
Appeared in the Proceedings of the 10th LICS. 1

Modal µ-Types for Processes

Marino Miculan

Dipartimento di Informatica – Università di Udine

Via delle Scienze, 206 – I-33100 Udine – Italy

E-mail: miculan@dimi.uniud.it

Fabio Gadducci
∗

Dipartimento di Informatica – Università di Pisa

Corso Italia, 40 – I-56100 Pisa – Italy

E-mail: gadducci@di.unipi.it

Abstract

We introduce a new paradigm for concurrency, called
behaviours-as-types. In this paradigm, types are used
to convey information about the behaviour of pro-
cesses: while terms corresponds to processes, types
correspond to behaviours.

We apply this paradigm to Winskel’s Process Alge-
bra. Its types are similar to Kozen’s modal µ-calculus;
hence, they are called modal µ-types. We prove that
two terms having the same type denote two processes
which behave in the same way, that is, they are bisimi-
lar. We give a sound and complete compositional typ-
ing system for this language. Such a system naturally
recovers the notion of bisimulation also on open terms,
allowing us to deal with processes with undefined parts
in a compositional manner.

1 Introduction

In Computer Science, the notion of type is one of
the most important and fertile inheritances of Logics.
Since it has been introduced by Church for the simple
typed λ-calculus [9], the idea of typing has been ap-
plied to a variety of languages and formalisms. Types
are usually syntactic objects which can be assigned to
terms of the considered language, according to a given
set of rules (the typing system). If t is a term and a
type A is assigned to t, then we say that “t has type
A”, or “t inhabits A”, we denote this by “t : A”.

Types are intended to convey some information
about the terms. The kind of information varies a
lot from a system to another. One of the most com-
mon is about the way terms interface each other. For
instance, in the simply typed λ-calculus, t1 of type A
can be applied to t2 of type B only if A is “functional”,
that is, of the form B → C.

This interpretation of types has yielded the well-

∗Supported by the EEC Basic Research Action No.6454,
Confer.

known Curry-Howard isomorphism (the so-called pro-
positions-as-types paradigm). It states that formulæ
of the Intuitionistic Propositional Logic and their Nat-
ural Deduction proofs are isomorphic to types and
terms of the simply typed λ-calculus, respectively.
Proving the formula A is equivalent to write a pro-
gram which meets the specification A. Normalization
of proofs corresponds to evaluation of λ-terms.

Recently, a paradigm similar to Curry-Howard’s be-
tween Milner’s π-calculus and Girard’s Linear Logic
has been proposed [1, 8]. The fundamental idea of the
π-calculus is that of communication, or name passing,
among processes which evolve in a common environ-
ment. Communications take place through ports, and
only ports of matching types can be connected. One-
side sequents of Linear Logic provide such a typing:
a proof(-net) of the sequent ` A1, . . . , An corresponds
to a process with n ports whose types are A1, . . . , An.

The Cut rule `Γ,A `∆,A⊥

`Γ,∆ can be seen as the con-
nection of the plug of shape A of the left device to
the corresponding socket (of shape A⊥) of the right
device. The other ports become the ports of the re-
sulting device. Normalization of proofs corresponds to
message passing.

Such a paradigm sticks Curry-Howard’s isomor-
phism: all the terms having the same type denote
processes which interface in the same way with the en-
vironment. However, we do not know anything about
what the processes do: types say nothing about how
processes behave. This, indeed, is the topic of this
paper. We investigate the use of types in conveying
information about the behaviours of terms, instead of
their interfacing. Thus, while terms correspond to pro-
cesses, types correspond to behaviours. This paradigm
is hence called behaviours-as-types.

We present this paradigm directly on a given lan-
guage, following a general path of Logics and Type
Theory. We choose as object language the process al-
gebra due to Winskel, both for its expressive power
and its neat categorical interpretation in the category
of Labeled Transition Systems [16, 3] (Section 2).

Then, we define the “behavioural types” for this
algebra (Section 3.1). They turn to be very close to
the propositional modal µ-calculus; for this reason they
have been called modal µ-types. This is not so sur-
prising, because the modal µ-calculus, introduced by
Kozen as an extension of Dynamic Logic [12], seems to
be very suited for expressing properties of concurrent
systems [3, 4, 15].

However, the meaning of modal µ-types is not the
same of formulæof the modal µ-calculus: the meaning
of a type should be, roughly, a class of processes whose
behaviour is that described by the type. The model
for these types will be a category U, whose objects are
classes of “equally-behaving” LTS. That is, U has to
point out the relevant notion of “behaviour” we want
to represent by types.

Now, stating precisely a satisfactory notion of “be-
haviour” is very difficult, in general. It is easier, and
often sufficient, to be able to compare behaviours, that
is, to say when two terms will behave in the same way.
In non-concurrent systems, it is customary speaking
of operational equivalence; in concurrency, the notion
of “equivalent behaviour” is usually taken to be the
well-known bisimilarity [13]. Therefore, the construc-
tion of U is supposed to yield some link between the
notion of “having the same type” and that of “being
bisimilar”. In fact, it will be proved that two terms
are bisimilar if and only if they share a type. This re-
sult will be called behaviours-as-types principle,1 and
it will proved in Section 4.

While the objects of U are classes of bisimilar LTS,
morphisms turn out to be inclusions. This means that
the same behaviour can be described in several differ-
ent ways, more or less generally. Hence, morphisms
form a subtyping relation. This leads us to introduce
the syntactic judgment of subtyping, “A ≤ B”, beside
the typing judgment “t : A”.

Having defined the typing and subtyping judgments
and their meaning, our aim is now to develope a typ-
ing system. It will be a Natural-Deduction style proof
system for assigning types to terms starting from a
given set of hypotheses, that is, for proving sequents
of the form Γ ` t : A. For giving an interpretation to
these sequents, we need to introduce the logical conse-
quence Γ |= t : A (Section 3.2). The typing system will
be sound and complete with respect to |= (Section 5).
This means that, for instance, a proof of ∅ ` t : A guar-
antees that t has the behaviour A (in every context).
Such a system can be used, therefore, for verification
of terms, that is, concurrent systems.

1A principle is something we state and prove, like a theorem,
while a paradigm is a “meta-level” interpretation.

Moreover, the use of a Natural Deduction style sys-
tem allows us to extend naturally the notion of typing
to terms with free process names. According to the
behaviour-as-types paradigm, a context can be seen
as a declaration of “external modules”: the sequent
Γ ` t : A can be read “if, for each xi : Ai in Γ, we
are given a system xi whose behaviour is Ai, then t
has the behaviour A”. This holds because the system
enjoys a fundamental property of every “good” typing
system, that is, the substitution lemma (Section 6). It
states that names in the hypotheses have to be seen
as placeholders for more complex, but with the same
type, terms. As a consequence of this, the type system
is compositional. As pointed out in [4], composition-
ality is a desiderable property of verification systems
because it yields

– modularity: if we change part of a system we have
certified, only the verification of the changed part have
to be redone;

– abstraction: during the verification or the synthesis
of a system, we can have also undefined parts; all we
need is to assume their behaviour.

– process transformations: we can replace subparts of
a system with other equally-behaving modules. For
instance, optimizations rely on this feature;

– decomposition: the verification of a given term can
be reduced to the verification of smaller terms;

– reusability: a system which has been verified once,
can be reused in the synthesis or the verification of
larger systems. In this way we can build incremen-
tally a library of verified processes.

For these reasons, compositional proof systems for
verifying properties of concurrent systems are very im-
portant and studied in literature. We refer for such a
system for the modal µ-calculus (which has been of
some inspiration for this work) and for further refer-
ences to [4]. However, our approach is radically dif-
ferent, because in our interpretation the meaning of a
formula is not the usual set of closed terms which ver-
ify it. Indeed, the failure of the näıf subject reduction
theorem (Section 7) points out that the behaviours-as-
types paradigm is “orthogonal” to Curry-Howard-like
paradigms. The reason of this is in the different nature
of the information carried by types and formulæ: be-
haviours are not invariant under computations. This
point also out that “process computation” is not the
right “reduction notion” for behavioural types. In Sec-
tion 7 we outline a more suited Subject Reduction
Theorem, where the notion of reduction adopted is
that of normalization of process terms. This approach
is directly suggested by comparing the theory of be-
havioural types with that of typed λ-calculus.

2 Winskel’s Process Algebra

In this section we recall the process algebra due to
Winskel. The following definitions are from [16].

Definition 1 (Proc) Given a set of basic actions
Act, the set Proc of process terms is as follows:

t ::= nil | a.t | t0 + t1 | t0 × t1 | t�Λ | t{Ξ} | recx.t | x

where a ∈ Act, Λ ⊂ Act∗, x ranges over the set of
process names Nam, Ξ on the set of relabelings. We
require x to be guarded in recx.t. Let FN(t) denote the
set of free process names in t.

Each constructor of this algebra has a direct categor-
ical interpretation in the following category of labeled
transition systems (see [16]):

Definition 2 (T) A labeled transition system is a 4-
tuple 〈S, i, L, tran〉, where S is a set of states, with
initial state i; L is a set of labels; tran ⊆ S × L × S
is a transition relation. Let Tj = 〈Sj , ij , Lj , tranj〉,
where j = 1, 2, be two transition systems: a ts-mor-
phism (simply morphism) f : T1 → T2 is a pair 〈σ, λ〉
such that σ : S1 → S2 is a set morphism (preserving
initial object), λ : L1 → L2 is a partial set morphism
and together they satisfy

1. if (s, a, s′) ∈ trans1 and λ(a) is defined, then
(σ(s), λ(a), σ(s′)) ∈ Trans2;

2. if (s, a, s′) ∈ trans1 and λ(a) is undefined, then
σ(s) = σ(s′).

The category T has labeled transition systems as
objects, and ts-morphisms as arrows.

In the following we will consider just the subcategory
TR, such that its objects are finitely-branching LTS’s
where every state is reachable from the initial one. TR

has a very rich categorical structure: as an example,
it admits both binary products and coproducts, cor-
responding respectively to pairing and disjoint union
(with the merging of the initial objects, in the sec-
ond case). Moreover, classical constructions on tran-
sition systems such as renaming, restriction and fix-
point have a nice categorical interpretation: we refer
to [16] for more details. Here, we are just interested
in stressing that these constructions presents not only
an intuitive, set-theoretic definition, but they can ac-
tually be given in terms of (co)limits over TR: this
fact will play a crucial rôle when defining the notion
of interpretation for terms and types.

Since we are interested in modeling Proc for a given
set of actions, we will just consider a fibre of the cat-
egory of LTS’s, that’s to say, the subcategory such
that all its objects have the same set of label, and la-
bel morphisms always are the identities. Let us denote
L the fibre over the label set Act∗.

Definition 3 (Interpretation of process terms)
Let ρ : Nam → LO be a process assignment; then the
interpretation of the process term t on ρ is as follows:

[[nil]]ρ = nil [[t1 × t2]]ρ = [[t1]]ρ× [[t2]]ρ
[[x]]ρ = ρ(x) [[t1 + t2]]ρ = [[t1]]ρ + [[t2]]ρ
[[a.t]]ρ = a.[[t]]ρ [[t{Ξ}]]ρ = ([[t]]ρ){Ξ}
[[t�Λ]]ρ = ([[t]]ρ)�Λ [[recx.t]]ρ = µτ.[[t]](ρ[τ/x])

where nil denotes the LTS 〈{i}, i, Act∗, ∅〉.

The one state LTS nil is initial in L; the prefix oper-
ation a.T simply adds a new state i0 to T , makes it
initial and inserts an arc from i0 to the previous initial
state; the restriction operator �Λ deletes all the arcs
such that their label are not in Λ (and deletes also all
the nodes that are no more reachable); the fixpoint
operator µτ just “unfolds” a given T with respect to
the variable τ , producing an infinite LTS; and so on.
We refer the reader to [16] for further details.

Two interpretations can differ just for open terms.
On closed terms, any interpretation assigns to a pro-
cess the same LTS, providing a description of its “be-
haviour”. Usually, such a description is too inten-
sional, making different processes that intuitively be-
have in the same way. The standard way out of this
empasse is given by the notion of bisimilarity: a (max-
imal) equivalence over (usually closed) terms, equat-
ing those with the “same observational behaviour”.
We refer the reader to [13] for further details. Here we
simply recall some definitions and results from [16, 11],
showing how bisimilarity can be expressed in terms of
properties of the morphisms in L.

Definition 4 (Open map) A morphism σ : T → T1

in L is an open map iff for all the states s of T ,
if (σ(s), a, s′) ∈ tranT1

then exists u in T such that
(s, a, u) ∈ tranT and σ(u) = s′.

This is not the most general definition of open map
(see [11]), but it is proved to be equivalent as far as
we consider only a fibre of TR ([11, Proposition 1]).

Definition 5 (L-bisimilarity) Two transition sys-
tems T1, T2 in L are L-bisimilar if and only if there
exists a transition system T and a pair of open maps
from T to, respectively, T1 and T2.

L-bisimilarity is an equivalence relation. It is
clearly reflexive and symmetric. Transitivity follows
from the existence of pullbacks in the fibre TR. Given
three LTS’s Tj = 〈Sj , ij , Lj , tranj〉 for j = 1 . . . 3
and two open maps σj : Tj → T3, the associ-
ated pullback is the triple pb(σ1, σ2) = 〈T, π1, π2〉:
T = 〈S, (i1, i2), Act∗, tran〉, where S = {(s1, s2) |
σ1(s1) = σ2(s2)} and ((s1, s2), a, (s′1, s

′

2)) ∈ tran ⇐⇒
(s1, a, s′1) ∈ tran1 and (s2, a, s′2) ∈ tran2, while π1, π2

are the obvious projections.
Also pushouts exist in Lopen for any pair of coinitial

open maps. Given three LTS’s Tj = 〈Sj , ij , Lj , tranj〉
for j = 1 . . . 3 and two open maps σj : T3 → Tj , the as-
sociated pushout is the triple po(σ1, σ2) = 〈T, η1, η2〉,
T = 〈S, i, Act∗, tran〉, where
– S is the pushout of σ1 and σ2 in Set, that is, S =
(S1 + S2)/R where R is the least equivalence relation
containing the pairs {〈(1, σ1(s)), (2, σ2(s))〉 | s ∈ S3};
– tran = {〈[s], a, [s′]〉 | ∃s̄ ∈ [s], s̄′ ∈ [s′].(s̄, a, s̄′) ∈
tran1 ∪ tran2};
– ηi : Si → S are the obvious injections modulo R:
ηi(s) = [s].

Moreover, whenever there exists an open map from
T to T ′ then those two LTS’s are L-bisimilar, since
identity morphisms are always open maps. All this is
summed up in the next proposition, exactly relating
L-bisimilarity on transition systems and strong bisim-
ilarity over terms.

Proposition 1 ([11, Theorem 2]) Given two (not
necessarily closed) terms t1, t2, then they are strongly
bisimilar according to [13] iff for each interpretation ρ
then [[t1]]ρ and [[t2]]ρ are L-bisimilar.

3 Modal µ-Types

3.1 Syntax and Semantics

In this section we introduce the modal µ-types. They
are called so because they are close to the modal µ-
calculus [12]. Actually, this language is a subset of the
extended modal µ-calculus adopted in [4].

Definition 6 (MT) Given a set of basic actions Act,
the set MT of modal µ-types is as follows:

A ::= 0 | A1∨A2 | A1∧A2 | 〈a〉A | A�Λ | A{Ξ} | p | µp.A

where a ∈ Act, p ∈ TV (type variables). We require
p to be guarded in µp.A. Let FV(A) denote the set of
free type variables in A.

As remarked in the introduction, types are intended
to denote classes of processes which share the same

behaviour, where the notion of “same behaviour” is
intuitively described by bisimilarity. Hence, each type
has to be interpreted as an object of a suitable cate-
gory U, such that the arrows of U could be considered
as “bisimulation preserving” morphisms.

Definition 7 (Connected components) Let T be
an LTS. We define the connected component C(T) of
T as the set of objects of Lopen reachable from T . T
is called a generator of C(T).

Let C(Lopen) be the collection of connected compo-
nents of the objects of Lopen. Its elements are sets,
obviously ordered by set-inclusion: 〈C(Lopen),⊆〉 is a
partial order. Next proposition states that this order-
ing reflects the existence of suitable open maps.

Proposition 2 Let T1, T2 be LTS’s. Then C(T1) ⊆
C(T2) iff there exists an open map f : T2 → T1.

Since pushouts are defined in Lopen, next result easily
follows from the previous proposition.

Proposition 3 Let T1, T2 be bisimilar LTS’s. Then
there exist LTS’s Tg, Tl such that C(Tl) ⊆ C(Ti) and
C(Ti) ⊆ C(Tg) for i = 1, 2.

Note that, in general, for an element u of C(Lopen)
there could be more than one generator. Anyway, it
can be shown that these generators are isomorphic.

Proposition 4 Let T1, T2 be LTS’s. C(T1) = C(T2)
iff T1, T2 are isomorphic in Lopen.

It is well known that any given partial order 〈P,≤〉
induces a category: its objects are the elements of P ,
while the arrows are freely generated from the order-
ing relation. In the following, we denote with U the
category associated to the partial order 〈C(Lopen),⊆〉.

Definition 8 (Interpretation of modal µ-types)
Let ξ : TV → UO be a type assignment; the interpre-
tation of types on ξ is defined as follows:

[[0]]ξ = C(nil) [[〈a〉A]]ξ = C(a.γ([[A]]ξ))
[[p]]ξ = ξ(p) [[A�Λ]]ξ = C(γ([[A]]ξ)�Λ)
[[A1 ∧A2]]ξ = C(γ([[A1]]ξ)× γ([[A2]]ξ))
[[A1 ∨A2]]ξ = C(γ([[A1]]ξ) + γ([[A2]]ξ))
[[A{Ξ}]]ξ = C(γ([[A]]ξ){Ξ})
[[µp.A]]ξ = C(µT.γ([[A]]ξ[T/p]))

where γ associates to each object of U one of its gen-
erators.

The definition is well-given, since all the categorical
constructions involved are defined up-to-isomorphism:
the not-uniqueness of generators is then ininfluential.

3.2 The Theory of Types

In this section we develope further the theory of modal
µ-types types. We define two syntactic judgments:

the typing judgment, which is of the form “t : A”,
read “t has type A”; roughly, it means “t belongs to
the type A”, or better, t has the behaviour A. Thus,
this judgment investigates the inside of objects of U;

the subtyping judgment, which is of the form “A ≤
B”, read “A is a subtype of B”; roughly, it means “the
meaning of A is a subset of the meaning of B,” or
better, the behaviour B is a generalization of the be-
haviour A. Thus, this judgment investigates the mor-
phisms among objects of U.

As usual in Logics, the meaning of judgments is
given formally by Tarski’s satisfaction:

Definition 9 (Satisfaction) Let ξ ∈ TV → UO,
A, B ∈ MT, ρ ∈ Nam → LO, x ∈ Nam. We say
that
1. ξ satisfies A ≤ B (ξ |= A ≤ B) iff [[A]]ξ ⊆ [[B]]ξ;
2. ξ, ρ satisfy t : A (ξ, ρ |= t : A) iff [[t]]ρ ∈ [[A]]ξ.

If a judgment is satisfied by every assignment, then
it is said to be valid. Validity is the usual notion of
“theoremhood” of Logics, and it is usually adopted in
Hilbert style proof systems. However, since our aim is
to introduce a Natural Deduction style typing system
(Section 5), the fundamental notion is that of con-
sequence: which assertions follow from a given set of
hypotheses. (This is also one of the reasons for using
other styles of proof systems, such as Natural Deduc-
tion or Sequent Calculus; for a deeper discussion we
refer to [6, 10]). For defining the notion of logical con-
sequence, we need to introduce contexts:

Definition 10 (Ctxt) The set Ctxt of contexts is de-
fined as follows:

• ∅ ∈ Ctxt (the empty context);

• if Γ ∈ Ctxt, x ∈ Nam does not appear in Γ, and
A ∈ PT is a type, then Γ, x : A ∈ Ctxt;

• if Γ ∈ Ctxt, A ∈ MT, p ∈ TV does not appear
free in Γ, then Γ, p ≤ A ∈ Ctxt and Γ, A ≤ p ∈
Ctxt.

We will denote by DN(Γ) the set of process names
declared by Γ, by FN(Γ) the set of process names occur-
ring free2 in Γ, and by FV(Γ) the set of type variable
occurring free in the types in Γ.

2Notice that DN(Γ) ⊆ FN(Γ), because x is free in x : t.

Therefore, a context declares types of process vari-
ables and the “value” of type variables. Satisfaction
is straightforwardly extended to contexts:

Definition 11 Let ξ ∈ TV → UO, ρ ∈ Nam → LO,
Γ ∈ Ctxt. We say that ξ satisfies Γ (ξ |= Γ) iff for all
(A ≤ B) ∈ Γ : ξ |= A ≤ B, and ξ, ρ satisfy Γ (ξ, ρ |=
Γ) iff ξ |= Γ and for all (x : A) ∈ Γ : ξ, ρ |= x : A.

Finally, we formalize the notion of “logical conse-
quence” by defining the consequence relation between
contexts and judgments:

Definition 12 (|=) Let Γ ∈ Ctxt, A, B ∈ MT, t ∈
Proc. We say that

– A ≤ B is a consequence of Γ (Γ |= A ≤ B) if for all
ξ, if ξ |= Γ then ξ |= A ≤ B;

– t : A is a consequence of Γ (Γ |= t : A) if for all ξ, ρ,
if ξ, ρ |= Γ then ξ, ρ |= t : A.

That is, if we have an interpretation of variables and
names which satisfies the assumptions, then also the
consequence has to be satisfied. Hence, contexts could
be seen as constraints on type and term assignments.
This allow us to reason also on open process terms and
types. We will come back on this in Section 6.

Proposition 5 For Γ ∈ Ctxt, J a judgment:

1. if ∆ ⊃ Γ and Γ |= J then ∆ |= J ;

2. if Γ |= t : A and ∆ = {A′ ≤ B′ | (A′ ≤ B′) ∈
Γ} ∪ {(x : A′) ∈ Γ | x ∈ FN(t)} then ∆ |= t : A.

Obviously, each term has some behaviour (at least,
the behaviour of the corresponding LTS), hence it is
always typable in a proper context:

Proposition 6 (Typability) For t ∈ Proc, Γ ∈
Ctxt, if FN(t) ⊆ DN(Γ) then there is a type A such
that Γ |= t : A, and, for ξ, ρ such that ξ, ρ |= Γ:
[[A]]ξ = C([[t]]ρ).

We call such A the canonic type of t in the context Γ.
On the other hand, each object of U is generated

by some term, hence each type should be inhabited by
at least one term, in a proper context:

Proposition 7 (Type inhabitation) Let A ∈ MT,
Γ ∈ Ctxt such that for all p ∈ FV(A) there is (x : p) ∈
Γ. Then, there is a process t such that Γ |= t : A, and,
for ξ, ρ such that ξ, ρ |= Γ: [[A]]ξ = C([[t]]ρ).

We call such t the canonic term of A in the context Γ.
The following result follows from Proposition 2, and

states that ≤ is a subtyping relation:

Proposition 8 (Subtyping) If Γ |= t : A1 and Γ |=
A1 ≤ A2 then Γ |= t : A2

4 Behaviours-As-Types

In this section we state and prove the behaviours-as-
types principle.

Giving a general notion of “behaviour” is very dif-
ficult. It is much easier to compare behaviours. The
notion of “equivalent behaviour” usually adopted in
concurrency is Milner’s bisimilarity [13]. Hence, we
introduce a new syntactic judgment between terms,
“t1 ≈ t2” (read “t1 behaves as t2”), for comparing
term behaviours within contexts:

Definition 13 For t1, t2 ∈ Proc, Γ ∈ Ctxt, we say
that t1 ≈ t2 is a consequence of Γ (Γ |= t1 ≈ t2) iff for
all ξ, ρ, if ξ, ρ |= Γ then [[t1]]ρ ∼ [[t2]]ρ.

Notice that the meaning of ≈ is not defined by using
types or the category U; in fact, it can be seen as the
generalization of bisimulation to open terms.

The link between bisimulation and types is esta-
bilished by the “behaviours-as-types” principle. As
we have said before, types should be intended as de-
scriptions of the behaviour of their terms. Hence, two
terms which share at least one type, no matter which
one, behave in the same way. This is proved in the
following main theorem.

Theorem 1 (Behaviours-As-Types) Let Γ ∈
Ctxt, t1, t2 ∈ Proc. The following are equivalent:

1. exists A such that Γ |= t1 : A and Γ |= t2 : A

2. Γ |= t1 ≈ t2.

Proof. (Sketch) (1 ⇒ 2) If two LTS’s T1, T2 belong
to the same u in U, then there are two open maps
hi : γ(u) → Ti, i = 1, 2, and hence T1, T2 are bisimilar.

(2 ⇒ 1) For Proposition 6, let Ai be the canonic

type of ti, that is Γ |= ti : Ai. Define A
def
= ((A1 ×

A2)�∆){Ξ} where ∆ = {a × a | a ∈ Act∗, a 6= ∗}

and Ξ(b) =
{

a if b = a× a
b otherwise

. For Proposition 8, it is

sufficient to prove that Γ |= Ai ≤ A for i = 1, 2. We
prove it for i = 1, the other case being similar.

It is easy to see that the canonic term of A is t
def
=

((t1 × t2)�∆){Ξ}. Now, take ξ, ρ such that ξ, ρ |= Γ;
for canonicity, we need only to prove that there is a

open map f1 : T → T1, where Ti
def
= [[ti]]ρ and T

def
=

[[t]]ρ = ((T1×T2)�∆){Ξ}. Now, by definition states of
T are pairs (s1, s2) where si is a state of Ti. Define,
hence, f1((s1, s2)) = s1. Trivially this is a morphism;
we prove it is a open map, that is:

for all (s1, s2) reachable in T , if (s1, a, s′1) ∈
tranT1

then there is s′2 in T2 such that
((s1, s2), a, (s′1, s

′

2)) ∈ tranT .

Prod
t1 : A1 t2 : A2

t1 × t2 : A1 ∧A2
Rlb

t : A

t{Ξ} : A{Ξ}

Sum
t1 : A1 t2 : A2

t1 + t2 : A1 ∨A2
Sub

t : A A ≤ B

t : B

Rstr
t : A

t�Λ : A�Λ
Pref

t : A

a.t : 〈a〉A
Nil

nil : 0

Rec

(x : p)
t : A

recx.t : µp.A
x, p do not appear free in any

undischarged assumption

Figure 2: The Typing System TµK .

By definition of T , this is equivalent to prove that

for all (s1, s2) reachable in T , if (s1, a, s′1) ∈
tranT1

then there is s′2 in T2 such that
(s2, a, s′2) ∈ tranT2

.

This is easily proved by induction on the length of the
path which leads to (s1, s2), because T1 and T2 are
bisimilar by hypothesis. ut

Indeed, in Theorem 1 one can see the coinductive
nature of bisimulation. We need to find one type for
both t1 and t2, in order to state t1 ≈ t2, as well as
we need to find one bisimilarity relation R between t1
and t2 for stating t1 ∼ t2.

5 The Typing System

The relation |= is a purely semantic notion: it is de-
fined by means of the interpretation of terms and
types. Following the general path of Logics, in this sec-
tion we introduce a sound and complete proof system
for representing |= via syntactic objects, i.e. proofs.

The system is a Natural Deduction style typing sys-
tem composed by two parts:

• the system SµK (Fig.1) which derives the subtyp-
ing judgment “≤”, and

• the system TµK (Fig.2) which derives the typing
judgment “:”.

The following definition recalls the standard proof-
theoretic notion of natural deduction proof (see [14]):

Definition 14 (`) Let J be a typing or subtyping
judgment, and Γ ∈ Ctxt. A (natural deduction) proof
π of J from Γ (denoted by π : Γ ` J) is a finite tree
built and labeled according to the rules of TµK and
SµK , and such that the label of the root is J and those
of the leaves are in Γ.

A ≤ A Tran
A ≤ B B ≤ C

A ≤ C
Or

C ≤ A C ≤ B

C ≤ A ∨B
Cngr

A ≤ B

C [A/p] ≤ C [B/p]
no captured variable oc-

curs free in any assumption

µ-I

(p ≤ A)
A1 ≤ A2

µp.A1 ≤ µp.A2

(A ≤ p)
A1 ≤ A2

µp.A1 ≤ µp.A2

p does not occur free in any undischarged assump-

tion, and A1, A2 are unwindings of A on p

0 ? A = A (A ? B) ? C = A ? (B ? C) A ? B = B ? A ? ∈ {∨,∧}
µp.A = A [µp.A/p] (µp.A)�Λ = µp.(A�Λ)
Γ ` A�Λ = A if ActsΓ(A) ⊆ Λ A{Id} = A
Γ ` A{Ξ1} = A{Ξ2} if Ξ1�ActsΓ(A) = Ξ2�ActsΓ(A) (µp.A){Ξ} = µp.(A{Ξ})
(A1 ∨A2)�Λ = (A1�Λ) ∨ (A2�Λ) (A{Ξ1}){Ξ2} = A{Ξ1; Ξ2}
(A1�Λ1) ∧ (A2�Λ2) = (A1 ∧A2)�(Λ1 ×∗ Λ2) (A ∨B){Ξ} = A{Ξ} ∨B{Ξ}
(〈a〉A)�Λ = 〈a〉(A�Λ) if a ∈ Λ (A�Λ1)�Λ2 = A�(Λ1 ∩ Λ2)
(〈a〉A)�Λ = 0 if a 6∈ Λ (A{Ξ})�Λ = (A�(Ξ−1(Λ))){Ξ}
(A1 ∧A2){Ξ} = A1{Ξ1} ∧A2{Ξ2} if Ξ(a× b) = Ξ1(a)× Ξ2(b)

P ∧Q = (
∨

i (〈ai〉Pi){Ξi}) ∧ (
∨

j (〈bj〉Qj){Φj}) ≤

(
∨

i (〈ci〉(Pi{Ξi} ∧Q)){Ξ′i}) ∨
(

∨

j (〈dj〉(P ∧Qj{Φj})){Φ
′

j}
)

∨
(

∨

(i,j) (
〈

e(i,j)

〉

(Pi{Ξi} ∧Qj{Φj})){Ψ(i,j)}
)

where Φ′

j(c) =
{

∗ × Φj(bj) if c = dj

c otherwise
(analogously for Ξ′i); Ψ(i,j)(c) =

{

Ξi(ai)× Φj(bj) if c = e(i,j)

c otherwise
;

moreover, the ci, dj , e(i,j)’s are all different and neither appear in P nor in Q.

Figure 1: The Subtyping System SµK .

We say that J is derivable from Γ (Γ ` J) if there
is a proof π : Γ ` J .

Some explanations are in order. The equality (ac-
tually, congruence) symbol is a syntactic shorthand
for both directions of ≤. For instance, a proof of
Γ ` A = B means that both Γ ` A ≤ B and
Γ ` B ≤ A. However, it may be easier to think of
“=” as a real judgment.

In SµK , ActsΓ(A) denotes the set of possible actions
which can take place in the behaviour A, within the
context Γ. Its definition is the following:

ActsΓ(0) = ∅
ActsΓ(A ∨B) = ActsΓ(A) ∪ActsΓ(B)
ActsΓ(A ∧B) = ActsΓ(A)×∗ ActsΓ(B)
ActsΓ(〈a〉A) = {a} ∪ActsΓ(A)
ActsΓ(A�Λ) = ActsΓ(A) ∩ Λ
ActsΓ(A{Ξ}) = (ActsΓ(A)){Ξ}
ActsΓ(µp.A) = ActsΓ(A[0/p])

ActsΓ(p) =

{

ActsΓ(A[0/p]) if (p ≤ A) ∈ Γ
or (A ≤ p) ∈ Γ

Act∗ otherwise

The context Γ may constraint the meaning of free vari-
ables, because an assumption like p ≤ A declares that
p and A denote the same behaviour. Therefore, the
possible actions of p are all Act∗, if there are no as-
sumptions on p; otherwise, it is the possible action set
of the assumption on p.

The rules µ-I could be explained as follows. Let
A1 and A2 be unwindings of A on p. If p does not
appear free in A, then A1 = A2 = A and hence, for
the unfolding axiom, µp.A1 = µp.A2. Othewise, let
p ∈ FV(A). Then, if we prove that the two unfolding
denote the same behaviour whenever p and A are as-
sumed to be the same, then µp.A1 = µp.A2. In fact,
the assumption p ≤ A and A ≤ p should be seen as
fixpoint equations.

The rule Rec could be understood as follows. Let
consider the recursive term recx.t; following the idea
of least fixpoint, each occurrence of x in t should de-
note the process recx.t itself. If we denote by p the
behaviour of x, p has to be the same of the whole
term recx.t — that is, the least fixpoint µp.A. The
side condition, similar to the Eigenvariable Condition
for ∀-intro [10, 14], avoids unsound derivations like

x : p

ax : 〈a〉p

recy.ax : µp. 〈a〉p
that is,

x : p, y : p ` x : p

x : p, y : p ` ax : 〈a〉p

x : p ` recy.ax : µp. 〈a〉p

The side condition can also be explained in purely
proof-theoretic terms: it is needed in the proof of the
substitution lemma (Theorem 5, Section 6).

Example 1 We prove that the term recx.aax has

type µp. 〈a〉p in the empty context:

Sub

Rec

Pref

Pref
(x : p)1

ax : 〈a〉〈a〉p

aax : 〈a〉〈a〉p

recx.aax : µp. 〈a〉〈a〉p
1 µ-I

Cngr
(〈a〉p ≤ p)2

〈a〉〈a〉p ≤ 〈a〉p

µp. 〈a〉〈a〉p ≤ µp. 〈a〉p
2

recx.aax : µp. 〈a〉p

ut

It should be noticed that the rules and axioms
of SµK resemble Milner’s equational laws for strong
bisimulation [13]. Actually, many of them are also
similar to rules and axioms of the modal µ-calculus
[12]: if the relation ≤ is intended as a “consequence”,
or “implication”, then several rules become “logical”;
e.g. Tran is the cut rule. However, this parallel can-
not be pushed too far, since many logical implications
(such as “A ∧ B ≤ A”) do not hold, and there are no
type constructors corresponding to “implication” and
“negation”; moreover, 0 is the unity for both ∧ and ∨.

The relation ` is a “concrete” consequence relation
between contexts and judgments. It should be thought
as the syntactic counterpart of |=. Indeed, the proper-
ties we have proved semantically for |= in Section 3.2
can be restated and proved syntactically for `, without
need of semantic notions.

Proposition 9 For Γ ∈ Ctxt, J a judgment:

1. if ∆ ⊃ Γ and Γ ` J then ∆ ` J ;

2. if Γ ` A ≤ B and ∆ = {A′ ≤ B′ | (A′ ≤ B′) ∈ Γ}
then ∆ ` A ≤ B;

3. if Γ ` t : A then FV(A) ⊆ FV(Γ) and FN(t) ⊆
DN(Γ);

4. if Γ ` t : A and ∆ = {A′ ≤ B′ | (A′ ≤ B′) ∈
Γ} ∪ {(x : A′) ∈ Γ | x ∈ FN(t)}, then ∆ ` t : A.

Proof. By structural induction on the proofs. ut

Proposition 10 (Canonic typability) For t ∈
Proc, Γ ∈ Ctxt, if FN(t) ⊆ DN(Γ) then there is A
such that Γ ` t : A. Moreover, in this derivation Sub

is never applied, and hence A is the canonic type of t.

Proof. By induction on the syntax of t. ut

Proposition 11 (Canonic type inhabitation)
Let A ∈ MT, Γ ∈ Ctxt, such that for all p ∈ FV(A)
there is (x : p) ∈ Γ. Then, there is t such that
Γ ` t : A. Moreover, in this derivation Sub is never
applied, and hence t is the canonic term of A.

Proof. By induction on the syntax of A. ut

The following results relate the syntactic notion of
derivability (`) to its semantic counterpart (|=):

Theorem 2 Γ ` A ≤ B ⇐⇒ Γ |= A ≤ B.

Proof. (⇒) Each rule is sound.
(⇐) Lenghty proof (omitted). It can be shown pro-

ceeding by induction on the syntax of canonic types
A, B, deriving for each finite type a normal form as a
disjunction of sequential types (i.e., obtained simply
as a sequence of applications of rules Pref, Rlb and
Rstr). The rules µ-I and Cngr allow us to deal with
recursive types which cannot be sequentialised. ut

Theorem 3 Γ ` t : A ⇐⇒ Γ |= t : A.

Proof. (⇒) Each rule is sound, and the subsystem
SµK is sound for Theorem 2.

(⇐) Notice that the canonic type of t is either A or
a subtype of A. Therefore, for the Sub rule and the
completeness of SµK (Theorem 2), we can consider
only canonic types. In this case, the thesis is proved
by induction on the syntax of t. We will see the most
difficult case.

Suppose Γ |= recx.t : µp.A; for the inductive hy-
pothesis and the Rec rule, we have to prove that
Γ, x : p |= t : A where x, p do not appear free in
Γ. Let ξ, ρ such that ξ, ρ |= Γ and ρ(x) ∈ ξ(p); we
prove that [[t]]ρ ∈ [[A]]ξ, that is, C([[t]]ρ) ⊆ [[A]]ξ.

By induction on A it can be proved that if u1 ⊆ u2

then [[A]](ξ[u1/p]) ⊆ [[A]](ξ[u2/p]). Since ρ(x) ∈ ξ(p),
surely C(ρ(x)) ⊆ ξ(p), then

C([[t]]ρ) ⊆ [[A]](ξ[p 7→ C(ρ(x))])

⊆ [[A]](ξ[p 7→ ξ(p)]) = [[A]]ξ

where the first inclusion holds for canonicity and for
the monotonicity of the interpretation (which can be
easily proved by induction on t, A). Note that for each
type variable q in A there is a y in the correspondent
place in t, and an assumption y : q in Γ, x : p; hence,
ρ(y) ∈ ξ(q). ut

Finally, the BAT principle can be syntactically for-
malized by introducing the following Bat rule:

Bat
t1 : A t2 : A

t1 ≈ t2
that is,

Γ ` t1 : A Γ ` t2 : A

Γ ` t1 ≈ t2

The syntactic and semantic notions of “same be-
haviour” coincide, which yields the system to be sound
and complete:

Theorem 4 (BAT Adequacy) For all Γ, t1, t2:

Γ ` t1 ≈ t2 ⇐⇒ Γ |= t1 ≈ t2

Proof. Follows from Theorem 1 and Theorem 3. ut

In the case that no hypothesis on process variables
and subtyping is assumed, we recover the bisimulation
between terms:

Corollary 1 ∅ ` t1 ≈ t2 ⇐⇒ t1 ∼ t2.

Example 2 We prove ∅ ` recx.ax ≈ recx.aax:

Bat

Rec

Pref
(x : p)1

ax : 〈a〉p

recx.ax : µp. 〈a〉p
1

π

recx.aax : µp. 〈a〉p

recx.ax ≈ recx.aax

where π is the proof of Example 1. In the classical the-
ory of bisimilarity, such equivalence is inferred from
Milner’s lemma of unicity of solutions for (weakly)
guarded terms. ut

6 Open terms, compositional-
ity and the Cut Rule

As pointed out before, also consequences Γ ` t1 ≈ t2
where t1, t2 have free process names, are given a pre-
cise meaning (Definition 13). This allows us to reason
also on the behaviour of open terms, in a composi-
tional way (see Section 1).

Compositionality is reflected both in the semantics
and in the syntax of our system. Semantically, com-
positionality corresponds to transitivity of the conse-
quence relation |=:

Proposition 12 For Γ ∈ Ctxt, t1, t2 ∈ Proc,
A1, A2 ∈ MT, x ∈ Nam, if Γ |= t1 : A1 and
Γ, x : A1 |= t2 : A2 then Γ |= t2 [t1 /x] : A2.

More interesting is the syntactic counterpart of tran-
sitivity. In proof theory, the “plugging” of terms and
proof is represented by the well-known Cut rule:

Cut
Γ ` t1 : A1 Γ, x : A1 ` t2 : A2

Γ ` t2 [t1/x] : A2

or, in Natural Deduction style,

(x : A1)
t1 : A1 t2 : A2

t2 [t1 /x] : A2

.

However, we do not need to add this rule to the
typing system TµK , because TµK enjoys the following
fundamental property of proof and typing systems [7]:

Theorem 5 (Substitution Lemma) If π1 : Γ `
t1 : A1 and π2 : Γ, x : A1 ` t2 : A2 then there is a
proof π : Γ ` t2 [t1 /x] : A2.

Proof. By structural induction on π2.

Base case: t1 = y for some y and (y : A1) ∈ Γ, x : A2.
Now, if y 6= x, then we can just drop the assumption
x : A2; otherwise, take π′2 = π1.

Inductive step: By cases on the last rule applied. We
see only two significant cases.

If the last rule is Sub, then π2 appears as follows:

π2 =

Γ, x : A1 Γ
π21 π22

t2 : A A ≤ A2

t2 : A2

We can drop the assumption (x : A1) for Proposition
9. By the inductive hypothesis, there is π′21 : Γ `
t2 [t1 /x] : A. By applying the Sub rule to π′21, π22 we
obtain π : Γ ` t2 [t1 /x] : A2

If the last rule is Rec (which discharges the hy-
pothesis y : p), then π2 is as follows:

π2 =

Γ, x : A1, (y : p)
π21

t : A
recy.t : µp.A

where t2 is recy.t and A2 is µp.A. For the side condi-
tion of Rec, y has to be different from x. Hence, for
the inductive hypothesis, there is a proof π′21 : Γ, y:p `
t [t1 /x] : A. By applying the Rec rule to π′21 we ob-
tain the proof π : Γ ` recy.(t [t1/x]) : µp.A. Now,
we have to prove that recy.(t [t1 /x]) is syntactically
equal to (recy.t) [t1 /x]. This is true because x 6= y
and, by Proposition 5, FN(t1) ⊆ DN(Γ). For the side
condition of Rec, y 6∈ DN(Γ), hence y does not occur
free in t1. ut

As a consequence of this, free names in the conclu-
sion of Γ ` t1 ≈ t2 can be seen as “external modules”
whose behaviour is declared by the assumptions in the
context. If we instantiate the free names in t1, t2 with
closed process terms which fulfill these assumptions,
we obtain two closed terms whose behaviour is still
the same (Theorem 4).

Moreover, if we have proved that in a certain con-
text Γ, a process t has the behaviour A, then we can
use this proof as a rule in the inference of behaviours of
more complex processes. Equivalentely, we can put t
in place of each x if the assumed behaviour of x is sup-
posed to have is the same of what has been previously
proved for t. Therefore, the substitution lemma allows

us for libraries of certified processes, which can be used
in developing modularly larger processes. An applica-
tion of this can be seen also in Example 2 above, where
we reused the proof of the previous Example 1.

7 Final Remarks

Comparison with the Typed λ-calculus. In
the paradigm behaviours-as-types we have presented,
terms correspond to processes and types correspond
to behaviours. Comparing with the propositions-as-
types paradigm, we lack a connection between invari-
ant properties. In the theory of typed λ-calculus, this
invariant property is highlighted by the subject reduc-
tion theorem (SRT):

if Γ ` M : A and M →β N then Γ ` N : A

This means that the information carried by types is
“orthogonal” to the information reduced by the β-
rule. However, in the behaviours-as-types paradigm
the corresponding näıf SRT

if Γ ` t : A and t
a
→ t′ then Γ ` t′ : A

does not hold. This is intuitively correct, because com-
putations are not “orthogonal” to behaviours: in gen-
eral, t′ behaves differently from t.

There are (at least) two solutions to this problem.
The first is to restrict our attention to those processes
which satisfy the SRT above mentioned. In this way,
we committ ourselves to processes whose behaviour
is always the same even if they are evolving, like an
operating system.

The other approach is to adopt a different notion
of process reduction, not necessarely with operational
contents. A closer look to the theory of λ-calculus
suggests that it should be a notion of normalization.
In fact, the β-reduction is the reduction of λ-terms
in head normal form. Similarly, we should choose as
reduction a notion of normalization of process terms.
For instance, we could define a rewriting relation > ⊆
Proc × Proc by applying the technique introduced in
[2] for finite-state processes: from each bisimulation
equation we could obtain a rewriting rule. Hence, the
“right” SRT is the following:

If ∅ ` t : A and t > t′ then ∅ ` t′ : A

Traditionally, in rewriting only closed terms are con-
cerned. As in the case of bisimulation, we think that,
within the type-based approach presented in this pa-
per, rewriting can be extended smoothly to open terms

where free process variables may have a declared be-
haviour. We can introduce a new syntactic judgment
“ >” between terms, analoguosly to β-reduction: the
intended meaning of Γ ` t > t′ should be “in the con-
text Γ, t is rewritten to t′, whose complexity is not
greater than those of t.” Due to lack of space, we can-
not elaborate further on this topic; however, we just
point out that the Substitution Lemma suggests im-
mediately the following rewriting rule for taking care
of behaviour declaration of free process variables:

Γ ` t1 : A1 Γ, x : A1 ` t > t′

Γ ` t [t1 /x] > t′ [t1 /x]

or, in Natural Deduction style,

(x : A1)
t1 : A1 t > t′

t [t1/x] > t′ [t1 /x]

Another link between modal µ-types and typed λ-
calculus regards recursive types. Typed λ-calculus
with recursive types has been thoroughly studied —
see e.g. [7]. Although the theory of recursive types
for the λ-calculus is quite different from that of modal
µ-types, they share the following type-theoretical re-
sults:
– type inhabitation is trivially decidible;
– typability is trivially decidible;
– type checking is not decidible;
– subject reduction holds.

Type inhabitation and typability are always verified
(Propositions 10, 11). Decidibily of type-checking
would yield decidibility of bisimilarity. In fact, for
t1, t2 closed terms, t1 ∼ t2 iff ∅ ` ti : A, i = 1, 2,
where A is the type defined in the proof of the BAT
principle (Theorem 1). Actually, the undecidibility of
the “:” judgment is due to the undecidibility of the
“≤” judgment.

Other models. The notion of behavioural types we
have introduced is not strictly limited to the semantic
interpretation of processes in the category of LTS’s.
Actually, we could define the category U in many dif-
ferent ways, viz. by using comma subcategories, or by
choosing as starting point the category of synchroniza-
tion trees or event structures [16], or even by defining
U = Lopen . In fact, all the results of the paper could
be recovered in these alternative settings: we have
preferred our characterization for its set-theoretical
flavour.

The fact that there are so many and only appar-
ently different models for concurrency, seems to say

that the right notions of “process denotation” and
“process behaviour” are still lacking. A promising
new model (the presheaf model), strictly related to the
notion of open map, has been introduced in [11]; its
applications to our paradigm are under investigation.

Another topic related to the lack of a satisfactory
model of behaviours is the absence of the “arrow” type
constructor. From a constructive point of view, terms
of type A ⊃ B should have a “functional behaviour”,
that is, they denote higher-order processes. However,
the categories adopted in usual models for concurrency
are not closed, and hence they do not allow for expo-
nentials: we refer to [5] for an account of this topic,
and further references, with regard to the applications
to Petri nets.

Acknowledgments

We are most grateful to Martin Abadi for his useful
remarks on the preliminar version of this paper. Cor-
rado Priami has been our on-line bibliography about
CCS. Bob Kane and many others have inspired the
name for the BAT principle.

References

[1] S. Abramsky. Computational interpretation
of linear logic. Theoretical Computer Science,
111:3–57, 1993.

[2] L. Aceto, B. Bloom, and F. W. Vaandrager. Turn-
ing SOS rules into equations. In Proceedings of
the 7th LICS Symposium, pages 113–124, Santa
Cruz, California, 1992. IEEE.

[3] H. R. Andersen. Verification of Temporal Prop-
erties of Concurrent Systems. Daimi PB-445,
Computer Science Department, Århus University,
June 1993.

[4] H. R. Andersen, C. Stirling, and G. Winskel.
A compositional proof system for the modal µ-
calculus. In Proceedings of the 9th LICS Sympo-
sium, pages 144–153, Paris, July 1994. IEEE.

[5] A. Asperti, G. Ferrari, and R. Gorrieri. Implica-
tive formulæ in the proofs as computations anal-
ogy. In Proc. of the 17th Symposium on Prin-
ciples of Programming Languages, pages 59–71,
San Francisco, Jan. 1990. ACM.

[6] A. Avron. Simple consequence relations. Infor-
mation and Computation, 92:105–139, Jan. 1991.

[7] H. Barendregt. The lambda calculus: its syntax
and its semantics. Studies in Logic and the Foun-
dations of Mathematics. North-Holland, 1984.

[8] G. Bellin and P. J. Scott. On the π-calculus and
linear logic. In Proceedings of MFPS 8, 1994. To
appear in Theoretical Computer Science.

[9] A. Church. A formulation of the simple theory of
types. Journal of Symbolic Logic, 5:56–68, 1940.

[10] G. Gentzen. Investigations into logical deduc-
tion. In M. Szabo, editor, The collected papers of
Gerhard Gentzen, pages 68–131. North Holland,
1969.

[11] A. Joyal, M. Nielsen, and G. Winskel. Bisimu-
lation from open maps. BRICS Report RS-94-7,
Department of Computer Science, University of
Århus, May 1994.

[12] D. Kozen. Results on the propositional µ-
calculus. Theoretical Computer Science, 27, 1983.

[13] R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

[14] D. Prawitz. Natural Deduction. Almqvist & Wik-
sell, Stockholm, 1965.

[15] C. Stirling. Modal and Temporal Logics. In
S. Abramsky, D. Gabbay, and T. Maibaum, edi-
tors, Handbook of Logic in Computer Science, vol-
ume 2, pages 477–563. Oxford University Press,
1992.

[16] G. Winskel and M. Nielsen. Models for concur-
rency. BRICS Report RS-94-12, Århus Univer-
sity, May 1994. 144 pp. To appear as a chapter
in the Handbook of Logic and the Foundations of
Computer Science, Oxford University Press.

