
IS
S

N
 0

24
9-

63
99

ap por t  
de  r ech er ch e 

THÈME 2

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On the Formalization of Imperative Object-based
Calculi in (Co)Inductive Type Theories

Alberto Ciaffaglione — Luigi Liquori — Marino Miculan

N° 4812

April 2003





Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

On the Formalization of Imperative Object-based Calculi in
(Co)Inductive Type Theories

Alberto Ciaffaglione ∗ , Luigi Liquori† , Marino Miculan ‡

Thème 2 — Génie logiciel
et calcul symbolique

Projet MIRÓ

Rapport de recherche n° 4812 — April 2003 — 37 pages

Abstract: In this paper, we study the formalization of Abadi and Cardelli’s impς , a represen-
tative object-based calculus with types and side effects, in interactive proof assistants based on
(Co)Inductive Type Theories, like Coq. In order to make the formal development of the theory
of impς easier, we reformulate its static and dynamic semantics taking most advantage of the fea-
tures provided by CC(Co)Ind, the coinductive type theory underlying Coq. The new presentation
is thus in the style of Natural Deduction Semantics (the counterpart in Natural Deduction style of
Kahn’s Natural Semantics), using higher-order abstract syntax and hypothetical-general premises
à la Martin-Löf. Interestingly, for a significant fragment of impς we can even use coinductive
typing systems, thus avoiding “store types” and leading to a substantial simplification of the proofs
of key metaproperties, such as Subject Reduction.

The solutions we have devised in the encoding of and metareasoning on impς can be readily
applied to other imperative calculi featuring similar issues.

Key-words: Interactive theorem proving, Logical foundations of programming, Program and
system verification, Object-based calculi with side effects, Logical frameworks.

∗ DIMI, Università di Udine, Italy — ciaffagl@dimi.uniud.it and LORIA-INPL-ENSMNS, Nancy, France —

ciaffagl@loria.fr
† INRIA-LORIA, France — Luigi.Liquori@inria.fr
‡ DIMI, Università di Udine, Italy — miculan@dimi.uniud.it



Formalisation de calculs à objets purs avec des effets de bord

dans les théories des types (Co)Inductive

Résumé : Dans cet article, nous étudions la formalisation du calcul impς d’Abadi et de Cardelli,
un calcul à objets purs avec des types et des effets de bord, avec l’aide des assistants à la preuve
interactifs basés sur les théories des types Co-Inductive, comme Coq. Pour simplifier le dévelop-
pement formel de la théorie de impς , nous reformulons sa sémantique statique et dynamique en
profitant de la plupart des dispositifs fournis par CC(Co)Ind, i.e. la théorie des types coinductifs.
La nouvelle présentation est ainsi dans un nouveau style appelé Natural Deduction Semantics (la
contrepartie dans la déduction naturelle de la Natural Semantics à la Kahn), en utilisant la syntaxe
d’ordre supérieure et des prémisses hypothétiques à la Martin-Löf.

Pour un fragment significatif de impς on peux utiliser la technique de coinduction pour simplifier
la structure de “types mémoire”, ce qui réduit significativement les démonstrations de métathéorie
comme le théorème de réduction du sujet.

Mots-clés : Calculs basés sur les objets, objets partagés, objets mutables, objets cycliques,
substitution explicite, réécriture de termes à adresses.



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 3

Introduction

In recent years, there has been a lot of effort in the formalization of class-based, object-oriented
languages. The Coq system [22] has been used for formalizing the JavaCard Virtual Machine
and studying formally the JavaCard Platform [4,3], and for checking the behaviour of a byte-code
verifier for the JVM language [6]. PVS and Isabelle have been used for formalizing and certifying an
executable bytecode verifier for a significant subset of JVM [24], for reasoning on Java programs
with Hoare-style logics [21], and for applying translations of co-algebraic specifications [29] to
programs in JavaCard [33] and C++ [32].

In spite of this large effort on class-based languages, relatively little or no formal work has been
done on object-based ones, like Self and Obliq, where there is no notion of “class” (though classes
can be modeled by objects able to receive the message new, which corresponds to the creation of
another object). This is due mainly to the fact that object-based languages are less used in common
practice than class-based ones; despite this, they are simpler to implement and understand and can
be used as common intermediate level for implementing interpreters and compilers for the latters.
From a foundational point of view, indeed, most of the calculi introduced for the mathematical
analysis of the object-oriented paradigm are object-based [1, 13]. Among the other calculi, Abadi
and Cardelli’s impς [1], is particularly representative: it features objects, methods, dynamic lookup,
method override, types, subtypes, and, last but not least, imperative features. Clearly, all this
makes impς and similar calculi quite complex, both at the syntactic and at the semantic level. impς
features all the idiosyncrasies of functional languages with imperative features; moreover, the store
model underlying the language allows for loops, thus making the typing system for values quite
awkward. This level of complexity is reflected in developing metatheoretic properties; for instance,
the fundamental subject reduction and type soundness for impς are much harder to state and prove
than in the case of usual functional languages. It is clear that this situation can benefit from the
use of proof assistants, where the theory of the object calculus can be formally represented in
some metalanguage, the proofs can be checked and new, error-free proofs can be safely developed
in interactive sessions. However, up to our knowledge there is no formalization of a object-based
calculus like impς , yet. Therefore, the study of the formal definitions and implementations of
object-based calculi becomes actual and challenging in the more general setting of mechanized
software verification and certification.

This is indeed the aim of this work. In this paper we represent and reason on both static
and dynamic aspects of impς in an interactive proof assistant, i.e. Coq. To this end we will use
Coq’s specification language, the coinductive type theory CC(Co)Ind, as a Logical Framework (LF).
Following the encoding methodology of Logical Frameworks, we are forced to spell out in full
detail all aspects of the calculus: this gives the possibility to identify and fix problematic issues
which are skipped on the paper. Moreover, we can (re)formulate the object system taking full
advantage of the definition and proof-theoretical principles provided by the Logical Framework.
In particular most type theory-based LFs support natural deduction, higher-order abstract syntax,
and even coinductive datatypes and predicates, as in the case of CC(Co)Ind. The LF perspective
may thus suggest alternative, and cleaner, definitions of the same systems.

Therefore, before implementing impς in Coq we reformulate its operational semantics and the
typing system in the style of the Natural Deduction Semantics (NDS) [7, 25], the counterpart in
Natural Deduction of Kahn’s Natural Semantics (NS) [23, 11] adopted in [1]. In this setting, the
handling of structures which obey a stack discipline (such as the environments) is delegated to the
metalanguage, by means of hypothetical-general premises à la Martin-Löf. Hence, environments
do not appear explicitly anymore in judgments and proofs, which become appreciably simpler.

Another key proof-theoretical innovation of our rephrasing of impς is the use of coinductive
types and proof systems. This is motivated by observing that the proof of the Subject Reduction
in [1] is quite involved mainly because the store may contain “pointer loops”. Since loops have
non-wellfounded nature, usual inductive arguments are invalidated and extra structures, the store
types, have to be introduced and dealt with in already long and error-prone proofs. However,
several today type theories and proof assistants provide coinductive types, which can be fruitfully
used as the canonical way for dealing with circular, non-wellfounded objects. Therefore, we present

RR n° 4812



4 A. Ciaffaglione, L. Liquori, M. Miculan

an original coinductive reformulation of the typing system for the fragment of impς without object
override (which we denote by impςnov), thus getting rid of the extra structure of store types and
making the proof of Subject Reduction dramatically simpler.

Unfortunately, the same does not seem to be feasible in the case of the full impς , where we
have to resort to store types and related typing system. Anyway, we remark that most of the
development carried out for impςnov can be readily recovered for impς , thus pointing out the
modularity of our development.

Our effort is useful also from the point of view of Logical Frameworks. The theoretical devel-
opment of LFs and their implementation will benefit from complex case studies like the present
one, where we test the applicability of advanced encoding methodologies. In this perspective, our
contribution can be considered pioneering in combining the higher-order approach with coinduc-
tive natural deduction style proof systems. The techniques we have developed in the encoding of
and metareasoning on impς can be reused for other imperative calculi featuring similar issues.

Synopsis. The paper is structured as follows. Section 1 gives a brief account of impς . In Section
2 we focus on the fragment impςnov, which is reformulated bearing in mind the proof-theoretical
concepts provided by CC(Co)Ind. In Section 3 we scale up towards the full impς calculus. The
formalization in Coq of these systems, and the formal proofs of some of their key properties, are
discussed in Sections 4 and 5 respectively. Conclusions and directions for future work are presented
in Section 6. In Appendix A we recall briefly the Calculus of (Co)Inductive Constructions. Longer
listings of Coq code are in Appendix B; longer proofs in Appendixes C and D.

1 Abadi and Cardelli’s impς Calculus

In this section, we introduce and survey the impς calculus of Abadi and Cardelli [1, Chapter 10,11]:
in a nutshell it is an imperative, calculus of objects forming the kernel of the Obliq [8] programming
language. Its type inference system is sound in the sense that every well-typed object will not
invoke methods not declared in its interface. The language of impς is the following:

a, b ::= x variable
[li = ς(xi)bi]

i∈I object
clone(a) cloning

a.l method invocation
a.l ← ς(x)b method update
let x = a in b local declaration

• An object [li = ς(xi)bi]
i∈I is a collection of components li = ς(xi)bi for distinct method names

li and associated methods ς(xi)bi. The parameter xi has to be bound to the method’s host
object, the object containing the given method. The order of the components does not
matter. The calculus impς dispenses with the fields, because the method suite is mutable;
fields could be encoded using the let construct.

• Method invocation a.l, where the method named l in a is ς(x)b, has the intent of executing
the body b with the parameter x bound to the host object a, thus returning the result of
the execution.

• Method update a.l ← ς(x)b is a typical imperative operation: it replaces in place the method
named l in a with ς(x)b and then returns the modified object.

• The cloning operation clone(a) is characteristic of object-based languages: it produces a
new object with the same labels of a, with each component sharing the methods of the
corresponding component of a.

• The let construct let x = a in b evaluates a term a, binds the result to a variable x and then
evaluates a second term b with the variable x in the scope, thus permitting to have local
definitions and to control the execution flow. For example, sequential evaluation is defined
as a; b , let x = a in b, if x /∈ FV(b).

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 5

∅ ` �
(Store−∅)

σ • S ` � ι /∈ Dom(σ)

σ, ι 7→ 〈ς(x)b, S〉 ` �
(Store−ι)

σ ` �

σ • ∅ ` �
(Stack−∅)

σ • S ` � ιi ∈ Dom(σ) x /∈ Dom(S) ∀i ∈ I

σ • (S, x 7→ [li = ιi]
i∈I) ` �

(Stack−V ar)

Figure 1: Rules for Store and Stack Auxiliary Judgments

1.1 Operational Semantics

The Natural Semantics (NS) à la Kahn is expressed by a reduction relation that relates a store σ, a
stack S, a term a, a result v and another store σ′, i.e. σ •S ` a ; v •σ′. The intended meaning is
that with the store σ and the stack S, the term a reduces to a result v, yielding an updated store
σ′ and leaving the stack S unchanged in the process. The entities used in the big-step semantics
of impς are the following:

ι ∈ Nat store location

v ::= [li = ιi]
i∈I result

S ::= xi 7→ vi
i∈I stack

σ ::= ιi 7→ 〈ς(xi)bi, Si〉
i∈I store

The global store is a function mapping locations to method closures. Closures (denoted by
k) are pairs built of methods and stacks ; stacks are used for the reduction of the corresponding
method body: they associate variables with object results. Results are sequences of pairs: method
labels together with store locations, one location for each object component. Notice that, in order
to stay close to implementation techniques, there is no use of the notion of formal substitution.
Moreover the operational semantics needs two more auxiliary judgments, namely σ ` �, and
σ •S ` � both checking the well-formedness of stores and stacks, respectively. In the following, the
notation ιi 7→ ki∈I

i denotes the store that maps the location ιi to the closure ki, for i ∈ I ; the store
s, ι 7→ k extends σ with k at ι (fresh) and s.ιj ← k denotes the result of storing k in the location
ιj of σ. Unless not explicitly remarked, we assume all li, ιi be distinct. Auxiliary judgments are
presented in Figure 1.

• A well-formed store is built starting from the well-formed empty sequence and allocating a
new closure pointed to by a fresh pointer, provided the closure contains a well-formed stack;

• The empty well-formed stack is built starting from a well-formed store;

• A well-formed stack can be enriched pushing on its top the association between a fresh
variable and the result formed by pairs of distinct labels and distinct pointers referring to
meaningful store locations.

Natural Semantics relates terms to results in stores; it is defined in Figure 2. In a nutshell:

• A variable reduces to the result it denotes in the current stack;

• An object reduces to a result consisting of a fresh collection of locations, such that the store
is extended for associating the method closures to these locations;

• A selection operation first reduces its host object to a result, then activates the appropriate
method closure;

• An update operation reduces its object and then updates the appropriate store location with
a new method closure;

• A cloning operation reduces its object and then allocates a fresh collection of locations and
associates them to the existing method closures from the object (deep cloning);

• A let construct reduces to the result of reducing its body in a stack extended with the bound
variable associated to the result of its local term.

Finally, notice that an algorithm for reduction can be easily extracted from the rules: it would
parallel standard implementations of objects.

RR n° 4812



6 A. Ciaffaglione, L. Liquori, M. Miculan

σ • (S′, x 7→ v, S′′) ` �

σ • (S′, x 7→ v, S′′) ` x ; v • σ
(Red−V ar)

σ • S ` � ιi /∈ Dom(σ) ∀i ∈ I

σ • S ` [li = ς(xi)bi]
i∈I

; [li = ιi]
i∈I • (σ, ιi 7→ 〈ς(xi)bi, S〉)

i∈I
(Red−Obj)

σ′(ιj) = 〈ς(xj)bj , S
′〉 xj /∈ Dom(S′) j ∈ I

σ • S ` a ; [li = ιi]
i∈I • σ′ σ′ • (S′, xj 7→ [li = ιi]

i∈I) ` bj ; v • σ′′

σ • S ` a.lj ; v • σ′′

(Red−Sel)

σ • S ` a ; [li = ιi]
i∈I • σ′ ιj ∈ Dom(σ′) j ∈ I

σ • S ` a.lj ← ς(x)b ; [li = ιi]
i∈I • (σ′.ιj ← 〈ς(x)b, S〉)

(Red−Upd)

σ • S ` a ; [li = ιi]
i∈I • σ′ ιi ∈ Dom(σ′) ι′i /∈ Dom(σ′) ∀i ∈ I

σ • S ` clone(a) ; [li = ι′i]
i∈I • (σ′, ι′i 7→ σ′(ιi))

i∈I
(Red−Clone)

σ • S ` a ; v′ • σ′ σ′ • (S, x 7→ v′) ` b ; v′′ • σ′′

σ • S ` let x = a in b ; v′′ • σ′′

(Red−Let)

Figure 2: Natural Semantics (NS) of impς

∅ ` �
(Env−∅)

E ` A x /∈ Dom(E)

E, x:A ` �
(Env−V ar)

E ` Ai ∀i ∈ I

E ` [li : Ai]
i∈I

(Type−Obj)
E ` A <: B E ` B <: C

E ` A <: C
(Sub−Trans)

E ` A

E ` A <: A
(Sub−Refl)

E ` Ai ∀i ∈ I ∪ J

E ` [li : Ai]
i∈I∪J <: [li : Ai]

i∈I
(Sub−Obj)

Figure 3: Auxiliary Typing Rules

1.2 Type System

The type system for impς is a first-order type system with subtyping. The only type constructor
is the one for object types, i.e.: A, B ::= [li : Ai]

i∈I . Notice that the only ground type
is [ ]: it can be used as a starting point for building object-types. Other ground types, as
bool, int, nat, real, . . . can can be added at will. The formal typing system is given by the
following four judgments: E ` �, and E ` A, and E ` A <: B, and E ` a : A. The typing
environment E consists of a list of assumptions for variables, each of the form x:A. The typing
judgments related to those three judgments are collected in Figure 3. In a nutshell:

• The first judgment E ` � describes how to build a well-formed type environment E: The
empty environment ∅ is well-formed; a new type binding x:A extends a well-formed environ-
ment provided that x is fresh and A is a well-formed type.

• The second judgment E ` A states that A is a well-formed type in the environment E. An
object type [li : Ai]

i∈I is well-formed in the environment E provided that each Ai is well
formed in E and that the labels li are distinct.

• The third judgment introduces the notion of subsumption, which is induced by a subtype
relation A <: B between object types. An object belonging to a given object type also

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 7

E ` a : A E ` A <: B

E ` a : B
(V al−Sub)

E′, x:A, E′′ ` �

E′, x:A, E′′ ` x : A
(V al−V ar)

E, xi:[li : Bi]
i∈I ` bi : Bi ∀i ∈ I

E ` [li = ς(xi)bi]
i∈I : [li : Bi]

i∈I
(V al−Obj)

E ` a : [li : Bi]
i∈I j ∈ I

E ` a.lj : Bj

(V al−Sel)

E ` a : [li : Bi]
i∈I

E ` clone(a) : [li : Bi]
i∈I

(V al−Clone)
E ` a : A E, x:A ` b : B

E ` let x = a in b : B
(V al−Let)

E ` a : [li : Bi]
i∈I E, x:[li : Bi]

i∈I ` b : Bj j ∈ I

E ` a.lj ← ς(x)b : [li : Bi]
i∈I

(V al−Upd)

Figure 4: The Type Checker for impς

belongs to any supertype of that type and can subsume objects in the supertype, because
these have a more limited protocol. The first two rules are the basic rules of reflexivity and
transitivity. The third one allows a longer object type to be a subtype of a shorter one. Notice
that object types are invariant in their component types: the subtyping [li : Ai]

i∈I∪J <:
[li : Bi]

i∈I requires Ai ≡ Bi for all i ∈ I . That is, object types are neither covariant neither
contravariant in their component types; this condition is necessary in order to guarantee the
soundness of the type discipline.

Object typing. The main term typing judgment E ` a : A states that a has type A in E: the
typed rules are presented in Figure 4.

• The rule (V al−Sub) connects the typing to the subtyping: an object can emulate another
object that has fewer methods, i.e. a more limited protocol;

• The rule (V al−V ar) is used to extract an assumption from an environment, where x occurs
somewhere in;

• According to (V al−Obj), an object type [li : Bi]
i∈I can be assigned to a collection of n

methods whose bodies have types B1, . . . , Bn. Note the “circularity” introduced by the self
parameter: in order to give a value a type [li : Bi]

i∈I the existence of a value of the same
type is assumed;

• The rule (V al−Sel) tells that, when a method lj of an object type [li : Bi]
i∈I is invoked, it

produces the corresponding result type Bj ;

• Method update (V al−Upd) preserves the type of the object that is updated: the type of the
object cannot be allowed to change, because other methods assume it;

• The last two rules (V al−Clone) and (V al−Let) are obvious.

Result and store typing. The typing of results is delicate, because results are pointers to
the store, and stores may contain loops. Thus is not possible to determine the type of a result
examining its substructures recursively.

The store types allow to type the results independently of particular stores: this is possible
because type-sound computations do not store results of different types in the same location. A
store type associates a method type to each store location. Method types have the form [li =
Bi]

i∈I ⇒ Bj , where [li = Bi]
i∈I is the type of self and Bj is the result type. It is useful to

RR n° 4812



8 A. Ciaffaglione, L. Liquori, M. Miculan

Mi |= � ∀i ∈ I

ιi 7→M i∈I
i |= �

(Store−Type)
j ∈ I

[li : Bi]
i∈I ⇒ Bj |= �

(Meth−Type)

Σ |= �
Σ1(ιi) = [li : Σ2(ιi)]

i∈I ∀i ∈ I

Σ |= [li = ιi]
i∈I : [li : Σ2(ιi)]

i∈I
(Res−Obj)

Σ |= Si : Ei

Ei, xi:Σ1(ιi) ` bi : Σ2(ιi) ∀i ∈ I

Σ |= ιi 7→ 〈ς(xi)bi, Si〉i∈I
(Store−Typing)

Σ |= �

Σ |= ∅ : ∅
(Stack−∅−Typ)

Σ |= S : E Σ |= v : A x /∈ Dom(E)

Σ |= S, x 7→ v : E, x:A
(Stack−V ar−Typ)

Figure 5: Rules for Store Typing.

introduce also the projections for method types. All type structures are the following:

Σ ::= ιi 7→Mi
i∈I store type

M ::= [li : Bi]
i∈I ⇒ Bj method type

Σ1(ι) , [li : Bi ]i∈I if Σ(ι) = [li : Bi]
i∈I ⇒ Bj

Σ2(ι) , Bj if Σ(ι) = [li : Bi]
i∈I ⇒ Bj

The formal typing store system is given by the following five judgments: Σ |= �, and M |= �,
and E |= v : A, and Σ |= σ, and Σ |= S : E, collected in Figure 5. The result typing judgment
Σ |= v : A means that v has type A with respect to the store type Σ, in the sense that the locations
contained in v are assigned types in Σ. Since results are interpreted in stores, it is necessary to
capture the compatibility between the store and the store types. This is accomplished by the store
typing judgment Σ |= σ, whose intended meaning is to check that the contents of every store loca-
tion has the type of the store type for that location: that is, the method type of the corresponding
method closure. The store typing judgment permits the typing of each closure with respect to
the whole store, thus accounting for cycles in store. The method body of a closure is typed using
a type environment compatible with the stack contained in that closure. This compatibility is
described by the stack typing judgment Σ |= S : E, which is defined via the result typing.

Subject reduction. The Type Soundness of the typing discipline is an ultimate metatheoreti-
cal property: the successful static typing of programs is a proof of partial correctness about their
execution. The Type Soundness for the impς-calculus ensures that every well-typed and not di-
verging term never yields the message-not-found runtime error. This is an immediate consequence
of the subject reduction theorem; the statement and the proof of the subject reduction require a
preliminary definition and lemma all proved in [1].

Definition 1 (Store type extension) We say that Σ′ ≥ Σ (Σ′ is an extension of Σ) if and only
if Dom(Σ) ⊆ Dom(Σ′) and for all ι ∈ Dom(Σ): Σ′(ι) = Σ(ι).

Lemma 1 (Stack typing, Bound weakening) 1. If Σ |= S : E and Σ′ |= �, with Σ′ ≥ Σ,
then Σ′ |= S : E;

2. If E, x : D, E′ ` I and E ` D′ <: D, then E, x : D′, E′ ` I.

The Subject Reduction states that the dynamic semantics is consistent with the type system.

Theorem 1 (Subject Reduction) If E ` a : A, and σ • S ` a ; v • σ′, and Σ |= σ, and
Dom(σ) = Dom(Σ), and Σ |= S : E, then there exist a type A′, and a store type Σ′, such that
Σ′ ≥ Σ, and Σ′ |= σ′, Dom(σ′) = Dom(Σ′), and Σ′ |= v : A′, and A′ <: A.

It is immediate to deduce that if a closed term has a type and the term reduces to a result in
a store, then the result can be assigned that type in that store. Equivalently, if a closed term
produces a result, it does so respecting the type that it had been assigned statically.

Corollary 1 (Subject Reduction for closed terms) If ∅ ` a : A, and ∅ • ∅ ` a ; v • σ, then
there exist a type A′ and a store type Σ′ such that Σ′ |= σ, and Σ′ |= v : A′, with A′ <: A

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 9

The statement of the previous corollary is vacuous if the starting term does not produce a result:
this can happen either because the reduction diverges —the rules are applicable ad infinitum— or
because it gets stuck —no rule is applicable at a certain stage. But the latter case is not possible,
which is the essence of the Type Soundness property.

Theorem 2 (Type Soundness) The reduction of a not diverging well-typed term of impς in a
well-typed store cannot get stuck, and produces a result of the expected type.

2 impς
nov in Coinductive Natural Deduction Semantics

In order to make the formalization in Coq easier, we reformulate the semantics and typing systems
of impς in a form that takes full advantage of all proof-theoretical concepts provided by mod-
ern coinductive type theories (such as CC(Co)Ind), namely natural deduction style, higher-order
abstract syntax and coinductive types. This setting, which we call coinductive natural deduction
semantics, is particularly successful for the fragment of impς without object override, denoted
by impςnov. In this case, the resulting system is very clean and compact, allowing for an easier
treatment of theoretical and metatheoretical results.

The key point in using the Natural Deduction Semantics (NDS) style [7,25] is that all stack-like
structures (e.g., environments) are distributed in the hypotheses of proof derivations. Therefore,
judgments, rules and proofs we have to deal with are much simpler. On the other hand, we have
to address some consequences of using a distributed setting, instead of carrying locally all the
information we need. The major changes concern the operational semantics, whereas the type
system for terms needs a simpler reformulation. Finally, very delicate is the typing of results,
which makes use also of coinductive proof techniques.

Syntax. Following the higher-order abstract syntax paradigm [17, 28], we reduce all binders to
the sole λ-abstraction. Therefore, from now on we write let(a, λx.b) for let x = a in b, and ς(x)b
for ς(λx.b), where let : Term× (V ar → Term) → Term, and ς : (V ar → Term) → Term. (We
will keep using the notation “ς(x)b” as syntactic sugar). Of course, the usual conventions about
α-conversion apply.

2.1 Natural Deduction Semantics

The term reduction judgment of impς σ • S ` a ; v • σ′ is translated as Γ ` eval(s, a, s′, v); that
is, we model the operational semantics by a predicate eval defined on 4-tuples eval ⊆ Store ×
Term×Store×Res. Γ is the proof derivation contexts, that is a set of assertions (of any judgment)
which can be used as assumptions in the proof derivations. The intended meaning of the derivation
Γ ` eval(s, a, s′, v) is that, starting with the store s and using the assumptions in Γ, the term a
reduces to a result v, yielding an updated store s′. The rules for eval are in Figure 6. As usual
in Natural Deduction, rules are written in “vertical” notation, i.e., the hypotheses of a derivation
Γ ` J are distributed on the leaves of the proof tree.

Notice that the stack S disappears from the judgment eval. Its content is distributed in Γ,
i.e. Γ contains enough assumptions to carry the association between variables and values. These
bindings can be created in the form of hypothetical premises local to sub-reductions, discharged
in the spirit of natural deduction style—see e.g. rules (e_let) and (e_clone). It is worth noticing
that we do not need to introduce the well-formedness judgments for stores and environments:
these properties will be automatically ensured by the freshness conditions of eigenvariables in the
natural deduction style.

A consequence of NDS is that closures cannot be a pair “method, stack”, because there are
no explicit stacks to put in anymore. Rather, we have to “calculate” closures by gathering from
the environment the values associated to free variables of methods bodies. Thus closures are
translated as 〈ς(x)b, S〉 7−→ λx.bind(v1, (λy1.bind(. . . bind(vn, (λyn.ground(b))) . . .))), where the
first (i.e. outer) abstraction λx stands for ς(x), and the n remaining abstractions (n ≥ 0) capture

RR n° 4812



10 A. Ciaffaglione, L. Liquori, M. Miculan

x 7→ v

eval(s, x, s, v)
(e_var)

ιi /∈ Dom(s)

(closed(xi))
...

wrap(bi, bi) ∀i ∈ I

eval(s, [li = ς(xi)bi]
i∈I , (s, ιi 7→ λxi.bi), [li = ιi]

i∈I)
(e_obj)

(x 7→ v)
...

eval(s′, b(x), s′′, v′)

eval(s, a, s′, v) (e_let)

eval(s, let(a, b), s′′, v′)
(e_let)

(x 7→ [li : ιi]
i∈I)

...

evalb(s
′, bj , s

′′, v) j ∈ I

eval(s, a, s′, [li : ιi]
i∈I) s′(ιj) = λx.bj

eval(s, a.lj , s
′′, v)

(e_call)

eval(s, a, s′, [li = ιi]
i∈I )

ι′i /∈ Dom(s′)

ιi ∈ Dom(s′) ∀i ∈ I

eval(s, clone(a), (s′, ι′i 7→ s′(ιi)), [li = ι′i]
i∈I)

(e_clone)

eval(s, a, s′, v)

evalb(s, ground(a), s′, v)
(e_ground)

(x 7→ v)
...

evalb(s, b, s
′, v′)

evalb(s, bind(v, λx.b), s′, v′)
(e_bind)

(closed(xi))
...

closed(bi) ∀i ∈ I

closed([li = ς(xi)bi]
i∈I )

(c_obj)
closed(a)

(closed(x))
...

closed(b(x))

closed(let(a, b))
(c_let)

closed(a)

closed(a.l)
(c_call)

closed(a)

closed(clone(a))
(c_clone)

closed(b)

wrap(b, ground(b))
(w_ground)

(closed(z))
...

wrap(b{z/y}, b{z/y}) y 7→ v z fresh

wrap(b, bind(v, λy.b))
(w_bind)

Figure 6: Natural Deduction Semantics (NDS) of impςnov

the free variables of b. Hence, bind and ground are the two constructors of a new syntactic sort, i.e.
b ::= λx.ground(b) | λx.bind(v, b̄). Closures are dealt with by two auxiliary judgments wrap and
evalb, i.e. wrap ⊆ Term× Body and evalb ⊆ Store × Body × Store × Res. The judgment wrap
implements the formation of closure bodies, that is terms where the only possibly free variable
is the one corresponding to self. The intended meaning of Γ ` wrap(b, c) is that c is a closure
body obtained by binding all free variables in the term b to their respective results in Γ. We
need therefore to keep track of free variables in terms; to this end, we introduce a judgment
closed ⊆ Term, whose formal meaning is Γ ` closed(t) ⇐⇒ for all x ∈ FV(t) : closed(x) ∈ Γ.
Intuitively, the rules of wrap allow for successively binding the free variables appearing in the
method body, until it is “closed”. When we apply rule (w_bind), we choose any (free) variable y
in b, and bind it to the corresponding value v, as stated in Γ. The remaining part of the closure b
can be seen as the closure body of a method where the variable y is supposed to be “closed”, and
therefore it is obtained in a proof environment containing this information. This is obtained by the
subderivation Γ, closed(z) ` wrap(b{z/y}, b{z/y}), which repeats the rule (w_bind) until enough
variables have been bound and, correspondingly, enough assumptions of the form closed(z) have

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 11

been taken to be able to prove closed(b) (i.e. there are no more free variables to bind) and thus
apply rule (w_ground).

Notice that the closures we get in this manner are “optimized”, because only variables which
are really free in the body need to be bound in the closure, although in a non-deterministic order.
Evaluation of a closure takes place in the rule of method selection (e_call), in a context extended
with the binding between a fresh variable (representing self) and the (implementation of the) host
object. Of course, all the local bindings of the closure have to be unraveled (i.e. assumed in the
hypotheses) before the real evaluation of the body is performed. This unraveling is implemented
by the auxiliary judgment evalb, which can be seen as the dual of wrap.

For lack of space, we cannot describe in detail all the rules of Figure 6; we refer to [9] for
a complete discussion. We limit ourselves to the object creation rule (e_obj). The semantics
of objects requires the preliminary transformation of the method list, forming the object, into a
closure list: this is obtained through the wrap judgment and corresponding hypothetical premises.
Notice that the well-formedness condition about the stack disappears, since they are automatically
ensured by the natural deduction style.

Adequacy. We prove here that the presentation of impς in NDS corresponds to the original one
of [1]. Due to lack of space, we cannot describe these results in detail; we refer the interested
reader to [9]. First, we establish the relationship between our heterogeneous contexts Γ and the
environments S, E of the original setting [1], and between the two kinds of stores s and σ.

Definition 2 (Well-formed context) A context Γ is well-formed if it can be partitioned as Γ =
ΓRes∪ΓTType∪Γclosed, where ΓRes contains only formulae of the form x 7→ v, and ΓTType contains
only formulae of the form x 7→ A, and Γclosed contains only formulae of the form closed(x);
moreover, ΓRes and ΓTType are functional (e.g., if x 7→ v, x 7→ v′ ∈ ΓRes then v ≡ v′).

Definition 3 Let Γ be a context, S a stack, E a type environment, s and σ stores. We define the
following:

Γ ⊆ S , ∀x 7→ v ∈ Γ. x 7→ v ∈ S Γ ⊆ E , ∀x 7→ A ∈ Γ. x 7→ A ∈ E

S ⊆ Γ , ∀x 7→ v ∈ S. x 7→ v ∈ Γ E ⊆ Γ , ∀x 7→ A ∈ E. x 7→ A ∈ Γ

γ(S) , {x 7→ S(x) | x ∈ Dom(S)}

s . σ , ∀ιi ∈ Dom(s). γ(Si), closed(x) ` wrap(bi, s(ιi)(xi)), where σ(ιi) = 〈ς(xi)bi, Si〉

σ . s , ∀ιi ∈ Dom(σ). γ(Si), closed(x) ` wrap(bi, s(ιi)(xi)), where σ(ιi) = 〈ς(xi)bi, Si〉

In the following theorem, for b̄ a closure, let us denote by stck(b̄) the stack containing the
bindings in b̄, and by body(b̄) the inner body. These functions can be defined recursively on b̄ as
follows:

stck(ground(b)) = ∅ stck(bind(v, λx.b̄)) = stck(b̄) ∪ {x 7→ v}

body(ground(b)) = b body(bind(v, λx.b̄)) = body(b̄)

Theorem 3 (Adequacy of reduction) Let Γ be well-formed, and σ • S ` �.

1. Let Γ ⊆ S, and s . σ.

(a) If Γ ` eval(s, a, s′, v), then there exists σ′ such that σ • S ` a ; v • σ′, and s′ . σ′;

(b) If Γ ` evalb(s, b̄, s
′, v), then there exists σ′, such that σ • stck(b̄) ` body(b̄) ; v •σ′, and

s′ . σ′.

2. Let S ⊆ Γ, and σ . s.
If σ • S ` a ; v • σ′, then there exists s′, such that Γ ` eval(s, a, s′, v), and σ′ . s′.

Proof 1 1. By mutual structural induction on Γ ` eval(s, a, s′, v) and Γ ` evalb(s, b̄, s
′, v);

2. By structural induction on σ • S ` a ; v • σ′. ut

RR n° 4812



12 A. Ciaffaglione, L. Liquori, M. Miculan

wt(Bi) ∀i ∈ I

wt([li : Bi]
i∈I)

(wt_obj)
sub(A, B) sub(B, C)

sub(A, C)
(sub_trans)

wt(Bi) ∀i ∈ I ∪ J

sub([li : Bi]
i∈I∪J , [li : Bi]

i∈I)
(sub_obj)

wt(A)

sub(A, A)
(sub_refl)

type(a, A) sub(A, B)

type(a, B)
(t_sub)

type(a, [li : Bi]
i∈I) j ∈ I

type(a.lj , Bj)
(t_call)

wt(A) x 7→ A

type(x, A)
(t_var)

type(a, [li : Bi]
i∈I)

type(clone(a), [li : Bi]
i∈I )

(t_clone)

(xi 7→ [li : Bi]
i∈I )

...
type(bi, Bi) ∀i ∈ I

type([li = ς(xi)bi]
i∈I , [li : Bi]

i∈I )
(t_obj)

type(a, A)

(x 7→ A)
...

type((b x), B)

type(let(a, b), B)
(t_let)

Figure 7: Term Typing for impςnov

2.2 Typing of Terms

The original type system for terms is easily translated in NDS. The term typing judgment E `
a : A is transformed as Γ ` type(a, A), where type ⊆ Term × TType and TType is the sort of
(term) types. Also the other judgments of well-formedness of types wt ⊆ TType and of subtype
sub ⊆ TType× TType are recovered also in this setting.

As the stack S disappears from the reduction judgment, so the type environment E disappears
from the typing judgment, thus simplifying the judgment itself and the formal proofs about it.
The global context Γ contains, among other stuff (knowledge, information), associations between
the free variables xi, eventually appearing in the object a, and the corresponding types Ai. These
typing assignments will be used, locally to sub-reductions, for assuming hypothetical premises
about the types of variables, and then will be discharged according to the Natural Deduction
style. dunque non giudizio (derivato, come per S) of stacks, we do not need to introduce a well-
formedness judgment for the type environments. Typing contexts will be automatically ensured
to be well-formed by the stack discipline of Natural Deduction and freshness of locally-quantified
variables.

The rules in NDS for typing terms and related judgments are given in Figure 7. They are an
easy translation of the original ones; just notice that in rules (t_obj) and (t_let) we discharge
a typing assumption on a locally-quantified (i.e., fresh) variable. Moreover, in rule (t_var), the
premise wt(A) ensures that only well-formed types can be used for typing terms.

Theorem 4 (Adequacy of term typing) Let Γ be well-formed, and E such that E ` �.

1. If Γ ⊆ E, and Γ ` type(a, A), then E ` a : A;

2. If E ⊆ Γ, and E ` a : A, then Γ ` type(a, A).

Proof 2 1. By structural induction on the derivation of Γ ` type(a, A);

2. By structural induction on the derivation of E ` a : A. ut

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 13

v ≡ [li = ιi]
i∈I A ≡ [li : Bi]

i∈I

s(ιi) ≡ λxi.bi wt([li : Bi]
i∈I)

(xi 7→ A), (cores(s, v, A))
...

cotypeb(s, bi, Bi) ιi ∈ Dom(s) ∀i ∈ I

cores(s, v, A)
(t_cores)

type(b, A)

cotypeb(s, ground(b), A)
(t_coground)

cores(s, v, A)

(y 7→ A)
...

cotypeb(s, b, B)

cotypeb(s, bind(v, λy.b), B)
(t_cobind)

Figure 8: Coinductive Rules for cores and cotypeb.

2.3 Coinductive Typing of Results

Since results contain references to the store, in order to be able to type them we need to type
store locations. In principle, the type of a store location is the type of its content, which in
turn may contain pointers to the store. Therefore, the potential presence of loops in the store
makes the typing system for results non-trivial: a naïve system would chase pointers indefinitely,
unraveling non-wellfounded structures in the memory. The solution adopted in [1] is to introduce
yet another typing structure, the store types, which assign to each location a type consistently with
the content of the location. Store types have to be provided beforehand, and suitable auxiliary
proof systems are needed in order to check their consistency with the stores. Of course all this
technical machinery adds further complexity to the (already difficult, though) metatheoretical
properties of the system.

In this paper, we propose a different approach to result typing inspired by the features of
CC(Co)Ind, where the canonical way for dealing with non-wellfounded, circular data is coinduction.
We will see now that this approach is quite successful for the fragment impςnov, although is not
sufficient for the full impς .

For impςnov, the two original judgments of result typing Σ |= v : A and store typing Σ |= s
collapse into a unique judgment: Γ ` cores(s, v, A). More precisely we use two mutual coinductive
judgments cores ⊆ Store × Res × TType, and cotypeb ⊆ Store × Body × TType. The intended
meaning of the derivation of Γ ` cores(s, v, A) is that the object v in the store s has type A;
similarly, Γ ` cotypeb(s, b, A) means that the body of some object’s method b in the store s as
type A. The rules for these mutual coinductive judgments are in Figure 8. The idea at the heart
of this system is simple and it can be caught by looking at rule (t_cores): in order to check if
an object can be given a type A, we open all the pointers belonging to method closures, thus
visiting the store until a closure without pointers is reached: then we can type a closure using the
traditional type judgment. If the original pointer is encountered in the meanwhile, then the type
A we started with is used (see rule (t_cobind)). Clearly, this means that the predicate we are
proving has to be assumed in the hypotheses, hence the coinduction.

As a result, the typing system is very simple, and moreover we do not need store types (and all
related machinery) anymore. Also, since stacks and type environments are already distributed in
the proof contexts, we do not need stack typing judgments either; however, in stating and proving
the Subject Reduction theorem we will require that the types of variables in the contexts will be
consistent with the values associated to variables.

RR n° 4812



14 A. Ciaffaglione, L. Liquori, M. Miculan

Let us see an example of application of the coinductive rules. We type the result [l = 0] to the
store (containing a loop) s ≡ {0 7→ λx.bind([l = 0], λy.ground(y))} with the following derivation:

(cores(s, [l = 0], [l : [ ]]))(1)

(y 7→ [l : [ ]])(2)

type(y, [l : [ ]])
(t_var)

sub([l : [ ]], [ ])

type(y, [ ])
(t_sub)

cotypebody(s, ground(y), [ ])
(t_coground)

cotypeb(s, bind([l = 0], λy.ground(y)) [ ])
(t_cobind) (2)

cores(s, [l = 0], [l : [ ]])
(t_cores) (1)

Adequacy. Since we use coinductive proof systems, our perspective is quite different from the
original formulation of impς . Nevertheless, for the impςnov fragment we have the following ade-
quacy result:

Theorem 5 (Adequacy of coinductive result typing) Let Γ be a well-formed context. Then:

1. For s . σ, if Γ ` cores(s, v, A), then there exists Σ, such that Σ |= v : A, and Σ |= σ;

2. For σ . s, if Σ |= v : A, and Σ |= σ, then Γ ` cores(s, v, A).

Proof 3 (1) By induction on v; (2) By induction on the structure of the derivation Σ |= v : A. ut

2.4 Subject Reduction

We can now state and prove the Subject Reduction. Due to the rephrasing of impς , we have to
require the coherence between the types and the results associated to variables in the context;
that is, given the store s:

∀x, w, C. x 7→ w, x 7→ C ∈ Γ⇒ Γ ` cores(s, w, C)

This corresponds to the (Store Typing) judgment of [1], but our management, thanks to distributed
stacks and environments, is easier. We obtain the following version of the Subject Reduction
theorem, which is simpler both to state and prove:

Theorem 6 (Subject Reduction for impςnov) Let Γ be a well-formed context. Then:

Γ ` type(a, A) ∧ Γ ` eval(s, a, t, v) ∧
(∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` cores(s, w, C)) ⇒
∃A+ : TType. Γ ` cores(t, v, A+) ∧ Γ ` sub(A+, A).

Proof 4 By structural induction on the derivation of Γ ` eval(s, a, t, v). See Appendix C. ut

3 impς in Inductive Natural Deduction Semantics

In this section, we scale up from impςnov toward the full impς , taking into account the “override”
constructor. This apparently slight difference yields some deep changes in the typing system of
results, because we need to introduce new syntactic structures and the result typing system is not
coinductive anymore. Consequently, also the properties of the calculus need to be reformulated;
in spite of this, most of the development carried out for impςnov can be readily recovered for the
full impς , thus enlightening the modularity of our development.

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 15

eval(s, a, s′, [li = ιi]
i∈I) j ∈ I ιj ∈ Dom(s′)

(closed(x))
...

wrap(b, b)

eval(s, a.l← ς(x)b, (s′.ιj ← λx.b), [li = ιi]
i∈I )

(e_over)

closed(a)

closed(x)
...

closed(b)

closed(a.l← ς(x)b)
(c_over)

type(a, [li : Bi]
i∈I) j ∈ I

(x 7→ [li : Bi]
i∈I)

...
type(b, Bj)

type(a.l← ς(x)b, [li : Bi]
i∈I)

(t_over)

Figure 9: Extra rules for operational semantics and typing of terms for impς .

Σ1(ιi) ≡ [li : Σ2(ιi)]
i∈I wt([li : Σ2(ιi )]i∈I ) ιi ∈ Dom(Σ) ∀i ∈ I

res(Σ, [li = ιi]
i∈I , [li : Σ2(ιi)]

i∈I )
(t_res)

dom(Σ) ⊆ dom(Σ′) ∀ι ∈ dom(Σ). Σ′(ι) = Σ(ι)

ext(Σ′, Σ)
(t_ext)

type(b, A)

typeb(Σ, ground(b), A)
(t_ground)

dom(s) ⊆ dom(Σ)

(xi 7→ Σ1(ιi))
...

typeb(Σ, s(ιi)(xi), Σ2(ιi)) ∀i ∈ I

comp(Σ, s)
(t_comp)

res(Σ, v, A)

(y 7→ A)
...

typeb(Σ, b̄, B)

typeb(Σ, bind(v, λy.b̄), B)
(t_bind)

Figure 10: Inductive rules for result typing for impς .

3.1 Natural Deduction Semantics and Typing of Terms

The operational semantics of Figure 6 and the typing system of Figure 7 are immediately extended
to impς by adding the rules dealing with override, as shown in Figure 9. The adequacy results for
the reduction and term typing judgment of impςnov (Theorems 3, 4) naturally extends to impς .

3.2 Inductive Typing of Results

Let SType be the sort of stores types, that is finite maps from locations to method types. The
result typing judgment is a predicate defined on triples res ⊆ SType×Res×TType. The intended
meaning of a derivation Γ ` (res Σ v A) is that in the store type Σ, the result v has type A. That is,
for all ιi ∈ π2(v): A = Σ1(ιi). In the (formal) development of the theory of impς , we are interested
only stores whose content is “compatible” with store types. This compatibility is represented by
the judgment comp ⊆ SType× Store, which corresponds to Σ |= s. If Γ ` comp(Σ, s), then the
content of each locations in the store s can be given the type indicated by Σ. Finally, we need
the auxiliary extension relation ext ⊆ SType× SType (Γ ` ext(Σ′, Σ) means that Σ′ extends Σ)
and a specialized predicate for typing closures, namely typeb ⊆ SType × Body × TType. The
rules for the judgments res, ext, comp and typeb are in Figure 10. Some comments on this system
are in order. First, we do not need to formalize the well-formedness of store types. As before,
this property can be proved to hold automatically, due to the use of natural deduction style.
We do not need the “stack typing” judgment either—in fact, we do not have explicit stacks and
type environments at all. However, the correspondence between results and types associated to
the same variable in the proof environment will be taken into account in the Subject Reduction
theorem.

An important difference of this system w.r.t. the corresponding one for impςnov (Figure 8), is
that the rules in Figure 10 are in the usual inductive setting. We do not need the coinductive
approach, because we do not check the types of locations by chasing pointers in the store; instead,

RR n° 4812



16 A. Ciaffaglione, L. Liquori, M. Miculan

we resort to the store type Σ, which is a finite structure. Of course, store types have to be given
beforehand, that is they cannot be synthesized by the typing system.

We prove the adequacy of the reformulation: notice that the adequacy holds also for the
fragment without object override, because the present calculus is a conservative extension of
impςnov.

Theorem 7 (Adequacy of inductive result typing) Let Γ be a well-formed context, and Σ a
store type such that Σ ` �.

1. For s . σ, if Γ ` res(Σ, v, A) and Γ ` comp(Σ, s), then Σ |= v : A and Σ |= σ;

2. For σ . s, if Σ |= v : A and Σ |= σ, then Γ ` res(Σ, v, A) and Γ ` comp(Σ, s).

Proof 5 1. By induction on the structure of the derivations Γ ` res(Σ, v, A) and Γ ` comp(Σ, s);

2. By induction on the structure of the derivations Σ |= v : A and Σ |= σ. ut

3.3 Subject Reduction

We can now state and prove the Subject Reduction theorem. Similarly to the case of Theorem 6,
we have to take care of the coherence between the types and the values associated to variables in
the context: that is, given the store type Σ:

∀x, w, C. x 7→ w, x 7→ C ∈ Γ⇒ Γ ` res(Σ, w, C)

It is worth noticing that the Subject Reduction is more involved than the corresponding one for
the coinductive setting (Theorem 6), both in the statement and in the proof, due to the presence
of store types.

Theorem 8 (Subject Reduction for impς) Let Γ be a well-formed context. Then:

Γ ` type(a, A) ∧ Γ ` eval(s, a, t, v) ∧ Γ ` comp(Σ, s) ∧
(∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` res(Σ, w, C)) ⇒
∃A+ : TType, Σ+ : SType.
Γ ` res(Σ+, v, A+) ∧ Γ ` ext(Σ+, Σ) ∧ Γ ` comp(Σ+, t) ∧ Γ ` sub(A+, A)

Proof 6 By structural induction on the derivation of Γ ` eval(s, a, t, v). See Appendix D. ut

4 Formalization in Coq

In the previous sections we have given a presentation of impς better suited for an encoding in Coq.
Its formalization in the specification language of the proof assistant is nevertheless a complex task,
since we have to face many subtle details which are left “implicit” on the paper. Due to lack of
space, here we will briefly discuss only few interesting features of this development; we refer to [9]
for further details.

The encoding of impς in Coq follows naturally the rephrasing of the previous sections. An
immediate advantage is that we can use well-known encoding methodologies (see e.g. [17,26,30,28],
among others); therefore, the adequacy of the encoding with respect to the NDS presentation can
be proved easily.

A well-known problem we have to face in the encoding is the treatment of the binders, namely
ς and let. Binders are known to be difficult to deal with; we would the metalanguage to take
care of all the burden of α-conversion, substitutions, variable scope and so on. In recent years,
many approaches have been proposed for dealing with binders, which essentially differ from the
expressive power of the underlying metalanguage; a detailed description of these approaches is
outside the scope of this paper. We refer to e.g. [18, 17, 26, 27, 28, 19, 20] for a deeper discussion.

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 17

Among the many possibilities, we have chosen the second-order abstract syntax, called also
“weak HOAS” [26, 20, 19]. In this approach, binding operators are represented by constructors of
higher order type [12, 26]. The main difference with respect to the full HOAS is that abstractions
range over unstructured (i.e., non inductive) sets of abstract variables. In this way, α-conversion is
automatically provided by the metalanguage, while substitution of terms for variables is not. This
fits perfectly the needs for the encoding of impς , since the language is taken up-to α-equivalence,
and substitution is never used in the semantics. Moreover the weak HOAS is compatible with
inductive datatypes, still avoiding the arising of exotic terms ; therefore, we can establish easily
the adequacy of the encoding.

An issue of HOAS is related to the difficulty of reasoning by induction and using recursion over
contexts, since they are rendered as functional terms. Finally, one looses the possibility of handling
and proving properties over the mechanisms delegated to the metalanguage.

However, when we have to develop metatheoretical results in a HOAS setting, the expressive
power of CC(Co)Ind may be not enough. In [20, 19, 30] a general methodology for reasoning on
systems in HOAS is presented. The gist is to extend the framework with a set of axioms, called
the Theory of Contexts, capturing some basic and natural properties of names and term contexts.
These axioms allow for a smooth handling of schemata in HOAS, with a very low mathematical and
logical overhead. In fact, this work can be seen also as an extensive case study in the application of
the Theory of Contexts, applied here for the first time on an imperative object-oriented calculus.

4.1 Syntax

The signature of the weak HOAS-based encoding of the syntax is the following:

Parameter Var : Set.

Definition Lab := nat.

Inductive Term : Set := var : Var -> Term

| obj : Object -> Term

| call : Term -> Lab -> Term

| over : Term -> Lab -> (Var -> Term) -> Term

| clone: Term -> Term

| let : Term -> (Var -> Term) -> Term

with Object : Set := obj_nil : Object

| obj_cons: Lab -> (Var -> Term) -> Object -> Object.

Coercion var : Var >-> Term.

Inductive TType : Set := mktype: (list (Lab * TType)) -> TType.

Notice first that we use a separate type Var for variables (weak HOAS setting): the only terms
which can inhabit this type are the variables of the metalanguage, that represent directly the
variables of the object language. The α-equivalence on terms is immediately inherited from the
metalanguage, still keeping induction principles for term. For instance, the two objects [m = ς(x)x]
and [m = ς(y)y] can be represented by: (obj (obj_cons m [x:Var]x obj_nil)), and (obj

(obj_cons m [y:Var]y obj_nil)) which are α-equivalent.
Notice that, if Var were inductive, we could define exotic terms using the Case construct of

Coq. Exotic terms are Coq terms which do not correspond to any expression of impς , and therefore
they have to be ruled out by extra “well-formedness” judgments, thus complicating the whole
encoding.

4.2 Natural Deduction Semantics

In order to encode the operational semantics of impς , we have to represent all the required entities
and operations for their manipulation. Due to lack of space, we present here only a selection of
these datatypes.

RR n° 4812



18 A. Ciaffaglione, L. Liquori, M. Miculan

Locations are naturally represented as natural numbers. Results are lists of pairs built of
method names and pointers to the corresponding closures in the store:

Definition Loc := nat.

Definition Res : Set := (list (Lab * Loc)).

Parameter stack : Var -> Res.

The environmental information of the stack is represented as a function associating a result to each
(declared) variable. This map is never defined effectively: (stack x v) corresponds to x 7→ v,
which is discharged from the proof environment but never proved as a judgment. Correspondingly,
assumptions about stack will be discharged in the rules in order to associate results to variables.

On the other hand, stores cannot be distributed in the proof environment. A store is a finite
list of method closures ; the i-th element of the list is the closure associated to ιi. Closures are a
body abstracted with respect to the self variable; where closure bodies are an inductive datatype
with a higher-order constructor similar to let:

Inductive Body : Set := ground : Term -> Body

| bind : Res -> (Var -> Body) -> Body.

Definition Closure : Set := (Var -> Body).

Definition Store : Set := (list Closure).

Some functions are needed for manipulating the structures we have introduced so far (e.g.„ for
projecting single lists from lists of pairs, for generating new results from objects and results, etc.);
see Appendix B.1 for the code.

Extra notions and judgments. We formalize closed by means of a function, in order to
simplify the statement of the operational semantics and the proofs in Coq. The intended behaviour
of this function, defined by mutual recursion on the structure of terms and objects, is to propagate
in depth the predicate closed, thus reducing a predicate (closed t) into a predicate about
simpler terms:

Parameter dummy : Var -> Prop.

Fixpoint closed [t:Term] : Prop := Cases t of

(var x) => (dummy x)

| (obj ml) => (closed_obj ml)

| (over a l m) => (closed a) /\ ((x:Var) (dummy x) -> (closed (m x)))

| (call a l) => (closed a)

| (clone a) => (closed a)

| (lEt a b) => (closed a) /\ ((x:Var) (dummy x) -> (closed (b x)))

with closed_obj [ml:Object] : Prop := Cases ml of

(obj_nil) => True

|(obj_cons l m nl) => (closed_obj nl) /\ ((x:Var)(dummy x)->(closed (m x)))

end.

In the translation, we use locally quantified variables as placeholders for bound variables; thus
they have not to be considered as “free” variables. We mark them as “dummy” by an auxiliary
predicate dummy, where dummy variables are considered “closed”. The proposition resulting from
the Simplification of a (closed t) goal is easily dealt with using the tactics provided by Coq. In
the same way, we define also the functions notin : Var -> Term -> Prop and fresh : Var
-> (list Var) -> Prop, which capture the “freshness” of a variable in a term and w.r.t. a list
of variables, respectively (see Appendix B.2). Finally, the judgment wrap is formalized via an
inductive predicate:

Inductive wrap : Term -> Body -> Prop:=

w_ground: (b:Term)

(closed b) -> (wrap b (ground b))

| w_bind : (b:Var -> Term) (c:Var -> Body) (y:Var) (v:Res) (xl:Varlist)

((z:Var) (dummy z) /\ (fresh z xl) -> (wrap (b z) (c z))) ->

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 19

(stack y) = (v) ->

((z:Var) ~(y=z) -> (notin y (b z))) ->

(wrap (b y) (bind v c)).

In the rule w_bind, the premise ((z:Var) ~(y=z) -> (notin y (b z))) ensures that b is a
“good context” for y, that is, y does not occur free in b. Thus, the replacement b{z/y} or rule
(w_bind) of Figure 6 can be implemented simply as the application (b z), where z is a local (i.e.,
fresh) variable.

Term reduction judgment. The operational semantics of impς is easily encoded by two mutual
inductive judgments

Mutual Inductive eval : Store -> Term -> Store -> Res -> Prop := ...

with eval_body : Store -> Body -> Store -> Res -> Prop := ...

Most of their rules are encoded straightforwardly. In particular, the rules for variables and let
enlighten how the proof environment is used to represent the stack:

e_var : (s:Store)(x:Var)(v:Res) (stack x) = (v) -> (eval s x s v)

e_let : (s,s’,t:Store) (a:Term) (b:Var -> Term) (v,w:Res)

(eval s a s’ v) ->

((x:Var) (stack x)=(v) -> (eval s’ (b x) t w)) ->

(eval s (let a b) t w)

The formalization of the rule (e_obj) uses some functions for manipulating stores, closures
and results:

e_obj : (s:Store) (ml:Object) (cl:(list Closure)) (xl:Varlist)

(scan (proj_meth_obj (ml)) (cl) (xl) (distinct (proj_lab_obj ml))) ->

(eval s (obj ml) (alloc s cl) (new_res_obj ml (size s)))

The function alloc simply appends the new list of closures to the old store, follows the usual
order on natural numbers. The function new_res_obj produces a new result, collecting method
names of the given object and pairing them to new pointers to the store. The function scan

returns a predicate which has to be proved for ensuring that the methods of the object have
distinct names.

The method selection uses the extra predicate eval_body for evaluating closures:

e_call : (s,s’,t:Store) (a:Term) (v,w:Res) (c:Closure) (l:Lab)

(eval s a s’ v) -> (In l (proj_lab_res v)) ->

(store_nth (loc_in_res v l s’) s’) = (c) ->

((x:Var) (stack x) = (v) -> (eval_body s’ (c x) t w)) ->

(eval s (call a l) t w)

The evaluation of the body takes place in an environment where a local variable x denoting “self”
is associated to (the value of) the receiver object itself. The predicate eval_body is defined
straightforwardly.

4.3 Type system for terms

The encoding of the typing system for terms is not problematic. Similarly to the case of stacks,
we model the typing environment with a function which will be used only for associating object
types to variables.

Parameter typenv : Var -> TType.

Thus, judgments for typing terms and object bodies are two mutually defined inductive pred-
icates:

RR n° 4812



20 A. Ciaffaglione, L. Liquori, M. Miculan

Mutual Inductive type : Term -> TType -> Prop :=

| t_sub : (a:Term) (A,B:TType)

(type a A) -> (subtype A B) -> (type a B)

| t_var : (x:Var) (A:TType)

(wftype A) -> ((typenv x) = A) -> (type x A)

...

| t_obj : (ml:Object) (A:TType)

(type_obj A (obj ml) A) -> (type (obj ml) A)

| t_call : (a:Term) (l:Lab) (A,B:TType)

(type a A) ->

(In l (labels A)) -> (type_from_lab A l) = (B) ->

(type (call a l) B)

...

with type_obj : TType -> Term -> TType -> Prop := ...

where subtype represents the sub predicate. Due to lack of space, we omit here its encoding,
which makes use of some auxiliary predicates for permutation and extension of lists representing
object types.

4.4 Typing of results

Coinductive Result Typing for impςnov. The coinductive system for result typing of Figure 8
are easily rendered in Coq by means of Coinductive predicates. We only point out that in the
encoding of cores, we have to carry along the whole (result) type while we scan and type the
components of results.

CoInductive cotype_body : Store -> Body -> TType -> Prop :=

t_coground: (s:Store) (b:Term) (A:TType)

(type b A) -> (cotype_body s (ground b) A)

| t_cobind : (s:Store) (b:Var -> Body) (A,B:TType) (v:Res)

(cores A s v A) ->

((x:Var)(typenv x) = (A) -> (cotype_body s (b x) B)) ->

(cotype_body s (bind v b) B)

with cores : TType -> Store -> Res -> TType -> Prop :=

t_covoid : (A:TType) (s:Store)

(cores A s (nil (Lab * Loc)) (mktype (nil (Lab * TType))))

| t_costep : (A,B,C:TType) (s:Store) (v:Res) (i:Loc) (c:Closure)

(l:Lab) (pl:(list (Lab * TType)))

(cores C s v A) ->

(store_nth i s) = (c) -> (lt i (size s)) ->

((x:Var) (typenv x) = (C) -> (cotype_body s (c x) B)) ->

(list_from_type A) = (pl) ->

~(In l (labels A)) -> ~(In i (proj_loc_res v)) ->

(cores C s (cons (l,i) v) (mktype (cons (l,B) pl))).

Inductive Result Typing for impς. When we move to impς , we need to formalize store types:

Definition SType : Set := (list (TType * TType)).

Suitable functions for store type manipulation (construction and destruction) are thus easily de-
fined; see Appendix B.4. The main judgments res, type_body are formalized as (non mutual)
inductive predicates:

Inductive res : SType -> TType -> Res -> TType -> Prop :=

t_void : (S:SType) (A:TType)

(res S A (nil (Lab * Loc)) (mktype (nil (Lab * TType))))

| t_step : (S:SType) (A,B,C:TType) (v:Res) (i:Loc)

(l:Lab) (pl:(list (Lab * TType)))

(res S A v B) ->

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 21

(stype_nth_1 i S) = (A) -> (stype_nth_2 i S) = (C) ->

(lt i (dim S)) ->

(wftype A) -> (type_from_lab A l)=C ->

(list_from_type B) = (pl) ->

(wftype C) -> ~(In l (labels B)) ->

~(In i (proj_loc_res v)) ->

(res S A (cons (l,i) v) (mktype (cons (l,C) pl))).

Inductive type_body : SType -> Body -> TType -> Prop :=

....

5 Metatheory of impς in Coq

One of the main aims of the formalization presented in the previous section is to allow for the
formal development of important properties of impς . In this section we discuss briefly the formal
development on the uppermost important, yet delicate to prove, property of Subject Reduction.
We stated Subject Reduction as Theorems 6 and 8 for impςnov and impς , respectively, which are
formalized as follows:

Theorem SR_nov : (s,t:Store) (a:Term) (v:Res)

(eval s a t v) -> (A:TType) (type a A) ->

((x:Var)(w:Res)(stack x)=(w) /\ (typenv x)=C -> (cores s w C)) ->

(EX B:TType | (cores t v B) /\ (sub B A)).

Theorem SR : (s,t:Store) (a:Term) (v:Res)

(eval s a t v) -> (A:TType)(type a A) -> (S:SType)(comp S s) ->

((x:Var)(w:Res)(C:TType)(stack x)=(w)/\(typenv x)=C -> (res S w C)) ->

(EX B:TType | (EX T:SType |

(res T v B) /\ (ext T S) /\ (comp T t) /\ (sub B A))).

Despite that cores is coinductive and res is inductive, both theorems are proved by structural
induction on the derivation of (eval s a t v).

Before proving these theorems it is necessary to address all the aspects concerning concrete
structures, as stores, store types, objects, object types and results. Thus, many technical lemmata
about operational semantics, term typing and result typing has been formalized and proved. It
turns out that these lemmata are relatively compact and easy to prove, in the case of coinductive
encoding, because we have not to deal with store types. In particular, we have taken full advantage
of the possibility of making coinductive proofs for the cores predicate, via the Cofix tactic.

On the other hand, in the inductive encoding of result typing, closer to the original setting [1],
the development of the metatheory is quite more involved due to the handling of store types. It
is important noticing that we are able to reuse some of the proofs developed for the coinductive
encoding with a minimal effort. These proofs are those not requiring an explicit inspection on
the structure of store types; in this case we have simply to convert potentially coinductive proofs
carried out on derivations into proofs by induction on the structure of results. This re-usability of
proofs witnesses the important fact that the present approach is quite modular.

However, some properties dealing with linear structures (such as stores) get much more involved
when we consider also store types. In this case we cannot reuse part, neither follow the pattern, of
the proofs of the simplified encoding. Instead, we have to develop different techniques, often more
involved than every other one in the coinductive approach. This confirms that having explicit
linear structures in judgments is very cumbersome, and therefore that the choice of delegating the
stack and typing environment to the metalinguistic proof context reduces considerably the length
and the complexity of proofs.

Another crucial aspect of our formalization is the use of higher-order abstract syntax. When
reasoning on hypothetical premises with locally quantified variables, we gain for free the generation
of new (meta)variables, but we do not know a priori whether two different variables x and y denote
different or equal names. Moreover we do not know whether a given variable occurs free or not in

RR n° 4812



22 A. Ciaffaglione, L. Liquori, M. Miculan

a term. In fact, reasoning about datatypes in higher-order abstract syntax is not fully supported
in actual logical frameworks.

In order to get the extra expressive power we need, we extend the framework with the Theory
of Contexts [20, 30]. This is a simple set of axioms which allow for a smooth manipulations of
these notions related to names and variables. In particular, the Theory of Contexts allows for the
generation of “fresh” variables, via the unsaturation axiom: “∀M. ∃x. x /∈ M ”. However, in our
application this axiom has to be slightly modified in order to take into account of types. More
precisely, we adopt the unsaturation axiom with two flavours. The first axiom corresponds to the
case of using metavariables as placeholders. This is useful in conjunction with typing properties:

Axiom unsat : (A:TType)(xl:Varlist)(EX x | (dummy x)/\(fresh x xl)/\(typenv x)=A).

The second axiom reflects the perspective of using metavariables for variables of the object
language: we assume the existence of fresh names to be associated both to results and their
type. We have two versions of this axiom, depending on which implementation of result typing
we consider:

Axiom unsat2_cores : (s:Store) (v:Res) (A:TType) (cores s v A) ->

(xl:(list Var))(EX x | (fresh x xl)/\(stack x)=v/\(typenv x)=A).

Axiom unsat2_res : (S:SType) (v:Res) (A:TType) (res S v A) ->

(xl:(list Var))(EX x | (fresh x xl)/\(stack x)=v/\(typenv x)=A).

Their intuitive meaning is that we can always associate a fresh variable to a given value
and a type, provided they are consistent in a given store, or w.r.t. a given store type. In fact,
unsat2_cores and unsat2_res correspond exactly to the rule (Store x Typing) in [1].

6 Conclusions and Further Work

In this paper, we have studied the formal development of the theory of object-based calculus
with types and side effects, such as impς , in type-theory based proof assistants, such as Coq. In
the encoding of the syntax and semantics of the calculus, we have tried to take most advantage
of the features of CC(Co)Ind, the coinductive type theoretic logical framework underlying Coq.
Therefore, we have developed an original presentation of impς , in the setting of Natural Deduction
Semantics (NDS) and weak Higher Order Abstract Syntax (HOAS). This reformulation is interesting
per se, since it allows for a simpler and smoother treatment of complex properties, such as Subject
Reduction and Type Soundness. In fact, for a significant fragment of impς , we have been able to
eliminate “store types”, in favour of coinductive typing systems. The complete system has been
encoded in Coq, and the fundamental property of Subject Reduction formally proved.

To our knowledge, this is the first development of the theory of an object-based language
with side effects, in Coq, using NDS, HOAS and coinduction. Our experience leads us to affirm
that this approach, is particularly well-suited with respect to the proof practice of Coq, also in
the very stressful case of a calculus featuring objects, methods, dynamic lookup, types, subtypes,
and imperative features. Moreover, this perspective give rise to original, and more easy to deal
with, presentation of the very same language. In fact the absence of the explicit environmental
structures in judgments has a direct impact on the structure of the proofs, thus reducing their
complexity.

Future work. The formalization of impς is part of a larger project involving the study, definition
and certified implementation of a typed class-based language (of the SmallTalk family) and of its
intermediate object-based language (of the Self family) and their tools (interpreters, compilers).
Interpreters will run on their own virtual machine or compiled on a (hopefully certified) virtual
machines, such as the JVM.

The literature reports some experiments concerning these advanced goals: Bertot uses the Coq

system for certifying a compiler for an imperative language [5], Strecker proves the correctness
of a compiler from Java source language to Java bytecode in the proof environment Isabelle [31].

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 23

However, none of these works adopts higher-order abstract syntax for dealing with binders. In
general, these formalizations represent variables either with first-order names, or with de Brujin
indexes [18, 14]. It is well-known that these approaches have the drawback of a difficult handling
of α-equivalence, replacement of variables, substitution, etc.—all problems which can be avoided
in a HOAS setting.

Unfortunately, up to now HOAS techniques are not suitable for proof extraction; therefore, our
interpreter can be only be executed on a computer through the Coq virtual machine. Actually the
extraction mechanism under the form of Caml-code would probably oblige us to translate the HOAS
encoding to one based on a first-order representation of names and binders. Nevertheless, we plan
to use the formalization we have presented in this paper, for certifying, rather than extracting,
compilers and interpreters. This task, which apparently is more difficult than the automatic
program extraction, could benefit by the use off NDS and HOAS.

Acknowledgments. The authors are grateful to Yves Bertot, Joëlle Despeyroux, and Bernard
Serpette for fruitful discussions and comments on early formalisations of impς .

References

[1] M. Abadi and L. Cardelli. A theory of objects. Springer-Verlag, 1996.

[2] H. Barendregt and T. Nipkow, editors. Proceedings of TYPES’93, volume 806 of Lecture
Notes in Computer Science. Springer-Verlag, 1994.

[3] G. Barthe, P. Courtieu, G. Dufay, and S. M. de Sousa. Tool-assisted specification and veri-
fication of the JavaCard platform. In Proc. of AMAST, volume 2422 of LNCS, pages 41–59,
2002.

[4] G. Barthe, G. Dufay, L. Jakubiec, B. Serpette, and S. M. de Sousa. A formal executable
semantics of the JavaCard platform. In D. Sands, editor, Proceedings of ESOP’01, volume
2028 of LNCS, pages 302–319. Springer-Verlag, 2001.

[5] Y. Bertot. A certified compiler for an imperative language. Technical Report RR-3488,
INRIA, 1998.

[6] Y. Bertot. Formalizing a JVML verifier for initialization in a theorem prover. In Proc. Com-
puter Aided Verification (CAV’01), volume 2102 of LNCS. Springer-Verlag, 2001.

[7] R. Burstall and F. Honsell. Operational semantics in a natural deduction setting. In G. Huet
and G. Plotkin, editors, Logical Frameworks, pages 185–214. Cambridge University Press,
June 1990.

[8] L. Cardelli. Obliq: A Language with Distributed Scope. Computing Systems, 8(1):27–59,
1995.

[9] A. Ciaffaglione. Certified reasoning on Real Numbers and Objects in Co-inductive Type The-
ory. PhD thesis, Dipartimento di Matematica e Informatica, Università di Udine, Italy and
LORIA-INPL, Nancy, France, 2003.

[10] T. Coquand. Infinite objects in type theory. In Barendregt and Nipkow [2], pages 62–78.

[11] J. Despeyroux. Proof of translation in natural semantics. In Proceedings of the First Confer-
ence on Logic in Computer Science, pages 193–205. The Association for Computing Machin-
ery, 1986.

[12] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order syntax in Coq. In Proc. of
TLCA’95, volume 905 of Lecture Notes in Computer Science, Edinburgh, Apr. 1995. Springer-
Verlag. Also appears as INRIA research report RR-2556, April 1995.

RR n° 4812



24 A. Ciaffaglione, L. Liquori, M. Miculan

[13] K. Fisher, F. Honsell, and J. Mitchell. A lambda calculus of objects and method specialization.
Nordic Journal of Computing, 1994.

[14] G. Gillard. A formalization of a concurrent object calculus up to alpha-conversion. In Proc.
of CADE, Lecture Notes in Computer Science. Springer-Verlag, June 2000.

[15] E. Giménez. An application of co-inductive types in Coq: Verification of the Alternating Bit
Protocol. In S. Berardi and M. Coppo, editors, Proc. TYPES’95, volume 1158 of Lecture
Notes in Computer Science, pages 134–152, Turin, Mar. 1995. Springer-Verlag, 1996.

[16] E. Giménez. Codifying guarded recursion definitions with recursive schemes. In J. Smith,
editor, Proc. of TYPES’94, volume 996 of Lecture Notes in Computer Science, pages 39–59,
Båstad, Sweden, June 1995. Springer-Verlag.

[17] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM, 40(1):143–
184, Jan. 1993.

[18] D. Hirschkoff. Bisimulation proofs for the π-calculus in the Calculus of Constructions. In
Proc. TPHOL’97, volume 1275 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

[19] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning on
systems in higher-order abstract syntax. In Proc. ICALP’01, volume 2076 of Lecture Notes
in Computer Science, pages 963–978. Springer-Verlag, 2001.

[20] F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in (co)inductive type theory. Theoretical
Computer Science, 253(2):239–285, 2001.

[21] M. Huisman. Reasoning about Java programs in higer order logic with PVS and Isabelle. PhD
thesis, Katholieke Universiteit Nijmegen, 2001.

[22] INRIA. The Coq Proof Assistant, 2002. http://coq.inria.fr/doc/main.html .

[23] G. Kahn. Natural Semantics. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science, volume 247 of Lecture Notes in Computer Science, pages 22–39. Springer-
Verlag, 1987.

[24] G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer Science, 298(3),
2003.

[25] M. Miculan. The expressive power of structural operational semantics with explicit assump-
tions. In Barendregt and Nipkow [2], pages 292–320.

[26] M. Miculan. Encoding Logical Theories of Programs. PhD thesis, Dipartimento di Informatica,
Università di Pisa, Italy, Mar. 1997.

[27] A. Momigliano, S. Ambler, and R. Crole. A comparison of formalizations of the meta-theory
of a language with variable bindings in Isabelle. Technical Report 2001/07, University of
Leicester, 2001.

[28] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proc. of ACM SIGPLAN ’88
Symposium on Language Design and Implementation, pages 199–208, Atlanta, Georgia, June
1988. The Association for Computing Machinery.

[29] J. Rothe, H. Tews, and B. Jacobs. The coalgebraic class specification language CCSL. Tech-
nical report, Dresden-Nijmegen, 2000.

[30] I. Scagnetto. Reasoning about Names In Higher-Order Abstract Syntax. PhD thesis, Diparti-
mento di Matematica e Informatica, Università di Udine, Italy, Mar. 2002.

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 25

[31] M. Strecker. Formal verification of a Java compiler in Isabelle. In Proc. Conference on
Automated Deduction (CADE), volume 2392, pages 63–77. Springer-Verlag, 2002.

[32] H. Tews. A case study in coalgebraic specification: memory management in the FIASCO
microkernel. Technical report, TU Dresden, 2000.

[33] J. van den Berg, B. Jacobs, and E. Poll. Formal specification and verification of javacard’s
application identifier class. In Proceedings of the Java Card 2000 Workshop, number 2041 in
LNCS, 2001.

A The Calculus of (Co)Inductive Constructions

The CC(Co)Ind type theory. CC(Co)Ind is an impredicative intuitionistic type theory, with
dependent inductive and coinductive types. Formally, it is a system for deriving assertions of the
shape Γ `Σ M : T , where Γ is a list of type assignments to variables, i.e. x1:T1, . . . , xn:Tn; Σ is
the signature (i.e., a list of typed constants); M is a λ-term and T is its type.

Using the propositions-as-types, and λ-terms-as-proofs isomorphism, CC(Co)Ind can be viewed
as a system for representing assertions of a higher-order intuitionistic logic and their proofs. This
implies that valid assertions correspond to inhabited types (i.e., types for which there exists a
closed term of that type), and moreover proof-checking corresponds to type-checking.

For lack of space, we will not describe in detail the rich language of terms and types of CC(Co)Ind

or its properties. We will only point out the important property of CC(Co)Ind, namely that check-
ing whether a given term has a given type in CC(Co)Ind is decidable. This is the crucial property
which makes it possible to use CC(Co)Ind as the core of a proof checker. We will now discuss briefly
some features of CC(Co)Ind. Simple inductive types can be defined as follows
Inductive id : term := id_1 : term_1 |...| id_n : term_n.

The name id is the name of the inductively defined object, and term is its type. The constructors
of id are id_1,. . . ,id_n, whose types are term_1,. . . ,term_n, respectively. For instance, the set of
natural numbers is defined as
Inductive nat : Set := O : nat | S : nat -> nat.

Types of constructors have to satisfy a positivity condition, which, roughly, requires that ident

may occur only in strictly positive positions in the types of the arguments of id_1,. . . ,id_n. This
condition ensures the soundness of the definition; for further details, see [22]. For instance, the
following definition is not accepted
Inductive D : Set := lam : (D -> nat) -> D.

Inductive definitions automatically provide induction and recursion principles over the defined
type. These principles state that elements of the type are only those built by the given con-
structors. For instance, the automatically generated induction principle for nat is the well-known
Peano principle
nat_ind : (P:nat->Prop)(P O) ->

((n:nat)(P n)->(P (S n))) -> (n:nat)(P n).

Objects of inductive types are well-founded, that is, they are always built by a finite unlimited
number of constructors. Coinductive types arise by relaxing this condition: coinductive objects,
in fact, can be non-wellfounded, in that they can have an infinite number of constructors in their
structure. Hence, coinductive objects are specified by means of non-ending (but effective) pro-
cesses of construction, expressed as “circular definitions.” For example, the set of streams of natural
numbers, is defined as
CoInductive Stream : Set := seq : nat -> Stream -> Stream.

and the stream of all zeros is given by
CoFixpoint allzeros : Stream := (seq O allzeros).

Of course, since coinductive types are non-wellfounded, they do not have any induction principle.
The only way for manipulating coinductive objects is by means of case analysis on the form of
the outermost constructor. In order to ensure soundness of corecursive definitions, these have to

RR n° 4812



26 A. Ciaffaglione, L. Liquori, M. Miculan

satisfy a guardedness condition [22,16,15]. Roughly, the constant being defined may appear in the
defining equation only within an argument of some of its constructors. Coq forbids “short-circuit”
definitions like
CoFixpoint X : Stream := X.

An interesting possibility arises in CC(Co)Ind, in connection with the propositions-as-types paradigm,
due to the fact that proofs are first-class objects. Coinductive predicates can be rendered as coin-
ductive types, and then these are propositions which have infinitely long (or circular) proofs. The
guardedness condition on the well-formedness of infinite objects allows to make sense of such
infinitely regressing proof arguments. One can consistently assume his thesis as a hypothesis pro-
vided its applications appear in the proof only when guarded by a constructor of the corresponding
type. This is the propositional version of the guarded induction principle introduced by Coquand
and Giménez [10,16,15] for reasoning on coinductive objects, and it is the constructive counterpart
of coinductive proofs.
The Coq proof assistant. Coq is an interactive proof assistant for the type theory CC(Co)Ind,
developed by the INRIA. For a complete description, we refer to [22]. More specifically, Coq is an
editor for interactively searching for an inhabitant of a type, in a top-down fashion by applying
tactics step-by-step, backtracking if needed, and for verifying correctness of typing judgements.
Coq’s specification language, Gallina, allows to express the type theory CC(Co)Ind in pure ASCII
text, as follows:

λx:M.N is written [x:M]N Πx:M.N is written (x:M)N

(M N) is written (M N) M → N is written M -> N

We will not give an independent syntax for CC(Co)Ind, but we will use its Gallina formulation.
A proof search starts by entering Lemma id : goal, where goal is the type representing the
proposition to prove. At this point, Coq waits for commands from the user, in order to build the
proof term which inhabits goal (i.e. the proof). To this end, Coq offers a rich set of tactics, e.g.,
introduction and application of assumptions, application of rules and previously proved lemmata,
elimination of inductive objects, inversion of (co)inductive hypotheses and so on. These tactics
allow the user to proceed in his proof search much like he would do informally. At every step, the
type checking algorithm ensures the soundness of the proof. When the proof term is completed,
it can be saved (by the command Qed) for future applications.

B Coq Code

B.1 Auxiliary functions for term reduction

Fixpoint proj_lab_obj [ml:Object] : (list Lab) :=

Cases ml of obj_nil => (nil Lab)

| (obj_cons l m nl) => (cons l (proj_lab_obj nl))

end.

Fixpoint proj_lab_res [rl:Res] : (list Lab) :=

Cases rl of nil => (nil Lab)

| (cons (pair l x) sl) => (cons l (proj_lab_res sl))

end.

Fixpoint proj_meth_obj [ml:Object] : (list (Var -> Term)) :=

Cases ml of obj_nil => (nil (Var -> Term))

| (obj_cons l m nl) => (cons m (proj_meth_obj nl))

end.

Fixpoint proj_loc_res [rl:Res] : (list Loc) :=

Cases rl of nil => (nil Loc)

| (cons (pair l x) sl) => (cons x (proj_loc_res sl))

end.

Fixpoint new_res_obj [ml:Object] : nat -> Res := [n:nat]

Cases ml of obj_nil => (nil (Lab * Loc))

| (obj_cons l m nl) => (cons (l,n) (new_res_obj nl (S n)))

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 27

end.

Fixpoint new_res_res [rl:Res] : nat -> Res := [n:nat]

Cases rl of nil => (nil (Lab * Loc))

| (cons (pair l x) sl) => (cons (l,n) (new_res_res sl (S n)))

end.

Definition store_nth [n:Loc; s:Store] : Closure := (nth n s void_closure).

Fixpoint store_to_list [il:(list Loc)] : Store -> (list Closure) := [s:Store]

Cases il of nil => (nil Closure)

| (cons i jl) => (cons (store_nth i s) (store_to_list jl s))

end.

Fixpoint loc_in_res [v:Res] : Lab -> Store -> Loc := [l:Lab; s:Store]

Cases v of nil => (size s)

| (cons (pair k i) w) => Cases (eq_lab k l)

of true => i

| false => (loc_in_res w l s)

end.

end.

Fixpoint eq_lab [m,n:Lab] : bool := Cases m n of O O => true

| (S p) (S q) => (eq_lab p q)

| (S p) O => false

| O (S q) => false

end.

Fixpoint distinct [ll:(list Lab)] : Prop :=

Cases ll of nil => True

| (cons l kl) => ~(In l kl) /\ (distinct kl)

end.

The function loc_to_res performs an intrinsecally partial operation, but has to be totally
defined in Coq. It actually searches for the pointer associated to a certain label, and so it is
designed in such a way that if a label has not been found, it returns a dangling pointer. Notice
that such behaviour is simply seen as “unnormal” during the formal proofs. The definitions of the
other functions are straightforward.

B.2 Freshness predicates

Fixpoint notin [y:Var; t:Term] : Prop := Cases t of

(var x) => ~(y=x)

| (obj ml) => (notin_obj y ml)

| (over a l m) => (notin y a) /\

((x:Var) ~(y=x) -> (notin y (m x)))

| (call a l) => (notin y a)

| (clone a) => (notin y a)

| (lEt a b) => (notin y a) /\

((x:Var) ~(y=x) -> (notin y (b x))) end

with notin_obj [y:Var; ml:Object] : Prop := Cases ml of

obj_nil => True

| (obj_cons l m nl) => (notin_obj y nl) /\

((x:Var) ~(y=x) -> (notin y (m x))) end.

Fixpoint fresh [x:Var; l:(list Var)] : Prop := Cases l of

nil => True

| (cons y yl) => ~(x=y) /\ (fresh x yl) end.

B.3 Auxiliary functions for term typing

We have to implement some functions for manipulating the structure of object-types. We need
functions for projecting lists of labels from lists or object types (i.e. proj_lab_list,labels), for

RR n° 4812



28 A. Ciaffaglione, L. Liquori, M. Miculan

assembling and disassembling types (insert,list_from_type) and searching for labels (i.e.
type_from_lab):

Fixpoint proj_lab_list [pl:(list (Lab * TType))] : (list Lab) :=

Cases pl of nil => (nil Lab)

| (cons (l,A) ql) => (cons l (proj_lab_list ql))

end.

Definition labels : TType -> (list Lab) := [A:TType]

Cases A of (mktype pl) => (proj_lab_list pl)

end.

Definition insert : (Lab * TType) -> TType -> TType :=

[a:(Lab * TType)] [A:TType]

Cases A of (mktype pl) => (mktype (cons a pl))

end.

Definition list_from_type : TType -> (list (Lab * TType)) := [A:TType]

Cases A of (mktype pl) => (pl)

end.

Fixpoint type_from_lab_list [pl:(list (Lab * TType))] : Lab -> TType := [l:Lab]

Cases pl of nil => (mktype (nil (Lab * TType)))

| (cons (k,A) ql) => Cases (eq_lab k l)

of true => A

| false => (type_from_lab_list ql l)

end

end.

Definition type_from_lab : TType -> Lab -> TType := [A:TType] [l:Lab]

Cases A of (mktype pl) => (type_from_lab_list pl l)

end.

B.4 Auxiliary functions for store type manipulation

We introduce store types and easily define projection functions on store types and functions for
constructing store types from object types:

Definition SType : Set := (list (TType * TType)).

Definition stype_nth : Loc -> SType -> (TType * TType) := [n:Loc; S:SType]

(nth n S ((mktype (nil (Lab * TType))), (mktype (nil (Lab * TType))))).

Definition stype_nth_1 : Loc -> SType -> TType := [n:Loc; S:SType]

Cases (stype_nth n S) of (A,B) => A

end.

Definition stype_nth_2 : Loc -> SType -> TType := [n:Loc; S:SType]

Cases (stype_nth n S) of (A,B) => B

end.

Fixpoint scan_type [pl:(list (Lab * TType))] : TType -> SType := [A:TType]

Cases pl of nil => (nil (TType * TType))

| (cons (l,B) ql) => (cons (A,B) (scan_type ql A))

end.

Definition build_stype : TType -> SType := [A:TType]

Cases A of (mktype pl) => (scan_type pl A)

end.

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 29

C Subject Reduction for impς
nov

Lemma 2 (Properties of the typing system)
Let Γ be a well-formed context. Then:

(var). : ∀x : V ar; A : TType.
Γ ` type(x, A) ⇒
∃B : TType. (x 7→ B ∈ Γ) ∧ Γ ` sub(B, A)

(obj). : ∀ml : Object; A : TType.

Γ ` type([li = ς(xi)bi
i∈I ], A) ⇒

∃B : TType. Γ ` type([li = ς(xi)bi
i∈I ], B) ∧ Γ ` (B <: A)

(call). : ∀a : Term; l : Lab; A, B : TType.
Γ ` type(a.l, A) ⇒
∃B, Bl : TType. Γ ` type(a, B) ∧ (l, Bl) ∈ B ∧ Γ ` sub(Bl, A)

(over). : ∀a : Term; m : V ar → Term; l : Lab; A : TType.
Γ ` type(a.l← ς(x)b, A) ⇒
∃B, Bl : TType.
Γ ` type(a, B) ∧ (l, Bl) ∈ B ∧ Γ ` sub(B, A) ∧ Γ, x 7→ B ` type(b, Bl)

(clone). : ∀a : Term; A : TType.
Γ ` type(clone(a), A) ⇒
∃B : TType. Γ ` type(a, B) ∧ Γ ` sub(B, A)

(let). : ∀a : Term; b : V ar → Term; A, B : TType.
Γ ` type(let(a, λx.b), A) ⇒
∃B, C : TType. Γ ` type(a, C) ∧ Γ ` sub(B, A) ∧ Γ, x 7→ C ` type(b, B)

(sub−wt). : ∀A, B : TType.
Γ ` sub(A, B) ⇒ Γ ` (wt A) ∧ Γ ` (wt B)

(type−wt). : ∀a : Term; A : TType.
Γ ` type(a, A) ⇒ Γ ` (wt A)

(bound−weak). : : ∀a : Term; A, B, C : TType.
Γ, x 7→ A ` type(b, C) ∧ sub(B, A) ⇒
Γ, x 7→ B ` type(b, C)

Proof. All the properties are proved by structural induction. ut

Some preventive work address the formal development of the metatheory about the result
typing and specific properties of the various operators of the calculus. In the following Γ is a
well-formed context that is omitted from judgments.

Lemma 3 (Co-inductive result typing)

(i). : (cores s v A) ∧ (eval s a t w) ⇒
(cores t v A)

(ii). : Γ, x 7→ A ` (type b B) ∧ Γ, closed(x) ` (wrap b c) ∧ s(ι) = λx.c ∧
(∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` (cores s w C)) ⇒
Γ, x 7→ A ` (cotypeb s c B)

RR n° 4812



30 A. Ciaffaglione, L. Liquori, M. Miculan

Proof. (i). By structural induction on the derivation of Γ ` (eval s a t w), because the store s
cannot be updated.

(ii). By structural induction on the derivation of Γ, closed(x) ` (wrap b c). ut

Lemma 4 (Objects)

(i). : (type [li = ς(xi)bi
i∈1..n] [li : Bi

i∈1..n]) ∧ Γ, closed(xi) ` (wrap bi ci)
i∈1..n ∧

(∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` (cores s w C)) ⇒
(cores (s, ιi 7→ ci

i∈1..n) [li = ιi
i∈1..n] [li : Bi

i∈1..n])

Proof. (i). By induction on the object [li = ς(xi)bi
i∈1..n] and lemma 3.(ii). ut

Lemma 5 (Select)

(i). : (cores s [lj : ιj , . . .] [lj : Bj , . . .]) ∧ s(ιj) = λx.c ⇒
Γ, x 7→ [lj : Bj , . . .] ` (cotypeb s c Bj)

Proof. (i). By induction on the object type [lj : Bj , . . .]. ut

Lemma 6 (Clone)

(i). : (cores s v A) ⇒ (cores (s, t) v A)

(ii). : (cores s [li = ιi
i∈1..n] A) ⇒

(cores (s, ι′i 7→ s(ιi)
i∈1..n) [li = ι′i

i∈1..n] A)

Proof. (i). By co-induction.
(ii). By induction on the result [li = ιi

i∈1..n]. ut

Theorem 9 (Subject Reduction, co-inductive setting, impς without Update)
Let Γ be a well-formed context. Then:

Γ ` (type a A) ∧ Γ ` (eval s a t v) ∧
(∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` (cores s w C)) ⇒
∃A+ : TType.
Γ ` (cores t v A+) ∧ Γ ` (sub A+ A)

Proof. By structural induction on the derivation of Γ ` (eval s a t v). The rules e_call and
e_bind require a mutual structural induction argument, namely a stronger induction schema which
holds for the predicate evalb as well, which is the counterpart of eval for closures. We present the
proof by omitting the context Γ, that is, J stands for Γ ` J .

(e_var). By hypothesis (type x A) and:

(e_var)
x 7→ v ∈ Γ

(eval s x s v)

From lemma 2.(var), there exists B such that x 7→ B ∈ Γ and (sub B A). Choose A+ := B.
Since x 7→ v ∈ Γ, by the third hypothesis of the theorem we can derive (cores s v A+), thus

concluding.

(e_obj). By hypothesis (type [li = ς(xi)bi
i∈1..n] A) and:

(e_obj)

(closed(xi))
...

(li, ιi distinct) ιi /∈ dom(σ) (wrap bi ci) ∀i ∈ 1..n

(eval s [li = ς(xi)bi
i∈1..n] (s, ιi 7→ λx.ci

i∈1..n) [li = ιi
i∈1..n])

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 31

By lemma 2.(obj), there exists [li : Bi
i∈1..n] such that:

(type [li = ς(xi)bi
i∈1..n] [li : Bi

i∈1..n]) (1)

(sub [li : Bi
i∈1..n] A) (2)

Choose A+ := [li : Bi
i∈1..n].

Since Γ, closed(xi) ` (wrap bi ci) ∀i ∈ 1..n and 1, we apply the lemma 4.(i), thus deducing
(cores (s, ιi 7→ λxi.ci

i∈1..n) [li = ιi
i∈1..n] A+); we conclude by 2.

(e_call). By hypothesis (type (a.lj) A) and:

(e_call)

(x 7→ [li = ιi
i∈1..n])

...
(eval s a s′ [li = ιi

i∈1..n]) j ∈ 1..n s′(ιj) = λx.c (evalb s′ c t w)

(eval s (a.lj) t w)

By lemma 2.(call), there exists [lj : Bj , . . .] such that (type a [lj : Bj , . . .]) and (sub Bj A). Since
(eval s a s′ [li = ιi

i∈1..n]), by inductive hypothesis there exists C such that:
(a). (cores s′ [li = ιi

i∈1..n] C);
(b). (sub C [lj : Bj , . . .]).

By the rule (e_call), it is j ∈ 1..n, s′(ιj) = λx.c and:

Γ, x 7→ [li = ιi
i∈1..n] ` (evalb s′ c t w) (3)

On the other hand, we have C ≡ [lj : Bj , . . .] from (b), thus, using (a) and lemma 5.(i):

Γ, x 7→ C ` (typeb s′ c Bj) (4)

We can deduce (∀x, w, C. (x 7→ w, x 7→ C ∈ Γ) ⇒ Γ ` (cores s′ w C)) from the third hypothesis
of the theorem and lemma 3.(i); therefore, since 3 and 4, we can apply the mutual induction
hypothesis, deducing there exists A+ such that (cores t w A+) and (sub A+ Bj). We finish by
transitivity of subtyping.

(e_clone). By hypothesis (type (clone a) A) and:

(e_clone)
(eval s a s′ [li = ιi

i∈1..n]) ιi ∈ dom(s′) (ι′i distinct) ι′i /∈ dom(s′) ∀i ∈ 1..n

(eval s (clone a) (s′, ι′i 7→ s′(ιi)
i∈1..n) [li = ι′i

i∈1..n])

By lemma 2.(clone), there exists B such that (type a B) and (sub B A). Since (eval s a s′ [li =
ιi

i∈1..n]), we can apply the inductive hypothesis, thus deducing there exists C such that:
(a). (cores s′ [li = ιi

i∈1..n] C);
(b). (sub C B).

Choose A+ := C. We deduce (sub A+ A) by transitivity of subtyping. We conclude (cores (s′, ι′i 7→
s′(ιi)

i∈1..n) [li = ι′i
i∈1..n] A+) from (a) and lemma 6.(ii).

(e_let). By hypothesis (type (let a λx.b) A) and:

(e_let)

(x 7→ v)
...

(eval s a s′ v) (eval s′ b t w)

(eval s (let a λx.b) t w)

By lemma 2.(let), there exist B, C such that (type a C) and Γ, x 7→ C ` (type b B) and (sub B A).
Since (eval s a s′ v), by inductive hypothesis there exists D such that:

RR n° 4812



32 A. Ciaffaglione, L. Liquori, M. Miculan

(a). (cores s′ v D);
(b). (sub D C).

Since Γ, x 7→ C ` (type b B) and (b), we use lemma 2.(bd-weak) for deriving Γ, x 7→ D ` (type b B).
Next we deduce (∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` (cores s′ w C)) from the third hypothesis
of the theorem and lemma 3.(i). Because of Γ, x 7→ v ` (eval s′ b t w), we apply again the
induction hypothesis, thus obtaining E such that (cores t v E) and (sub E B). Choose A+ := E
and conclude by transitivity of subtyping.

(e_ground). By hypothesis (cotypeb s (ground a) A) and:

(e_ground)
(eval s a t v)

(evalb s (ground a) t v)

The assertion (cotypeb s (ground a) A) has to be derived by the rule (t_coground), namely from
(type a A): therefore, by induction, there exists A+ such that (cores t v A+) and (sub A+ A).

(e_bind). By hypothesis (cotypeb s (bind v λy.c) A) and:

(e_bind)

(y 7→ v)
...

(evalb s c t w)

(evalb s (bind v λy.c) t w)

The assertion (cotypeb s (bind v λy.c) A) has to be derived by the rule (t_cobind), namely there
exists B such that (cores s v B) and Γ, y 7→ B ` (cotypeb s c A). Therefore, by mutual induction,
there exists A+ such that (cores t w A+) and (sub A+ A). ut

D Subject Reduction for impς

As for the co-inductive setting, we have to state a preliminary work about the result typing and
specific properties of the various operators of the calculus. In the following Γ is a well-formed
context that is omitted from judgments.

Lemma 7 (Inductive result typing)

(i). : Γ ` (ext Σ Σ)

(ii). : Γ ` (ext Σ′′ Σ′) ∧ Γ ` (ext Σ′ Σ) ⇒
Γ ` (ext Σ′′ Σ)

(iii). : Γ ` (res Σ v A) ∧ Γ ` (ext Σ′ Σ) ⇒
Γ ` (res Σ′ v A)

(iv). : Γ, x 7→ A ` (type b B) ∧ Γ, closed(x) ` (wrap b c) ∧ s(ι) = λx.c ∧
(∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` (res Σ w C)) ⇒
Γ, x 7→ A ` (typeb Σ c B)

Proof. (i), (ii). The proofs are immediate.
(iii). By structural induction on the derivation of Γ ` (res Σ v A).
(iv). By structural induction on the derivation of Γ, closed(x) ` (wrap b c). ut

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 33

Lemma 8 (Objects)

(i). : A ≡ [li : Bi
i∈1..n] ⇒

(res (Σ, ιi 7→ (A⇒ Bi)
i∈1..n) [li = ιi

i∈1..n] A)

(ii). : A ≡ [li : Bi
i∈1..n] ∧

(type [li = ς(xi)bi
i∈1..n] A) ∧ Γ, closed(xi) ` (wrap bi ci)

i∈1..n ∧ (comp Σ s) ⇒
(comp (Σ, ιi 7→ (A⇒ Bi)

i∈1..n) (s, ιi 7→ λxi.ci
i∈1..n))

Proof. (i). By the rule (t_res).
(ii). By induction on the object type A. ut

Lemma 9 (Select)

(i). : (comp Σ s) ∧ s(ιi) = λx.c ⇒
Γ, x 7→ Σ1(ιi) ` (typeb Σ c Σ2(ιi))

Proof. By the rule (t_comp). ut

Lemma 10 (Update)

(i). : Γ, x 7→ A ` (type b B) ∧ Γ, closed(x) ` (wrap b c) ∧
(∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` (res Σ w C))⇒
Γ, x 7→ A ` (typeb Σ c B)

(ii). : Γ ` (comp Σ s) ∧ Γ, x 7→ Σ1(i) ` (typeb Σ c Σ2(i)) ⇒
Γ ` (comp Σ (s.ιi ← λx.c))

Proof. (i). By lemma 7.(iv).
(ii). By the rule (t_comp) and point (i). ut

Lemma 11 (Clone)

(i). : (res Σ [li = ιi
i∈1..n] A) ⇒

(res (Σ, ι′i 7→ Σ(ιi)
i∈1..n) [li = ι′i

i∈1..n] A)

(ii). : (comp Σ s) ⇒
(comp (Σ, ι′i 7→ Σ(ιi)

i∈1..n) (s, ι′i 7→ s(ιi)
i∈1..n))

Proof. (i). By induction on the result [li = ιi
i∈1..n].

(ii). By induction on the store type fragment ι′i 7→ Σ(ιi)
i∈1..n. ut

Theorem 10 (Subject Reduction, inductive setting, full impς)
Let Γ be a well-formed context. Then:

Γ ` (type a A) ∧ Γ ` (eval s a t v) ∧ Γ ` (comp Σ s) ∧
(∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` (res Σ w C)) ⇒
∃A+ : TType, Σ+ : SType.
Γ ` (res Σ+ v A+) ∧ Γ ` (ext Σ+ Σ) ∧ Γ ` (comp Σ+ t) ∧ Γ ` (sub A+ A)

Proof. By structural induction on the derivation of Γ ` (eval s a t v). The rules e_call and
e_bind require a mutual structural induction argument, namely a stronger induction schema which
holds for the predicate evalb as well, which is the counterpart of eval for closures. We present the
proof by omitting the context Γ, that is, J stands for Γ ` J .

RR n° 4812



34 A. Ciaffaglione, L. Liquori, M. Miculan

(e_var). By hypothesis (type x A) and:

(e_var)
x 7→ v ∈ Γ

(eval s x s v)

From lemma 2.(var), there exists B such that x 7→ B ∈ Γ and (sub B A). Choose A+ := B and
Σ+ := Σ.

Since x 7→ v ∈ Γ, by the fourth hypothesis of the theorem we can derive (res Σ+ v A+). We
have (ext Σ+ Σ+) by lemma 7.(i) and (comp Σ+ s) by hypothesis, thus concluding.

(e_obj). By hypothesis (type [li = ς(xi)bi
i∈1..n] A) and:

(e_obj)

(closed(xi))
...

(li, ιi distinct) ιi /∈ dom(σ) (wrap bi ci) ∀i ∈ 1..n

(eval s [li = ς(xi)bi
i∈1..n] (s, ιi 7→ λx.ci

i∈1..n) [li = ιi
i∈1..n])

By lemma 2.(obj), there exists [li : Bi
i∈1..n] such that:

(type [li = ς(xi)bi
i∈1..n] [li : Bi

i∈1..n]) (5)

(sub [li : Bi
i∈1..n] A) (6)

Choose A+ := [li : Bi
i∈1..n] and Σ+ := Σ, ιi 7→ (A+ ⇒ Bi)

i∈1..n.
We have (res Σ+ [li = ιi

i∈1..n] A+) by lemma 8.(i) and it is immediate that (ext Σ+ Σ). Next,
since (comp Σ s) and 5, we apply the lemma 8.(ii), thus deriving (comp Σ+ (s, ιi 7→ λxi.ci

i∈1..n)).
We finish by 6.

(e_call). By hypothesis (type (a.lj) A) and:

(e_call)

(x 7→ [li = ιi
i∈1..n])

...
(eval s a s′ [li = ιi

i∈1..n]) j ∈ 1..n s′(ιj) = λx.c (evalb s′ c t w)

(eval s (a.lj) t w)

By lemma 2.(call), there exists [lj : Bj , . . .] such that (type a [lj : Bj , . . .]) and (sub Bj A). Since
(eval s a s′ [li = ιi

i∈1..n]), by inductive hypothesis there exist C, Σ′ such that:
(a). (res Σ′ [li = ιi

i∈1..n] C);
(b). (ext Σ′ Σ);
(c). (comp Σ′ s′);
(d). (sub C [lj : Bj , . . .]).

From the rule (e_call), it is j ∈ 1..n, s′(ιj) = λx.c and:

Γ, x 7→ [li = ιi
i∈1..n] ` (evalb s′ c t w) (7)

On the other hand, we have C ≡ [lj : Bj , . . .] from (d), thus Σ′(ιj) = (C ⇒ Bj) and so, by (c) and
lemma 9.(i):

Γ, x 7→ C ` (typeb Σ′ c Bj) (8)

We deduce (∀x, w, C. (x 7→ w, x 7→ C ∈ Γ) ⇒ Γ ` (res Σ′ w C)) from the fourth hypothesis of
the theorem and lemma 7.(iii); therefore, since 7, 8 and (c), we can apply the mutual induction
hypothesis, thus concluding there exist A+, Σ+ such that:

(e). (res Σ+ w A+);
(f). (ext Σ+ Σ′);

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 35

(g). (comp Σ+ t);
(h). (sub A+ Bj).

We finish by transitivity of ext (lemma 7.(ii)) and transitivity of subtyping.

(e_over). By hypothesis (type (a.l ← ς(x)b) A) and:

(e_over)

(closed(x))
...

(eval s a s′ [li = ιi
i∈1..n]) j ∈ 1..n ιj ∈ dom(s′) (wrap b c)

(eval s (a.l ← ς(x)b) (s′.ιj ← λx.c) [li = ιi
i∈1..n])

By lemma 2.(over), there exists [lj : Bj , . . .] such that (type a [lj : Bj , . . .]), (sub [lj : Bj , . . .] A)
and Γ, x 7→ [lj : Bj , . . .] ` (type b Bj). Since (eval s a s′ [li = ιi

i∈1..n]), we can apply the inductive
hypothesis, thus deducing there exist C, Σ′ such that:

(a). (res Σ′ [li = ιi
i∈1..n] C);

(b). (ext Σ′ Σ);
(c). (comp Σ′ s′);
(d). (sub C [lj : Bj , . . .]), that is, C ≡ [lj : Bj , . . .].

Choose A+ := C and Σ+ := Σ′.
By lemma 2.(bd-weak) we obtain Γ, x 7→ C ` (type b Bj), that is, using (a) and j ∈ 1..n:

Γ, x 7→ Σ+
1 (ιj) ` (type b Σ+

2 (ιj)) (9)

We derive (∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` (res Σ+ w C)) from the fourth hypothesis of the
theorem and lemma 7.(iii). Next, because of Γ, closed(x) ` (wrap b c) and 9, by lemma 10.(i):

Γ, x 7→ Σ+
1 (ιj) ` (typeb c Σ+

2 (ιj)) (10)

Since (c) and 10, we apply the lemma 10.(ii), thus deriving (comp Σ+ (s′.ιj ← λx.c)). We
conclude by transitivity of subtyping.

(e_clone). By hypothesis (type (clone a) A) and:

(e_clone)
(eval s a s′ [li = ιi

i∈1..n]) ιi ∈ dom(s′) (ι′i distinct) ι′i /∈ dom(s′) ∀i ∈ 1..n

(eval s (clone a) (s′, ι′i 7→ s′(ιi)
i∈1..n) [li = ι′i

i∈1..n])

By lemma 2.(clone), there exists B such that (type a B) and (sub B A). Since (eval s a s′ [li =
ιi

i∈1..n]), we can apply the inductive hypothesis, thus deducing there exist C, Σ′ such that:
(a). (res Σ′ [li = ιi

i∈1..n] C);
(b). (ext Σ′ Σ);
(c). (comp Σ′ s′);
(d). (sub C B).

Choose A+ := C and Σ+ := Σ′, ι′i 7→ Σ′(ιi)
i∈1..n.

We deduce (ext Σ+ Σ) by transitivity of the ext relation; similarly (sub A+ A) by transitivity
of subtyping. Next we have (res Σ+ [li = ι′i

i∈1..n] A+) from (a) and lemma 11.(i) and finally
(comp Σ+ (s′, ι′i 7→ s′(ιi)

i∈1..n)) using (c) and lemma 11.(ii).

(e_let). By hypothesis (type (let a λx.b) A) and:

(e_let)

(x 7→ v)
...

(eval s a s′ v) (eval s′ b t w)

(eval s (let a λx.b) t w)

RR n° 4812



36 A. Ciaffaglione, L. Liquori, M. Miculan

By lemma 2.(let), there exist B, C such that (type a C) and Γ, x 7→ C ` (type b B) and (sub B A).
Since (eval s a s′ v), by inductive hypothesis there exist D, Σ′ such that:

(a). (res Σ′ v D);
(b). (ext Σ′ Σ);
(c). (comp Σ′ s′);
(d). (sub D C).

Since Γ, x 7→ C ` (type b B) and (b), we use lemma 2.(bd-weak) for deriving Γ, x 7→ D ` (type b B).
Next we deduce (∀x, w, C. (x 7→ w, x 7→ C ∈ Γ)⇒ Γ ` (res Σ′ w C)) from (a) and lemma 7.(iii).
Because of Γ, x 7→ v ` (eval s′ b t w), we apply again the induction hypothesis, thus obtaining
E, Σ′′ such that:

(e). (res Σ′′ w E);
(f). (ext Σ′′ Σ′);
(g). (comp Σ′′ t);
(h). (sub E B).

Choose A+ := E and Σ+ := Σ′′.
We conclude transitivity of ext and transitivity of subtyping. ut

(e_ground). By hypothesis (typeb Σ (ground a) A) and:

(e_ground)
(eval s a t v)

(evalb s (ground a) t v)

The assertion (typeb Σ (ground a) A) has to be derived by the rule (t_ground), namely from
(type a A); therefore, by induction, there exist A+, Σ+ such that (res Σ+ v A+), (ext Σ+ Σ),
(comp Σ+ t) and (sub A+ A).

(e_bind). By hypothesis (typeb Σ (bind v λy.c) A) and:

(e_bind)

(y 7→ v)
...

(evalb s c t w)

(evalb s (bind v λy.c) t w)

The assertion (typeb Σ (bind v λy.c) A) has to be derived by rule (t_bind), namely there exists
B such that (res Σ v B) and Γ, y 7→ B ` (typeb Σ c A). Therefore, by mutual induction, there
exist A+, Σ+ such that (res t w A+), (ext Σ+ Σ), (comp Σ+ t) and (sub A+ A). ut

INRIA



On the Formalization of Imperative Object-based Calculi in CC (Co)Ind 37

Contents

1 Abadi and Cardelli’s impς Calculus 4
1.1 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 impςnov in Coinductive Natural Deduction Semantics 9
2.1 Natural Deduction Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Typing of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Coinductive Typing of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Subject Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 impς in Inductive Natural Deduction Semantics 14
3.1 Natural Deduction Semantics and Typing of Terms . . . . . . . . . . . . . . . . . . 15
3.2 Inductive Typing of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Subject Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Formalization in Coq 16
4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Natural Deduction Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Type system for terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Typing of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Metatheory of impς in Coq 21

6 Conclusions and Further Work 22

A The Calculus of (Co)Inductive Constructions 25

B Coq Code 26
B.1 Auxiliary functions for term reduction . . . . . . . . . . . . . . . . . . . . . . . . . 26
B.2 Freshness predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.3 Auxiliary functions for term typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.4 Auxiliary functions for store type manipulation . . . . . . . . . . . . . . . . . . . . 28

C Subject Reduction for impςnov 29

D Subject Reduction for impς 32

RR n° 4812



Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399


