
ICALP’01

Hersónisos, Crete, July 2001

An axiomatic approach to
metareasoning on nominal algebras

in HOAS

Marino Miculan

Università di Udine, Italy

miculan@dimi.uniud.it

Joint work with Furio Honsell and Ivan Scagnetto

Research supported by EEC Working Group No.29001, TYPES.

Motivations: A common scenario

We want/need to use (semi)automatized tools for dealing with the theory
and metatheory of many different calculi involving names

• represent formally (encode) syntax and semantics of an object language
(e.g., λ-, π-, ambient calculus) in some general metalanguage (logical
framework) for doing formal (meta)reasoning.

• derive some results interactively in a goal-directed manner, in some
general-purpose theorem prover/proof assistant

Problem: how to render binding operators (e.g, λ, ν) efficiently?

In interactive development,

efficiently ∼= “formal proofs should look like on paper”

Long standing problem. Many approaches have been proposed, with pros
and cons: de Bruijn indexes, first-order abstract syntax, higher-order abstract
syntax . . . [HHP87,Hue94,DFH95,GM96,MM01,. . .].

2

First-order approaches

If we follow the rules of the game, we go for a deep embedding: all the details
have to be spelled out in the framework

• First-order abstract syntax

nu : Name -> Proc -> Proc

Thus, (nu x 0) differs from (nu y 0), a priori.

Needs lots of machinery about α-equivalence, substitution, . . .

• de Bruijn indexes

nu : Proc -> Proc

Good at α-equivalence (names disappear!), but not immediate to under-
stand and needs even more machinery for capture-avoiding substitution
than FOAS

3

(Weak) Higher-order abstract syntax

Binders are higher-order constructors: they take functions as arguments

nu : (Name -> Proc) -> Proc

Thus, νx.x̄y is represented as (nu [x:Name](out x y))

Objects of type Name -> Proc represent contexts (terms with holes)

♥ many aspects of names management are delegated to the metalan-
guage (α-conversion, capture-avoiding substitution, generation of fresh
names,. . .) ⇒ widely used in most logical frameworks

♠ if Name is defined as inductive then exotic terms (= not corresponding to
any real term of the object language) will arise! E.g., if Name = nat

weird = nu [x:nat](Cases x of 0 => P
| _ => P|Q end).

♠ in general, function spaces are not recognized as inductive
⇒ structural induction over higher-order terms is not provided
⇒ metatheoretic analysis is difficult/impossible

4

The “axiomatic” approach

Basic problem with HOAS: in the usual meaning of ->, the type Name -> Proc
contains lots of garbage

⇒ clean up these types by adding (= postulating) to your favourite metalogic
a set of properties which characterized the “natural” behaviour of contexts
and names. (This set of basic properties is the Theory of Contexts.)

Big issues of this approach: soundness? expressivity?

In this talk, the Theory of Contexts will be described in broad generality for
a wide range of object logics.

5

Nominal algebras

A names set υ is an infinite enumerable set of different atomic objects, with
a decidable equality.

A names base is a finite set V = {υ1, . . . , υk} of names sets.

Let V = {υ1, . . . , υk} be a names base, whose elements are ranged over by υ.
Let I = {ι1, . . . , ιm} be a set of basic types, ranged over by ι.

A constructor arity over V, I for ι is a type α of the form τ1 × · · · × τn → ι,
where n ≥ 0 and for i = 1 . . . n, the type τi is either in V or it is of the form
τi = υi1× · · · × υimi

→ σi where υij ∈ V and σi ∈ I. If mi > 0 for some i, then α
is said to be a binding arity, or to bind υi1,. . . , υimi

over σi.

A constructor over V, I for ι is a typed constant cα where α is a constructor
arity over V, I. If α is a binding arity, then c is said to be a binding constructor,
or simply a binder.

A nominal algebra N is a tuple 〈V, I, C〉 where V is a set of names sets, I is
a set of basic types, and C is a set of constructors over V, I.

6

Nominal algebras: examples

Many languages can be viewed as nominal algebras.

• Untyped λ-calculus: Nλ = 〈{υ}, {Λ}, {varυ→Λ,λ(υ→Λ)→Λ, appΛ×Λ→Λ}〉

• π-calculus: Nπ = 〈{υ}, {ι},
{0ι, |ι×ι→ι, τ ι→ι,=υ×υ×ι→ι, ν(υ→ι)→ι, inυ×(υ→ι)→ι, outυ×υ×ι→ι}〉

• Ambient: NAmb = 〈{η, υ}, {C,P, F},
{nameη→C, inC→C, outC→C, openC→C, εC, pathC×C→C,
ν(η→P)→P ,0P , |P×P→P , !P→P , ambC×P→P , capC×P→P , in(η→P)→P

a , outC→Pa
TF ,¬F→F ,∨F×F→F , 0F , |F×F→F ,BF×F→F , [·]η×F→F ,@F×η→F ,

η×F→F ,;F×η→F ,♦F→F ,✧F→F , ∀(υ→F)→F}

On the other hand, languages with polyadic binders escape the class of nom-
inal algebras.

7

The metalanguage Υ

Υ = Simple Theory of Types on a given signature Σ
+ Classical Higher Order Logic
+ Theory of Contexts
+ Higher-Order Induction/Recursion principles

Two kind of judgements:

• Typing judgements have the form Γ `Σ M : τ

• Logical derivation judgement Γ; ∆ `Σ p

where Σ is a signature.

8

Υ: the Simple Theory of Types

A type signature Σt is a finite list of atomic type symbols σ1, . . . , σn.

The simple types over a type signature Σt are defined as follows:

τ ::= o | σ | τ → τ where σ ∈ Σt

A constant signature Σc is a finite list of constant symbols with simple types
c : τ1, . . . , cm : τm.

A signature Σ consists of a type signature Σt and a constant signature Σc.

The terms over the signature Σ = 〈Σc,Σt〉, ranged over by M,N,P,Q,R, are
defined by the following abstract syntax:

M ::= x |MN | λx:τ.M | c |M ⇒ N | ∀x:τ.M where c : σ ∈ Σc for some σ

As usual, we denote by M [N/x] capture-avoiding substitution. Terms are
identified up-to α-conversion.

9

Υ: typing judgement

(Typing) contexts (ranged over by Γ) are finite sets of typing assertions over
distinct variables (e.g. {x1 : τ1, x2 : τ2, . . . , xn : τn}).

Typing judgements have the form Γ `Σ M : τ . Rules:

−
Γ, x : τ `Σ x : τ

(VAR)

Γ `Σ M : τ ′ → τ Γ `Σ N : τ ′

Γ `Σ MN : τ
(APP)

Γ, x : τ ′ `Σ M : τ

Γ `Σ λx:τ ′.M : τ ′ → τ
(ABS)

−
Γ `Σ c : τ

(c:τ) ∈ Σc (CONST)

Γ `Σ M : o Γ `Σ N : o

Γ `Σ M ⇒ N : o
(IMP)

Γ, x : τ `Σ M : o

Γ `Σ ∀x:τ.M : o
(FORALL)

Terms of type o are the propositions of our logic. Terms of type τ → o are
called predicates (over τ).

As usual in HOL, all logical connectives can be defined in terms of ∀ and ⇒.

All usual properties of simply typed λ-calculi are satisfied: uniqueness of type,
subject reduction, normal form, Church-Rosser, . . .

10

Encoding nominal algebras in Υ

Υ is expressive enough to represent faithfully any nominal algebra, via HOAS:

1. object level names are represented by metalanguage variables;

2. contexts are represented by higher-order terms, i.e. functions;

3. binders are represented by constructors which take functions as argu-
ments;

4. contexts instantiation and capture-avoiding substitution are meta-level
applications; hence, α-conversion is immediately inherited from the met-
alanguage.

Let N = 〈V, I, C〉 be a nominal algebra. The signature for N , Σ(N), is defined
as Σ(N) , 〈V ∪ I, {c : τ | cτ ∈ C}〉.

Theorem 1 Let X be a stage in V , and let Γ(X) , {x : υi | x ∈ Xi, i = 1 . . . n}.
For each type ι ∈ I, there exists a bijection between LιX and the set of terms
in βη-normal form of type ι in the context Γ(X).

11

Encodings in Υ: Examples

• λ-calculus:

Σ(Nλ)t = υ,Λ

Σ(Nλ)c = var : υ → Λ,λ : (υ → Λ)→ Λ, app : Λ→ Λ→ Λ

For instance, λx(xx) λλx:υ.(app (var x) (var x)).

• π-calculus:

Σ(Nπ)t =υ, ι

Σ(Nπ)c =0 : ι, τ : ι→ ι, | : ι→ ι→ ι,=: υ → υ → ι→ ι, ν : (υ → ι)→ ι,

in : υ → (υ → ι)→ ι, out : υ → υ → ι→ ι

12

Υ: logical judgement

The logical derivation judgement “Γ; ∆ `Σ p” means “p derives from the set
of propositions ∆ in context Γ”.

Logical derivation system = natural deduction style system for classical
higher-order logic, with βηξ-equality
+ non-occurrence predicates
+ a set of axioms for the Theory of Contexts.

System for Classical HOL: a standard one

Γ; ∆, p `Σ q

Γ; ∆ `Σ p⇒ q
(⇒-I)

Γ; ∆ `Σ p⇒ q Γ; ∆ `Σ p

Γ; ∆ `Σ q
(⇒-E)

Γ, x : τ ; ∆ `Σ p

Γ; ∆ `Σ ∀x:τ.p
x 6∈ FV (∆) (∀-I)

Γ; ∆ `Σ ∀x:τ.p Γ `Σ M : τ

Γ; ∆ `Σ p[M/x]
(∀-E)

Γ `Σ p : o

Γ; ∆ `Σ p ∨ ¬p
(LEM)

Γ, x : τ `Σ M : σ Γ `Σ N : τ

Γ; ∆ `Σ (λx:τ.M)N =σ M [N/x]
(β)

Γ `Σ M : τ → σ

Γ; ∆ `Σ λx:τ.Mx =τ→σ M
x 6∈ FV (M) (η)

Γ, x : σ; ∆ `Σ M =τ N

Γ; ∆ `Σ λx:σ.M =σ→τ λx:σ.N
(ξ)

13

Υ: Non-occurrence predicates

For each υ ∈ V and ι ∈ I, we define a predicate 6∈ιυ: υ → ι→ o.

“x 6∈ιυ M” ∼= “the name x (of type υ) does not appear free in M (of type ι).”

Rules for deriving x 6∈ιυ M are mechanically defined from the signature: i.e.,
for each constructor c, there is a rule as follows

H1 . . . Hn

Γ; ∆ `Σ x 6∈ιυ (c M1 . . .Mn)
cτ1×···×τn→ι ∈ C (Notinc)

where Hi =

{
Γ; ∆ `Σ ¬(x =υ Mi) if τi = υ

Γ,Γi; ∆,∆i `Σ x 6∈ι′υ (Mi y1 . . . ymi
) if τi = υi1 × · · · × υimi

→ ι′

Γi = y1 : υi1, . . . , ymi
: υimi

∆i = {¬(x =υ yj) | υj = υ, j = 1 . . .mi}

Proposition 1 For all Γ contexts, (x : υ) ∈ Γ and M such that Γ `Σ M : ι,
we have: Γ; ∅ `Σ x 6∈τυ M iff x 6∈ FV (M)

Non-occurrence predicates can be lifted to contexts:

x 6∈υ→τυ M , ∀y:υ.¬(x =υ y)⇒ x 6∈τυ (M y)

x 6∈υ′→τυ M , ∀y:υ′.x 6∈τυ (M y) (υ 6= υ′)

14

The Theory of Contexts

A set of axiom schemata, which reflect at the theory level some fundamental
properties of the intuitive notion of “context” and “occurrence” of variables.
Their informal meaning is the following:

Unsaturability of variables: no term can contain all variables; i.e., there
exists always a variable which does not occur free in a given term;

Extensionality of contexts: two contexts are equal if they are equal on a
fresh variable; that is, if M(x) = N(x) and x 6∈M(·), N(·), then M = N .

β-expansion: given a term M and a variable x, there is a context CM(·),
obtained by abstracting M over x

15

Υ: the Theory of Contexts

Γ `Σ P : ι

Γ; ∆ `Σ ∃x:υ.x 6∈ P
(Unsatυι)

Γ `Σ P : υ → τ Γ `Σ Q : υ → τ Γ `Σ x : υ

Γ; ∆, x 6∈υ→τP, x 6∈υ→τQ, (P x) =τ (Q x) `Σ P =υ→τ Q
(Extτυ)

Γ `Σ P : τ Γ `Σ x : υ

Γ; ∆ `Σ ∃Q:υ → τ.x 6∈υ→τ Q ∧ P =τ (Q x)
(β expτυ)

where τ = υi1 → · · · → υik → ι

16

Properties of Υ

Proposition 2 (Hof99) The Axiom of Unique Choice

Γ ` R : σ → τ → o Γ, a : σ; ∆ ` ∃!b : τ.(R a b)

Γ; ∆ ` ∃f : σ → τ.∀a : σ.(R a (f a))
(AC!σ,τ)

is inconsistent with the Theory of Contexts.

Consequences:

• in toposes, AC! always holds ⇒ topos logic is not enough ⇒ soundness
of the Theory of Contexts is not so trivial

• relations are more expressive than functions: there are functional relations
whose characteristic functions cannot be defined
⇒ often, one has to use functional relations in place of functions

Theorem 2 For all nominal algebras N : Υ over the signature Σ(N) is sound.

Idea: build a model (close to Schanuel topos) using a tripos ove functor
categories. The index category is the category of permutations over finite
sets of atoms. See [BHHMS01] for details.

17

Properties of Υ (cont.)

Let Γ `Σ p : υ → o; consider the rules

Γ; ∆ `Σ ∀y:υ.y 6∈υ→o p⇒ (p y)

Γ; ∆ `Σ ∃y:υ.y 6∈υ→o p ∧ (p y)
(∀∃)

Γ; ∆ `Σ ∃y:υ.y 6∈υ→o p ∧ (p y)

Γ; ∆ `Σ ∀y:υ.y 6∈υ→o p⇒ (p y)
(∃∀)

These rules capture the idea that freshness has both an “existential” and a
“universal” flavour. Indeed in Υ we have that

Theorem 3 ∀∃ is derivable, and ∃∀ is admissible.

In fact also the following bindable name renaming rule

Γ, x : υ; ∆, x 6∈υ→o p `Σ (p x)

Γ, y : υ; ∆, y 6∈υ→o p `Σ (p y)
x, y 6∈ FV (∆) (Ren)

is admissible in our system.

For most specific predicates of interest —e.g., strong (late) bisimilarity and
operational semantics of π-calculus, typing system of λ-calculus, etc.— the
rule schema ∃∀ is derivable in Υ using Extτυ and β expτυ.

18

Higher-order Induction and Recursion

The tripos model justifies also recursion and induction principles over higher-
order types
⇒ we can reason by structural induction, and define function by structural
recursion, over contexts.

The general schemata, parametric in a given nominal algebra, don’t fit easily
into a slide — see paper on proceedings.

Example: induction principle over contexts of λ-calculus:

Γ ` P : (υ → Λ)→ o
Γ, x1 : υ; ∆ ` (P λx:υ.(var x1))
Γ, x1 : υ; ∆ ` (P λx:υ.(var x))
Γ,M1:υ → Λ,M2:υ → Λ; ∆, (P M1), (P M2) ` (P λx:υ.(app (M1 x) (M2 x)))
Γ,M1 : υ → υ → Λ; ∆, ∀y1:υ.(P λx:υ.(M1 x y1)) ` (P λx:υ.(λ(M1 x)))
Γ; ∆ ` ∀M :υ → Λ.(P M)

This principle is strictly stronger than the one provided, e.g., by the Calculus
of Inductive Constructions or Isabelle/HOL. These systems do not recognize
that (M1 x) is structurally smaller than λx : υ.(λ (M1 x)).

19

Case studies

Expressivity and easiness of use of the Theory of Contexts should be tested
via case studies.

The Theory of Contexts has been used for developing non trivial metatheories
of several calculi:

• π-calculus: among others, most of the “algebraic laws” of strong late
bisimilarity in [Milner et al., 1992]

• untyped and simply typed λ-calculus: functionality of substitution, gen-
eration lemmata, confluence of evaluation, equivalence of big-step and
small-step semantics, preservation of types under renaming of variables,
and under substitution, subject reductions,. . .

• in progress: Abramsky applicative bisimulation, Ambient calculus, . . .

These examples shows that we got a low mathematical and logical overhead:
“proofs looks almost like on the paper”. Almost, because many functions
must be represented as functional relations.

20

How much classical logic is needed?

In fact, full classical logic is not strictly needed. We could drop axiom LEM ,
and simply assume that

• either equality over names is decidable

Γ `Σ x : υ Γ `Σ y : υ

Γ; ∆ `Σ x =υ y ∨ x 6=υ y
(LEM=υ)

• or occurrence predicates of names in terms are decidable

Γ `Σ x : υ Γ `Σ P : ι

Γ; ∆ `Σ x 6∈ιυ P ∨ ¬(x 6∈ιυ P)
(LEM 6∈ιυ)

LEM6∈ιυ ⇒LEM=υ directly.

LEM=υ ⇒LEM6∈ιυ using Unsatυι and induction both over plain terms and over
contexts (Indι and Indυ→ι).

Thus, the Theory of Contexts can be added also to intuitionistic metalogics
(like, e.g., Calculus of Inductive Constructions in Coq).

21

Related work

• Models of HOAS (4 LICS papers [FPT99,GP99,Hof99,FT01]) and of
the Theory of Contexts [BHHMS01]

• Pitt’s Nominal Logic [Pitts01]: a first-order logic for properties whose va-
lidity is invariant under bindable name swapping, with a special quantifier
�� for expressing freshness of names.

��y.p ∼= “p holds for y a fresh name”.

�� resembles both ∀ and ∃, and it satisfies the rules:

Γ, y#~x ` p
Γ ` ��y.p

Γ ` ��y.p Γ, p, y#~x ` q
Γ ` q

where ~x is the “support” of p. In the Theory of Contexts, ��y.p and y#~x
can be encoded as follows:

��y.p , ∀y:υ.y 6∈υ→o (λy:υ.p)⇒ p y#~x , y 6∈o p

22

Conclusions
Main features of the Theory of Contexts:

♥ it can be used safely in most Classical and Intuitionistic HOLs (which do
not entail the Axiom of Unique Choice, AC!)
⇒ you do not have to change your favourite metalanguage.

♥ general: it applies to a wide range of object logics (nominal algebras)

♥ it allows for induction and recursion principles over higher-order datatypes

♠ it is not compatible with the AC! ⇒ expressive power of functions is
stricly less than that of relations

♠ complex (i.e., non-standard) model

Future work:

• dependent types (for dealing with, e.g., Natural Deduction style systems)

• programming language for dealing with higher-order terms

23

Proof.

• AC! allows to derive the characteristic function of the equality over names
eq : υ → υ → nat (defined by ∀x, y : υ. x = y ⇔ eq(x, y) = 1, where = is
Leibniz equality);

• Q
def
= λxυ. if eq(x, y) then p else q (where y : υ e p, q : ι);

• using Extυ→ι one can prove that Q =υ→ι λxυ. q;

• hence it is possible to show that all processes are syntactically equal
(absurd).

24

In the π-calculus encoding, define the term

R , λu : υ.λq : ι.λx : υ.λp : ι.(x =υ u ∧ p =ι 0) ∨ (¬x =υ u ∧ p =ι q).

Let u′ a fresh name; for all p′ : ι, (R u′ p′) : υ → ι → o is a functional binary
relation. From AC!υ,ι, there exists a function f : υ → ι such that, for all x : υ,
((R u′ p) x (f x)) holds. Hence, by Extιυ, we can prove that f =υ→ι λx : υ.p
because for any fresh name w we have that (f w) =ι p. Then we have that,
for all names y, (f y) =ι ((λx : υ.p) y) =ι p. Since (f u′) = 0, we have that
∀p : ι.p =ι 0 holds—which is absurd.

25

