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We present a Natural Deduction proof system for the propositional modal

µ-calculus, and its formalization in the Calculus of Inductive Constructions.

We address several problematic issues, such as the use of higher-order ab-

stract syntax in inductive sets in presence of recursive constructors, the

formalization of modal (sequent-style) rules and of context sensitive gram-

mars. The formalization can be used in the system Coq, providing an

experimental computer-aided proof environment for the interactive devel-

opment of error-free proofs in the modal µ-calculus. The techniques we

adopt can be readily ported to other languages and proof systems featur-

ing similar problematic issues.
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INTRODUCTION

We present a Natural Deduction proof system for Kozen’s propositional modal

µ-calculus and its formalization in the Calculus of Inductive Constructions.

The modal µ-calculus, often referred to as µK, is a temporal logic which subsumes

many modal and temporal logics, such as PDL, CTL, CTL∗, ECTL. Despite its

expressive power, µK enjoys nice properties such as the finite model property and

decidability. Therefore, the modal µ-calculus is an ideal candidate as a logic for

the verification of processes. Although Walukiewicz [31] proved the completeness

of Kozen’s original system [17], its applicability to non trivial cases is limited by

long, difficult, error-prone proofs. Moreover, the problem of validity of a formula

is EXPTIME-complete; hence, a fully-automatized theorem prover fo µK may be

computationally very expensive.

These drawbacks can be (partially) overcome by supplying the user with a computer-

aided proof environment, that is, a system in which he can represent (encode, for-

1Work partially supported by Italian MURST-97 grant Tecniche formali. . . . A preliminar
version has appeared in the Proceedings of ICALP’99.
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malize) the formal system, more or less abstractly: its syntax, axioms, rules and

inference mechanisms. After having supplied the proof environment with a repre-

sentation of the formal system, the user should be able to correctly manipulate (the

representations of) the proofs.

However, the implementation of a proof environment for a specific formal sys-

tem is a complex, time-consuming, and daunting task. The environment should

provide tools for checking previously hand-made proofs; developing interactively,

step-by-step, error-free proofs from scratch; reusing previously proved properties;

even, deriving properties automatically, when feasible, freeing the user from most

unpleasant and error-prone steps.

An alternative, and promising solution is to develop a general theory of logical

systems, that is, a Logical Framework. A Logical Framework is a metalogical for-

malism for the specification of both the syntactic and the deductive notions of a

wide range of formal systems. Logical Frameworks provide suitable means for rep-

resenting and deal with, in the metalogical formalism, the proofs and derivations of

the object system. Much of the implementation effort can be expended once and for

all; hence, the implementation of a Logical Framework yields a logic-independent

proof development environment. Such an environment is able to check validity of

deductions in any formal system, after it has been provided by the specification of

the system in the formalism of the Logical Framework.

Several different frameworks have been proposed, implemented and applied to

many formal systems. Type theories have emerged as leading candidates for Logi-

cal Frameworks. Simple typed λ-calculus and minimal intuitionistic propositional

logic are connected by the well-known proposition-as-types paradigm [6]. Stronger

type theories, such as the Edinburgh Logical Framework, the Calculus of Inductive

Constructions and Martin-Löf ’s type theory, were especially designed, or can be

fruitfully used, as a logical framework [13, 2, 5, 23]. In these frameworks, we can

represent faithfully and uniformly all the relevant concepts of the inference process

in a logical system: syntactic categories, terms, assertions, axiom schemata, rule

schemata, tactics, etc. via the judgements-as-types, proofs-as-λ-terms paradigm

[13]. The key concept is that of hypothetico-general judgement [20], which is ren-

dered as a type of the dependent typed λ-calculus of the Logical Framework. With

this interpretation, a judgement is viewed as a type whose inhabitants correspond

to proofs of the judgement.

It is worthwhile noticing that Logical Frameworks based on type theory directly

give rise to proof systems in Natural Deduction style in the sense of [1, 12]. This

follows from the fact that the typing systems of the underlying λ-calculi are in

Natural Deduction style, and rules and proofs are represented by λ-terms. As it is

well-known, Natural Deduction style systems are more suited to the practical usage,

since they allow for developing proofs the way mathematicians normally reason.

These type theories have been implemented in logic-independent systems such

as Coq, LEGO and ALF [5, 18, 19]. These systems can be readily turned into

interactive proof development environments for a specific logic: we need only to

provide the specification of the formal system (the signature), i.e. a declaration

of typed constants corresponding to the syntactic categories, term constructors,

judgements, and rule schemata of the logic. It is possible to prove, informally but

rigorously, that a formal system is adequately represented by its specification. This
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proof usually exhibit bijective maps between objects of the formal system (terms,

formulæ, proofs) and the corresponding λ-terms of the formalization.

This paper is part of an ongoing research programme at the Computer Science

Department of the University of Udine on proof editors, started in 1992, based on

HOAS encodings in dependent typed λ-calculus for program logics [15, 21, 16]. In

this paper, we investigate the applicability of this approach to the modal µ-calculus.

Due to its expressive power, we adopt the Calculus of Inductive Constructions

(CIC), implemented in the system Coq. Beside its importance in the theory and

verification of processes, the modal µ-calculus is interesting also for its syntactic

and proof theoretic peculiarities. These idiosyncrasies are mainly due to a) the neg-

ative arity of “µ” (i.e., the bound variable x ranges over the same syntactic class

of µxϕ); b) a context-sensitive grammar due the condition on µxϕ; c) rules with

complex side conditions (sequent-style “proof” rules). These anomalies escape the

“standard” representation paradigm of CIC; hence, we need to accommodate special

techniques for enforcing these peculiarities. Moreover, since generated editors allow

the user to reason “under assumptions”, the designer of a proof editor for a given

logic is urged to look for a Natural Deduction formulation of the system. Hence, we

introduce a new proof system N
E
µK in Natural Deduction style for µK. This system

should be more natural to use than traditional Hilbert-style systems; moreover, it

takes best advantage of the possibility of manipulating assumptions offered by CIC

in order to implement the problematic substitution of formulæ for variables. In

fact, substitutions are delayed as much as possible, and are kept in the derivation

context by means of assumptions. This mechanism fits perfectly the stack discipline

of assumptions of Natural Deduction, and it is neatly formalized in CIC.

Beside these practical and theoretical motivations, this work can give insights

in the expressive power of CIC and Coq. Indeed, the formalization techniques we

will adopt take full advantage of pragmatic features offered by Coq, such as the

automatic simplification of terms, in order to simplify as much as possible the task

of proof development. Moreover, it is interesting to notice how in the formalization

process, the need for an easy-to-use system leads us to some theoretical considera-

tions on N
E
µK itself.

Synopsis. In Section 1, we recall the syntax and the semantics of µK. In Section

2 we present a proof system which captures the syntactic condition on the formation

of µxϕ. The proof system N
E
µK is introduced in Section 3. Section 4 gives a brief

insight into the Calculus of Inductive Constructions (CIC). In Section 5 we discuss

the formalization of µK in CIC and some theoretical issues on N
E
µK arisen by the

formalization itself. Final comments and suggestions for future work are reported

in Section 6. Longer listings of Coq code are reported in Appendix.

1. SYNTAX AND SEMANTICS OF THE MODAL µ-CALCULUS

The language of µK is an extension of the syntax of propositional dynamic logic.

Let Act be a set of actions (ranged over by a, b, c), and Var a set of propositional

variables (ranged over by x, y, z); the syntax of the modal µ-calculus on Act is:

Φ : ϕ, ψ ::= ff | ¬ϕ | ϕ ⊃ ψ | [a]ϕ | x | µxϕ
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where the formation of µxϕ is subject to the positivity condition: every occurrence

of x in ϕ has to appear inside an even number of negations. (In the following

we will spell out this condition more in detail.) We call preformulæ the language

obtained by dropping the positivity condition. The variable x is bound in µxϕ; the

usual conventions about α-equivalence apply. Given a set X ⊆ Var of variables, we

denote by ΦX
def
= {ϕ ∈ Φ | FV(ϕ) ⊆ X} the set of formulæ with free variables in

X. Capture-avoiding substitutions are the usual maps Φ → Φ, written as lists of

the form {ϕ1/x1, . . . , ϕn/xn}; they are ranged over by σ, τ . We denote by ϕσ the

formula obtained by applying the substitution σ to ϕ.

The interpretation of modal µ-calculus comes from Modal Logic. A model for

the modal µ-calculus is a transition system, that is, a pair M = 〈S, [[·]]〉 where S is

a (generic) nonempty set of (abstract) states, ranged over by s, t, r, and [[·]] is the

interpretation of command symbols: for all a, we have [[a]] : S → P(S).

Formulæ of modal µ-calculus may have free propositional variables; therefore,

we need to introduce environments, which are functions assigning sets of states to

propositional variables: Env
def
= Var → P(S). Given a model M = 〈S, [[·]]〉 and an

environment ρ, the semantics of a formula is the set of states in which it holds,

defined compositionally:

[[ff ]]ρ
def
= ∅ [[ϕ ⊃ ψ]]ρ

def
= (S \ [[ϕ]]ρ) ∪ [[ψ]]ρ

[[x]]ρ
def
= ρ(x) [[[a]ϕ]]ρ

def
= {s ∈ S | [[a]]s ⊆ [[ϕ]]ρ}

[[¬ϕ]]ρ
def
= S \ [[ϕ]]ρ [[µxϕ]]ρ

def
=

⋂
{T ⊆ S | [[ϕ]]ρ[x 7→ T ] ⊆ T}

The intuitive meaning of [a]ϕ is that “ϕ holds in every state we reach after the

execution of a.” It is customary to view a formula ϕ with a free variable x as defining

a function ϕρx : P(S) → P(S), such that for all U ⊆ S: ϕρx(U) = [[ϕ]]ρ[x 7→ U ]. The

intuitive interpretation of µxϕ is then the least fixed point of ϕρx. The syntactic

condition on the formation of µxϕ ensures the monotonicity of ϕρx, and hence, by

Knaster-Tarski’s theorem, the existence of the lfp as well [17]. This does not hold if

we drop the condition on the formation of µxϕ; e.g., the formula ¬x identifies the

function (¬x)ρx(T ) = S \ T , which is not monotone and has no (least) fixed point.

2. A PROOF SYSTEM FOR THE POSITIVITY CONDITION

Since we aim at encoding the modal µ-calculus in some logical framework, we

need to enforce the context-sensitive condition on the formation of formulæ of the

form µxϕ. That is, we ought to specify in detail the condition of “occurring positive

in a formula” for a variable. This notion can be represented by two new judgements

on formulæ and variables, posin and negin, which are derived by means of the rules

in Figure 1. Roughly, posin(x, ϕ) holds iff all occurrences of x in ϕ are positive;

dually, negin(x, ϕ) holds iff all occurrences of x in ϕ are negative. Notice that if x

does not occur in ϕ, then it occurs both positively and negatively. More formally,

the notions these auxiliary judgements refer to are the following:

Definition 2.1. [(Anti)Monotonicity] For ϕ ∈ Φ, x ∈ Var, we say that

1. ϕ is monotone on x (written Monx(ϕ)) if and only if

∀M, ∀ρ, ∀U, V ⊆ S: U ⊆ V =⇒ ϕρx(U) ⊆ ϕρx(V );
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posin(x,ff )

y ∈ Var

posin(x, y) negin(x,ff )

y 6= x

negin(x, y)

posin(x, ϕ)

posin(x, [a]ϕ)

negin(x, ϕ)

posin(x,¬ϕ)

negin(x, ϕ)

negin(x, [a]ϕ)

posin(x, ϕ)

negin(x,¬ϕ)

negin(x, ϕ) posin(x, ψ)

posin(x, ϕ ⊃ ψ)

posin(x, ϕ) negin(x, ψ)

negin(x, ϕ ⊃ ψ)

for z 6= x : posin(x, ϕ{z/y})

posin(x, µyϕ)

for z 6= x : negin(x, ϕ{z/y})

negin(x, µyϕ)

FIG. 1. The positivity proof system.

2. ϕ is antimonotone on x (written AntiMonx(ϕ)) if and only if

∀M, ∀ρ, ∀U, V ⊆ S: U ⊆ V =⇒ ϕρx(U) ⊇ ϕρx(V ).

These notions refer directly to the semantic structures in which formulæ take

meaning. In fact, the syntactic conditions of positivity/negativity are sound with

respect to the semantic condition of monotonicity/antimonotonicity:

Proposition 2.1. For all ϕ formula and x variable: ` posin(x, ϕ) ⇒ Monx(ϕ)

and ` negin(x, ϕ) ⇒ AntiMonx(ϕ).

The converse of Proposition 2.1 does not hold. Consider e.g. ϕ
def
= (x ⊃ x):

clearly, [[ϕ]]ρ = S always, and hence (x ⊃ x)ρx is both monotone and antimonotone.

However, x does not occur only positively nor only negatively in ϕ. Hence, we

cannot derive ` posin(x, (x ⊃ x)) nor ` negin(x, (x ⊃ x)). This result can be

generalized as follows:

Proposition 2.2. If x ∈ FV(ϕ) occurs both positively and negatively in ϕ then

neither posin(x, ϕ) nor negin(x, ϕ) are derivable.

Proof. By induction on the syntax of ϕ.

However, we can restrict ourselves to only positive formulæ without loss of gen-

erality: by Lyndon Theorem [7], every monotone formula is equivalent to a positive

one.

3. THE PROOF SYSTEM N
E
µK

Usually, systems for modal µ-calculus are given in Hilbert style [17, 27]. In this

section we present N
E
µK , a lazy substitution proof system in Natural Deduction style

for µK. As we will see in Section 5, in order to deal with the negative constructor

“µ” we have to change the standard encoding paradigm of Logical Frameworks.

As a consequence, we can no longer delegate substitution to the machinery of the

logical framework; hence, it has to be implemented “manually”, at some extent. The

system we present in this section aims at minimizing these explicit substitutions,
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⊃-I

(ϕ)
...

ψ

ϕ ⊃ ψ
⊃-E

ϕ ⊃ ψ ϕ

ψ
¬-I

(ϕ)
...

ff

¬ϕ
¬-E

ϕ ¬ϕ

ff

Raa

(¬ϕ)
...

ff

ϕ
Sc

[Γ]
...

[a]Γ ψ

[a]ψ
E-R

ϕ ϕ E ψ

ψ
E-L

ψ ϕ E ψ

ϕ

µ-I

(z 7→ µxϕ)
...

ϕ{z/x}

µxϕ
z fresh µ-E

(z 7→ ψ), [ϕ{z/x}]
...

µxϕ ψ

ψ
z fresh

ϕ E ϕ

x 7→ ψ ψ E ξ

x E ξ

ϕ E ψ

¬ϕ E ¬ψ

ϕ E ψ

[a]ϕ E [a]ψ

ϕ1 E ψ1 ϕ2 E ψ2

(ϕ1 ⊃ ϕ2) E (ψ1 ⊃ ψ2)

ϕ{z/x} E ψ{z/x}

µxϕ E µxψ
z fresh

FIG. 2. The Natural Deduction-style proof system N
E
µK

for modal µ-calculus: logical

system (top), and expansion system (bottom).

by taking full advantage of the possibility of reasoning “under assumptions”. This

system is called “lazy” after that substitutions of formulæ for variables are delayed

as much as possible—and may be not performed at all.

N
E
µK is composed by two derivation systems, the logical one and the expansion

one (Figure 2). Roughly, the logical system allows for deriving formulæ from for-

mulæ (assumptions) and bindings, which are judgements of the form x 7→ ϕ, where

x ∈ Var and ϕ ∈ Φ. The expansion system allows for deriving judgements of the

form ϕ E ψ (reads “ϕ expands to ψ”, or “ψ is an expansion of ϕ”), from a list of

bindings.

Definition 3.1. A set of assumptions (denoted by Γ) is any finite set of formulæ;

a binding list (denoted by ∆) is a list 〈x1 7→ ϕ1, . . . , xn 7→ ϕn〉 such that for all

i 6= j: xi 6= xj , and for all i ≤ j: xj 6∈ FV(ϕi).

A derivation of ϕ from assumptions Γ and bindings ∆ is denoted by ∆; Γ ` ϕ; a

derivation of ϕ E ψ from ∆ is denoted by ∆ ` ϕ E ψ.

The logical system is composed by a standard set of rules for classical proposi-

tional logic, extended by Scott’s rule Sc for minimal modal logic, the rules E-R

and E-L, and the intro/elimination rules µ-I, µ-E.

Rules E-R, E-L state that a formula is logically equivalent to any of its expan-

sions. In a sequent-style formulation like the following, these rules can be seen as
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the “right” and “left” expansions, respectively—hence the names:

E-R
∆; Γ ` ϕ

∆; Γ ` ψ
ϕ E ψ E-L

∆; Γ, ϕ ` ξ

∆; Γ, ψ ` ξ
ϕ E ψ

The rules for µ have a direct semantic interpretation: the introduction rule states

that (the meaning of) µxϕ is a prefixed point of ϕρx; the elimination rule states that

(the meaning of) µxϕ implies, and then “is less than”, any prefixed point of ϕρx.

Therefore, these rules state that (the meaning of) µxϕ is the minimum prefixed

point, i.e. the least fixed point, of ϕρx.

In rule Sc, the square brackets surrounding Γ mean that ψ may depend only on

the discharged assumption in Γ. Similarly, in rule µ-E, the formula ϕ{z/x} is the

only assumption that the subderivation of ψ may depend on. These “modal” side

conditions can be explicated clearly by a sequent-style presentation:

Sc
∆; Γ ` ψ

∆; [a]Γ ` [a]ψ
µ-E

∆; Γ ` µxϕ ∆, z 7→ ψ;ϕ{z/x} ` ψ

∆; Γ ` ψ
z fresh

No logical rule requires a binding as a premise; bindings are only discharged,

in rules requiring a substitution (i.e., rules µ-I, µ-E). In these rules, variables are

not textually replaced by the corresponding formula, but only by an α-equivalent

(“fresh”) variable. The discharged hypothesis keeps in the derivation context the

binding between the substituted variable and the corresponding formula. These

hypotheses form a binding list which is used by the expansion system: roughly, we

can prove ∆ ` ϕ E ψ iff ϕ and ψ are the same formula, “up to ∆”. This is made

precise by the following proposition:

Proposition 3.1. Let ∆ be a binding list; then, the relation R = {〈ϕ, ψ〉 | ∆ `

ϕ E ψ} is the smallest precongruence which contains ∆.

Proof. Clearly, R is reflexive and compositional on the syntax of formulæ. For

all x 7→ ϕ ∈ ∆, it is R(x, ϕ) because of the “variable replacement rule” x 7→ϕ ϕEϕ
xEϕ

.

It remains to prove that R is transitive. More precisely, we prove that given two

derivations Π1 : Γ ` ϕ E ψ, Π2 : Γ ` ψ E ξ, we can build a derivation Π : Γ ` ϕ E ξ.

The proof is by induction on the depth of Π1 and Π2.

Base case: let Π1 (respectively, Π2) be an application of the reflexivity rule. Then

ϕ = ψ (respectively, ψ = ξ), hence Π = Π2 (respectively, Π = Π1).

Inductive case: by cases on the last rule applied in Π1.

If it is a congruence rule, say the one for negation, then ϕ = ¬ϕ1, ψ = ¬ψ1

for some ϕ1, ψ1, and there is a subderivation Π11 : ∆ ` ϕ1 E ψ1. By inspection,

also Π2 must end with the same congruence rule, hence ξ = ¬ξ1 for some ξ1 and

there is a subderivation Π21 : ∆ ` ψ1 E ξ1. By inductive hypothesis, there exists a

derivation Π′ : ∆ ` ϕ1 E ξ1, and then by applying the congruence rule for negation,

we obtain Π : ∆ ` ¬ϕ1 E ¬ξ1.

Otherwise, the last rule applied is x7→ϕ1 ϕ1Eψ
xEψ

, for some x and subderivation

Π11 : ∆ ` ϕ1 E ψ. By inductive hypothesis there exists Π′ : ∆ ` ϕ1 E ξ, and then

by applying the above mentioned rule, we obtain the thesis.
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Before proving soundness and completeness of N
E
µK , we need some technical

definitions and results.

Definition 3.2. Let M = 〈S, [[·]]〉 be a model for µK, and let ∆ be a binding

list. An environment ρ in M agrees with ∆ (written ρ |= ∆) if for all bindings

x 7→ ϕ in ∆: ρ(x) = [[ϕ]]ρ.

For any environment ρ, we denote by ρ∆ the environment defined as follows:

ρ〈〉
def
= ρ ρ∆,x7→ϕ

def
= ρ∆[x 7→ [[ϕ]]ρ∆]

The “agreement” operation (·)∆ enjoys the following property:

Proposition 3.2. For all ρ environment and for all ∆ binding list:

1.ρ∆ |= ∆;

2.if ρ |= ∆ then ρ∆ = ρ.

3.(·)∆ is idempotent, that is (ρ∆)∆ = ρ∆;

Proof. Points (1.) and (2.) are trivially proved by induction on the length of ∆.

Point (3.) follows from (1.) and (2.).

The following result can be seen as our counterpart of the classical “substitution

lemma”.

Lemma 3.1 (Expansion Lemma). For ∆ binding list and ϕ formula, there ex-

ists a formula ϕ∆ such that ∆ ` ϕ E ψ∆ and for all M, and ρ environment in M:

[[ϕ]]ρ∆ = [[ϕ∆]]ρ.

Proof. Let us define ϕ∅
def
= ϕ, and ϕ∆,x7→ψ

def
= (ϕ{ψ/x})∆. Clearly, FV(ϕ∆) ∩

dom(∆) = ∅ by definition of binding list. The derivation ∆ ` ϕ E ϕ∆ can be

built by induction on the syntax of ϕ and on the length of ∆: we apply the suitable

structural rule until we reach a variable x such that there is a binding (x 7→ ψ) ∈ ∆.

In this case, we have to prove that ∆ ` x E x∆, i.e., ∆ ` x E ψ∆. In fact, ∆ can

be decomposed in ∆′, x 7→ ψ,∆′′, and FV(ψ) ∩ dom(∆) = FV(ψ) ∩ dom(∆′) by

definition of binding list. Therefore, by inductive hypothesis there is a derivation

∆′ ` ψ E ψ∆′ , which is also ∆ ` ψ E ψ∆ because FV(ψ) ∩ dom(∆′′) = ∅. Hence,

∆ ` x E ψ∆ by applying the rule x7→ψ ψEψ∆

xEψ∆
.

It remains to prove that ∀M, ∀ρ.[[ϕ]]ρ∆ = [[ϕ∆]]ρ, by induction on the length of

∆. The base case is trivial. Suppose that it holds for ∆; we prove it for ∆, x 7→ ψ.

If x 6∈ FV(ϕ), it is immediate. Otherwise,

[[ϕ∆,x7→ψ]]ρ = [[(ϕ{ψ/x})∆]]ρ by definition of (·)∆
= [[ϕ{ψ/x}]]ρ∆ by inductive hypothesis

= [[ϕ]]ρ∆[x 7→ [[ψ]]ρ∆] classical substitution lemma

= [[ϕ]]ρ∆,x7→ψ by definition of ρ∆,x7→ψ
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In order to have a semantical counterpart of the syntactic notion of “deduction”,

we introduce a suitable notion of “consequence” for the modal µ-calculus:

Definition 3.3. Let Γ be a finite set of formulæ, ∆ a binding list, and ϕ a

formula. We say that

1. ϕ is a consequence of Γ under ∆ with respect to M (written ∆; Γ |=M ϕ) iff

for all ρ which agrees with ∆: [[Γ]]ρ ⊆ [[ϕ]]ρ (where [[Γ]]ρ
def
=

⋂
ϕ∈Γ

[[ϕ]]ρ);

2. ϕ is a consequence of Γ under ∆ (written ∆; Γ |= ϕ) iff for all models M:

∆; Γ |=M ρ;

3. ϕ is a consequence of Γ (written Γ |= ϕ) iff ∅; Γ |= ρ.

We finally come to the soundness and completeness of the N
E
µK system:

Theorem 3.1. For all ∆, Γ and ϕ: ∆; Γ ` ϕ ⇐⇒ ∆; Γ |= ϕ.

Proof. Soundness (⇒) is proved by showing that each rule is sound. We show

the most complex case, namely µ-E, the others being similar.

Let ∆, z 7→ ϕ;ϕ{z/x} |= ψ, where z does not appear in ∆, ϕ, ψ; we have to prove

∆;µxϕ |= ψ. This is equivalent to prove that [[µxϕ]]ρ ⊆ [[ψ]]ρ for any model M

and environment ρ which agrees with ∆. By definition of [[µxϕ]], it is sufficient to

prove that [[ψ]]ρ is a prefixed point of ϕρx, as follows:

ϕρx([[ψ]]ρ) = [[ϕ]]ρ[x 7→ [[ψ]]ρ] by definition of ϕρx
= [[ϕ{z/x}]]ρ[z 7→ [[ψ]]ρ] for z fresh

= [[ϕ{z/x}]]ρz 7→ψ by definition of ρz→ψ

⊆ [[ψ]]ρz 7→ψ because ρz 7→ψ |= ∆, z 7→ ψ by

Proposition 3.2, and by hypothesis

= [[ψ]]ρ since z 6∈ FV(ψ).

Completeness (⇐) can be proved as follows. Since Γ is finite, let Γ be {ϕ1, . . . , ϕn}.

Then ∆; Γ |= ϕ iff ∆; ∅ |= Γ ⊃ ϕ, where “Γ ⊃ ϕ” is a shorthand for ϕ1 ⊃ . . . ⊃

ϕn ⊃ ϕ. This means that

∀M = 〈S, [[·]]〉, ∀ρ : ρ |= ∆ ⇒ [[Γ ⊃ ϕ]]ρ = S

which, by Proposition 3.2, is equivalent to ∀M = 〈S, [[·]]〉, ∀ρ : [[Γ ⊃ ϕ]]ρ∆ =

S. By Lemma 3.1, there exists a formula ψ such that ∆ ` (Γ ⊃ ϕ) E ψ and

∀M = 〈S, [[·]]〉, ∀ρ : [[ψ]]ρ = S. This latter fact amounts to the validity of ψ, and

hence, by completeness of Hilbert-style axiomatization [31], there is an Hilbert-style

derivation of ψ. In order to prove the completeness of NE
µK , therefore, it is sufficient

to prove that all theorems provable by Hilbert-style system are theorems of N
E
µK ,

that is, they are derivable without using any assumptions nor bindings. In fact, if
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Π is a proof of ∅; ∅ ` ψ in N
E
µK , then the following is a proof of ∆; Γ ` ϕ:

E-L

∅ ∆

Π
...

ψ (Γ ⊃ ϕ) E ψ

Γ ⊃ ϕ Γ

�
�

�

@
@

@
Π′

ϕ

where the subderivation Π′ : Γ, (Γ ⊃ ϕ) ` ϕ is made of n applications of ⊃-E.

In order to prove that theorems of Kozen’s system are theorems of N
E
µK , it is

sufficient to prove that Kozen’s axioms and rules (e.g. those in [27]) are derivable.

We see only the case of axiom ϕ{µxϕ/x} ⊃ µxϕ:

⊃-I

µ-I

E-L

(z 7→ µxϕ)2
Π

(ϕ{µxϕ/x})1 (ϕ{z/x})3 ϕ{z/x} E ϕ{µxϕ/x}

ϕ{z/x}
(3)

µxϕ
(2)

ϕ{µxϕ/x} ⊃ µxϕ
(1)

where the subderivation Π : z 7→ µxϕ ` ϕ{z/x} E ϕ{µxϕ/x} is easily built by in-

duction on the syntax of ϕ.

As an immediate corollary of Theorem 3.1, we recover the customary form of the

adequacy of N
E
µK :

Corollary 3.1. For all Γ finite and ϕ formula: ∅; Γ ` ϕ ⇐⇒ Γ |= ϕ.

As a final note on the proof system N
E
µK , we point out that we could consider a

strict expansion C, in place of E. The judgement “ϕ C ψ” would mean “ϕ expands

to ψ by applying at least one variable replacement;” hence, ϕ and ψ would always

be different. However, although we could drop the reflexivity rule. we should add

the following three rules:

x 7→ ϕ

x C ϕ

ϕ1 C ϕ2

(ϕ1 ⊃ ψ) C (ϕ2 ⊃ ψ)

ψ1 C ψ2

(ϕ ⊃ ψ1) C (ϕ ⊃ ψ2)

Hence, we have adopted the relation whose axiomatization involves the minor num-

ber of rules.

4. THE CALCULUS OF INDUCTIVE CONSTRUCTIONS

In this section we give a brief introduction to the Calculus of Inductive Construc-

tions (CIC for short). For more details about CIC and logical frameworks, we refer

the interested reader to [5, 13, 24, 25].
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The Calculus of Inductive Constructions is an extension of Coquand and Huet’s

Calculus of Constructions (CC), which can be defined as the PTS λC of Baren-

dregt’s λ-cube, with two sorts, Prop and Set. Under the proposition-as-types,

proofs-as-terms paradigm, there is an isomorphism between propositions of intu-

itionistic higher-order logic and types of sort Prop. If A has type Prop then it

represents a logical proposition; the fact that A is inhabited by a term M repre-

sents the fact that A holds. Each term M inhabiting A represents a proof of A.

On the other hand, the sort Set is supposed to be the type of datatypes, such as

naturals, lists, trees, booleans, etc. These types differ from those inhabiting Prop

for their constructive contents.

Like any system extending the second-order PTS λ2 (Girard’s system F ), CC

allows to define inductive types by means of higher-order (impredicative) quantifi-

cations, but these representations are not always satisfactory (see [24] for a discus-

sion). An alternative way for representing inductive types has been introduced in

the Calculus of Inductive Constructions (CIC) by Thierry Coquand and Christine

Paulin-Mohring and implemented in the Coq system [24, 5]. The idea is to extend

the language of typed λ-terms by adding some special constants which represent

the definition, introduction and elimination of inductive types. For instance, the

following definition of natural numbers

Inductive nat : Set := O : nat | S : nat -> nat

allows to define terms by “case analysis”, like the following function:

Definition pred := [n:nat]Cases n of O => O

| (S u) => u end.

Using these elimination schemata, Coq automatically states and proves the induc-

tion principle for each inductively defined type. For instance, the above definition

yields the Peano induction principle “for free”:

nat_ind : (P:nat->Prop)(P O) ->

((n:nat)(P n)->(P (S n))) -> (n:nat)(P n)

This feature has been extensively used in the definition of logical connectives: we

need only to specify the introduction rules, and we can prove the elimination rules

from the elimination principle the system automatically provides us.

However, allowing for any inductive definition in CIC would yield non-normalizing

terms, thus invalidating the standard proof of consistency of the system. Hence, in-

ductive definitions are subject to the positivity condition, which (roughly) requires

that the type we are defining does not occur in negative position in the type of

any constructor. This condition ensures the soundness of the system, but it rules

out also many sound inductive definitions. For instance, the following definition of

λ-terms

Inductive L : Set := Lam : (L->L) -> L | App : L -> L -> L.

is not well-formed, due to the negative occurrence of L in the type of Lam. This

kind of representation is called higher-order abstract syntax, because one of the con-

structors takes a higher-order term (i.e., a function) as an argument. The problem
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of combining higher-order abstract syntax with inductive definitions is a very active

area of work; for further details, we refer to [8, 9, 10, 11, 14, 16].

This problem may arise also at the propositional level, in particular when pred-

icates are defined by Natural Deduction rules with discharged assumptions. For

instance, the following elementary definition of minimal propositional logic

Inductive T : o -> Prop :=

Imp_I : (A,B:o)((T A)->(T B)) -> (T (Imp A B))

| Imp_E : (A,B:o)(T (Imp A B)) -> (T A) -> (T B).

is not well-formed in CIC. In this case, we can stick to the classical LF paradigm

[13], i.e., we can represent the type and its constructors by means of constants of

the right type. Thus, the minimal propositional logic can be encoded as follows:

Parameter T : o -> Prop.

Axiom Imp_I : (A,B:o)((T A)->(T B)) -> (T (Imp A B)).

Axiom Imp_E : (A,B:o)(T (Imp A B)) -> (T A) -> (T B).

Of course, defining a predicate by means of Axioms does not give rise automatically

to any induction principle; hence, we need to introduce all eliminations rules ex-

plicitly. The induction principle over the type of proofs may be useful if we aim

at proving metatheoretical results, such as cut-elimination of the proof system; it

is not needed for doing proofs in the system, provided that we provide the right

elimination rules. Usually this is not a problem for proof systems in Natural De-

duction style, since they specify both introduction and elimination rules for each

propositional constructor. Moreover, if the formalization is faithful, then its sound-

ness and completeness correspond to the soundness and completeness of the proof

system “on the paper”, by the isomorphism between types and proposition. Hence,

given a sound and complete proof system (like N
E
µK), its formalizations are sound

and complete if and only if they are faithful.

Another problem arising from the use of higher order abstract syntax together

with inductive types is that of exotic terms. These are λ-terms which do not

correspond to any object “on the paper”, despite their types correspond to some

syntactic category. Exotic term are generated when a type has a higher-order

constructor over an inductive type. A simple example is the following fragment of

first-order logic:

Inductive i : Set := zero : i | one : i.

Inductive o : Set := ff : o | eq : i->i->o | forall : (i->o)->o.

Definition weird : o := (forall [x:i](Cases x of

zero => ff

| one => (eq zero zero)

end)).

The term weird does not correspond to any proposition of first order logic: there is

no formula ∀xϕ such that ϕ{0/x} and ϕ{1/x} are syntactically equal to “ff ” and

“0 = 0”, respectively.

Exotic terms are problematic in establishing the faithfulness of the formalization;

usually, they have to be ruled out by means of auxiliary “validity” judgements.

Another approach (which will be used in Section 5.1) is to have the higher order
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constructors to range over types which are not defined as inductive, so that there

is no Cases to use as above. See [8, 14] and [21, Section 11.2] for further details.

5. THE FORMALIZATION OF MODAL µ-CALCULUS

In this section we present the formalization of the modal µ-calculus in the Cal-

culus of Inductive Constructions. We will then present both the formalization of

the language and of the proof system N
E
µK given in Section 3. For the complete

vernacular code, see the Appendix.

5.1. Formalizing the language

The formalization of the language of modal µ-calculus is quite elaborate. The

customary approach is to define an inductive type, o:Set, whose constructors cor-

respond to those of the language of µK. In order to take full advantage of α-

conversion and substitution machinery provided by the metalanguage, we adopt

the higher order abstract syntax [8, 13]. In this approach, binding constructors

(like µ) are rendered by higher-order term constructors; that is, they take a func-

tion. The näıve representation of µ would be mu:(o->o)->o, but this solution does

not work inside an inductive definition of CIC (see Section 4).

The second problem is the presence of a context-sensitive condition on the ap-

plicability of µ: in order to construct a formula of the form µxϕ, we have to make

sure that x occurs positively in ϕ. Inductive types do not support this kind of

restriction, since they define only context-free languages [21].

In order to overcome the first problems, we adopt the bookkeeping technique

[21]. We introduce a separate type, var, for the identifiers. The rôle played by

variables is that of “placeholders” for formulæ: they will be bound to formulæ in

the application of µ-I and µ-E rules, by means of an auxiliary judgement.

Parameter var : Set.

Axiom var_nat : (Ex [srj:var->nat](n:nat)(Ex [x:var](srj x)=n)).

Notice that we do not define var as an inductive set. Indeed, the definition of the

syntax of µ-calculus does not require the set of variables to be inductive (Section

1, and [17, 31]). Hence, we do not committ ourselves with unnecessary (and not

harmless) assumptions; we only assume that there are infinitely many variables, by

means of the var_nat axiom.

Then, we define the set of preformulæ of modal µ-calculus, also those not well

formed:

Parameter Act : Set.

Inductive o : Set := ff : o

| Not : o -> o

| Imp : o -> o -> o

| Box : Act -> o -> o

| Var : var -> o

| mu : (var->o) -> o.
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Notice that the argument of mu is a function of type var->o. This cannot give rise

to exotic terms, since var is not declared as an inductive set.2 Of course, the price

we pay is that equality between variables is not decidable.

Now, we have to rule out all the non-well-formed formulæ. At the moment,

the only way for enforcing in CIC context-sensitive conditions over languages is to

define a subtype by means of Σ-types. As a first step, we formalize the system

for positivity/negativity presented in Figure 1, introducing two judgements posin,

negin of type var->o->Prop. A careful analysis of the proof system (Figure 1)

points out that the derivation of these judgements is completely syntax driven. It

is therefore natural to define these judgements as recursively defined functions, in-

stead of inductively defined propositions. This is indeed possible, but the rules for

the binding operators introduce an implicit quantification over the set of variables

different from the one we are looking for. This quantification is rendered by assum-

ing a locally new variable (y) and that it is different from the variable x (see last

cases):

Fixpoint posin [x:var;A:o] : Prop :=

<Prop>Cases A of

ff => True

| (Not B) => (negin x B)

| (Imp A1 A2) => (negin x A1)/\(posin x A2)

| (Box a B) => (posin x B)

| (Var y) => True

| (mu F) => (y:var)~(x=y)->(posin x (F y))

end

with negin [x:var;A:o] : Prop :=

<Prop>Cases A of

ff => True

| (Not B) => (posin x B)

| (Imp A1 A2) => (posin x A1)/\(negin x A2)

| (Box a B) => (negin x B)

| (Var y) => ~(x=y)

| (mu F) => (y:var)~(x=y)->(negin x (F y))

end.

Therefore, in general a goal (posin x A) can be Simplified (i.e., by applying the

Simpl tactic, in Coq) to a conjunction of only three forms of propositions: True,

negations of equalities or implications from negations of equalities to another con-

junction of the same form. These three forms are dealt with simply in Coq, hence

proving this kind of goals is a simple and straightforward task.

2One could object that if we “instantiate” var on an inductive set, e.g. nat, we can effectively
build exotic terms. The point is that one should be aware that such instantiation would auto-
matically add a whole bunch of extra assumptions (induction and recursion principles, reduction
rules, . . . ) to the encoding. Clearly, adding arbitrary assumptions to a given theory may lead to
inconsistencies; hence, it is not surprising if we get troubles in instantiating var to a specific in-
ductive set. In fact, the definition of the syntax of µ-calculus does not require var to be inductive,
so we can consistently leave it as an “open” (i.e., non-inductive) set.
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Similarly, a preformula is well formed when every application of µ satisfies the

positivity condition:

Fixpoint iswf [A:o] : Prop :=

<Prop>Cases A of

ff => True

| (Not B) => (iswf B)

| (Imp A1 A2) => (iswf A1)/\(iswf A2)

| (Box a B) => (iswf B)

| (Var y) => True

| (mu F) => (x:var)(iswf (F x))/\

((notin x (mu F)) -> (posin x (F x)))

end.

In the case of µ, we locally assume the fact that the x we introduce does not appear

in the formula, i.e. it is fresh. Although this is automatically achieved by the

metalanguage, we may need this information for proving (posin x (F x)). This

is achieved by the hypothesis (notin z (mu F)). The judgement notin and the

dual isin (see Section A.1) are auxiliary judgements for occur-checking. Roughly,

(notin x A) holds iff x does not occur free in A; dually for isin.

Finally, each formula of the modal µ-calculus is therefore represented by a pair

preformula-proof of its well-formedness:

Record wfo: Set := mkwfo {prp : o; cnd : (iswf prp)}.

In order to establish that our formalization is faithful, we introduce the following

notation: for X = {x1, . . . , xn} ⊂ V ar, let

ΞX
def
= x1 : var, . . . , xn : var, e12 : ~(x1 = x2), . . . , en−1,n : ~(xn−1 = xn)

oX
def
= {t | ΞX ` t : o t canonical}

wfoX
def
= {t ∈ oX | ∃d.ΞX ` d : (iswf t)}.

We can then define the encoding map εX : ΦX → oX , as follows:

εX(x) = (Var x) εX(ϕ ⊃ ψ) = (Imp εX(ϕ) εX(ψ))

εX(¬ϕ) = (Not εX(ϕ)) εX([a]ϕ) = (Box a εX(ϕ))

εX(ff ) = ff εX(µxϕ) = (mu [x:var]εX,x(ϕ))
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Lemma 5.1. For X ⊂ V ar finite, for ϕ ∈ ΦX and x ∈ X:

1.` posin(x, ϕ) ⇐⇒ ∃t.ΞX ` t : (posin x εX(ϕ))

2.` negin(x, ϕ) ⇐⇒ ∃t.ΞX ` t : (negin x εX(ϕ))

Proof. By simultaneous induction on the syntax of ϕ.

Base case. The only interesting case is when ϕ = y. If ` negin(x, y) holds, then y is

different from x. By definition of ΞX , there is the assumption exy : ~(x = y), hence

t = exy. On the other hand, suppose that t is such that ΞX ` t : (negin x (Var y)).

Since (negin x (Var y)) reduces to ~(x = y), t has to be an assumption exy. Hence,

x is different from y, so ` negin(x, y) holds.

Inductive case. The only interesting case is ϕ = µyψ. Then, ` posin(x, µyψ)

⇐⇒ ` posin(x, ψ) (definition of posin)

⇐⇒ ∃t.ΞX,y ` t : (posin x εX,y(ψ)) (ind. hypothesis)

⇐⇒ ∃t′.ΞX ` t′ : (y : var)~(x = y)->(posin x εX,y(ψ))

⇐⇒ ∃t′.ΞX ` t′ : (posin x (mu [y : var]εX,y(ψ)) (type conversion)

⇐⇒ ∃t′.ΞX ` t′ : (posin x εX(µyψ)) (definition of ε)

Lemma 5.2. For X ⊂ V ar finite, for ϕ preformula:

ϕ ∈ ΦX ⇐⇒ ∃t.ΞX ` t : (iswf εX(ϕ))

Proof. By induction on the syntax of ϕ. The only interesting case is ϕ =

µxψ. Then, ϕ ∈ ΦX iff ψ ∈ ΦX,x and ` posin(x, ψ) (by definition of iswf).

By inductive hypothesis and Lemma 5.1, this holds iff there exist t1, t2 such

that ΞX , x : var ` t1 : (iswf εX,x(ψ) and ΞX,x ` t2 : (posin x εX,x(ψ)). Now,

the only assumptions of the form e : ~(y = z) which can be really needed in t2,

have x in place of y and z ∈ FV(ψ) \ {x} (see the proof of Lemma 5.1), so we

can drop all the others. Moreover, all these assumptions can be derived from

(notin x (mu [x : var]εX,x(ψ))) (easily proved by induction on ψ). Hence,

ΞX , x : var, n : (notin x (mu [x : var]εX,x(ψ))) ` t2 : (posin x εX,x(ψ)).

By abstracting t1 over n, and combining it with t2 we obtain a term t′ such that

ΞX ` t′ : (x : var)(iswf εX,x(ψ))/\

((notin x (mu [x : var]εX,x(ψ))) -> (posin x εX,x(ψ)))

The type of this term is convertible to (iswf εX(µxψ)), hence the thesis.

The faithfulness of our formalization is therefore stated in the following theorem:

Theorem 5.1. For X ⊂ V ar finite, the map εX is a compositional bijection

between ΦX and wfoX .
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Proof. Clearly, εX is injective and compositional. For ϕ ∈ ΦX , by Lemma

5.2 the type (iswf εX(ϕ)) is inhabited, hence εX(ϕ) ∈ wfoX . Surjectivity can be

proved by defining the inverse map δX : wfoX → ΦX , as follows:

δX((Var x)) = x δX((Imp A B)) = δX(A) ⊃ δX(B)

δX((Not A)) = ¬δX(A) δX((Box a A)) = [a]δX(A)

δX(ff) = ff δX((mu [x:var]A)) = µxδX,x(ϕ)

This map is well defined: each term in wfoX has a proof of its well-formedness, and

hence it correspond to a well-formed formula. It is easy to prove that for all t ∈

wfoX : εX(δX(t)) = t (by induction on the syntax of t).

5.2. Formalizing the proof system N
E
µK

In the formalization paradigm of Logical Frameworks, a proof system is usually

represented by introducing a proving judgement over the set of formulæ, like T:o

-> Prop. A type (T phi) should be intended, therefore, as “ϕ is true;” any term

which inhabits (T phi) is a witness (a proof) that ϕ is true. Each rule is then

represented by a type constructor of T. Moreover, substitution schemata for binding

operators need not to be implemented “by hand”, because they are inherited from

the metalanguage. This is the case, for instance, of “∀” in First Order Logic; for

further examples and discussion, we refer to [2, 8, 13].

However, in representing the proof system N
E
µK , several difficult issues arise.

These issues escape the standard formalization paradigm, so we have to accommo-

date some special technique. In the following subsections, we will describe in detail

these problems and the solutions we adopted.

5.2.1. Formalization of classical, least-fixed point and modal rules

The formalization of modal proof rules, like Sc and µ-E, requires special care.

Moreover, Scott’s rule is parametric in the number of assumptions which have to

be “boxed”. Actually, in the underlying theory of CIC there is no direct way for

enforcing on a premise the condition that it is a theorem (i.e. that it depends on

no assumptions) or, more generally, that a formula depends only on a given set

of assumptions. This is because the typing rules of PTS’s are strictly in Natural

Deduction style. Therefore, in presence of sequent-style rules like Sc and µ-E, one

could encode a complete sequent calculus introducing the type olist of lists of

formulæ, the sequent judgement Seq:olist->o->Prop, and all the machinery of

Gentzen’s original system [12]. This would lead to an unusable proof system: even

if our rules have a Natural Deduction flavour, all the goals would be crammed with

the list of hypotheses, and we should deal with supplementary structural rules for

manipulating the list of assumptions.

Instead, we represent more efficiently the assumption set by means of the proof

context provided by CIC, i.e., by taking advantage of the possibility of reasoning

“under assumptions”. The solution we adopt exploits again the possibility pro-

vided by Logical Frameworks of considering locally quantified premises, i.e. general

judgements in the terminology of Martin-Löf. For a in-depth discussion on this

technique for the representation of modal logics, we refer to [3].
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First, we represent 7→ and E by means of two judgements bind:var->o->Prop

and expto:o->o->Prop, respectively. The former has no constructor (it is declared

as a Parameter), while the latter is rendered as an inductive predicate, as expected.

In particular, the congruence rule for µ is rendered by means of a locally quantified

(new) variable (see Appendix A.2 for the whole listing):

Parameter bind : var -> o -> Prop.

(* structural closure of bind *)

Inductive expto : o->o->Prop :=

expto_rflx : (phi:o)(expto phi phi)

| expto_btrns: (x:var)(phi,psi:o)

(bind x phi)->(expto phi psi)->(expto (Var x) psi)

(... other rules ...)

| expto_mu : (phi,psi:var->o)((x:var)(expto (phi x) (psi x)))->

(expto (mu phi) (mu psi)).

Then, we introduce the basic proving judgement, T:U->o->Prop:

Parameter U : Set.

Parameter T : U -> o -> Prop.

where the type U (the universe) is an open (i.e., non-inductive) set with no con-

structor. Hence, the only terms which can inhabit U are variables, which will be

called worlds for suggestive reasons.3 Each pure rule (i.e., with no side condition),

is parameterized over a generic world, like the following:

Axiom Imp_I : (w:U)(phi,psi:o)

((T w phi) -> (T w psi)) -> (T w (Imp phi psi)).

Therefore, in a given world all the classical rules apply as usual. It should be noticed

that these rule are schematic on generic preformulæ, and not only on well formed

formulæ. The reason of this will be discussed in Section 5.2.3; for the moment, we

just point out that we require the phi in Imp_E and Not_E, and the (mu F) in mu_E,

to be well-formed, e.g. as follows:

Axiom Imp_E : (phi,psi:o)(w:U)(iswf phi) ->

(T w (Imp phi psi)) -> (T w phi) -> (T w psi).

Proof rules, on the other hand, are distinguished by local quantifications of the

world parameter, in order to make explicit the dependency between a conclusion

and its premises. The rule µ-E is represented as follows:

Axiom mu_E : (F:var->o)(iswf (mu F)) ->

((z:var)(notin z (mu F)) -> (bind z A) ->

(w’:U)(T w’ (F z))->(T w’ A))

-> (w:U)(T w (mu F)) -> (T w A).

3The reader aware of Kripke models can see here a clear connection with the semantics of
modal logics, as pointed out in [4]. However, we would stress that these variables can be seen just
as a syntactic device on their own, without bearing in mind any particular semantics. In fact,
the technique can be applied to any logic with similar rules, even if these logics do not have a
Kripke-like model.
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The idea behind the use of the extra parameter is that in making an assumption,

we are forced to assume the existence of a world, say w, and to instantiate the

judgement T also on w. This judgement then appears as an hypothesis on w. Hence,

deriving as premise a judgement, which is universally quantified with respect to U,

amounts to establishing the judgement for the generic world w’ on which only the

given assumptions are made, i.e. on the given assumptions.

The formalization of µ-E (and µ-I) uses also the auxiliary judgement bind. Fol-

lowing the idea of N
E
µK , the context ϕ(·) of µxϕ(x) is filled with a fresh (i.e., locally

quantified) variable z. The binding between z and the corresponding formula is kept

in the derivation environment by the hypothesis (bind z A). Since the typing rules

of CIC automatically ensure that z is different from any other free variable, the set

of bindings in the environment still form a binding list. These bindings can be used

in the derivation of expansion judgements, for replacing formulæ only when it is

needed. For an example, see Appendix A.3.

The discharged hypothesis (notin z (mu F)) in rule mu_E reflects at the logical

level, the fact that z is fresh. Although freshness of z obviously holds, it cannot be

inferred in the system because it belongs to the metalevel of the system. Hence, we

reify it by means of the discharged hypothesis, which may be needed in the rest of

derivation for inferring well-formedness of discharged formulæ in rules Raa, ⊃-I,

¬-I.

5.2.2. Formalization of sequent-style rules

The idea presented in the previous section can be suitably generalized to take

care of an unlimited number of assumptions. A generic sequent ϕ1, . . . , ϕn ` ϕ

is faithfully represented by the type (w:U)(T w phi1)->...->(T w phin)->(T w

phi) where phii = εX(ϕi) and phi = εX(ϕ). The locally quantified world w forces

any proof of (T w phi) to depend only on the given assumptions. The problem is to

capture the parametricity expressed by the “. . . ”. At this end, we introduce the aux-

iliary set of lists of formulæ and the auxiliary function Sequent:U->o->olist->Prop:

Inductive olist : Set := nil : olist | cons : o -> olist -> olist.

Fixpoint Sequent [w:U; phi:o; l:olist] : Prop :=

Cases l of

nil => (T w phi)

| (cons phii l’) => (T w phii) -> (Sequent w phi l’)

end.

Therefore, the aforementioned representation of ϕ1, . . . , ϕn ` ϕ is denoted by

(w:U)(Sequent w phi G) where G is the list composed by phi1, . . . , phin. In

fact, (Sequent w phi G) is exactly βιδ-equivalent (that is, it reduces) to (T w

phi1)->...->(T w phin)->(T w phi). Hence, Scott’s rule is represented as fol-

lows:

Fixpoint Boxlist [a:Act; l:olist] : olist :=

Cases l of

nil => nil

| (cons psi l’) => (cons (Box a psi) (Boxlist a l’))

end.

Axiom Sc : (phi:o)(w:U)(G:olist)(a:Act)
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((w’:U)(Sequent w’ phi G))

-> (Sequent w (Box a phi) (Boxlist a G)).

where the map Boxlist:Act->olist->olist represents exactly the “[a]Γ” notation

of rule Sc. Hence, in the application of rule Sc, we can use the conversion tactics

provided by Coq for automatically converting applications of Sequent to the right

proposition.

5.2.3. Dealing with non-well-formed formulæ

Although it allows for a faithful representation of the syntax, the use of Σ-types

is not harmless when we come to the representation and usage of the proof system.

In fact, a strict formalization of the rules should consider only terms of type wfo,

as follows

Axiom w_Imp_E : (phi,psi:wfo)(w:U)

(T w (Imp (prp phi) (prp psi))) -> (T w (prp phi)) ->

(T w (prp psi)).

where prp:wfo->o is the first projection defined on the Σ-type wfo. This dif-

fers from the rules we have presented in the previous sections, where we allow for

dealing with generic preformulæ. Actually, the usage of a “well formed formulæ

only” formalization would be quite cumbersome and awkward, because at every

rule application we would be required to provide the proof of well-formedness of

the involved formulæ. Hence we need a “light” version of N
E
µK , where the well-

formedness constraints are reduced to a minimum.

Let us call prederivations the derivations of N
E
µK where also preformulæ are

allowed. Of course, every derivation is also a prederivation, but there are many

prederivations of meaningless sequents, like the following Π : ∅; ∅ ` µx¬x

Raa

¬-E

(¬µx¬x)1
Π′

µx¬x (¬µx¬x)1

ff

µx¬x
(1)

where the derivation Π′ : ∅;¬µx¬x ` µx¬x is an instance of a subderivation of

ϕ{µxϕ/x} ⊃ µxϕ which appears in the proof of Theorem 3.1. Hence we need

to add some well-formedness constraint, in order to restrict prederivations to only

derivations.

As far as the expansion system is concerned, we have the following result:

Proposition 5.1. Let ∆ be a binding list containing only well-formed formulæ,

and ϕ, ψ preformulæ such that ∆ ` ϕ E ψ. Then, ϕ is well-formed iff ψ is well-

formed.

Proof. By induction on the derivation of ∆ ` ϕ E ψ. The case of reflexivity

rule is trivial. Congruence rules also are easy, the most complex case being that

of µ. Suppose that ∆ ` µxϕ E µxψ ends with an application of the congruence
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rule w.r.t. µ. Then, µxϕ is well-formed iff ϕ{z/x} is well-formed and z appears

only positively in ϕ{z/x}, iff ψ{z/x} is well-formed (by inductive hypothesis) and

z appears only positively in ψ{z/x} (easy to prove), iff µxϕ is well-formed.

Finally, suppose that ∆ ` x E ψ ends with an application of the “variable replace-

ment rule.” Then, there is a binding x 7→ ϕ in ∆. By assumption, ϕ is well-formed,

and hence by inductive hypothesis, also ψ is.

On the other hand, for derivations of the logical system we introduce the following

notion of well-formedness:

Definition 5.1. The preformula ϕ in rules ⊃-E, ¬-E and the formula µxϕ in

rule µ-E are called cut preformulæ.

A prederivation Π : ∆; Γ ` ϕ is well-formed (wf-prederivation) if all preformulæ

in ∆,Γ, ϕ and all cut preformulæ are well-formed.

Clearly, every derivation is a wf-prederivation. Also the converse holds:

Proposition 5.2. Every wf-prederivation is a derivation.

Proof. We have to prove that if Π : ∆; Γ ` ϕ is a wf-prederivation, then every

preformula in it is well-formed. We proceed by induction on the depth of Π.

If Π is an assumption, then ϕ ∈ Γ and hence it is well-formed.

If the last rule of Π : ∆; Γ ` ϕ ⊃ ψ is ⊃-I, then there is a prederivation Π :

∆; Γ, ϕ ` ψ, which is well-formed because ϕ and ψ are well-formed. By inductive

hypothesis, Π′ is a derivation, and hence also Π is. Similarly if the last rule of Π is

¬-I, Raa, Sc.

If the last rule of Π : ∆; Γ ` ψ is ⊃-E, then there are two prederivations Π′ :

∆; Γ ` ϕ and Π′′ : ∆; Γ ` ϕ ⊃ ψ. Since ϕ is a cut formula, then it is well-formed

by the hypothesis that Π is well-formed. Thus, Π′ and Π′′ are wf-derivations and

hence, for inductive hypothesis, they are derivations. So also Π is. Similarly if the

last rule of Π is ¬-E.

If the last rule is E-L or E-R, then the thesis follows from Proposition 5.1.

If the last rule of Π : ∆; Γ ` ψ is µ-E, then there are two prederivations Π′ : ∆; Γ `

µxϕ and Π′′ : ∆, z 7→ ψ; Γ, ϕ{z/x} ` ψ. Since µxϕ is a cut formula, then it and

ϕ{z/x} are well-formed by the hypothesis that Π is well-formed. Thus, Π′ and Π′′

are wf-derivations and hence, for inductive hypothesis, they are derivations. So also

Π is. Similarly if the last rule of Π is µ-I.

This result allows us to adopt the “relaxed” formalization of N
E
µK we have dis-

cussed in the previous subsections: all the well-formedness checks but those on cut

formulæ can be dropped, provided that the results we have to prove are stated only

on well-formed formulæ. For an example, see Appendix A.3.

5.2.4. Adequacy of the formalization

In order to state the adequacy of our formalization with respect to N
E
µK , we

introduce the following notation. Let X ⊂ Var be finite, and ϕ1, . . . , ϕn, ϕ ∈ ΦX ;
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then, for x1, . . . , xn ∈ X and for w:U, we define

δX(x1 7→ ϕ1, . . . , xn 7→ ϕn)
def
= b1: (bind x

1
εX(ϕ1)), . . .bn: (bind xn εX(ϕn))

γX,w(ϕ1, . . . , ϕn)
def
= h1: (T w εX(ϕ1)), . . . , hn: (T w εX(ϕn)).

Lemma 5.3. Let X ⊂ V ar be finite, ∆ a binding list such that FV(∆) ⊆ X.

Then, for all ϕ1, ϕ2 ∈ ΦX : ∆ ` ϕ1 E ϕ2 if and only if there exists t canonical such

that ΞX , δX(∆) ` t : (expto εX(ϕ1) εX(ϕ2))

Proof. (⇒) By induction on the proof of ∆ ` ϕ1 E ϕ2. Most cases are trivial;

let us consider the case when the last rule applied is the structural rule for µ. Then,

ϕ1 = µxψ1 and ϕ2 = µxψ2 for some ψ1, ψ2, and ∆ ` ψ1{z/x} E ψ2{z/x} for z

fresh. By inductive hypothesis, there is a term t1 such that

ΞX,z , δX(∆) ` t : (expto εX,z(ψ1{z/x}) εX,z(ψ2{z/x})).

By abstracting on z and applying expto_mu, we obtain a term t′ such that

ΞX , δX(∆) ` t′ : (expto (mu [z : var]εX,z(ψ1{z/x}))

(mu [z : var]εX,z(ψ2{z/x})))

which is equivalent to ΞX , δX(∆) ` t′ : (expto εX(ϕ1) εX(ϕ2)) by α-conversion

and definition of εX .

(⇐) By induction on the syntax of term t, by cases on the head construc-

tor. Notice that the head constructor of t cannot be a Case. Suppose that

t is (Case A of ...); then, A has to be a variable since t is canonical. But

the only variables are those in ΞX , δX(∆), and none of them belongs to a in-

ductive type—absurd. Hence, each constructor of type expto corresponds al-

ways to a rule of the expansion system, thus the proof can be readily recovered.

Theorem 5.2. Let X ⊂ V ar be finite, ∆ a binding list such that FV(∆) ⊆ X,

and Γ ⊂ ΦX finite. Then, for all ϕ ∈ ΦX : ∆; Γ ` ϕ if and only if there exists t

canonical such that ΞX , δX(∆), w : U, γX,w(Γ) ` t : (T w εX(ϕ)).

Proof. (⇒) By induction on the proof of ∆; Γ ` ϕ. Here,we show briefly the

case for µ-E, the others being similar (or simpler).4

Let ∆; Γ ` µxϕ and ∆, z 7→ ψ;ϕ{z/x} ` ψ. By inductive hypothesis, there exist

two terms t1, t2 such that

ΞX , δX(∆), w:U, γX,w(Γ) ` t1 : (T w [x : var]εX,x(ϕ))

ΞX,x, δX(∆), b:(bind x εX(ψ)), w:U,h:(T w εX,x(ϕ) ` t2 : (T w εX(ψ))

By abstracting t2 over b, w and x, we obtain a term t′2 such that

ΞX , δX(∆) ` t′2 : (x : var)(bind x εX(ψ))->(w:U)(T w εX,x(ϕ))->(T w εX(ψ)).

4See [3] for a full description of the adequacy of encodings based on the world technique.
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Moreover, since µxϕ is well-formed, by Lemma 5.2 there is a term t3 such that

ΞX ` t3 : (iswf εX(µxϕ)). We can thus build the required proof by applying the

constructor mu E to t1, t
′
2 and t3.

(⇐) By induction on the syntax of t: each constructor of (T w phi) corresponds

to a rule of N
E
µK . We show the case of mu_I.

Let t be (mu I F [z:var][b:(bind z (mu F))]t’) of type (T w (mu F)), where

(mu F) is εX(µxϕ). We have

ΞX,z , δX(∆), b : (bind z (mu F)), w : U, γX,w(Γ) ` t′ : (T w (F z)),

where z is a fresh variable, and (F z) is the encoding of ϕ{z/x}. Hence, δX(∆), b :

(bind z (mu F)) is the encoding of the binding list ∆, z 7→ µxϕ. By the inductive hy-

pothesis, there exists a proof ∆, z 7→ µxϕ; Γ ` ϕ; by applying the rule µ-I, we obtain

∆; Γ ` µxϕ.

As a consequence of this result, every proof which can be build ”on the paper”

using the system N
E
µK , can be readily mimicked step-by-step in the encoding of

N
E
µK in Coq, and vice versa. Hence, since N

E
µK is sound and complete for the

propositional µ-calculus, then also its encoding is sound and complete.

6. CONCLUSIONS

In this paper we have introduced a proof system N
E
µK for the propositional modal

µ-calculus, and its formalization in the Calculus of Inductive Constructions. Beside

the formalization, N
E
µK is interesting on its own for several reasons: it is in Natural

Deduction style, it has been proved complete with respect to logical consequences

(while traditional Hilbert-style proof systems are complete with respect to theo-

rems), and its usage should be easier than axiomatic proof systems. Moreover, in

N
E
µK substitutions of formulæ for variables are not always performed, but they may

be delayed until actually needed.

In the formalization, we have addressed several problematic issues. First, the

use of the higher order abstract syntax frees us from a tedious encoding of the

mechanisms involved in the handling of α-conversion, because it is automatically

inherited from the metalevel. Secondly, substitution is represented by an expansion

proof system, whose proofs are syntax-driven and can be highly automatized in

the Coq environment. Thirdly, we have faithfully represented the context-sensitive

language of modal µ-calculus by formalizing the notion of “well-formed formula.”

Finally, the modal nature of impure rules of modal µ-calculus (Sc and µ-E) has

been effectively rendered, although Logical Frameworks do not support directly

modal rules.

The techniques we have adopted can be readily ported to other formalisms featur-

ing similar problematic issues, such as the λ-calculus, higher-order process calculi,

languages defined by context-sensitive grammars. . .

Moreover, our experience confirmed also in dealing with the modal µ-calculus,

is that Logical Frameworks allow to encode faithfully the formal systems under

consideration, without imposing on the user of the proof editor the burden of cum-

bersome translations into, say, first-order logic or monadic second-order logic. How-

ever, nowadays proof editors and Logical Frameworks are still under development;
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hence, they will benefit from extensive case studies and applications, like the one

presented here, which can enlighten weak points and suggest further improvements.

Related and future work. The representation of object-logic variables by means

of meta-level variables of a generic set var without constructors has been used

before in [15] and exploited in [16] in the full formalization of the π-calculus and

its metatheory. The implementation of substitution by means of an environment

of bindings has been previously investigated in the context of logic programming

by Miller [22], and in that of model checking by Stirling and Walker [28]. This fact

deserves further investigation. For instance, N
E
µK could be integrated with a model

checker in a simple and efficient way; the model checker could be implemented

in Coq, and its correctness formally verified. Previously, Yu and Luo formalized

a model checker for CCS and the µ-calculus in LEGO [30]. Although in their

encoding, binding operators are represented by means of de Bruijn indexes, their

approach should be feasible also in the HOAS-based formalization presented in this

paper.

At the moment, a great effort is spent on the problem of combining higher-

order abstract syntax with inductive definitions. The aim is to allow for higher-

order constructors inside inductive definitions, together with adequate elimination

principles. Eventually, these improvements should lead to new Logical Frameworks,

adequately supporting both HOAS and recursion/induction. For further details on

recents developments in this area, we refer to [8, 9, 10, 11, 14].

From a proof-theoretical point of view, rule Sc is not satisfactory, since it breaks

the typical introduction/elimination pattern of Natural Deduction systems. A pure

Natural Deduction-style proof system for the propositional µ-calculus (i.e., without

the modal constructor “[a]ϕ”) has been investigated in [29]. Whether there is a truly

Natural Deduction formulation of the modal µ-calculus remains an open question.

A promising approach to the development of a system suitable for proof-theoretical

results is to reflect in the system a semantic notion, like the transition relation of

the underlying model. This approach has been successfully adopted by Simpson in

the construction of strong normalizing Natural Deduction style proof systems for

modal logics [26].

Another future work stemming from this research is the development of a user

friendly, mouse oriented environment which adopts our Coq formalization as proof

kernel. In such an environment, the user could carry out interactively formal veri-

fications based on the modal µ-calculus.

APPENDIX: Coq CODE

This code is also available at http://www.dimi.uniud.it/~miculan/mucalculus.

A.1. CODE OF THE FORMALIZATION OF THE SYNTAX

(* Sets for actions, variables *)

Parameter Act, var : Set.

(* var is at least enumerable *)

Axiom var_nat : (Ex [srj:var->nat](n:nat)(Ex [x:var](srj x)=n)).

Lemma neverempty : (x:var)(Ex [y:var]~(x=y)).
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(* proof omitted *)

(* the set of preformulae, also not well formed *)

Inductive o : Set := ff : o

| Not : o -> o

| Imp : o -> o -> o

| Box : Act -> o -> o

| Var : var -> o

| mu : (var->o) -> o.

Fixpoint isin [x:var;phi:o] : Prop :=

<Prop>Cases phi of

ff => False

| (Not psi) => (isin x psi)

| (Imp phi1 phi2) => (isin x phi1)\/(isin x phi2)

| (Box a psi) => (isin x psi)

| (Var y) => x=y

| (mu F) => (y:var)(isin x (F y))

end.

Fixpoint notin [x:var;phi:o] : Prop :=

<Prop>Cases phi of

ff => True

| (Not psi) => (notin x psi)

| (Imp phi1 phi2) => (notin x phi1)/\(notin x phi2)

| (Box a psi) => (notin x psi)

| (Var y) => ~(x=y)

| (mu F) => (y:var)~(x=y)->(notin x (F y))

end.

Fixpoint posin [x:var;phi:o] : Prop :=

<Prop>Cases phi of

ff => True

| (Not psi) => (negin x psi)

| (Imp phi1 phi2) => (negin x phi1)/\(posin x phi2)

| (Box a psi) => (posin x psi)

| (Var y) => True

| (mu F) => (y:var)~(x=y)->(posin x (F y))

end

with negin [x:var;phi:o] : Prop :=

<Prop>Cases phi of

ff => True

| (Not psi) => (posin x psi)

| (Imp phi1 phi2) => (posin x phi1)/\(negin x phi2)

| (Box a psi) => (negin x psi)

| (Var y) => ~(x=y)

| (mu F) => (y:var)~(x=y)->(negin x (F y))
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end.

Fixpoint iswf [phi:o] : Prop :=

<Prop>Cases phi of

ff => True

| (Not psi) => (iswf psi)

| (Imp phi1 phi2) => (iswf phi1)/\(iswf phi2)

| (Box a psi) => (iswf psi)

| (Var y) => True

| (mu F) => (x:var)(iswf (F x))/\

((notin x (mu F)) -> (posin x (F x)))

end.

(* the set of well formed formuale *)

Record wfo : Set := mkwfo {prp : o;

cnd : (iswf prp)}.

(* separation: if x does not appear in phi and y do, then x and y

* are not the same identifiers - proof omitted *)

Lemma separation : (x,y:var)(phi:o)

(notin x phi) -> (isin y phi) -> ~(x=y).

Lemma notin_posin_negin :

(x:var)(phi:o)(notin x phi) -> (posin x phi)/\(negin x phi).

Lemma notin_posin : (x:var)(phi:o)(notin x phi) -> (posin x phi).

Lemma notin_negin : (x:var)(phi:o)(notin x phi) -> (negin x phi).

A.2. CODE OF THE FORMALIZATION OF THE PROOF SYSTEM

(* the binding judgement *)

Parameter bind : var -> o -> Prop.

(* expansion precongruence *)

Section Expansion.

Inductive expto : o->o->Prop :=

expto_rflx : (phi:o)(expto phi phi)

| expto_btrns: (x:var)(phi,psi:o)

(bind x phi)->(expto phi psi)->(expto (Var x) psi)

| expto_Not : (phi,psi:o)

(expto phi psi) -> (expto (Not phi) (Not psi))

| expto_Imp : (phi1,phi2,psi1,psi2:o)

(expto phi1 psi1)->(expto phi2 psi2)->

(expto (Imp phi1 phi2) (Imp psi1 psi2))

| expto_Box : (phi,psi:o)(expto phi psi)->

(a:Act)(expto (Box a phi) (Box a psi))

| expto_mu : (phi,psi:var->o)((x:var)(expto (phi x) (psi x))) ->

(expto (mu phi) (mu psi)).

Hints Immediate expto_bind expto_rflx expto_btrns
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expto_Not expto_Imp expto_Box expto_mu : core.

Lemma expto_bind : (x:var)(phi:o)(bind x phi)->(expto (Var x) phi).

Lemma expto_trns : (phi,psi:o)(expto phi psi)->

(xi:o)(expto psi xi) -> (expto phi xi).

(* proofs omitted *)

End Expansion.

(* lists of formulae for Scott rule *)

Inductive olist : Set :=

nil : olist

| cons : o -> olist -> olist.

(* Boxlist represents the [a]\Gamma notation *)

Fixpoint Boxlist [a:Act; l:olist] : olist :=

Cases l of

nil => nil

| (cons psi l’) => (cons (Box a psi) (Boxlist a l’))

end.

(* the universe, for the world technique *)

Parameter U : Set.

(* the proving judgement *)

Parameter T : U -> o -> Prop.

(* (Sequent w phi (phi1...phin)) corresponds to phi1,...phin |- phi *)

Fixpoint Sequent [w:U; phi:o; l:olist] : Prop :=

Cases l of

nil => (T w phi)

| (cons phii l’) => (T w phii) -> (Sequent w phi l’)

end.

Section Proof_Rules.

Variable phi,psi,xi:o.

Variable w:U.

Axiom Not_I : ((T w phi) -> (T w ff)) -> (T w (Not phi)).

Axiom Not_E : (iswf phi) -> (T w phi)->(T w (Not phi)) -> (T w ff).

Axiom RAA : ((T w (Not phi)) -> (T w ff)) -> (T w phi).

Axiom Imp_I : ((T w phi) -> (T w psi)) -> (T w (Imp phi psi)).

Axiom Imp_E : (iswf phi) ->

(T w (Imp phi psi)) -> (T w phi) -> (T w psi).

Axiom Sc : (G:olist)(a:Act)

((w’:U)(Sequent w’ phi G))

-> (Sequent w (Box a phi) (Boxlist a G)).
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Axiom expto_R : (expto phi psi) -> (T w phi) -> (T w psi).

Axiom expto_L : (expto phi psi) -> (T w psi) -> (T w phi).

Axiom mu_I : (F:var->o)((z:var)(bind z (mu F)) -> (T w (F z)))

-> (T w (mu F)).

Axiom mu_E : (F:var->o)(iswf (mu F)) ->

((z:var)(notin z (mu F)) -> (bind z phi) ->

(w’:U)(T w’ (F z))->(T w’ phi))

-> (T w (mu F)) -> (T w phi).

(* some derived rules - proofs omitted *)

Lemma ff_E : (T w ff) -> (T w phi).

Lemma K : (a:Act)((w’:U)(T w’ psi) -> (T w’ phi))

-> (T w (Box a psi)) -> (T w (Box a phi)).

End Proof_Rules.

A.3. AN EXAMPLE SESSION IN Coq

We will show a complete Coq session, in which we prove both that ∅;ϕ `

µx(¬ϕ ⊃ x) and ∅;µx(¬ϕ ⊃ x) ` ϕ. These proofs are an example of how one

would proceed in working with the encoding, interleaving logical steps with proofs

of well-formedness and expansions as needed. Commands entered by the user are

written in this font .

miculan@coltrane:~> coqtop

Welcome to Coq V6.3.1 (December 1999)

Coq < Require mu.

[Reinterning mu ...done]

(* An example *)

Lemma ex1 : (phi:wfo)(w:U)

(T w (prp phi)) <->

(T w (mu [x:var](Imp (Not (prp phi)) (Var x)))).

ex1 < (Intros;Split;Intro).

(* first direction: -> *)

ex1 < Apply mu_I; Intros; Apply Imp_I; Intro.

(* now the goal is

phi : wfo

w : U

H : (T w (prp phi))

z : var

H0 : (bind z (mu [x:var](Imp (Not (prp phi)) (Var x))))

H1 : (T w (Not (prp phi)))

============================

(T w (Var z))
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we replace z with the corresponding term:

*)

ex1 < Apply expto_L with (mu [x:var](Imp (Not (prp phi)) (Var x)));

Auto.

(*

phi : wfo

w : U

H : (T w (prp phi))

z : var

H0 : (bind z (mu [x:var](Imp (Not (prp phi)) (Var x))))

H1 : (T w (Not (prp phi)))

============================

(expto (Var z) (mu [x:var](Imp (Not (prp phi)) (Var x))))

*)

ex1 < Apply expto_bind; Assumption.

(*

phi : wfo

w : U

H : (T w (prp phi))

z : var

H0 : (bind z (mu [x:var](Imp (Not (prp phi)) (Var x))))

H1 : (T w (Not (prp phi)))

============================

(T w (mu [x:var](Imp (Not (prp phi)) (Var x))))

*)

ex1 < Apply ff_E; Apply Not_E with phi:=(prp phi).

(* this generates three goals:

phi : wfo

w : U

H : (T w (prp phi))

z : var

H0 : (bind z (mu [x:var](Imp (Not (prp phi)) (Var x))))

H1 : (T w (Not (prp phi)))

============================

(iswf (prp phi))

subgoal 2 is:

(T w (prp phi))

subgoal 3 is:

(T w (Not (prp phi)))

they are immediate:

*)

ex1 < Exact (cnd phi). Assumption. Assumption.
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(* second direction <- : the goal is as follows:

phi : wfo

w : U

H : (T w (mu [x:var](Imp (Not (prp phi)) (Var x))))

============================

(T w (prp phi))

*)

ex1 < Apply mu_E with [x:var](Imp (Not (prp phi)) (Var x));

[Simpl; Intros; Split | Intros | Assumption].

ex1 < Split; [Exact (cnd phi) | Trivial].

(* Now we face a huge and painful term - but don’t worry *)

ex1 < Intro; Split; Auto;

Apply notin_posin; Elim (neverempty x); Intros;

Apply proj1 with B:=(not (eq ? x x0)); Apply H0; Assumption.

(* the goal does not depend on w and assumption H any more:

phi : wfo

w : U

H : (T w (mu [x:var](Imp (Not (prp phi)) (Var x))))

z : var

H0 : (notin z (mu [x:var](Imp (Not (prp phi)) (Var x))))

H1 : (bind z (prp phi))

w’ : U

H2 : (T w’ (Imp (Not (prp phi)) (Var z)))

============================

(T w’ (prp phi))

so we can drop them *)

ex1 < Clear H w.

(* now we have completely changed the sequent:

phi : wfo

z : var

H0 : (notin z (mu [x:var](Imp (Not (prp phi)) (Var x))))

H1 : (bind z (prp phi))

w’ : U

H2 : (T w’ (Imp (Not (prp phi)) (Var z)))

============================

(T w’ (prp phi))

*)

ex1 < Apply RAA; Intros; Apply Not_E with phi:=(prp phi);

[Exact (cnd phi) | Idtac | Assumption].

(*
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phi : wfo

z : var

H0 : (notin z (mu [x:var](Imp (Not (prp phi)) (Var x))))

H1 : (bind z (prp phi))

w’ : U

H2 : (T w’ (Imp (Not (prp phi)) (Var z)))

H : (T w’ (Not (prp phi)))

============================

(T w’ (prp phi))

Now we replace phi with z, in order to apply H1 *)

ex1 < Apply expto_R with (Var z).

(* the first goal is an expansion *)

ex1 < Apply expto_bind; Assumption.

(* the second is

phi : wfo

z : var

H0 : (notin z (mu [x:var](Imp (Not (prp phi)) (Var x))))

H1 : (bind z (prp phi))

w’ : U

H2 : (T w’ (Imp (Not (prp phi)) (Var z)))

H : (T w’ (Not (prp phi)))

============================

(T w’ (Var z))

which follows from H2

*)

ex1 < Apply Imp_E with phi:=(Not (prp phi)); Try Assumption.

ex1 < Exact (cnd phi).

ex1 < Qed.
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