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Abstract In this paper we survey some well-known approaches proposed as general models

for calculi dealing with names (like for example process calculi with name-passing). We

focus on (pre)sheaf categories, nominal sets, permutation algebras and named sets, studying

the relationships among these models, thus allowing techniques and constructions to be

transferred from one model to the other.
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1. Introduction

Since the introduction of π -calculus, the notion of name has been recognized as central in

models for concurrency, mobility, staged computation, metaprogramming, memory region

allocation, etc. In recent years, several approaches have been proposed as general frameworks

for modeling languages featuring name passing and/or allocation. These approaches are based

on category theory, non-standard set theory, automata theory, algebraic specifications, etc. It

comes as no surprise that there are so many approaches: although all ultimately cope with the

same issues, they are inspired by different aims and perspective, leading to different solutions

and design choices.
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The main aim of this paper is to survey some of the most widely used models for nominal

calculi, and to clarify their relationships. In particular, we focus on four alternative proposals,

namely (pre)sheaf categories, the various approaches related to Fraenkel-Mostowski set

theory, permutation algebras, and named sets.

Categories of functors over the category I of finite sets and injective functions, such as

SetI, have been widely used for modeling “staged computations,” indexed by the (finite) sets

of names currently allocated. This approach has been introduced by O’Hearn and Tennent for

modeling idealized Algol [19], and then followed by a number of authors, for example [7, 10,

16, 21, 23]. A variation of this approach considers only the subcategory of pullback-preserving

functors, i.e. the so-called Schanuel topos [5, 10, 23]. These categories allow to extend the

standard results about the existence of initial algebras/final coalgebras of polynomial functors

also to functors dealing with names.

Actually, permutation algebras have been specifically introduced for the development

of a theory of structured coalgebras in the line of algebraic specifications [3]. Permutation

algebras are algebras over a signature whose function symbols form the underlying set of a

group of permutations of an enumerable set. Most often, since the group of all permutations

yields a non-countable signature, one can restrict the attention to countable subgroups, such

as that of finite permutations. Moreover, in many cases it is necessary to restrict the attention

to permutation algebras whose elements are finitely supported—for example, processes and

terms with infinite free names are ruled out. Therefore, there are four possible theories of

permutation algebras to consider.

Permutation algebras are strictly related also to nominal sets, an alternative approach

stemming from Fraenkel-Mostowski permutation model of set theory with atoms. Several

variants of this theory have been presented as perm(A)-sets, FM-sets, nominal sets, etc. [8, 20].

A different theory of sets with permutations is that of named sets [3]. A named set is a set

in which each element is equipped with a finite set of names and name bijections. Named

sets are supposed to be an implementation of permutation algebras; indeed, they are the basic

building block of the operational model of History Dependent automata [17].

Thus, the named sets work is most accessible and directly applicable to computation, while

the work on presheaf and sheaf categories has the most developed body of mathematics as-

sociated with it but is the least directly relevant to computation. Permutation algebras bear

some of the characteristics of each of the other two, and can be seen as the bridge between

them. So it is sensible to try to make precise the relationships between these models: such

analysis can strengthen the body of mathematical theory underlying structures such as named

sets and can give a clearer explanation of the computational significance of the more math-

ematically developed constructs such as sheaf categories. Techniques and constructions can

be transferred among frameworks, thus cross-fertilizing each other, and apparently peculiar

idiosyncrasies are either justified, or revealed to be inessential.

In this paper, we describe precisely the connections among these approaches. First, we

prove that the four categories of permutation algebras subsume the several variants of FM-

sets appeared in literature. Then, it is proved that finitely supported permutation algebras are

equivalent to the category of pullback preserving functors I → Set, i.e., the Schanuel topos.

This fact shall allow to transfer the constructions of polynomial functors from the Schanuel

topos to permutation algebras.

Also the category of named sets turns out to be equivalent to the category of algebras

with finite support, and hence to the Schanuel topos again. Therefore, named sets can be

seen as an “implementation” of sheaves of the Schanuel topos, thus giving a sound base for

realizing operational models of nominal calculi whose semantics can be given in these sheaf

categories, like for example the π -calculus.
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Admittedly, some of these results have been known in the community for a while, but often

without proofs, or using different variants of the categories, with different names. In fact, the

present paper aims to clean up and complete this picture, and to fit as much as possible these

approaches in a uniform framework. Along the paper we will state clearly which results have

already appeared in the literature.

Synopsis. In Section 2 we recall the basic definitions about permutation algebras, and develop

some important properties about permutation algebras with finite support. These are proved

to correspond to the sheaf of the Schanuel topos in Section 3. In Section 4 we show that

named sets also form a category which is equivalent to the category of finite permutation

algebras with finite support. In Section 5 we cast permutation algebras in the general theory

of continuous G-sets. This will allow to fit all permutation algebras (with arbitrary support)

in a uniform framework, and to have a different proof of the equivalence with the Schanuel

topos. Conclusions and final remarks are in Section 6.

2. Permutation algebras

This section recalls the pivotal notion of permutation algebras. These definitions are mostly

drawn from [17], with some additional references to the literature.

2.1. Permutation algebras

Definition 1 (permutation group). Let N be a set (of names). A permutation on N is a bi-

jective endofunction on N . The set of all such permutations on a given set N is denoted by

Aut(N ), and it forms the permutation group of N , where the operation is function compo-

sition: For all π1, π2 ∈ Aut(N ), π1π2 � π1 ◦ π2.

Permutations on sets coincide with automorphisms, hence the notation denoting

the permutation group. We stick however to the word ‘permutations’ since now this

is almost the standard usage in theoretical computer science, and it is the term

used in our main references: see [17, Section 2.1] and the initial paragraphs of

[8, Section 3].

Following standard notation of algebraic specifications, we recall the definition of per-
mutation algebra [17].

Definition 2 (permutation signature and algebras). For N a countable set, the permutation
signature �p on N is defined as follows

– the set of formal operators is {π̂ : 1 → 1 | π ∈ Aut(N )};
– the set of formal axiomatic equalities is

{î d(x) = x} ∪ {π̂1(π̂2(x)) = π̂1π2(x) | π1, π2 ∈ Aut(N )}.

A permutation algebra A = (A, {π̂A : A → A | π ∈ Aut(N )}) is an algebra for �p. A per-
mutation morphism σ : A → B is an algebra morphism, i.e., a function σ : A → B such

that σ (π̂A(x)) = π̂B(σ (x)). Finally, Alg(�p) (often shortened as Algp) denotes the category

of permutation algebras and their morphisms.

Springer



286 Higher-Order Symb Comput (2006) 19:283–304

Permutation algebras and their morphisms correspond trivially to Gabbay and Pitts’ perm(A)-
sets and equivariant functions [8]. An interesting (and recurring) example of permutation

algebra is that for the π -calculus: the carrier contains all the processes, up-to structural

congruence, and the interpretation of a permutation is the associated name substitution (see

also [17, Definition 15 and Section 3]).

An unpleasant fact about Algp is that it has a non-countable set of operators and axioms. In

order to have a more tractable signature, following [17, Section 2.1] we restrict our attention

to finite permutations.

Definition 3 (finite permutations). Let N be a countable set, and let π ∈ Aut(N ) be a per-

mutation on N . The kernel of π is defined as ker(π ) � {x ∈ N | π (x) �= x}.
A permutation π is finite if its kernel is finite. The set of all finite permutations is denoted

by Aut f(N ) and it is a subgroup of Aut(N ).

It is well-known from group theory that Aut f(N ) is characterized as the subgroup gener-

ated by all transpositions, which are permutations whose kernel has exactly 2 elements.

Therefore, each finite permutation can be defined as the composition of a finite sequence of

transpositions.

Definition 4 (finite permutation signature and algebras). The finite permutation signature

�
f
p is obtained as the subsignature of �p restricted to the unary operators induced by fi-

nite permutations.

The associated category of algebras is Alg(�
f
p), shortened as Algf

p.

Each algebra in Algf
p has a countable set of operators and axioms, and thus it is

more amenable to the standard results out of the algebraic specification mold. Each

algebra in Algp can be cast trivially to an algebra in Algf
p (by forgetting the inter-

pretation of non-finite permutations), and this inclusion is strict, as we shall see in

Section 2.3.

2.2. Finitely supported permutation algebras

We provide now a final list of definitions, concerning the finite support property. They

rephrase definitions in [17, Section 2.1], according to [8, Definition 3.3], and to our needs in

the following sections.

Let us fix in this and the following sections a countable set N , shortening Aut(N ) and

Aut f(N ) to Aut and Aut f, respectively, usually putting a superscript f for definitions and

notations concerning finite permutations. Moreover, subsets of N will be ranged over by

X, Y .

Definition 5 (support). LetA ∈ Algp be a permutation algebra. For a ∈ A, the isotropy group
of a is the set fixA(a) of permutations fixing a in A, i.e., fixA(a) � {π ∈ Aut | π̂A(a) = a}.

For X ⊆ N , the identity group of X is the set fix(X ) of permutations fixing X , i.e.,

fix(X ) � {π ∈ Aut | ∀x ∈ X.π (x) = x}.
We say that the subset X supports the element a ∈ A if all permutations fixing X also fix

a in A (i.e., if fix(X ) ⊆ fixA(a)).
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The definition can be readily adapted to finite permutation algebras, by replacing Aut by

Aut f throughout.

The notion of support is a suitable generalization of that of “free variables” of terms,

and of “free names” of processes: if X supports a, then a is affected only by the action of

permutations over the set X .

Definition 6 (finitely supported algebras). A permutation algebra A is finitely supported if

for each element of its carrier there exists a finite set supporting it.

The full subcategory of Algp of all finitely supported permutation algebras is denoted by

FSAlg(�p), shortened as FSAlgp.

The category FSAlgf
p of finitely supported, finite permutation algebras is defined similarly.

Finitely supported algebras over all permutations correspond trivially to the perm(A)-sets
with finite support of [8]. On the other hand, it is easy to show that the category of finitely

supported algebras over finite permutations corresponds to the category of nominal sets as

defined in [20].

In general, an element of the carrier of an algebra may have different sets supporting it.

The following proposition, mirroring [8, Proposition 3.4], ensures that a minimal support

does exist.

Proposition 7. Let A be a (finite) permutation algebra. If a ∈ A is finitely supported, then
there exists a least finite set supporting a, called the support of a and denoted by suppA(a).

Remark 1. Not all algebras in Algp are finitely supported (hence, neither those in Algf
p). For

example, let us consider the set N = {0, 1, . . .}, and the algebra (℘(N ), {π̂ | π ∈ Aut f}),
where π̂ (X ) = {π (x) | x ∈ X} for all X ∈ ℘(N ). The sets Neven = {2i | i ≥ 0} and Nodd =
{2i + 1 | i ≥ 0}, both elements of ℘(N ), are not finitely supported: for all X finite, we can

always pick a (finite) permutation π fixing X but exchanging max(X ) + 1 and max(X ) + 2;

then π̂ (Neven) �= Neven .

2.3. Some properties of permutation algebras

In this subsection we present some important properties of the categories of permutation

algebras defined in the previous subsections. In particular, we show that the two categories

of algebras with finite support with either signatures are isomorphic—that is, we can restrict

to the countable signature of finite permutations without changing the resulting category.

Recall the existence of the forgetful functor U : Algp → Algf
p which simply drops the in-

terpretation of non-finite permutations, and that can be extended also to the finitely supported

counterparts. Actually, all these categories are much more strictly related: in this section we

prove this statement, presenting first some (likely folklore) results on permutation algebras.

Lemma 8 (preserving supports). Let A be a permutation algebra, let a ∈ A, and let X be a
subset supporting a in A. Then

(i) π (X ) supports π̂A(a), for all permutations π ∈ Aut;
(ii) X supports σ (a) in B, for all homomorphisms σ : A → B.

Both proofs are easy, and they are skipped. More interesting are their consequences on finitely

supported elements.
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Corollary 9. Let A be a permutation algebra, and let a ∈ A be finitely supported. Then

(i) suppA(π̂A(a)) = π (suppA(a)), for all permutations π ∈ Aut;
(ii) suppB(σ (a)) ⊆ suppA(a), for all homomorphisms σ : A → B;

(iii) fixA(a) ⊆ spA(a), for spA(a) � {π | π (suppA(a)) = suppA(a)}.

Proof: Points (ii) and (iii) are easy; so, let us consider (i).
We know that π (suppA(a)) supports π̂A(a) from (i) of Lemma 8. We have to prove that for

any X , if X supports π̂A(a) then π−1(X ) supports a; equivalently, that fix(X ) ⊆ fix(π̂A(a))

implies fix(π−1(X )) ⊆ fix(a). Let ρ be a permutation fixing π−1(X ). Then πρπ−1 fixes X
(because for all x ∈ X : πρπ−1(x) = ππ−1(x) = x), and hence πρπ−1 fixes π̂A(a). This

means that π̂A(a) = π̂Aρ̂Aπ̂−1
A(π̂A(a)) = π̂Aρ̂A(a), and hence, by applying π−1, we get

a = ρ̂A(a). �

Note also that spA(a) is obviously a group.

Proposition 10 (removing infinite supports). The inclusion functor FSAlgp → Algp admits
a right adjoint.

Proof: Given a permutation algebraA, simply consider the sub-algebra obtained by dropping

all the elements with infinite support: it is well-defined, thanks to (i) of Lemma 8, and it

extends to a functor, thanks to (ii) of that same lemma. �

Let us now introduce some additional notation.

Definition 11 (completions). Let X be a subset, and let π ∈ Aut: in the following, we denote

by π|X : X → π (X ) the bijection obtained as a restriction of π on X .

Conversely, given subsets X , Y and a bijection ρ : X → Y , we denote by ρc ∈ Aut f any

completion of ρ, i.e., any finite permutation such that ρc
|X = ρ.

Lemma 12 (equating supports). Let A be a permutation algebra, let a ∈ A, and let X ⊆ N
supporting a in A. If two permutations π, κ ∈ Aut coincide on X (i.e., π|X = κ|X ), then
π̂A(a) = κ̂A(a).

The proof is easy. Simply note that κ−1π is the identity on X , hence κ−1π (a) = a.

Now we prove that if we stick to algebras with finite support, the restriction to the countable

signature does not change the models.

Proposition 13. Categories FSAlgp and FSAlgf
p are isomorphic.

Proof: Note that U : Algp → Algf
p restricts to U : FSAlgp → FSAlgf

p; indeed, for any al-

gebra A = (A, {π̂ | π ∈ Aut}) ∈ Algp, if a ∈ A is supported by a finite subset X , then X
supports a also in U (A).

It is then enough to show that each finitely supported algebra over finite permutations can

be uniquely extended to obtain an object of FSAlgp. That is, given A ∈ FSAlgf
p and a ∈ A,

we must define the value π̂A(a) for all infinite permutations π .

To this end, let us choose a completion κ = (π|suppA(a))
c ∈ Aut f for any π ∈ Aut and

a ∈ A. Now, the interpretation of π̂A(a) must coincide with κ̂A(a): it is well-given, since
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thanks to Lemma 12 the choice of the actual completion is irrelevant; and thanks to (i) of

Lemma 8 also the axioms of permutation signatures are satisfied. �

For nominal sets, this result has been mentioned (without proof) in [20, Section 3].

We now conclude with a remark on the categories of all algebras.

Proposition 14. The forgetful functor Algp → Algf
p is not full on objects.

Proof: We show a finite permutation algebraAwhich cannot be extended to all permutations,

that is, such that it does not exist a B = (A, {π̂ | π ∈ Aut}) ∈ Algp satisfying U (B) = A.

Let us fix N = {0, 1, 2, . . . }, and Neven = {0, 2, 4 . . . }. We take A � {X ⊆ N | X ∩
Neven infinite}, and for π ∈ Aut f, let π̂A(X ) = {π (x) | x ∈ X}. Clearly, if X contains in-

finitely many even names, also π̂A(X ) does, because π is a finite permutation. Let us con-

sider the infinite permutation ρ(x2i ) = x2i+1, ρ(x2i+1) = x2i (i ≥ 0), swapping all odd and

even names at once. By the axioms of permutation signatures, the interpretation of ρ must

extend those of all finite permutations contained in it, therefore ρ̂A(X ) = {ρ(x) | x ∈ X}. But

Neven ∈ A, while ρ̂A(Neven) = {1, 3, 5, . . . } which is not in A—absurd. �

3. Finitely supported algebras and sheaves

In this section, we begin to analyse how the pivotal notion of permutation algebra is con-

nected with other models of nominal calculi. In Section 3.1 we show that the category of

permutation algebras with finite support is equivalent to the Schanuel topos. This category,

and the similar category of presheaves SetI, have been extensively used for defining semantic

domains of calculi as final coalgebras of polynomial endofunctors; in Section 3.2 we recall

these constructions in Sh(Iop), and relate with similar constructions on permutation algebras.

Then, we take advantage of this correspondence for transferring the constructions of

polynomial “behavioural” functors from the Schanuel topos to the categories of permutation

algebras.

3.1. Correspondence with sheaves

Recall that the category of presheaves over a small category C is the category of functors

from Cop to Set and natural transformations. In this work, we are interested in the presheaf

category SetI, where I is (without loss of generality) the category of finite subsets of N and

injective maps. This category has been used by many authors for modeling the computational

notion of dynamic allocation of names or locations; see for example [7, 10, 16, 19, 21, 23].

In order to show the correspondence between permutation algebras, we have to consider

a particular subcategory of SetI, namely the category Sh(Iop) of pullback preserving functors

only.1 This condition has a precise meaning, which can be explained as follows. Let us

consider a pullback in I. Then, X is (isomorphic to) i1(Y1) ∩ i2(Y2). This pullback

is mapped by a given functor F : I → Set to a square in Set. If this square is a

1Clearly, a pullback-preserving functor is also mono preserving, but the converse is not true; see, for example,
P∅ = ∅ and PX = N if X �= ∅, and the pullback given by the inclusion of even and odd names in N .
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pullback, it means that for all a ∈ FZ is the image of some a1 ∈ FY1
, a2 ∈ FY2

, then there exists

some a0 ∈ FX which can be mapped to a1, a2 and ultimately to a. In other words, requiring

F to be pullback preserving means that whenever two stages Y1 and Y2 are sufficient for

“defining” an element a, also the intersection Y1 and Y2 must be. This seems to be a sensible

condition.

The category of pullback-preserving functors from I to Set is also known as the category

of sheaves with respect to the atomic topology [14, Sections 3.4, 3.9]; hence the notation

Sh(Iop). We prefer the charaterization of sheaves as pullback-preserving functors, because it

seems clearer than those based on topological notions; moreover it is easily generalizable to

other index categories (see for example [15]). However, an interesting consequence is that

Sh(Iop) is a (boolean) topos, and precisely the Schanuel topos.

The category Sh(Iop) can be used in place of SetI for giving the semantics of languages

with dynamic name allocations, as in [23, 24, 10, 1]. In fact, also the category of FM-sets

with finite support (which correspond to FSAlgp, as said before) is essentially equivalent to

Sh(Iop), as mentioned briefly in [8, Section 7].

Here we give a direct proof that FSAlgf
p and Sh(Iop) are equivalent. The first step is the

definition of a categorical notion of “support”.

Definition 15. Let F : I → Set , let X ∈ I and let a ∈ FX . Then, Y ⊆ X supports a if for all

h, k : X � Z such that h|Y = k|Y we have Fh(a) = Fk(a).

In other words, the set Y supports a ∈ FX if we cannot tell apart the action on a of two

given morphisms which agree on Y . This definition clearly generalizes the set-theoretical

Definition 5 of support, as soon as we consider the case of Z = X and k = idX ; in this case,

h is a permutation of X and Fh corresponds to the operation ĥc.

Proposition 16. Let F : I → Set be a sheaf, let X ∈ I and let a ∈ FX . Let i : Y ↪→ X be a
subset of X supporting a. Then, there exists a unique b ∈ FY such that a = Fi (b).

Proof: It is easy to check that the following diagram in I is a pullback

where h(x) =
{

inl(x) if x ∈ Y

inr (x) otherwise.

Since F is pullback preserving, the square in the following diagram in Set is a pullback:

By hypothesis we know that Fh(a) = Finl (a), and hence, by the pullback property, there

exists a unique b ∈ FY such that a = Fi (b). �

Lemma 17. Let F : I → Set be a sheaf, let X ∈ I and let a ∈ FX . If both Y1, Y2 ⊆ X support
a, then also Y1 ∩ Y2 supports a.
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Proof: The inclusion maps i1 : Y1 ∩ Y2 ↪→ Y1, i2 : Y1 ∩ Y2 ↪→ Y2 form a pullback of

j1 : Y1 ↪→ X , j2 : Y2 ↪→ X . The sheaf F maps this pullback to the pullback square of the

following diagram

where b1 ∈ FY1
and b2 ∈ FY2

are the elements given by Proposition 16 (that is, Fj1 (b1) =
Fj2 (b2) = a. Due to the pullback there exists a unique b ∈ FY1∩Y2

such that Fj1◦i1
(b) =

Fj2◦i2
(b) = a. Now, let h, k : X → Z be such that h|Y1∩Y2

= k|Y1∩Y2
; this means that h ◦

j1 ◦ i1 = k ◦ j1 ◦ i1. Then we have Fh(a) = Fh(Fj1◦i1
(b)) = Fk(Fj1◦i1

(b)) = Fk(a). �

Proposition 18. Let F : I → Set be a sheaf, let X ∈ I and let a ∈ FX . Then, there exists a
least Y ∈ I supporting a.

Proof: If both i1 : Y1 ⊂ X and i2 : Y2 ⊂ X support a, then also their pullback Y1 ∩ Y2 does

(Lemma 17). The cardinality of the pullback is ≤ min{|Y1|, |Y2|}, so by iteration we get the

least support. �

Therefore, for all X ∈ I and a ∈ FX , we can define suppX (a) as the least Y supporting a.

Furthermore, we usually drop the subscript, since it is easy to check that such a least Y
supporting a does not depend on the particular X the a comes from; that is, if a ∈ FX ∩ FZ ,

then suppX (a) = suppZ (a).

Proposition 19. Categories FSAlgf
p and Sh(Iop) are equivalent.

Proof: Let us define first a functor F : FSAlgf
p → Sh(Iop). Let A be a finitely supported

algebra over finite permutations. The corresponding functor FA : I → Set is defined

– on objects as FAX � {a ∈ A | suppA(a) ⊆ X};
– for k : X � Y in I, FAk : FAX → FAY maps a ∈ A to κ̂A(a), where κ ∈ Aut f is a(ny)

finite permutation extending k to the whole N . Since a has finite support, by Lemma 12

this is a good definition.

It is easy to check that this FA preserves pullbacks, thanks to Corollary 9(i); hence, it is

a sheaf. Furthermore, let σ : A → B be an algebra homomorphism: the associated natural

transformation Fσ : FA → FB is defined as the obvious restriction FσX � σ|FAX
: FAX →

FBX for all subsets X ; it is well-defined thanks to Corollary 9(ii).

On the other hand, we define a functor G : Sh(Iop) → FSAlgf
p as follows. Let P : I → Set

be any object of Sh(Iop); the carrier of the corresponding algebra A = (A, {π̂A | π ∈ Aut f})
is the set

A �
⋃
X∈I

{a ∈ PX | supp(a) = X}
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For π ∈ Aut f, the map π̂A : A → A is defined as

π̂A(a) � Pπ|X (a) for a ∈ PX .

where π|X : X � π (X ) is the restriction of π to the finite X . It is trivial to check that if

a ∈ PX then a is supported by X according to Definition 5. Finally, any natural transformation

η : P → Q induces quite obviously a homomorphism between the corresponding algebras.

It is easy to check that there are two natural isomorphisms

φ : G F
∼−→ I dFSAlgf

p
ψ : FG

∼−→ I dSh(Iop).

Indeed, for any algebra A in FSAlgf
p, the carrier of G FA is the set

|G FA| = ∪X∈I{a | a ∈ (FA)X , supp(a) = X}
= ∪X∈I{a | suppA(a) ⊆ X, supp(a) = X}
= ∪X∈I{a | suppA(a) = X} ∼= A

where the third equality holds because suppA(a) supports a categorically (see Lemma 20

below) and hence supp(a) ⊆ suppA(a). The last equivalence holds because A is finitely

supported.

On the other hand, for any sheaf P : I → Set , the carrier of the algebra G P is the set

{a | Y ∈ I, a ∈ PY , supp(a) = Y }. Therefore, FGP is the presheaf mapping every X to the

set

(FGP)X = ∪Y∈I{a | a ∈ PY , supp(a) = Y, suppG P (a) ⊆ X}
= ∪Y∈I,Y⊆X {a | a ∈ PY , supp(a) = Y }
= {a | a ∈ PX , supp(a) ⊆ X} = PX

where the last equivalence holds because by definition and thanks to Proposition 18 the

support of a ∈ FX is a unique subset of X . �

Lemma 20. Let A be an algebra, and let X ∈ I. Then, suppA(a) supports categorically a
for all a ∈ FAX .

Proof: Let h, k : X � Z in I, such that h|suppA(a) = k|suppA(a); we have to prove that

FAh(a) = FAk(a), that is, ĥc(a) = k̂c(a), i.e., that ĥc−1
k̂c fixes a, where hc, kc ∈ Aut(N )

are two completions of h, k. By definition of support, it suffices to show that for all

x ∈ suppA(a), ĥc−1
k̂c(x) = x , i.e., ĥc(x) = k̂c(x); this holds because h|suppA(a) = k|suppA(a)

by hypothesis. �

Proposition 19 has been mentioned (without proof) in the setting of FM-techniques, for

example in [8, Section 7].

Remark 2. Let us consider now the presheaf category SetB, where B is the subcate-

gory of I with only bijective maps. The inclusion functor B ↪→ I induces an obvi-

ous forgetful functor | | : SetI → SetB, given by composition. As it is well known [14,

Section 7], this functor has a left adjoint ( )! : SetB → SetI, which in this case can be
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defined on objects as (P!)X �
∑

Y⊆X PY . In the unpublished work [4], Fiore proved

that the Schanuel topos is equivalent to the Kleisli category of the monad T : SetB →
SetB arising from this adjunction. More precisely, T is the composition T = |( )!|,
and the Kleisli category K(T ) has as objects the objects of SetB, and for P, Q : B →
Set, a morphism η : P → Q in K(T ) is any natural transformation η : P → |Q!| in

SetB.

In fact, the correspondence in the proof of Proposition 19 can be easily strengthened

to work also directly with K(T ). Namely, each finitely supported permutation algebra

A = (A, {π̂A | π ∈ Aut f}) is mapped to a functor FA, object of SetB, defined as FAX �
{a ∈ A | suppA(a) = X}, and FAπ (a) � π̂ c

A(a) for π : X → X in B. For σ : A → B in

Algf
p, the corresponding morphism Fσ : FA → FB in K(T ) is the natural transformation

η : FA → |(FB)!| in SetB, defined as ηX � σ|FAX : {a ∈ A | suppA(a) = X} → {b ∈ B |
suppB(b) ⊆ X}. This is a good definition in virtue of Lemma 9.

3.2. Behavioural functors over permutation algebras

As mentioned before, SetI and Sh(Iop) have been widely used in the literature for definining

the domain of meaning of name-passing calculi, such as the π -calculus. In these cases, the

domain is obtained as the final coalgebra of a “behavioural” endofunctor B : C → C, where

C is SetI or Sh(Iop) (or a variant of them). The definition of B is usually polynomial, and

this ensures the existence of the final coalgebra. Beside the usual constructors of polynomial

functor (namely constants, finite sums and products and finite powersets), the categories

Sh(Iop) and SetI feature the peculiar constructors needed for giving semantics to name-

passing calculi. We recall the definition of these constructors on Sh(Iop), which were used in

for example [7, 10].

1. the type of names is the object N � I(1, ) (for all X ∈ I: NX
∼= X );

2. the shift operator is the functor δ : Sh(Iop) −→ Sh(Iop) (defined as δ(P)X � PX�1 on

objects, and δ(P) f � Pf �id on arrows), a type constructor representing the dynamic gen-

eration of names;

3. the finite powerset ℘ f : Sh(Iop) −→ Sh(Iop) is defined pointwise;

4. the name exponential ( )N : Sh(Iop) −→ Sh(Iop) is defined as

(P N )X = Sh(Iop)(I(X, ) × N , P) ∼= (PX )X × PX�1

5. finally, the partial name exponential (useful for early semantics) N ⇀⇀ :Sh(Iop) →Sh(Iop)

is defined as

(N ⇀⇀ P)X �(1 + PX )X

(N ⇀⇀ P) f :(1 + PX )X → (1 + PY )Y for f : X � Y

u �→ λy ∈ Y.

{
Pf (u(x)) if f (x) = y and u(x) ∈ PX

∗ otherwise

It is easy to check that any functor defined using these constructors (and finite sums and

products) is accessible, and hence admits a final coalgebra [22]. For instance, following [7]

the domain for late semantics of π -calculus can be defined as the final coalgebra of the
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functor B : Sh(Iop) → Sh(Iop)

B P � ℘ f (

input︷ ︸︸ ︷
N × P N +

output︷ ︸︸ ︷
N × N × P +

bound output︷ ︸︸ ︷
N × δS P +

τ︷︸︸︷
P )

(B P)X = ℘ f (X × (PX )X × PX�1 + X × X × PX + X × PX�1 + PX ).

In virtue of the equivalence between FSAlgf
p and Sh(Iop), it is possible to define these

constructors also on FSAlgf
p. Moreover, since the equivalence preserves both limits and

colimits, we only need to check out the behaviour on the functor for names and on the shift

operator.

1. The algebra of names is given by N = (N , Aut f).

2. The shift operator δA : FSAlgf
p → FSAlgf

p is defined as follows. If A = (A, {π̂A | π ∈
Aut f}) is a permutation algebra, we define

δ(A) � (A, {π̂+1
A | π ∈ Aut f})

where for π ∈ Aut f, π+1 ∈ Aut f is defined as

(π+1)(s0) = s0 (π+1)(sn+1) = succ(π (sn)).

for any fixed enumeration N = {s0, s1, s2, . . . }.2
For any morphism σ : A → B, we put δAσ = σ ; indeed, for π ∈ Aut f, we have σ ◦
π̂+1

A = π̂+1
B ◦ σ by definition of σ . It is easy to check that δA is an endofunctor on

FSAlgf
p.

3. Finite powersets, products and coproducts are defined pointwise.

4. By exploiting the equivalence between Sh(Iop) and FSAlgf
p, we can derive the definition

of AN whose carrier is the set

{ f : X → AX | X ⊂ N finite} × A

where AX � {a ∈ A | suppA(a) ⊆ X}. For π ∈ Aut f, the corresponding operator π̂AN

maps each pair ( f : X → AX , a) to (π̂A ◦ f ◦ π−1 : L → AL , π̂+1
A), where L = π (X ).

5. Finally, the partial name exponential on algebras is defined again by taking advantage of

the equivalence with Sh(Iop). For an algebra A, the carrier of the algebra N ⇀⇀A is the

set of partial functions

B = { f : X ⇀ AX | X ⊂ N , finite}

and for π ∈ Aut f, the operator π̂B : B → B maps a partial function u : X ⇀ AX to the

partial function v : Y ⇀ AY where Y � π (X ) and for all y ∈ Y

v(y) �
{

π̂A(u(π−1(y))) if u(π−1(y)) is defined

undefined otherwise

2 This is one of the literally infinite possible definitions of δA; it corresponds to de Bruijn indexes, where the
newly created (i.e., locally bound) name is always s0.
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The coalgebras of the functors over FSAlgf
p are a particular class of the struc-

tured coalgebras studied for instance in [2, 18]. Moreover, these functors correspond

exactly to the polynomial functors over Sh(Iop) defined using the constructors listed

above.

Proposition 21. Let B :Sh(Iop) → Sh(Iop) be a polynomial endofunctor. Then, there exists a
functor B̄ : FSAlgf

p → FSAlgf
p such that the category Coalg(B) is isomorphic to Coalg(B̄),

and vice versa.

Proof: It is sufficient to check that the functors F and G between FSAlgf
p and Sh(Iop)

commute with the constructors of the polynomial functors. This can be proved easily by

inspection. �

4. Finitely supported algebras and named sets

In this section we compare finitely supported algebras and named sets, which were introduced

as the building blocks of HD-automata.

4.1. Named sets

The definitions below are drawn from [3, Section 3.1], and simplified according to our needs.

Definition 22 (named sets). A named set N is a triple

N =
〈

QN , ‖ · ‖N : QN → ℘ f (N ), G N :
∏

q∈QN

℘(Aut(‖q‖N ))

〉

where QN is a set of states; ‖ · ‖N is the enumerating function; and for all q ∈ QN , the set

G N (q) is a subgroup of Aut(‖q‖N ), and it is called the permutation group of q.

Intuitively, a state in QN represents a process, and thus the function ‖ · ‖N assigns to each

state the finite set of variables possibly occurring free in it. Finally, G N denotes for each state

the group of renamings under which it is preserved, i.e., those permutations on names that

do not interfere with its possible behavior.

Definition 23 (category of named sets). Let N , M be named sets. A named function L : N →
M is a pair

L =
〈
l : QN → QM , � :

∏
q∈QN

℘(I(‖l(q)‖M , ‖q‖N ))

〉

for l a function and �(q) a (non-empty) set of injections from ‖l(q)‖M to ‖q‖N , satisfying

the additional condition

G N (q) ◦ λ ⊆ �(q) = λ ◦ G M (l(q)) ∀λ ∈ �(q) .

Finally, NSet denotes the category of named sets and their morphisms.
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So, a named function is a state function, equipped with a set of injective renamings for

each q ∈ QN , which is somewhat compatible with the permutations in G N (q) and G M (l(q)).

More precisely, “the whole set of �(q) must be generated by saturating any of its elements by

the permutation group of l(q), and the result must be invariant with respect to the permutation

group of q” [3, Section 3.1]. The category is clearly well-defined: in particular, the identity

on N is 〈idQN , G N 〉, and composition is defined as expected.

Remark 3. We simplified the definition in [3], since we did not restrict the enumerating

function to taking value in prefixes of {0, 1, . . .}: this would correspond to fix a canonical

choice of free variables for each state, and albeit important for verification purposes, it is

not relevant here. We do not further discuss the matter, referring the reader to [9] for a

correspondence between permutation algebras and that alternative presentation of named

sets.

Note also that an alternative, yet equivalent definition for a named function 〈l, �〉 : N →
M would be to require for each q ∈ QN the existence of an injection λ ∈ I(‖l(q)‖M , ‖q‖N )

such that �(q) = λ ◦ G M (l(q)) holds and moreover G N (q) ◦ �(q) = �(q) ◦ G M (l(q)).

Example 24. Let us consider the singleton set {q}. Then, both N1 = 〈{q}, ‖q‖ =
{x}, Aut(q) = {idx }〉 and N p

2 = 〈{q}, ‖q‖ = {x1, x2}, Aut(q) = Aut({x1, x2})〉 are named

sets: same set of states, different enumerating functions. Instead, N i
2 = 〈{q}, ‖q‖ =

{x1, x2}, Aut(q) = {idx1,x2
}〉 is a named set with the same set of states and the same enu-

merating function of N p
2 , but with a different permutation group.

Notice that there is no named function from N p
2 to N1, since any injection λ, when post-

composed with Aut({x1, x2}), generates the whole I({x}, {x1, x2}). Instead, denoting I j the

set containing only the injection mapping x to x j , then 〈id, I j 〉 is a named function from N i
2

to N1, while 〈id, I0 ∪ I1 = I({x}, {x1, x2})〉 is not.

Similarly, there is no named function from N p
2 to N i

2. In general, it is easy to see that, given

named sets 〈Q, ‖ · ‖, G1〉 and 〈Q, ‖ · ‖, G2〉 (i.e., same state set and enumerating function,

different permutation groups), with G1(q) a subgroup of G2(q) for all q ∈ Q, then 〈id, G2〉
is a well-defined named function from the former named set to the latter.

In the remaining of this section we relate FSAlgf
p and NSet, the category of named sets.

We plan to sharpen and make more concise some of the results presented in [17, Section 6].

Summarizing, Propositions 25 and 28 prove the existence of suitable functors between

those categories, generalizing the functions given in Definitions 49 and 50 in [17], respec-

tively. Moreover, Proposition 29 extends to a categorical equivalence the correspondence

proved in Theorem 51 of the same paper.

4.2. From named sets to permutation algebras

In order to define the functor from named sets to (finite) permutation algebras, we first

introduce some notation. Generalising Definition 11, for any pair of subsets X , Y and λ ∈
I(X, Y ), we denote by λc ∈ Aut f a completion of λ, i.e., a finite permutation such that

λc(x) = λ(x) for all x ∈ X ; and for I ⊆ I(X, Y ), we denote by I c the set of all the finite

permutations obtained by closing the injections of I .

Proposition 25 (from sets to algebras). Let us consider the following definition of a functor
F : NSet → FSAlgf

p.
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F maps each named set N to the finite permutation algebra with carrier the set of pairs
{〈q, π ◦ G N (q)c〉 | q ∈ QN , π ∈ Aut f} and family of functions given by π̂F(N )(〈q, I 〉) =
〈q, π ◦ I 〉.

F maps each named function 〈l, �〉 : N → M to the homomorphism associating to each
〈q, I 〉 the element 〈l(q), I ◦ �(q)c〉.

The functor F is well defined.

Proof: The resulting algebra has finite support, since each element 〈q, I 〉 is supported by

the set π (‖q‖N ), for any π ∈ Aut f such that I = π ◦ (G N (q))c. In order to prove this, we

must show that for any permutation κ fixing π (‖q‖N ), then π ◦ G N (q)c = κ ◦ π ◦ G N (q)c

holds. Note that ∀x ∈ π (‖q‖N ) : κ(x) = x implies ∀k ∈ ‖q‖N : κ(π (k)) = π (k), and then

we are done, since by definition all the permutations in G N (q)c preserve ‖q‖N .

Let us now consider a named set function L : N → M , and let us consider the function

associating to each 〈q, I 〉 the pair 〈l(q), I ◦ �(q)c〉. It is well-defined, since by the definition

of named function we have G N (q) ◦ �(q) = �(q) = �(q) ◦ G M (l(q)), and the equality can

be lifted to their respective closures. It is immediate to check that the function is also an

homomorphism. �

4.3. From permutation algebras to named sets

Recall now that, according to (i i) of Lemma 8, given an algebra homomorphism σ : A → B,

and a finitely supported element a ∈ A, then suppB(σ (a)) ⊆ suppA(a). So, let inσ (a) be the

uniquely associated injection: this remark is sufficient for defining a functor I from finitely

supported permutation algebras to named sets.

Proposition 26 (from algebras to sets). Let us consider the following definition of a functor
I : FSAlgf

p → NSet.

I maps each A ∈ FSAlgf
p to the named set 〈A, suppA(·), G I (A)〉, where G I (A)(a) �

{π|suppA(a) | π ∈ fixA(a)}.
Let σ : A → B, and let inσ (a) : suppB(σ (a)) → suppA(a) be the uniquely induced ar-

row. Hence, let I (σ ) be the named function 〈lσ , �σ 〉 given by the obvious function from A to
B and by the sets of injections �σ (a) = inσ (a) ◦ G I (B)(σ (a)) for all a ∈ A.

The functor I is well defined.

Proof: It is easy to see that G I (A)(a) is well-defined, since fixA(a) ⊆ spA(a) holds by (i i i)
of Corollary 9, hence π|suppA(a) ∈ Aut(suppA(a)); moreover, it is a group, since fixA(a) is so.

It is now enough to prove that for all a ∈ A

G I (A)(a) ◦ inσ (a) ⊆ inσ (a) ◦ G I (B)(σ (a)).

This is equivalent to ask that for all π ∈ G I (A)(a) there exists a κ ∈ G I (B)(σ (a)) such that

π ◦ inσ (a) = inσ (a) ◦ κ . A possible choice isπ|suppB (σ (a)): in fact, since fixA(a) ⊆ fixB(σ (a)),

any π c also fixes σ (a) in B; and since fixB(σ (a)) ⊆ spB(σ (a)), then π|suppB (σ (a)) is well-

defined and satisfies the requirements.

Identities and composition are preserved, hence the result holds. �

Unfortunately, the functor I just defined does not allow establishing an equivalence be-

tween the categories. Intuitively, the reason is that the functor F relates to each state of a
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named set a whole set of elements of the associated algebra, obtained via permutations of

its free names. Thus, we introduce a final concept, the orbit of an element, consisting of the

family of all the elements of the carrier of an algebra which can be reached from the given

element.

Definition 27 (orbits). Let A ∈ Algp and let a ∈ A. The orbit of a is the set OrbA(a) �
{π̂A(a) | π ∈ Aut}.

Orbits obviously partition a permutation algebra. So, let us assume the existence for each

orbit OrbA(a) of a canonical representative aO (we come back on this later on, in Remark 4),

and let AO � {aO | a ∈ A}.

Proposition 28 (from algebras to sets, II). Let us consider the following definition of a func-
tor Î : FSAlgf

p → NSet.

ÎO maps each A ∈ FSAlgf
p to to the named set 〈AO , suppA(·), G I (A)〉.

Let σ : A → B, let inσ (aO ) : suppB(σ (aO )) → suppA(aO ) be the uniquely induced ar-
row, and let Ia0

be the set of bijections defined as {π|suppB (σ (aO )O ) | π̂B(σ (aO )O ) = σ (aO )}.
Hence, let ÎA be the function associating to σ the named function 〈lσ , �σ 〉 such that
lσ (aO ) = σ (aO )O and �σ (aO ) = inσ (aO ) ◦ IaO for all aO ∈ A.

The pair Î = 〈 ÎO , ÎA〉 defines a functor from FSAlgf
p to NSet.

Proof: First, note that clearly IaO ⊆ I(suppB(σ (aO )O ), suppB(σ (aO ))) by (i) of Lemma 8,

so that �(aO ) is a well-defined set of injections.

Then, the key remark for the correctness of �σ is the obvious coincidence between λ ◦
fixB(σ (aO )O ) and fixB(σ (aO )) ◦ λ, for any λ ∈ HomB[σ (aO )O , σ (aO )]; so that the equality

�σ (aO ) ◦ G Î (B)(σ (aO )O ) = inσ (aO ) ◦ G I (B)(σ (aO )) ◦ IaO holds. Then, it is enough to mimic

the proof for Proposition 26. �

Using the previously defined functor, it is easy to realize that named sets are just a different

presentation for finite permutation algebras.

Proposition 29. Categories NSet and FSAlgf
p are equivalent.

Proof: Let N be a named set. First, notice that

‖q‖N = suppF(N )(〈q, G N (q)c〉) .

Since the choice of the canonical representative is irrelevant, we may choose precisely

〈q, G N (q)c〉. Hence, it is easy to prove that Î (F(N )) is naturally isomorphic to N .

Analogous considerations hold for the isomorphism F( Î (A)) → A on algebras, which is

obtained as the obvious extension of the function mapping each term 〈aO , G Î (A)(aO )〉 into

aO . �

Remark 4. The canonical representative aO of each orbit can be constructively defined, if

the underlying set N is totally ordered, as in the original definition [3]. In fact, this property

naturally allows both ℘ f in and Aut f to be equipped with a total order, and the latter is then

lifted to sets of permutations. Hence, for each orbit an element ac can be chosen, such that

suppA(ac) is minimal, and which has the minimal permutation group associated to it. The
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element ac is well-defined, since it is easy to prove that fixA(a) = fixA(b) implies a = b for

all finitely supported a, b ∈ A such that b ∈ OrbA(a).

Remark 5. An equivalence result relating the category of named sets and the Schanuel topos,

thus corresponding to the concatenation of our Propositions 19 and 29, has been proved

independently in [6]. Their paper however has a different focus than ours, since its aim is the

characterization of a class of transition systems, considered as coalgebras over pre-shaves,

corresponding to history-dependent automata.

Moreover, they consider a slightly different notion of named set, namely “a pair (A, f )

where A is a set and for all a ∈ A, f (a) is a subgroup of Aut” [6, Definition 4.2]. This definition

is simpler than our Definition 22, because it basically lacks the enumerating function for each

element; nevertheless, the notion of “supporting set” can be recovered by stating that X ⊆ N
supports a ∈ A if and only if fix(X ) ⊆ f (a).

According to this alternative definition, a named set is not finitely supported a priori,
but the property must be required explicitly; instead, all the named sets of Definition 22 are

always finitely supported. In fact, in [6] the subcategory of finitely supported named sets is

proved equivalent to the Schanuel topos, and hence, by the results above, to the category NSet
of Definition 23. Hence, we can see the more explicit Definition 23 as an “implementation-

oriented” notion of named sets, while the more compact definition used in [6] appears to be

more “theoretical-oriented”.

5. Permutation algebras and continuous G-sets

In the previous sections we proved the equivalences

FSAlgp
∼= FSAlgf

p
∼= Sh(Iop)(∼= NSet)

by providing directly suitable equivalence functors. In this section we re-analyze these

correspondences in the light of a well-known theory from algebraic topology, namely

that of (continuous) G-sets. This allows the categories Algp and Algf
p, which were

omitted in the previous analysis, to be accommodated in a single framework as

well.

5.1. Continuous G-sets

In this subsection we recall some standard definitions and results about continuous G-sets;

see for example [12] for a general introduction, and [13, Section 5.9] and [14, Chapter II]

for a discussion in category and topos theory.

Definition 30 (G-sets). Let G be a group. A G-set is a pair (X, ·X ) where X is a set and

·X : X × G → X is a right G-action, that is

x ·X id = x (x ·X g1) ·X g2 = x ·X (g1g2)

A morphism f : (X, ·X ) → (Y, ·Y ) between G-sets is a function f : X → Y such that

f (x ·X g) = f (x) ·Y g for all x ∈ X .
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The G-sets and their morphisms form a category denoted by BGδ .

For instance, the perm(A)-sets and equivariant functions used in [8] form the category

Bperm(A)δ .

More generally, we are interested in G-sets where G is a topological group, i.e., its

carrier is equipped with a topology and multiplication and inverse are continuous. For sake

of completeness, we recall next some basic definitions of topology.

Definition 31. A topological space is a pair (X,O(X )) for X a set and O(X ) ⊆ ℘(X ) (the

topology over X ) is closed with respect to arbitrary union and finite intersection, and ∅, X ∈
O(X ).

A function f : X → Y is a continuous map f : (X,O(X )) → (Y,O(Y )) if f −1(U ) ∈
O(X ) for all U ∈ O(Y ).

The elements of O(X ) are referred to as the open sets of the topology.

The finest topology is the discrete topology, where O(X ) = ℘(X ). A topology is discrete

if and only if {x} ∈ O(X ) for all x ∈ X , i.e., if every point is separated from the others (hence

the name). Clearly, every function is continuous with respect to the discrete topology.

The category of topological spaces is complete and cocomplete [13, Section 5.9]. In

particular, given a family of topological spaces (Xi ,O(Xi )), indexed by i ∈ I , the product∏
i∈I (Xi ,O(Xi )) is the topological space whose space is X = ∏

i∈I Xi , and the topology is

the smallest topology such that the projections πi : X → Xi are continuous. If I is finite,

then O(X ) = ∏
i∈I O(Xi ). This does not hold for I infinite, in general.

Finally, we recall the last standard definition we need for our development, which gener-

alizes Definition 30.

Definition 32 (topological groups and continuous G-sets). A group G is a topological group
if its carrier is equipped with a topology, and its multiplication and inverse are continuous

with respect to this topology.

A G-set (X, ·X ) is continuous if G is topological and the action ·X : X × G → G is

continuous with respect to X equipped with the discrete topology.

A morphism f : (X, ·X ) → (Y, ·Y ) between continuous G-sets is a function f : X → Y
which respects the actions.

For a given topological group G, continuous G-sets and their morphisms form a category,

denoted by BG.

Notice that for any group G, the category of all G-sets is the category of continuous G-sets

where G is taken with the discrete topology—hence the notation BGδ from [14] that we used

in Definition 30.

A useful characterization of continuous G-sets is given by the following lemma [14, I,

Exercise 6].

Lemma 33.1. Let G be a topological group, let (X, ·X ) be a G-set, and for each x ∈ X let
fixX (x) � {g ∈ G | x ·X g = x} be the isotropy group of x. Then, (X, ·X ) is continuous iff all
its isotropy groups are open sets in G.
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5.2. Permutation algebras as G-sets

For any countably infinite set of names N , a permutation π ∈ Aut(N ) is equivalent to a

permutation over the set of natural numbers N. Therefore, in the rest of this section we

assume, without loss of generality, that N = N.

Let us consider the G-sets when G is either Aut or Aut f. Clearly, every Aut-set is also a

Aut f-set (just by restricting the action to the finite permutations), mimicking the correspon-

dence between Algp and Algf
p. In fact, a stronger equivalence holds, as shown by the next

result.

Proposition 34. Categories Algp and BAutδ are isomorphic.

Proof: Let us define an isomorphism functor G : Algp → BAutδ .

Let A be a permutation algebra. The corresponding Aut-set is G(A) = (A, ·G(A)), where

a ·G(A) π � π̂A (a) for all a ∈ A. On the other hand, if (X, ·X ) is a Aut-set, the corresponding

algebra X = (X, {π̂X }) is defined by taking π̂X (x) � x ·X π for π ∈ Aut.

Let A,B be two permutation algebras. A function f : A → B is a morphism f : A → B
in Algp iff f (π̂A(a)) = π̂B( f (a)) for all permutations π and a ∈ A, which in turn holds iff

f (a ·G(A) π ) = f (a) ·G(B) π for all π and a, which equivalently states that f : (A, ·G(A)) →
(B, ·G(B)) is a morphism in BAutδ . �

Notice that the functor G can be restricted to Algf
p and BAut fδ , and hence we have that Algf

p
and BAut fδ are isomorphic as well.

Also the categories of algebras with finite support, possibly over only finite permutations,

can be recast in the general setting of G-sets, but to this end we need to equip the groups Aut

and Aut f with a topology.

Let us consider the space N, given as the set of natural numbers equipped with the discrete

topology. The Baire space is the topological space
∏∞

i=0 N = Nω, equipped with the infinite

product topology. A base of this topology is given by the sets of the form
∏∞

i=0 Xi where

Xi �= N only for finitely many indexes i .
Let us now consider the groups Aut and Aut f. The carriers of these groups are subspaces

of the Baire space, where each π corresponds to the infinite list (π (0), π (1), π (2), . . .), as

described in [14, Section 3.9] for Aut. Therefore, both Aut and Aut f inherit a topology from

Nω: their open sets are of the form U ∩ Aut and U ∩ Aut f, for U open set of Nω.

We can thus consider the categories BAut and BAut f of continuous Aut-sets and con-

tinuous Aut f-sets, respectively. For the former category there is a famous characterization

result [14, Section 3.9, Corollary 3].

Proposition 35. Categories BAut and Sh(Iop) are equivalent.

By Proposition 13, we have that FSAlgp
∼= BAut ∼= FSAlgf

p. But actually this equivalence

can be extended to BAut f as well, as a consequence of the following result.

Theorem 36. Categories FSAlgf
p and BAut f are equivalent.

Proof: We show that the functor G of Proposition 34 maps finite permutation algebras with

finite support to continuous Aut f-sets, and vice versa.
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Let A = (A, {π̂A}) be an algebra in FSAlgf
p; the corresponding Aut f-set is (A, ·G(A)),

where a ·G(A) π � π̂A(a) for all a ∈ A. For Lemma 33, G(A) is continuous if and only if

fixA(a) is open for all a ∈ A: this is proved by a suitable characterization of fix(a), given by

fixA(a) =
⋃

π∈fixA(a)

∞∏
i=0

{π (i)}

=
⋃

π∈fixA(a)

( ∞∏
i=0

Aπ
i

)
∩ Aut f for Aπ

i �
{

{π (i)} if i ∈ suppA(a)

N otherwise

=
( ⋃

π∈fixA(a)

∞∏
i=0

Aπ
i

)
∩ Aut f

where the second equality holds because fixA(a) ⊆ spA(a) and by Lemma 12, while the latter

expression clearly denotes an open set in Aut f because each
∏∞

i=0 Aπ
i is open in Nω since

suppA(a) is finite and thus only finitely many Aπ
i ’s are not equal to N.

On the other hand, let (X, ·X ) be a continuous Aut f-set; we prove that X = (X, {π̂X }) is in

FSAlgf
p. Clearly X is a finite permutation algebra. By Lemma 33, for any x ∈ X , fixX (x) is

an open set of Aut f, hence fixX (x) = U ∩ Aut f for some U open set of Nω. More explicitly,

fixX (x) can be written as

fixX (x) =
( ⋃

i∈I

∞∏
j=0

Xi j

)
∩ Aut f

for some family of indexes I , and where for each i ∈ I there exists a finite Ji ⊂ ω such

that Xi j �= N only for j ∈ Ji . Since id ∈ fixX (x) (it is a group), there exists i0 ∈ I such that

id ∈ ∏∞
j=0 Xi0 j . We prove that the finite set J � Ji0

supports x . Let π ∈ fixX (J ) ∩ Aut f.

For all j ∈ ω, if j ∈ J then π ( j) = j ∈ Xi0 j , otherwise Xi0 j = N. In both cases, π ( j) ∈
Xi0 j . So π ∈ ∏∞

j=0 Xi0 j , and therefore π ∈ fixX (x), i.e. π̂X (x) = x ·X π = x , hence the

thesis. �

Corollary 37. Categories BAut f and Sh(Iop) are equivalent.

Actually, the proof of Proposition 13 suggests a direct proof of this last result. Corollary

37 can be proved along the same pattern of the argument following [14, 3.9, Theorem 2],

just restricting to finite permutations. The argument works in the restricted case because any

monomorphism β : L � K in I can be extended to a finite kernel isomorphism on N, that

is, to an object β̄ ∈ Aut f, for example as

β̄(i) �
{

β(i) if i ∈ L

(i + 1 − j)-th element of N \ β(L) otherwise,

where j = |{l ∈ L | l < i}|. Clearly β̄ is a permutation, and it is easy to see that |ker(β̄)| ≤
max(L ∪ K ) + 1, and hence it is finite. See [9] for a detailed description of this proof.
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Fig. 1 The permutation algebra
cube

It is interesting to notice that both the inclusion functor BAut ↪→ BAutδ and its counterpart

for finite permutations have a right adjoint; the latter is defined on the objects as follows

r : BAutδ → BAut

(X, ·X ) �→ ({x ∈ X | fix(x) open for Aut}, ·X )

and it is the restriction on morphisms. Therefore, r maps every BAutδ-set to the largest contin-

uous BAut-set contained in it. Translating r to permutation algebras along the equivalences,

this is equivalent to the existence of the functor

r ′ : Algp → FSAlgp (A, {π̂A}) �→ (B, {π̂A|B})

where B � {a ∈ A | fixA(a) open for Aut}. Now, fixA(a) is open iff there exists a finite J ⊂ ω

such that for any π , if π (i) = i for all i ∈ J then π ∈ fixA(a) (see the proof of Theorem 36).

This corresponds exactly to say that a has finite support, hence we can define directly r ′(A) =
{a ∈ A | suppA(a) finite}.

6. Conclusions

In this paper we surveyed four main approaches to the treatment of nominal calculi. We

compared models based on (pre)sheaf categories, on named sets, and on permutation algebras,

which in turn subsume those approaches based on Fraenkel-Mostowski set theory (such as

nominal sets, FM-sets and alike). We proved that the category of named sets is equivalent

to the category of permutation algebras with finite support (either on the signature with all

permutations or with only finite ones) which in turn is equivalent to the category of sheaves

over I, that is the Schanuel topos. Figure 1 summarizes these relationships. These results

confirm that permutation algebras and named sets can be used as algebraic specification and

“implementation version” of sheaves on the Schanuel topos. Moreover, these equivalences

allow for “importing” into the category of finitely supported permutation algebras, the known

algebra/coalgebra machinery and constructions of the sheaf category.

As future work, it would be interesting to investigate a suitable internal language for

the models analyzed here. The connection with Fraenkel-Mostowski set theory, lead us to

consider some variant (possibly higher-order) of Pitts’ Nominal Logic [20], or the Theory of

Contexts [11]. Interesting future work are also to investigate how, and under which conditions,

we can extend the basic (finite) permutation signature with other operators and axioms; for
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instance, these operators may represent object language constructors, or other operations

over names such as (non-injective) substitutions.
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