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What’s in this talk

A complete case study on

encoding of Ambient Calculus and its modal logic

in a type-based logical framework (Coq)

using Higher Order Abstract Syntax

and the Theory of Contexts

and full formalization of most metatheoretic results over the
calculus and the logic, as in [4]

Reference paper:
[4] Cardelli, L. and A. D. Gordon, Logical properties of name restriction,
in: S. Abramsky, editor, Proc. TLCA 2001, LNCS 2044 (2001).
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Why?

Along the line of previous case studies (λ-calculus, π-calculus, . . . )
BUT:

Ambients have their own peculiarities (e.g., modal logic, names &
variables,. . . )

Ambients logic is capable to reflect metalogical properties which
interact with HOAS (e.g., freshness, equality of names)

Ambients are fairly new—still in development. This may benefit
from systematic analysis of the calculus and its logic.

Expected benefits:

For LF’s: it allows to test, refine and compare methodologies for
dealing with HOAS (like the Theory of Contexts)

For Ambients: systematic analysis of many peculiarities, re-design
of unpolished notions
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Outline of the talk

Syntax of Ambient calculus and its logic

Their representation: names vs. variables

Semantics of Ambient calculus and its logic

Their representation

The Theory of Contexts for Ambients

Development of (meta)theory

The quantifier

Conclusions
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Ambient Calculus: quick recap

Ambient calculus = model of agents mobility in a dynamically
changing hierarchy of domains [Cardelli, Gordon FOSSACS 98]

Composed by

a process algebra with names (much like π-calculus)

with reduction operational semantics;

a modal logic for expressing temporal and spatial properties of
agents

with satisfaction relation
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Ambients processes

Syntactic categories:

Names: n ∈ Λ
Capabilities ζ: M ::= n | in M | out M | open M | ε |M.M ′

Processes Π:

P,Q,R ::= 0 | P|Q |!P |M[P] |M.P | (νn)P | (n).P | 〈M〉

Identified up to α-conversion of names.
P{n←M} denotes usual capture avoiding substitution.

Operational semantics

A structural equivalence judgment ≡⊆Π×Π
A reduction relation→⊆Π×Π
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Ambient logic

Syntax

Variables x ∈ ζ
Formulas Φ:

A ,B ,C ::= T | ¬A | A ∨B | 0 | A |B | A B B

| η[A ] | A@η | ηA | A;η | ♦A |✧A | ∀x.A

η may be either a name n or a variable x

A first order modal logic. Variables may be replaced by variables or
names (which may be replaced by capabilities).

Semantics

satisfaction relation P |= A . Defined by clauses.
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Encoding of processes: weak HOAS

Variable name : Set.
Inductive proc: Set := nil : proc

| par : proc -> proc -> proc
| bang : proc -> proc
| ambient : cap -> proc -> proc
| cap act : cap -> proc -> proc
| nu : (name -> proc) -> proc
| in act : (name -> proc) -> proc
| out act : cap -> proc.

Object level names = metalanguage variables of type name

Binding constructors are represented by 2nd-order term
constructors⇒ α-conversion comes for free
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Encoding of processes: weak HOAS

Variable name : Set.
Inductive proc: Set := nil : proc

| par : proc -> proc -> proc
| bang : proc -> proc
| ambient : cap -> proc -> proc
| cap act : cap -> proc -> proc
| nu : (name -> proc) -> proc
| in act : (name -> proc) -> proc
| out act : cap -> proc.

Object level names = metalanguage variables of type name

Binding constructors are represented by 2nd-order term
constructors⇒ α-conversion comes for free

name is not inductive⇒ no exotic terms.
Required properties will be added later on, as needed.
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Encoding of formulas: full HOAS

Inductive form: Set := T: form
| neg: form -> form
| Or: form -> form -> form
| zero: form

...
| rev: name -> form -> form
| rev_adj: form -> name -> form
| sometime: form -> form
| somewhere: form -> form
| forall: (name -> form) -> form.

no need of a separate type for variables

α-conversion and capture-avoiding substitution are inherited

no exotic terms either (name is not inductive)
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Names = Variables?

Object level names = metalevel variables of type name
Object level variables = metalevel variables of type name

Names can be replaced — and variables too. . .

Names can be bound — and variables too. . .

Processes are up-to α-conversion of names — and formulas are
up-to α-conversion of variables. . .

But different names are different, different variables may be not!

Thus, what’s in a name? Apartness!

A name is a variable whose possible values are restricted.
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Representing Apartness

Apartness can be represented by inequalities assumptions.

Given n1, . . . ,nk names and x1, . . . ,xh variables, these are
represented by the context

n1:name,...,nk:name, x1:name,...,xh:name,
di j:ni 6= n j

where (1≤ i < j ≤ k)

Inequalities can be used in proving non-occurrences judgments

(notin_cap x M) holds iff x does not occur in M;

(notin_proc x P) holds iff x does not occur in P;

(notin_form x A) holds iff x does not occur in A.

Inductively defined.
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Operational semantics: reduction

−

n[in m.P|Q]|m[R]→ m[n[P|Q]|R]
(Red In)

P→ Q
(νn)P→ (νn)Q

(Red Res)

−

m[n[out m.P|Q]|R]→ n[P|Q]|m[R]
(Red Out)

P→ Q
P|R→ Q|R

(Red Par)

P′ ≡ P, P→ Q, Q≡ Q′

P′→ Q′
(Red ≡)

P→ Q
n[P]→ n[Q]

(Red Amb)

−

(n).P|〈M〉 → P{n←M}
(Red Comm)

−

open n.P|n[Q]→ P|Q
(Red Open)
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Encoding of reduction

Inductive red: proc -> proc -> Prop :=
...

| red_comm : (P:name->proc)(M:cap)(P’:proc)
(subst_proc M P P’) ->
(red (par (in_act P) (out_act M)) P’)

| red_res : (P,Q:name->proc)(l:Nlist)
((n:name)(Nlist_notin n l) ->

(notin_proc n (nu P)) ->
(notin_proc n (nu Q)) ->
(red (P n) (Q n))

) -> (red (nu P) (nu Q))
...

“Fresh” names come with extra assumptions yielding apartness.

Explicit substitution relations are needed (cf. rule red_comm).
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Substitution

Substitution of capabilities for names in capabilities and processes
cannot be delegated to the metalanguage (type mismatch
proc 6= name 6= cap)

Substitution must be represented explicitly by two judgments

subst cap : cap -> (name->cap) -> cap

subst proc : cap -> (name->proc) -> proc

(subst_proc M P P’) means

P’ is the result of “filling the hole” in P with M.

Syntax-driven derivations, though.
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Satisfaction clauses (sample)

P |= T

P |= 0 ⇐⇒ P≡ 0

P |= ¬A ⇐⇒ not P |= A

P |= A ;n ⇐⇒ (νn)P |= A

P |= A@n ⇐⇒ n[P] |= A

P |= A B B ⇐⇒ for all P′ ∈Π,P′ |= A implies P|P′ |= B

P |= n[A ] ⇐⇒ there exists P′ ∈Π such that P≡ n[P′] and P′ |= A

P |= ♦A ⇐⇒ there exists P′ ∈Π such that P→∗ P′ and P′ |= A

P |= ∀xA ⇐⇒ for all m ∈ Λ,P |= A{x← m}

Notice: in some clauses, satisfaction occurs in negative position.
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Encoding of satisfaction (1)

Inductive definition is not possible (negative occurrences)

Actually, clauses specify a translation of satisfaction judgments in
the metalogic⇒ |=: Π→Φ→ Prop is encoded as a function
recursively defined on the syntax of formulas:

Fixpoint satF [P:proc;A:form]: Prop:=
<Prop>Cases A of T => True
| (neg B) => (satF P B) -> False
| (Or A1 A2) => (satF P A1) \/ (satF P A2)
| (comp_adj A1 A2) => (P’:proc)(satF P’ A1) ->

(satF (par P P’) A2)
| (forall B) => ((m:name)(satF P (B m)))
...
end.

A goal (satF P A) can be automatically Simplified to the
corresponding metalogic proposition Ambient Calculus and its Logic in CIC – p.16



Encoding of satisfaction (2)

A true Natural Deduction proof system with two mutally defined
judgments

|=i, 6|=i: Π→Φ→ Prop

dual of each other

Negative occurrences of |= are replaced by (positive) 6|=

P 6|=i A

P |=i ¬A

P |=i A

P 6|=i ¬A
for all P′.P′ 6|=i A or P|P′ |= B

P |=i A B B

for some P′.P |=i A and P |P ′ 6|= B

P 6|=i A B B

Easily encoded in CIC (Mutual Inductive)

Useful for proof-theoretical investigations
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Ambient Calculus (Meta)theory

Many properties in [4] deal with names and contexts. E.g.

For all closed formulas A , processes P, and names m, m′,
if m′ 6∈ f n(P)∪ f n(A) then P |= A iff
P{m← m′} |= A{m← m′}.

The theory is too weak

we need properties about names and contexts (nothing is
known about name).

inductive reasoning on processes and formulas is problematic
(usual induction principle is too weak)

Add the Theory of Contexts [HMS01]:

A set of axiom schemata, which reflect at the theory level
some fundamental properties of the intuitive notion of
“context” and “occurrence” of variables.

applicable to any HOAS encoding
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The Theory of Contexts

Decidability of occurrence: every variable either occurs or does not
occur free in a term (generalizes decidability of equality on Var).
Unnecessary if we are in a classical setting;

Unsaturability of variables: there exists always a variable which
does not occur free in a given term;

Extensionality of contexts: two contexts are equal if they are equal
on a fresh variable; that is, if M(x) = N(x) and x 6∈M(·),N(·), then
M = N.

β-expansion: given a term M and a variable x, there is a context
CM(·), obtained by abstracting M over x (i.e., such that
CM(x) = M)
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The Theory of Contexts for Ambients

Axiom dec_name: (x,y:name)x=y \/ ˜x=y.

Axiom unsat: (P:proc)(Ex [n:name](notin_proc n P)).

Axiom proc_ext: (P,Q:name->proc)(x:name)
(notin_proc x (nu P)) ->
(notin_proc x (nu Q)) ->
(P x)=(Q x) -> P=Q.

Axiom proc_exp: (P:proc)(n:name)
(Ex [P’:name->proc](notin_proc n (nu P’))

/\ P=(P’ n)).

Ambient Calculus and its Logic in CIC – p.20



(Higher order) induction principles

Induction principles over HOAS datatypes can be derived

More generally, higher order induction principles over types
namen->proc (for all n) are derivable.

Stronger than usual ones:

Lemma PROC_IND:
(P:proc -> Prop)
(P nil) ->
...
((Q:name->proc)((y:Var)(P (Q y))) -> (P (nu Q))) ->
(Q:proc)(P Q).

complete induction over size of terms, using β-expansion and
extensionality for lifting structural informations from proc to
name->proc
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Fresh renaming properties

Many properties in [4] are “renaming properties”

All instances of the same pattern:

for some x 6∈
⋃n

i=1 f n(Ci[·]) : R (C1[x], . . . ,Cn[x])
for all y 6∈

⋃n
i=1 f n(Ci[·]) : R (C1[y], . . . ,Cn[y])

where R is a given n-ary relation (e.g., structural congruence,
capture-avoiding substitution, reduction relation etc.)

Usually proved by induction either on the derivation of the premise
R (C1[x], . . . ,Cn[x]) or on one of the arguments Ci[x]

A general proof strategy has been streamlined for proving this kind
of properties

β-expansion and extensionality are used for lifting structural
information at the higher types
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The “new” quantifier

In [4], Ambient Logics is extended with quantifer, defined as a
syntactic shorthand

x.A , ∃x.x#( f nv(A)\{x})∧ xT∧A ,

Not directly representable: function f nv is not definable (recursion
over HOAS datatypes)

Represented as a term constructor new:(name->form)->form
Semantics is easily extended:

Fixpoint satF [P:proc;A:form]: Prop:=
<Prop>Cases A of
...
| (new B) => (Ex [m:name](notin_proc m P)

/\ (notin_form m (forall B))
/\ (satF P (B m)))

end. Ambient Calculus and its Logic in CIC – p.23



Properties of “new”

Most properties of have been formalized and proved. For
instance:

P |= x.A ⇐⇒ ∃m ∈ Λ.m 6∈ f n(P,A) and P |= A{x← m}

⇐⇒ ∀x ∈ Λ.m 6∈ f n(P,A) implies P |= A{x← m}

P |= ¬ x.A ⇐⇒ P |= x.¬A

P |= x.(A |B) ⇐⇒ P |= ( x.A)|( x.B)

last one is said in [4] “of particular interest (and difficulty)”; in this
encoding proof is quite simple (a few lines of tactics)
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Conclusions

First implementation of Ambient Calculus and its Logic in a LF

Most of the theory and the metatheory in [4] (including ) has been
formally proved using the Theory of Contexts.

Benefits for

the calculus: new proof system, clarification of the rôle of
names and variables, . . .

the framework: derivation of properties originally taken as
axioms (e.g., induction principles over HOAS datatype),
development of a general strategy for renaming properties. . .
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Conclusions (really)

Pros and cons of the Theory of Contexts

low overhead: smooth handling of schemata in HOAS, no exotic
terms to rule out explicitly. Proofs look almost like on the paper.

expressive: induction and recursion principles also over
higher-order datatypes. is rendered faithfully

but incompatible with the Axiom of Unique Choice⇒ expressive
power of functions is stricly less than that of relations. Some
functions must be then represented by relations.

Theory of Contexts = steroids for weak HOAS

Ambient Calculus and its Logic in CIC – p.26
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The Axiom of Unique Choice

Proposition [Hof99] The Axiom of Unique Choice

Γ ` R : σ→ τ→ o Γ,a : σ;∆ ` ∃!b : τ.(R a b)

Γ;∆ ` ∃ f : σ→ τ.∀a : σ.(R a ( f a))
AC!σ,τ

is inconsistent with the Theory of Contexts.

Consequences:

in toposes, AC! always holds⇒ topos logic is not enough⇒
soundness of the Theory of Contexts is not so trivial

relations are more expressive than functions: there are functional
relations whose characteristic functions cannot be defined
⇒ often, one has to use functional relations in place of functions
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Soundness

Theorem HOL extended with the Theory of Contexts is sound.

Idea: build a model (close to Schanuel topos) using a tripos ove functor
categories.

F I?
_in

oo

SetF
in∗

//

SetI
a

//

in∗
oo Sh¬¬(I )?

_
oo

The index categories are the category of substitutions (F ) and injective

substitutions (I ) over finite sets of atoms. See [BHHMS01] for details.
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