
Formalizing a lazy substitution proof system for

µ-calculus in the Calculus of Inductive Constructions

Marino Miculan?

Dipartimento di Matematica e Informatica, Università di Udine
Via delle Scienze, 206, I-33100, Udine, Italy. miculan@dimi.uniud.it

Abstract. We present a Natural Deduction proof system for the propo-
sitional modal µ-calculus, and its formalization in the Calculus of In-
ductive Constructions. We address several problematic issues, such as
the use of higher-order abstract syntax in inductive sets in presence of
recursive constructors, the encoding of modal (sequent-style) rules and
of context sensitive grammars. The formalization can be used in the sys-
tem Coq, providing an experimental computer-aided proof environment
for the interactive development of error-free proofs in the µ-calculus. The
techniques we adopt can be readily ported to other languages and proof
systems featuring similar problematic issues.

Introduction

The µ-calculus, often referred to as µK, is a temporal logic which subsumes
many modal and temporal logics, such as PDL, CTL, CTL∗, ECTL. Despite its
expressive power, µK enjoys nice properties such as decidability, axiomatizability
and the finite model property. Therefore, the µ-calculus is an ideal candidate as
a logic for the verification of processes. Nevertheless, like any formal systems, its
applicability to non trivial cases is limited by long, difficult, error-prone proofs.

This drawback can be (partially) overcome by supplying the user with a
computer-aided proof environment, that is, a system in which he can represent
(encode, formalize) the formal system, more or less abstractly: its syntax, axioms,
rules and inference mechanisms. After having supplied the proof environment
with a representation of the formal system, the user should be able to correctly
manipulate (the representations of) the proofs.

Clearly, the implementation of a proof environment for a specific formal
system is a complex, time-consuming, and daunting task. An alternative, and
promising solution is to develop a general theory of logical systems, that is,
a Logical Framework. A Logical Framework is a metalogical formalism for the
specification of both the syntactic and the deductive notions of a wide range
of formal systems. Logical Frameworks provide suitable means for representing
and deal with, in the metalogical formalism, the proofs and derivations of the
object system. Much of the implementation effort can be expended once and for
all; hence, the implementation of a Logical Framework yields a logic-independent
proof development environment. Such an environment is able to check validity of
deductions in any formal system, after it has been provided by the specification
of the system in the formalism of the Logical Framework.

In recent years, several different frameworks have been proposed, imple-
mented and applied to many formal systems. Type theories have emerged as

? Work partially supported by Italian MURST-97 grant Tecniche formali. . .

leading candidates for Logical Frameworks. Simple typed λ-calculus and minimal
intuitionistic propositional logic are connected by the well-known proposition-
as-types paradigm [3]. Stronger type theories, such as the Edinburgh Logical
Framework, the Calculus of Inductive Constructions and Martin-Löf ’s type the-
ory, were especially designed, or can be fruitfully used, as a logical framework
[7, 2, 15]. In these frameworks, we can represent faithfully and uniformly all the
relevant concepts of the inference process in a logical system: syntactic cate-
gories, terms, assertions, axiom schemata, rule schemata, tactics, etc. via the
judgments-as-types, proofs-as-λ-terms paradigm [7]. The key concept is that of
hypothetico-general judgment [11], which is rendered as a type of the dependent
typed λ-calculus of the Logical Framework. With this interpretation, a judgment
is viewed as a type whose inhabitants correspond to proof of this judgment.

It is worthwhile noticing that Logical Frameworks based on type theory di-
rectly give rise to proof systems in Natural Deduction style [6]. This follows from
the fact that the typing systems of the underlying λ-calculi are in Natural Deduc-
tion style, and rules and proofs are represented by λ-terms. As it is well-known,
Natural Deduction style systems are more suited to the practical usage, since
they allow for developing proofs the way mathematicians normally reason.

These type theories have been implemented in logic-independent systems
such as Coq, LEGO and ALF [2, 9, 10]. These systems can be readily turned into
interactive proof development environments for a specific logic: we need only to
provide the specification of the formal system (the signature), i.e. a declaration
of typed constants corresponding to the syntactic categories, term constructors,
judgments, and rule schemata of the logic. It is possible to prove, informally but
rigorously, that a formal system is adequately represented by its specification.
This proof usually exhibit bijective maps between objects of the formal system
(terms, formulæ, proofs) and the corresponding λ-terms of the encoding.

In this paper, we investigate the applicability of this approach to the propo-
sitional µ-calculus. Due to its expressive power, we adopt the Calculus of Induc-
tive Constructions (CIC), implemented in the system Coq. Beside its expressive
power and importance in the theory and verification of processes, the µ-calculus
is interesting also for its syntactic and proof theoretic peculiarities. These id-
iosyncrasies are mainly due to the negative arity of “µ” (i.e., the bound variable
x ranges over the same syntactic class of µxϕ); a context-sensitive grammar
due the condition on µxϕ; rules with complex side conditions (sequent-style
“proof” rules). These anomalies escape the “standard” representation paradigm
of CIC; hence, we need to accommodate special techniques for enforcing these
peculiarities. Moreover, since generated editors allow the user to reason “under
assumptions”, the designer of a proof editor for a given logic is urged to look for
a Natural Deduction formulation of the system. Hence, we introduce a new proof
system in Natural Deduction style for µK, the lazy substitution system Nls

µK .
This system should more natural to use than traditional Hilbert-style systems;
moreover, it takes best advantage of the possibility of manipulating assumptions
offered by CIC in order to implement the problematic substitution of formulæ
for variables. In fact, substitutions are delayed as much as possible, and are kept
in the derivation context by means of assumptions. This mechanism fits per-

fectly the stack discipline of assumptions of Natural Deduction, and it is neatly
formalized in CIC.

Due to lack of space, full proofs and the complete Coq signature will be
omitted; see [12] for an extended version of this paper.

1 Syntax, semantics and consequence relation of µK

The language of µK is an extension of the syntax of propositional dynamic logic.
Let Act be a set of actions (ranged over by a, b, c), and Var a set of propositional
variables (ranged over by x, y, z); then, the syntax of the µ-calculus on Act is:

Φ : ϕ, ψ ::= ff | ¬ϕ | ϕ ⊃ ψ | [a]ϕ | x | µxϕ
where the formation of µxϕ is subject to the positivity condition: every occur-
rence of x in ϕ has to appear inside an even number of negations (In the following
we will spell out this condition more in detail). We call preformulæ the language
obtained by dropping the positivity condition. The variable x is bound in µxϕ;
the usual conventions about α-equivalence apply. Given a set X ⊆ Var of vari-

ables, we denote by ΦX
def
= {ϕ ∈ Φ | FV(ϕ) ⊆ X} the set of formulæ with free

variables in X. Capture-avoiding substitutions are the usual maps Φ→ Φ, writ-
ten as lists of the form {ϕ1/x1, . . . , ϕn/xn}; they are ranged over by σ, τ . We
denote by ϕσ the formula obtained by applying the substitution σ to ϕ.

The interpretation of µ-calculus comes from Modal Logic. A model for the
µ-calculus is a transition system, that is, a pair M = 〈S, [[·]]〉 where S is a
(generic) nonempty set of (abstract) states, ranged over by s, t, r, and [[·]] is the
interpretation of command symbols: for all a, we have [[a]] : S → P(S).

Formulæ of µ-calculus may have free propositional variables; therefore, we
need to introduce environments, which are functions assigning sets of states to

propositional variables: Env
def
= Var → P(S). Given a model M = 〈S, [[·]]〉 and

an environment ρ, the semantics of a formula is the set of states in which it
holds, and it is defined by extending [[·]] compositionally:

[[ff]]ρ
def
= ∅ [[ϕ ⊃ ψ]]ρ

def
= (S \ [[ϕ]]ρ) ∪ [[ψ]]ρ

[[x]]ρ
def
= ρ(x) [[[a]ϕ]]ρ

def
= {s ∈ S | ∀r ∈ [[a]]s : r ∈ [[ϕ]]ρ}

[[¬ϕ]]ρ
def
= S \ [[ϕ]]ρ [[µxϕ]]ρ

def
=

⋂
{T ⊆ S | [[ϕ]]ρ[x 7→ T] ⊆ T}

It is customary to view a formula ϕ with a free variable x as defining a function
ϕρ

x : P(S) → P(S), such that for all U ⊆ S: ϕρ
x(U) = [[ϕ]]ρ[x 7→ U]. The intuitive

interpretation of µxϕ is then the least fixed point of ϕρ
x. The syntactic condition

on the formation of µxϕ ensures the monotonicity of ϕρ
x, and hence, by Knaster-

Tarski’s theorem, the existence of the lfp as well [8]. This does not hold if we
drop the condition on the formation of µxϕ; e.g., the formula ¬x identifies the
function (¬x)ρ

x(T) = S \T , which is not monotone and has no (least) fixed point.
In order to have a semantical counterpart of the syntactic notion of “deduc-

tion”, we introduce a consequence relation for the µ-calculus:

Definition 1. Let M = 〈S, [[·]]〉 be a model for µK. The consequence relation
for µK with respect to M is a relation |=M⊆ P<ω(Φ) × Φ, defined as follows

(where [[Γ]]ρ
def
=

⋂
ϕ∈Γ [[ϕ]]ρ): Γ |=M ϕ ⇐⇒ ∀ρ.[[Γ]]ρ ⊆ [[ϕ]]ρ .

The (absolute) consequence relation for µK is: Γ |= ϕ ⇐⇒ ∀M.Γ |=M ϕ.

posin(x,ff)

y ∈ Var

posin(x, y)

negin(x, ϕ)

posin(x,¬ϕ) negin(x,ff)

y 6= x

negin(x, y)

posin(x, ϕ)

negin(x,¬ϕ)
negin(x, ϕ) posin(x, ψ)

posin(x, ϕ ⊃ ψ)

posin(x, ϕ)

posin(x, [a]ϕ)

posin(x, ϕ) negin(x, ψ)

negin(x, ϕ ⊃ ψ)

negin(x, ϕ)

negin(x, [a]ϕ)
for z 6= x : posin(x, ϕ[z/y])

posin(x, µyϕ)

for z 6= x : negin(x, ϕ[z/y])

negin(x, µyϕ)

Fig. 1. The positivity proof system.

2 A proof system for the positivity condition

Since we aim to encode the µ-calculus in some logical framework, we need to
enforce the context-sensitive condition on the formation of formulæ of the form
µxϕ. That is, we ought to specify in detail the condition of “occurring positive in
a formula” for a variable. This notion can be represented by two new judgments
on formulæ and variables, posin and negin, which are derived by means of the
rules in Figure 1. Roughly, posin(x, ϕ) holds iff all occurrences of x in ϕ are
positively; dually, negin(x, ϕ) holds iff all occurrences of x in ϕ are negative.
Notice that if x does not occur in ϕ, then it occurs both positively and negatively.
More formally, the notions these auxiliary judgments capture are the following:

Definition 2 ((Anti)Monotonicity). For ϕ ∈ Φ, x ∈ Var, we say that ϕ
is monotone on x (written Monx(ϕ)) iff ∀M, ∀ρ, ∀U, V ⊆ S: U ⊆ V =⇒
ϕρ

x(U) ⊆ ϕρ
x(V). We say that ϕ is antimonotone on x (written AntiMonx(ϕ))

iff ∀M, ∀ρ, ∀U, V ⊆ S: U ⊆ V =⇒ ϕρ
x(U) ⊇ ϕρ

x(V).

These notions refer directly to the semantic structures in which formulæ take
meaning. In fact, the syntactic conditions of positivity/negativity are sound wrt
the semantic condition of monotonicity/antimonotonicity:

Proposition 1. ` posin(x, ϕ) ⇒ Monx(ϕ) and ` negin(x, ϕ) ⇒ AntiMonx(ϕ).

The converse of Proposition 1 does not hold. Consider e.g. ϕ
def
= (x ⊃ x):

clearly, [[ϕ]]ρ = S always, and hence (x ⊃ x)ρ
x is both monotone and antimono-

tone. However, x does not occur only positively nor only negatively in ϕ. Hence,
we cannot derive ` posin(x, (x ⊃ x)) nor ` negin(x, (x ⊃ x)). This is generalized
in the following result, which can be proved by induction on the syntax of ϕ:

Proposition 2. If x ∈ FV(ϕ) occurs both positively and negatively in ϕ then
neither posin(x, ϕ) nor negin(x, ϕ) are derivable.

We can restrict ourselves to only positive formulæ without loss of generality: by
Lyndon Theorem [4], every monotone formula is equivalent to a positive one.

3 The proof system Nls
µK

Usually, systems for µ-calculus are given in Hilbert style [8]. Here we present
Nls

µK (Figure 2), a lazy substitution proof system in Natural Deduction style for
µK. This system is called “lazy” after that substitutions of formulæ for variables
are delayed as much as possible—and may be not performed at all.

¬-I

(ϕ)
...
ff

¬ϕ
⊃-I

(ϕ)
...
ψ

ϕ ⊃ ψ
Raa

(¬ϕ)
...
ff

ϕ
Sc

[Γ]
...

[a]Γ ψ

[a]ψ

¬-E
ϕ ¬ϕ

ff
⊃-E

ϕ ⊃ ψ ϕ

ψ
Cngr

ϕ ≡ ψ ϕ

ψ

µ-I

(z 7→ µxϕ)
...

ϕ{z/x}

µxϕ
z fresh µ-E

(z 7→ ψ), [ϕ{z/x}]
...

µxϕ ψ

ψ
z fresh

x 7→ ϕ

x ≡ ϕ

ϕ ≡ ψ ψ ≡ ξ

ϕ ≡ ξ ϕ ≡ ϕ

ϕ ≡ ψ

ψ ≡ ϕ
ϕ ≡ ψ

¬ϕ ≡ ¬ψ

ϕ1 ≡ ψ1 ϕ2 ≡ ψ2

(ϕ1 ⊃ ϕ2) ≡ (ψ1 ⊃ ψ2)

ϕ ≡ ψ

[a]ϕ ≡ [a]ψ

ϕ{z/x} ≡ ψ{z/x}

µxϕ ≡ µxψ
z fresh

Fig. 2. The lazy substitution, Natural Deduction-style proof system Nls
µK for µ-

calculus: logical system (top), and congruence system (bottom).

Nls
µK is composed by two derivation systems, the logical one and the congru-

ence one. Roughly, the logical system allows for deriving formulæ from formulæ
(assumptions) and bindings, which are judgments of the form x 7→ ϕ, where
x ∈ Var and ϕ ∈ Φ. The congruence system allows for deriving judgments of the
form ϕ ≡ ψ, from a list of bindings. More precisely, we introduce the following

Definition 3. A set of assumptions (denoted by Γ) is any finite set of formulæ;
a binding list (denoted by ∆) is a list 〈x1 7→ ϕ1, . . . , xn 7→ ϕn〉 such that for all
i 6= j: xi 6= xj, and for all i ≤ j: xi 6∈ FV(ϕj).

A derivation of ϕ from assumptions Γ and bindings ∆ is denoted by ∆;Γ ` ϕ;
a derivation of ϕ ≡ ψ from ∆ is denoted by ∆ ` ϕ ≡ ψ.

The logical system is composed by a standard set of rules for classical proposi-
tional logic, extended by Scott’s rule Sc for minimal modal logic, the congruence
rule Cngr, and the intro/elimination rules µ-I, µ-E. The rules for µ have a di-
rect semantic interpretation: the introduction rule states that (the meaning of)
µxϕ is a prefixed point of ϕρ

x; the elimination rule states that (the meaning of)
µxϕ implies, and then “is less than”, any prefixed point of ϕρ

x. Therefore, these
rules state that (the meaning of) µxϕ is the least fixed point, of ϕρ

x.
In rule Sc, the square brackets surrounding Γ mean that ψ may depend only

on the discharged assumption Γ . Similarly, in rule µ-E, the formula ϕ{z/x} is
the only assumption that the subderivation of ψ may depend on. These “modal”
side conditions can be explicated clearly by a Gentzen-like presentation:

Sc
∆;Γ ` ψ

∆; [a]Γ ` [a]ψ
µ-E

∆;Γ ` µxϕ ∆, z 7→ ψ;ϕ{z/x} ` ψ

∆;Γ ` ψ
z fresh

No logical rule requires a binding as a premise; bindings are only discharged,
in rules requiring a substitution (i.e., rules µ-I, µ-E). In these rules, variables are

not textually replaced by the corresponding formula, but only by an α-equivalent
(“fresh”) variable. The discharged hypothesis keeps in the derivation context the
binding between the substituted variable and the corresponding formula. These
hypotheses form a binding list which is used by the congruence system: roughly,
we can prove ∆ ` ϕ ≡ ψ iff ϕ and ψ are the same formula, “up to ∆”. More
precisely, a binding list ∆ corresponds to a particular form of substitution, which

can be defined by induction on ∆ as σ〈〉
def
= {}, σ∆,x7→ϕ

def
= σ∆ ◦ {ϕ/x}. Then, ≡

is the smallest congruence which contains σ∆:

Proposition 3. For all ∆, for all ϕ, ψ ∈ Φ: ∆ ` ϕ ≡ ψ ⇐⇒ ϕσ∆ = ψσ∆

The resulting system is then sound and complete:

Theorem 1. For all ∆, for all Γ finite and ϕ ∈ Φ: ∆;Γ ` ϕ ⇐⇒ Γσ∆ |= ϕσ∆

Proof. (Sketch) Soundness (⇒) is proved by showing that each rule is sound.
Completeness (⇐) can be proved by proving that axioms and rules of a complete
Hilbert-style system (e.g., Kozen’s one [17]) are derivable in Nls

µK . ut

Corollary 1. For Γ finite set of formulæ, ϕ formula: ∅;Γ ` ϕ ⇐⇒ Γ |= ϕ.

4 Encoding the language of µ-calculus

The encoding of the language of µ-calculus is quite elaborate. The customary
approach, is to define an inductive type, o:Set, whose constructors correspond
to those of the language of µK. In order to take full advantage of α-conversion
and substitution machinery provided by the metalanguage, we adopt the higher
order abstract syntax [5, 7]. In this approach, binding constructors (like µ) are
rendered by higher-order term constructors; that is, they take a function. The
näıve representation of µ would be mu:(o->o)->o; however, this solution does
not work inside an inductive definition of CIC, because it leads to a non-well-
founded definition [2, 5].

The second problem is the presence of a context-sensitive condition on the
applicability of µ: in order to construct a formula of the form µxϕ, we have to
make sure that x occurs positively in ϕ. Inductive types do not support this kind
of restriction, since they define only context-free languages [13].

In order to overcome the first problems, we adopt the bookkeeping technique
[13]. We introduce a separate type, var, for the identifiers. These variables act as
“placeholders” for formulæ: they will be bound to formulæ in the application of
µ-I and µ-E rules, by means of an auxiliary judgment. There are no constructors
for type var: we only assume that there are infinitely many variables.

Parameter var : Set.

Axiom var_nat : (Ex [srj:var->nat](n:nat)(Ex [x:var](srj x)=n)).

Then, we define the set of preformulæ of µ-calculus, also those not well formed:

Parameter Act : Set.

Inductive o : Set := ff : o | Not : o -> o | Imp : o -> o -> o

| Box : Act -> o -> o | Var : var -> o | mu : (var->o) -> o.

Notice that, the argument of mu is a function of type var->o. In general, this
may arise exotic terms, i.e. terms which do not correspond to any preformula of
the µ-calculus [5, 13]. These terms are built by using the Case term constructor

of inductive type theory, over the type of variables. This cannot be achieved in
our approach since var is not declared as an inductive set. Of course, the price
we pay is that equality between variables is not decidable [13, Section 11.2].

Now, we have to rule out all the non-well-formed formulæ. At the moment,
the only way for enforcing in CIC context-sensitive conditions over languages is to
define a subtype by means of Σ-types. As a first step, we formalize the system for
positivity/negativity presented in Figure 1, introducing two judgments posin,
negin of type var->o->Prop. A careful analysis of the proof system (Figure 1)
points out that the derivation of these judgments is completely syntax driven.
It is therefore natural to define these judgments as recursively defined functions,
instead of inductively defined propositions. This is indeed feasible, but the rules
for the binding operators introduce an implicit quantification over the set of
variables different from the one we are looking for. This is rendered by assuming
a new variable (y) and that it is different from the variable x (see last cases):

Fixpoint posin [x:var;A:o] : Prop :=

<Prop>Cases A of ff => True | (Not B) => (negin x B)

| (Imp A1 A2) => (negin x A1)/\(posin x A2) | (Box a B) => (posin x B)

| (Var y) => True | (mu F) => (y:var)~(x=y)->(posin x (F y))

end

with negin [x:var;A:o] : Prop :=

<Prop>Cases A of ff => True | (Not B) => (posin x B)

| (Imp A1 A2) => (posin x A1)/\(negin x A2) | (Box a B) => (negin x B)

| (Var y) => ~(x=y) | (mu F) => (y:var)~(x=y)->(negin x (F y))

end.

Therefore, in general a goal (posin x A) can be Simplified (i.e., by applying
the Simpl tactic, in Coq) to a conjunction of only three forms of propositions:
True, negations of equalities or implications from negations of equalities to an-
other conjunction of the same form. These three forms are dealt with simply in
Coq, hence proving this kind of goals is a simple and straightforward task.

Similarly, a preformula is well formed when every application of µ satisfies
the positivity condition:

Fixpoint iswf [A:o] : Prop :=

<Prop>Cases A of ff => True | (Var y) => True | (Not B) => (iswf B)

| (Imp A1 A2) => (iswf A1)/\(iswf A2) | (Box a B) => (iswf B)

| (mu F) => (x:var)(iswf (F x))/\((notin x (mu F)) -> (posin x (F x)))

end.

In the case of µ, we locally assume the fact that the x we introduce does not
appear in the formula, i.e. it is fresh. Although this is automatically achieved
by the metalanguage, we may need this information for proving (posin x (F

x)). This is achieved by the hypothesis (notin z (mu F)). The judgment notin
and the dual isin (see [12]) are auxiliary judgments for occur-checking. Roughly,
(notin x A) holds iff x does not occur free in A; dually for isin.

Finally, each formula of the µ-calculus is therefore represented by a pair
preformula-proof of its well-formedness:

Record wfo: Set := mkwfo {prp : o; cnd : (iswf prp)}.

In order to estabilish that our encoding is faithful, we introduce the following

notation: for X = {x1, . . . , xn} ⊂ V ar, let ΞX
def
= x1 : var, . . . , xn : var, oX

def
=

{t | ΞX ` t : o, t canonical} and wfoX
def
= {t ∈ oX | ∃d.ΞX ` d : (iswf t)}.

We can then define the encoding map εX : ΦX → oX , as follows:

εX(x) = x εX(ϕ ⊃ ψ) = (Imp εX(ϕ) εX(ψ))
εX(¬ϕ)=(Not εX(ϕ)) εX([a]ϕ)=(Box a εX(ϕ))
εX(ff) = ff εX(µxϕ) = (mu [x:var]εX,x(ϕ))

Theorem 2. The map εX is a compositional bijection between ΦX and wfoX .

Proof. (Sketch) Long inductions. First, one proves that posin, negin adequately
represent the positivity/negativity proof system. Then, a preformula ϕ is a for-
mula iff each application of µ is valid, iff for each application of µ there exists a
(unique) witness of posin, iff there exists an inhabitant of (iswf εX(ϕ)). ut

5 Encoding the proof system Nls
µK

In the encoding paradigm of Logical Frameworks, a proof system is usually
represented by introducing a proving judgment over the set of formulæ, like T:o

-> Prop. A type (T phi) should be intended, therefore, as “ϕ is true;” any
term which inhabits (T phi) is a witness (a proof) that ϕ is true. Each rule is
then represented by a type constructor of T. Moreover, substitution schemata
for binding operators need not to be implemented “by hand”, because they are
inherited from the metalanguage. This is the case, for instance, of “∀” in First
Order Logic; for further examples and discussion, we refer to [5, 7].

However, in representing the proof system Nls
µK , two difficult issues arise:

the encoding of proof rules, like Sc and µ-E, and the substitution of formulæ for
variables in rules µ-I and µ-E. Moreover, Scott’s rule is parametric in the number
of assumptions which have to be “boxed”. These issues escape the standard
encoding paradigm, so we have to accommodate some special technique.

Actually, in the underlying theory of CIC there is no direct way for enforcing
on a premise the condition that it is a theorem (i.e. that it depends on no
assumptions) or, more generally, that a formula depends only on a given set of
assumptions. This is because the typing rules of PTS’s are strictly in Natural
Deduction style. Therefore, in presence of sequent-style rules like Sc and µ-E, one
could encode a complete sequent calculus introducing the type olist of lists of
formulæ, the sequent judgment Seq:olist->o->Prop, and all the machinery of
Gentzen’s original system [6]. This would lead to an unusable proof system: even
if our rules have a Natural Deduction flavour, all the goals would be crammed
with the list of hypotheses, and we should deal with supplementary structural
rules for manipulating the list of assumptions.

Instead, we represent more efficiently the assumption set by means of the
proof context provided by CIC, i.e., by taking advantage of the possibility of
reasoning “under assumptions” [1]. First, we represent 7→ and ≡ by means of two
judgments bind:var->o->Prop and cngr:o->o->Prop, respectively. The former
has no constructor (it declared as a Parameter), while the latter is rendered as
an inductive predicate, as expected. In particular, the congruence rule for µ is
rendered by means of a locally quantified variable (see [12] for the whole listing):

Parameter bind : var -> o -> Prop.

Inductive cngr : o -> o -> Prop :=

cngr_bind : (x:var)(A:o)(bind x A) -> (cngr (Var x) A)

(... other rules ...)

| cngr_mu :(A,B:var->o)((x:var)(cngr (A x) (B x)))->(cngr (mu A) (mu B)).

Then, we introduce the basic proving judgment, T:U->o->Prop, where U a set
with no constructors. Elements of U will be called worlds for suggestive reasons.
Each pure rule (i.e., with no side condition), is parameterized over a generic
world, like the following:

Axiom Imp_E : (w:U)(A,B:o)(T w (Imp A B)) -> (T w A) -> (T w B).

Therefore, in a given world all the classical rules apply as usual. It should be
noticed, however, that we require a locally introduced formula to be well formed.
This is the case of ⊃-I:

Axiom Imp_I : (w:U)(A,B:o)(iswf A)->((T w A)->(T w B))->(T w (Imp A B)).

Indeed, it can be shown that if we allow for non-well formed formulæ in these
“negative positions,” we get easily an inconsistent derivation.

Proof rules, on the other hand, are distinguished by local quantifications
of the world parameter, in order to make explicit the dependency between a
conclusion and its premises. The rule µ-E is encoded as follows:

Axiom mu_E : (F:var->o)(iswf A) ->

((z:var)(notin z (mu F)) -> (bind z A) -> (w’:U)(T w’ (F z))->(T w’ A))

-> (w:U)(T w (mu F)) -> (T w A).

The idea behind the use of the extra parameter is that in making an assump-
tion, we are forced to assume the existence of a world, say w, and to instantiate
the judgment T also on w. This judgment then appears as an hypothesis on w.
Hence, deriving as premise a judgment, which is universally quantified with re-
spect to U, amounts to establishing the judgment for the generic world w’ on
which only the given assumptions are made, i.e. on the given assumptions.

This idea can be suitably generalized to take care of an unlimited number of
assumptions. In fact, a generic sequent ϕ1, . . . , ϕn ` ϕ is faithfully represented
by the type (w:U)(T w A1)->...->(T w An)->(T w A) where Ai = εX(ϕi) and
A= εX(ϕ). The locally quantified world w forces any proof of (T w A) to de-
pend only on the given assumptions. The problem is capturing the parametric
flavour expressed by the “. . . ”. At this end, we introduce lists of formulæ and
the auxiliary function Sequent:U->o->olist->Prop:

Inductive olist : Set := nil : olist | cons : o -> olist -> olist.

Fixpoint Sequent [w:U;B:o;l:olist] : Prop :=

Cases l of

nil => (T w B) | (cons A t) => (T w A)->(Sequent w B t)

end.

Therefore, the aforementioned representation of ϕ1, . . . , ϕn ` ϕ is denoted by
(w:U)(Sequent w B G) where G is the list composed by A1,. . . ,An. In fact,
(Sequent w B G) is exactly βιδ-equivalent (it can be reduced) to (T w A1)->
...->(T w An) -> (T w B). We can therefore represent Scott’s rule as follows:

Fixpoint Boxlist [a:Act; l:olist] : olist :=

Cases l of nil => nil | (cons B t) => (cons (Box a B) (Boxlist a t)) end.

Axiom Sc : (G:olist)(B:o)(a:Act) ((w’:U)(Sequent w’ B G)) ->

(w:U)(Sequent w (Box a B) (Boxlist a G)).

where the map Boxlist:Act->olist->olist represents exactly the “[a]Γ” no-
tation of rule Sc. Hence, we can use the conversion tactics provided by Coq for
automatically converting applications of Sequent to the right proposition.

The encoding of µ-E (and µ-I) uses also the auxiliary judgment bind. Follow-
ing the idea of Nls

µK , the context ϕ(·) of µxϕ(x) is filled by a fresh (i.e., locally
quantified) variable z. The binding between z and the corresponding formula
is kept in the derivation environment by the hypothesis (bind z A). This hy-
pothesis can be used in the derivation of congruence judgments, for replacing
formulæ only when it is needed. For an example, see [12].

The discharged hypothesis (notin z (mu F)) in rule mu_E reflects at the
logical level, the fact that z is fresh. Although freshness of z obviously holds,
it cannot be inferred in the system because it belongs to the metalevel of the
system. Hence, we reify it by means of the discharged hypothesis, which may
be needed in the rest of derivation for inferring well-formedness of discharged
formulæ in rules Raa, ⊃-I, ¬-I.

In order to state the adequacy of our formalization w.r.t. Nls
µK , we intro-

duce the following notation. Let X ⊂ Var be finite, and ϕ1, . . . , ϕn, ϕ ∈ ΦX ;
then, for x1, . . . , xn ∈ X, we denote by δX(x1 7→ ϕ1, . . . , xn 7→ ϕn) the con-
text b1: (bind x

1
εX(ϕ1)), . . .bn: (bind xn εX(ϕn)), and, for w:U, we denote by

γX,w(ϕ1, . . . , ϕn) the context h1: (T w εX(ϕ1)), . . . , hn: (T w εX(ϕn)).

Theorem 3. Let X ⊂ V ar be finite, ∆ a binding list such that FV(∆) ⊆ X,
and Γ ⊂ ΦX finite. Then, for all ϕ1, ϕ2 ∈ ΦX :

1. ∆ ` ϕ1 ≡ ϕ2 iff there is t such that ΞX , δX(∆) ` t : (cngr εX(ϕ1) εX(ϕ2))
2. ∆;Γ ` ϕ1 iff there is t such that ΞX , δX(∆), w : U, γX,w(Γ) ` t : (T w εX(ϕ1)).

Proof. (Sketch) Directions ⇒ are proved by induction on the proofs of ∆ ` ϕ1 ≡
ϕ2 and ∆;Γ ` ϕ1. Directions ⇐ are proved by induction on the syntax of t:
each constructor of (cngr A B) and (T w A) corresponds to a rule of Nls

µK . ut

6 Conclusions
In this paper we have introduced an original proof system Nls

µK for the propo-
sitional modal µ-calculus, and its formalization in the Calculus of Inductive
Constructions. Beside the formalization, Nls

µK is interesting on its own for sev-
eral reasons: it is in Natural Deduction style, it has been proved complete with
respect to logical consequences (while traditional Hilbert-style proof systems are
complete with respect to theorems), and its usage should be easier than ax-
iomatic proof systems. Moreover, in Nls

µK substitutions of formulæ for variables
are not always performed, but they may be delayed until actually needed.

In the encoding, we have addressed several problematic issues. First, the
use of the higher order abstract syntax frees us from a tedious encoding of the
mechanisms involved in the handling of α-conversion, because it is automati-
cally inherited from the metalevel. Secondly, substitution is represented by a
congruence proof system, whose proofs are syntax-driven and can be highly au-
tomatized in the Coq environment. Thirdly, we have faithfully represented the
context-sensitive language of µ-calculus by formalizing the notion of “well-formed
formula.” Finally, the modal nature of impure rules of µ-calculus (Sc and µ-E)

has been effectively rendered, although Logical Frameworks do not support di-
rectly modal rules. The techniques we have adopted can be readily ported to
other formalisms featuring similar problematic issues.

From a proof-theoretical point of view, rule Sc is not satisfactory, since it
breaks the typical introduction/elimination pattern of Natural Deduction sys-
tems. Whether there is a truly Natural Deduction formulation of the system
remains an open question.

The implementation of substitution by means of an environment of bindings
has been previously investigated in the context of logic programming by Miller
[14], and in that of model checking by Stirling and Walker [16]. This latter fact
deserves further investigation. For instance, Nls

µK could be integrated with a
model checker in a simple and efficient way; moreover, the model checker could
be implemented in Coq, and its correctness formally verified.

Acknowledgements. The author is grateful to Furio Honsell and an anonymous ref-
eree for many useful remarks.

References
1. A. Avron, F. Honsell, M. Miculan, and C. Paravano. Encoding modal logics in

Logical Frameworks. Studia Logica, 60(1):161–208, Jan. 1998.
2. The Coq Proof Assistant Reference Manual - Version 6.2. INRIA, Rocquencourt,

May 1998. Available at ftp://ftp.inria.fr/INRIA/coq/V6.2/doc.
3. A. Church. A formulation of the simple theory of types. JSL, 5:56–68, 1940.
4. G. D’Agostino, M. Hollenberg. Logical questions concerning the µ-calculus: inter-

polation, Lyndon, and Loś-Tarski. To be published in the JSL, 1999.
5. J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order syntax in Coq. In Proc.

of TLCA’95. LNCS 902, Springer-Verlag, 1995.
6. G. Gentzen. Investigations into logical deduction. In M. Szabo, ed., The collected

papers of Gerhard Gentzen, pages 68–131. North Holland, 1969.
7. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM,

40(1):143–184, Jan. 1993.
8. D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983.
9. Z. Luo, R. Pollack, et al. The LEGO proof assistant. Department of Computer

Science, University of Edinburgh. http://www.dcs.ed.ac.uk/home/lego
10. L. Magnusson and B. Nordström. The ALF proof editor and its proof engine. In

Proc. of TYPES’93, LNCS 806, pages 213–237. Springer-Verlag, 1994.
11. P. Martin-Löf. On the meaning of the logical constants and the justifications of

the logic laws. TR 2, Dip. di Matematica, Università di Siena, 1985.
12. M. Miculan. Encoding the µ-calculus in Coq. Available at http://www.dimi.

uniud.it/~miculan/mucalculus
13. M. Miculan. Encoding Logical Theories of Programs. PhD thesis, Dipartimento di

Informatica, Università di Pisa, Italy, Mar. 1997.
14. D. Miller. Unification of Simply Typed Lambda-Terms as Logic Programming. In

Proc. of Eighth Intl. Conf. on Logic Programming. MIT, 1991.
15. B. Nordström, K. Petersson, and J. M. Smith. Martin-Löf’s type theory. In

Handbook of Logic in Computer Science. Oxford University Press, 1992.
16. C. Stirling, and D. Walker. Local model checking in the modal µ-calculus. Theo-

retical Computer Science, 89:161–177, 1983.
17. I. Walukiewicz. Completeness of Kozen’s axiomatisation. In D. Kozen, editor,

Proc. 10th LICS, pages 14–24, June 1995. IEEE.

