
Workshop MERLIN

Siena, 18 June 2001

Developing (Meta)Theory of λ-calculus
in the Theory of Contexts

Marino Miculan

Università di Udine, Italy

miculan@dimi.uniud.it

A common scenario

• represent formally (encode) syntax and semantics of an object language (e.g.,
λ-, π-calculus) in some logical framework for doing formal (meta)reasoning.

• derive some results interaction in a goal-directed manner, using tactics in some
general-purpose theorem prover/proof assistant

Problem: how to render binding operators (e.g, λ, ν) efficiently?

In interactive development,

efficiently ∼= “formal proofs should look like on paper”

Many approaches, with pros and cons: de Bruijn indexes, first-order abstract syntax,
higher-order abstract syntax . . . [HHP87,Hue94,DFH95,GM96,MM01,. . .].

They have to be tested on real case studies, in real proof assistants.

2

In this talk

We focus on

call-by-name λ-calculus in type-theory based proof assistants (viz., Coq),
using (weak) HOAS and the Theory of Contexts.

Why λ-calculus?

• complementary to π-calculus (higher-order binders, terms-for-variables substi-
tution, . . .) which has been already done [HMS01]

• well-known (meta)theory. Too well, maybe.

• customary benchmark for formal treatments of binders⇒ allows for comparison
with other approaches ([Momigliano et al. 2001] for a survey)

Claim: the formal, fully detailed development of the theory of λcbn in the Theory
of Contexts introduces a small, sustainable overhead with respect to the proofs “on
the paper”.

3

Outline of the talk

• Definition of λcbn “on the paper”

• Encoding of syntax and semantics of λcbn in HOAS

• Some formally proved results.

• Extending the language: type systems. More results.

• Discussion

• Related work

• Future work

4

A typical definition of λcbn in 1 slide

Syntax The set Λ is defined by Λ : M,N ::= x | (MN) | λx.M
where x, y, z, . . . range over an infinite set of variables. Terms are taken up-to
α-equivalence. We denote by M [N/x] the capture-avoiding substitution of N
for x in M . Free variables (FV) are defined as usual. For X a finite set of
variables, we define ΛX , {M ∈ Λ | FV (M) ⊆ X}.
Contexts, i.e. terms with holes, are denoted by M(·). A (closed) term is said
to be a value if it is not an application.

Small-step semantics (or reduction) is the smallest relation M −→ N defined by

(λx.M) N −→M [N/x]

M −→M ′

(M N) −→ (M ′ N)

We denote by −→∗ the reflexive and transitive closure of −→.

Big-step semantics (or evaluation) is the smallest relation M ⇓ N defined by

x ⇓ x λx.M ⇓ λx.M
M ⇓ λx.M ′ M ′[N/x] ⇓ V

M N ⇓ V

5

Formalizing the theory of λcbn

6

Encoding of the syntax

The general methodology: define a datatype for each syntactic class of the lan-
guage.

Two classes: variables and terms

Inductive tm : Set := var : Var -> tm
| app : tm -> tm -> tm
| lam : ...

What we put in place of ... and for Var depends on the approach we will follow:

• first-order

• higher-order

7

First-order approaches
deep embedding: write the encoding in the framework

First-order abstract syntax Var is an inductive set (e.g., nat)

λ lam : Var -> tm -> tm

λx.λy.(xy) lam x (lam y (app x y))

♠ Needs to implement and validate lots of machinery about α-equivalence,
substitution, . . .

de Bruijn indexes Var=1, the initial object

λ lam : tm -> tm

λx.λy.(xy) lam (lam (app 1 0))

♥ Good at α-equivalence

♠ Not immediate to understand and needs even more technical machinery for
capture-avoiding substitution than FOAS

We respect the rules of the game ⇒ Coq and Isabelle/HOL automatically provide
induction principles to reason over processes

8

Higher-order approaches

Shallow embedding: Change the rules, and write the encoding within the framework!

Full HOAS [HHP87] Var = tm

λ lam : (tm -> tm) -> tm

λx.λy.(xy) lam [x:tm](lam [y:tm](app x y))

♥ all aspects of variables management are delegated successfully to the met-
alanguage (α-conversion, capture-avoiding substitution, generation of fresh
names,. . .)

♠ incompatible with inductive types: the definition

Inductive tm : Set := app : tm -> tm -> tm

| lam : (tm -> tm) -> tm.

is not acceptable due to the negative occurrence of tm.

9

Higher-order approaches (cont.)
(Weak) Higher Order Abstract Syntax Var is not tm, and

λ lam : (Var -> tm) -> tm

λx.λy.(xy) lam [x:Var](lam [y:Var](app (var x) (var y)))

♥ it delegates successfully many aspects of names management to the metalan-
guage (α-conversion, capture-avoiding substitution of names/variables, gener-
ation of fresh names,. . .)

♥ compatible with inductive types ⇒ we can define functions and reason by case
analysis on the syntax

♠ if Var is defined as inductive then exotic terms (= not corresponding to any
real process of the object language) will arise!

? lam [x:nat](Cases x of 0 => x | _ => (app (var x) (var x)) end)

♠ metatheoretic analysis is difficult/impossible; e.g., structural induction over
higher-order terms (contexts, terms with holes) is not provided

The Theory of Contexts addresses these problems from an “axiomatic standpoint”.

10

Encoding the syntax: avoiding exotic terms
Exotic terms arise only when a binding constructor has an inductive type in negative
position (lam : (Var -> tm) -> tm).

Occam razor: Var is not required to be an inductive set

⇒ there is no reason to bring in induction/recursion principles and case analysis,
which can be exploited for defining exotic terms

⇒ leave Var as an “open” set. Just assume it has the needed properties.

Complete definition (properties on Var will come later on):

Parameter Var : Set.
Inductive tm : Set := var : Var -> tm

| app : tm -> tm -> tm
| lam : (Var -> tm) -> tm.

Coercion var : Var >-> tm.

Proposition 1 For all X finite set of variables, there is a bijection εX between ΛX

and canonical terms of type tm with free variables in X.

Moreover, this bijection is compositional, in the sense that if M ∈ ΛX,x and N ∈ ΛX,
then εX(M [N/x]) = εX,x(M)[εX(N)/(var x)].

11

Encoding of substitution

Substitution of terms for variables is no longer delegated to the metalevel.

It is represented as a (functional) relation, whose derivations are syntax-driven.

Inductive subst [N:tm] : (Var->tm) -> tm -> Prop :=
subst_var : (subst N var N)

| subst_void : (y:Var)(subst N [_:Var]y y)
| subst_App : (M1,M2:Var->tm)(M1’,M2’:tm)

(subst N M1 M1’) -> (subst N M2 M2’) ->
(subst N [y:var](app (M1 y) (M2 y)) (app M1’ M2’))

| subst_Lam : (M:Var->Var->tm)(M’:Var->tm)
((z:Var)(subst N [y:Var](M y z) (M’ z))) ->
(subst N [y:Var](lam (M y)) (lam M’)).

The judgement “(subst N M M’)” represents “M ′ = M [N]”:

Proposition 2 Let X be a finite set of variables and x a variable not in X. Let
N,M ′ ∈ ΛX and M ∈ ΛX]{x}. Then:

M [N/x] = M ′ ⇐⇒ ΓX ` : (subst εX(N) [x:Var]εX]{x}(M) εX(M ′))

12

Encoding of semantics

Straightforward. The only remark is about the use of the substitution judgement.

Inductive red : tm -> tm -> Prop :=
red_beta: (N,M’:tm)(M:Var->tm)

(subst N M M’) -> (red (app (lam M) N) M’)
| red_head: (M,N,M’:tm)(red M M’) -> (red (app M N) (app M’ N)).

Inductive trred : tm -> tm -> Prop :=
| trred_ref : (M:tm)(trred M M)
| trred_trs : (M,N:tm)(red M N)->(P:tm)(trred N P)->(trred M P).

Inductive eval : tm -> tm -> Prop :=
eval_var : (x:Var)(eval x x)

| eval_lam : (M:Var->tm)(eval (lam M) (lam M))
| eval_app : (M,M’’,N,V:tm)(M’:Var->tm)

(eval M (lam M’)) -> (subst N M’ M’’) ->
(eval M’’ V) -> (eval (app M N) V).

The encoding is adequate; e.g.:

Proposition 3 Let X be a finite set of variables; for all M,N ∈ ΛX, we have
M ⇓ N ⇐⇒ ΓX ` : (eval εX(M) εX(N)).

13

Formalization of the MetaTheory of λcbn

Following the methodology developed in [HMS98] and fully generalized in [HMS01]:

• Definition of occurrence predicates.
Driven by the signature of the object language.

• Axiomatization of the Theory of Contexts.
Parametric in the occurrence predicates.

• Development of theory (Have fun!)

14

Occurrence predicates

Inductive notin [x:Var] : tm -> Prop :=
notin_var : (y:Var)~x=y->(notin x y)

| notin_app : (M,N:tm)(notin x M) -> (notin x N) -> (notin x (app M N))
| notin_lam : (M:Var->tm)((y:Var)~x=y->(notin x (M y))) -> (notin x (lam M)).

Inductive isin [x:Var] : tm -> Prop :=
isin_var : (isin x x)

| isin_app1: (M,N:tm)(isin x M) -> (isin x (app M N))
| isin_app2: (M,N:tm)(isin x N) -> (isin x (app M N))
| isin_lam : (M:Var->tm)((y:Var)(isin x (M y))) -> (isin x (lam M)).

Roughly, “(isin x M)” means “x occurs free in M”.

Dually for (notin x M): “x does not occur free in M”.

15

The Theory of Contexts

A set of axiom schemata, which reflect at the theory level some fundamental
properties of the intuitive notion of “context” and “occurrence” of variables. Their
informal meaning is the following:

Decidability of occurrence: every variable either occurs or does not occur free in
a term (generalizes decidability of equality on Var). Unnecessary if we are in a
classical setting;

Unsaturability of variables: no term can contain all variables; i.e., there exists
always a variable which does not occur free in a given term; (cfr. axiom F4 in
Pitts’ nominal logic)

Extensionality of contexts: two contexts are equal if they are equal on a fresh
variable; that is, if M(x) = N(x) and x 6∈M(·), N(·), then M = N .

β-expansion: given a term M and a variable x, there is a context CM(·), obtained
by abstracting M over x

16

The Theory of Contexts for λcbn

What of the Theory of Contexts we need in the present development:

Axiom LEM_OC: (M:tm)(x:Var)(isin x M)\/(notin x M).

Axiom unsat : (M:tm)(Ex [x:Var](notin x M)).

Axiom ext_tm : (M,N:Var->tm)(x:Var)

(notin x (lam M)) -> (notin x (lam N)) ->

(M x)=(N x) -> M=N.

Axiom ext_tm1 : (M,N:Var->Var->tm)(x:Var)

(notin x (lam [z:Var](lam (M z)))) ->

(notin x (lam [z:Var](lam (M z)))) ->

(M x)=(N x) -> M=N.

Notice that we do not need β-expansion.

17

Scared by axioms? Axioms are our friends!

The axiomatic approach helps us to split the problem in two (quite orthogonal)
issues:

1. isolating a core set of fundamental properties of contexts, and to play with
them in order to check their expressivity and “efficiency”

2. proving the soundness of these properties, or even deriving them from more
basic (but possibly less natural) notions (like, e.g., in [Röckl et al., 2001])

Consistency of these axioms in Classical Higher Order Logic has been proved in
[BHHMS01], by building a model following Hofmann’s idea [Hof99]. The model is
a classical tripos in a category of covariant presheaves. . . but this is another story.

Moreover, this model justifies also recursion and induction principles over higher-
order types, which can be therefore safely assumed as needed

18

Induction over Var -> tm

(P λx:υ.(var x))
∀y : V ar.(P λx:υ.(var y))
∀M1:υ → Λ,M2:υ → Λ.(P M1) ∧ (P M2)⇒ (P λx:υ.(app (M1 x) (M2 x)))
∀M1 : υ → υ → Λ.(∀y:υ.(P λx:υ.(M1 x y)))⇒ (P λx:υ.(λ(M1 x)))
∀M :υ → Λ.(P M)

Axiom tm_ind1 : (P:(Var->tm)->Prop)
(P var) ->
((y:Var)(P [_:Var](var y))) ->
((M,N:Var->tm)(P M)->(P N)->(P [x:Var](app (M x) (N x)))) ->
((M:Var->Var->tm)

((y:Var)(P [x:Var](M x y)))->(P [x:Var](lam (M x))))
-> (M:Var->tm)(P M).

but for all n, a similar schemata over Varn->tm can be defined [HMS01b].

Similarly for recursions (recursors and equivalence (reduction) rules).

Compare it with “structural induction mod α” in Pitts’ nominal logic.

19

Some results formally proved in Coq

• subst is deterministic (easier with higher-order inversion)

• subst is total (higher-order recursion)

• generation lemma for terms

• generation lemma for contexts (higher-order induction)

• substitution preserves free variables

• evaluation preserves free variables

• determinism (confluence) of evaluation

• determinism (confluence) of reduction

• equivalence of evaluation and reduction

• . . .

20

Lemma subst_is_det: (M:Var->tm)(M1:tm)(subst N M M1) ->
(M2:tm)(subst N M M2) -> (M1 = M2).

Lemma sit: (N:tm)(M:Var->tm){M’:tm | (subst N M M’)}.
Lemma subst_is_total : (N:tm)(M:Var->tm)(EX M’ | (subst N M M’)).
Lemma subst_isin : (M:Var->tm)(N,M’:tm)(subst N M M’) -> (x:Var)(isin x M’) ->

(isin x N)\/(isin x (lam M)).
Lemma subst_notin : (M:Var->tm)(N,M’:tm)(subst N M M’) -> (x:Var)(notin x N) ->

(notin x (lam M)) -> (notin x M’).
Lemma closed_generation : (M:tm)(closed M)->(EX C | (EX L | M=(lapp C L))).
Lemma closedschema_generation : (M:Var->tm)(closed (lam M))->

(EX C:Var->tm | (EX L:Var->ltm | M=[x:Var](lapp (C x) (L x)))).
Lemma reducts_are_values : (M,N:tm)(eval M N)->(isvalue N).
Lemma values_do_not_reduce : (N:tm)(isvalue N)->(eval N N).
Lemma eval_is_det : (M,V1:tm)(eval M V1)->(V2:tm)(eval M V2)->V1=V2.
Lemma eval_isin : (M,N:tm)(eval M N) -> (x:Var)(isin x N) -> (isin x M).
Lemma eval_notin : (M,N:tm)(eval M N) -> (x:Var)(notin x M) -> (notin x N).
Lemma values_do_not_red : (V:tm)(isvalue V)->(M:tm)(red V M)->False.
Lemma red_is_det : (M,V1:tm)(red M V1)->(V2:tm)(red M V2)->V1=V2.
Lemma red_eval : (M,N:tm)(red M N)->(V:tm)(eval N V)->(eval M V).
Lemma trred_eval : (M,V:tm)(trred M V)->(isvalue V)->(eval M V).
Lemma eval_trred : (M,N:tm)(eval M N) -> (trred M N).

21

Functionality of substitution: some pragmatics

Parameter N:tm.
Lemma subst_is_det: (M:Var->tm)(M1:tm)

(subst N M M1) -> (M2:tm)(subst N M M2) -> M1=M2.

The proof goes by induction on the derivation of (subst N M M1).

This gives rise to four cases:

N : tm
M : var->tm
M2 : tm
H : (subst N var M2)
============================
N=M2

subgoal 2 is:
(y)=M2

subgoal 3 is:
(app M1’ M2’)=M0

subgoal 4 is:
(lam M’)=M2

For each case, inversion on H gives 4 subcases, 3 of which are absurd

22

subgoal 1 is:
N : tm
M : Var->tm
M2 : tm
H : (subst N var M2)
H0 : var=var
H1 : N=M2
============================
M2=M2

...

subgoal 2 is:
N : tm
M : Var->tm
M2 : tm
H : (subst N var M2)
y : Var
H1 : ([_:var](y))=var
H0 : (y)=M2
============================
N=(y)

The inversion algorithm fails to eliminate absurd cases because the terms to dis-
criminate on are higher-order. Absurd cases are (tediously) eliminated by using the
Theory of Contexts (in particular tm_ext) and plain (i.e., first order) recursion.

The whole proof is 95 lines long, most of which are for dealing with the elimination
of absurd cases.

Functionality of substitution: higher-order inversion
Higher-order inversion lemmata can be (mechanically) proved from higher-order
recursion principles (over Type).

Parameter subst_inv_fun : tm -> (Var->tm) -> tm -> Prop.
Axiom subst_inv_fun_var0 : (N,M:tm)(subst_inv_fun N var M)==(N=M).
Axiom subst_inv_fun_var1 :

(y:Var)(B,N:tm)(subst_inv_fun N [_:Var]y B)==((var y)=B).
Axiom subst_inv_fun_app : (A1,A2:Var->tm)(B,N:tm)

(subst_inv_fun N [x:Var](app (A1 x) (A2 x)) B) ==
(EX B1 | (EX B2 | (app B1 B2)=B /\ (subst N A1 B1)

/\ (subst N A2 B2))).
Axiom subst_inv_fun_lam : (A:Var->Var->tm)(B,N:tm)
(subst_inv_fun N [x:Var](lam (A x)) B) ==

(EX A1 | (lam A1)=B /\ (y:Var)(subst N [x:Var](A x y) (A1 y))).

Lemma subst_inv : (A:Var->tm)(B,N:tm)(subst N A B) -> (subst_inv_fun N A B).

The proof of the inversion lemma is an extension of the algorithm implemented in
Coq (Murthy and Cornes and Terrasse [CT96]).

Using higher-order inversion, the proof of subst_is_det is much easier (12 lines).

23

Extending the object language: typing system

We extend the object language with a theory of simple types. Common definition:
Types are defined by τ ::= u | τ → τ where u, v range over type variables.

Typing judgement: Γ ` M : τ , where Γ is the typing base, that is a finite set of
pairs x1 : τ1, . . . , xn : τn. The usual typing rules are the following:

(x : τ) ∈ Γ

Γ ` x : τ

Γ `M : σ → τ Γ ` N : σ

Γ ` (M N) : τ

Γ, x : σ `M : τ

Γ ` λx.M : σ → τ
x 6∈ dom(Γ)

The syntax of simple types is encoded trivially:

Parameter TVar : Set.
Inductive T : Set := tvar : TVar -> T | arr : T -> T -> T.
Coercion tvar : TVar >-> T.

24

Modularity of the Theory of Contexts
The introduction of a typing system has a bearing on the structure of Var.

• before: Var may be any set satisfying unsat axiom and decidability of equality

• now: we require that every free variable is given a type, by assuming that

– the existence of a type assignment: a map from variables to types

– every fresh variable introduced by unsat must be given a type

Parameter typevar : Var -> T.
Axiom unsat_t : (M:tm)(s:T)(EX x | (notin x M) /\ (typevar x)=s).

Then, the encoding of the typing system is straightforward:

Inductive type : tm -> T -> Prop := type_var : (x:Var)(type (var x) (typevar x))
| type_app : (M,N:tm)(s,t:T)

(type M (arr s t)) -> (type N s) -> (type (app M N) t)
| type_lam : (M:Var->tm)(s,t:T)

((x:Var)(typevar x)=s -> (type (M x) t))
-> (type (lam M) (arr s t)).

Since the locally assumed x is fresh, the assumption (typevar x)=s is safe

25

More results formally proved in Coq

• preservation of types under renaming of variables (higher-order induction)

• preservation of types under substitution

• subject reduction for evaluation

• subject reduction for reduction (small-step semantics)

Lemma type_invar : (M:Var->tm)(s,t:T)
(x:Var)((typevar x)=s) -> (type (M x) t) ->
(y:Var)((typevar y)=s) -> (type (M y) t).

Lemma subst_preserves_types : (E:Var->tm)(N,M:tm)(subst N E M) ->
Lemma Subject_Reduction_eval : (M,V:tm)(eval M V)->(s:T)(type M s)->(type V s).
Lemma Subject_Reduction_red : (M,N:tm)(red M N)->(s:T)(type M s)->(type N s).

26

Discussion

About the development

• Most of these proofs use built-in inductions (on plain terms and derivations),
and the axioms unsat, LEM_OC, ext_tm, ext_tm1

• Some proofs required higher order induction (induction over contexts)

• Totality of substitution: higher-order recursion (induction in Set)

• Powerful higher-order inversion principles can be derived from higher-order re-
cursion

• No proof has needed β-expansion — replaced by higher-order induction?

27

Discussion (cont.)

The Theory of Contexts turned out to be successful

♥ smooth handling of schemata in HOAS

♥ no need of well-formedness predicate for ruling out exotic terms

♥ low mathematical and logical overhead: “proofs looks (almost) like on the
paper”. Almost, because of the explicit handling of substitution.

Weak points:

• compatible with Classical HOL but not with the Axiom of Unique Choice (AC!)
⇒ not easily portable to metalogics containing AC!
⇒ weak expressive power at the level of functions (which can be nevertheless
recovered at the level of predicates)

• no automatization of inversion lemmata, yet

28

Related work

[Despeyroux, Felty, Hirschowitz 1995]: closest to ours, but Var=nat.

+ no need of axioms

− well-formedness predicate (valid); all arguments are then carried out on terms
which are extensionally equivalent to some valid term ⇒ substantial overhead.

E.g., for syntax, substitution, big-steps semantics, typing system and subject
reduction: 500 lines in [DFH95], vs < 300 lines within the Theory of Contexts.

[Momigliano, Ambler, Crole 2001] (good survey!): very similar theory and issues

• weak HOAS on an inductive set Var={x,y} ⇒ well-formedness predicates

• overhead mitigated by automatization (higher in Isabelle than in Coq)

• totality of substitution requires the description axiom, which entails AC!, which
is inconsistent with the Theory of Contexts [Hof99]

29

Related work: meta-meta-logics

In previous approaches: we reason on objects of the metalogic (CIC, HOL,. . .), in
the metalogic itself.

A different perspective: add an extra logical level for reasoning over metalogics.

FOλ∆N [McDowell, Miller, 1997]:

• a higher-order intuitionistic logic extended with definitions, for reasoning on
representations in simply typed λ-calculus

• it is possible to delegate the substitution to the metalanguage

• induction on types is recovered from induction on natural numbers via appro-
priate notions of measure

• it does not support a notion of “proof object” (and in the Theory of Contexts
many properties of λcbn are derived by plain structural induction over proofs)

30

Related work: meta-meta-logics

M2 [Pfenning and Schürmann, 2000]

• constructive first-order logic (based on ELF) for reasoning over (possibly open)
objects of a LF encoding

• supporting higher-order induction and recursion

• aimed to a complete automatization ⇒ difficult to compare with interactive
approaches

• implemented in the theorem prover Twelf

31

Work in progress

Abramsky’s applicative bisimulation

• neatly encoded as a coinductive predicate (like strong late bisimulation in π-
calculus)

CoInductive appsim : tm -> tm -> Prop :=
appsim_coind : (M,N:tm)

((M’:Var->tm)(eval M (lam M’)) ->
(EX N’ | (eval N (lam N’)) /\

(L,M’’,N’’:tm)(closed L) ->
(subst L M’ M’’) -> (subst L N’ N’’) ->
(appsim M’’ N’’)))

-> (appsim M N).

• equivalence between applicative bisimulation and observational equivalence: at
a good stage to its completion

32

Work in progress (2)

Equivalence between different notions of α-equivalence (Scagnetto):

• “Standard” (i.e., Barendregt’s book) definition:

x ≡α x
M ≡α M ′ N ≡α N ′

(MN) ≡α (M ′N ′) λx.M ≡α λy.M [y/x]
y 6∈ FV (M)

• Alternative (Gabbay and Pitts) definition:

x ∼α x
M ∼α M ′ N ∼α N ′

(MN) ∼α (M ′N ′)

(zx) ·M ∼α (zy) ·N
λx.M ∼α λy.N

z does not occur in M,N

where (zx) ·M swaps all occurrences of x by z.

• ≡α⊆∼α: done

• ∼α⊆≡α: in progress (difficulty: transitivity of ≡α, not trivial)

33

Other minor/work in progress case studies

First Order Logic full theory: validity judgement, substitution;
metatheory: functionality of substitution.

spi calculus full theory; metatheory: some algebraic laws

ν-calculus theory

λσ-calculus theory; some metatheoretic result

Ambient calculus language, congruence, logic, some result

Future work:

Higher-order inversion generalization of the Murthy-Cornes-Terrasse algorithm

34

