-
step semantics:

Definition closed : tm -> Prop := [M:tm](x:Var) (notin x M).

Lemma progress : (M:tm)(closed M)->(isvalue M)\/(EX N | (red M N)).
Lemma red_is_det : (M,Vi:tm)(red M V1)->(V2:tm) (red M V2)->V1=V2.
Lemma eval_is_det : (M,V1i:tm)(eval M V1)->(V2:tm) (eval M V2)->V1=V2.
Lemma red_eval : (M,N:tm)(red M N)->(V:tm)(eval N V)->(eval M V).
Lemma trred_eval : (M,V:tm) (trred M V)->(isvalue V)->(eval M V).
Lemma eval_trred : (M,N:tm)(eval M N) -> (trred M N).

These properties are proved by simple induction on the syntax of M and the
derivation of (red M V1), (eval M V1), (red M N), (trred M V), (eval M N),
respectively.

4 Extending the (meta)theory

In this section we consider two extensions of the A.,,: applicative bisimulation
and observational equivalence, and a simple type system. This allows us to
test the modularity of the Theory of Contexts. It turns out that, while in
the first case the Theory of Contexts previously introduced works fine, in the
latter case we have to modify slightly the unsat axiom, in order