
DCM 2007

Undecidability of Model checking in Brane Logic

Giorgio Baccia Marino Miculana,1

a Department of Mathematics and Computer Science, University of Udine, Italy

Abstract

The Brane Calculus is a calculus intended to model the structure and the dynamics of biological membranes. In order to
express properties of systems in this calculus, in previous work we have introduced a temporal-spatial logic called Brane
Logic. A natural question of great practical importance is if model checking of this logic is decidable, that is, if it is possible
to check automatically whether a given system satisfies a given formula. We have already shown that model checking is
decidable for replication-free systems and guarantee-free formulas. In this paper, we show that admitting replication in
systems, or any guarantee constructor in formulas (and quantifiers), leads model checking to be undecidable. Moreover, we
give also a correspondence result between membranes and systems, showing that any system can be obtained by a canonical
one where all information are contained on a membrane enclosing an empty compartment.

Keywords: Biological and bio-inspired computation, brane calculus, spatial logics.

1 Introduction

The Brane Calculus [3] is a calculus of mobile nested processes intended to model the dy-
namics of biological membranes. At this level of abstraction, a biological system is seen as
a hierarchy of compartments, which can interact by changing their position. A process of
Brane Calculus represents a system of nested membranes; the evolution of a process cor-
responds to membrane interactions (phagocytosis, endo/exocytosis, . . .). Differently from
similar spatial calculi (notably, Mobile Ambients and BioAmbients), in Brane Calculus the
computational activity takes place on membranes, not inside them. Moreover, reactions
preserve bitonality, that is, the even/odd parity with which components are nested inside
membranes; as a consequence, fluids from inside and outside a membrane never actually
mix (but can be safely “wrapped” in other membranes). This property is commonly ob-
served in cellular-scale living systems, but not ensured in not biologically inspired calculi.

In previous work [10] we have introduced the Brane Logic, a modal logic designed for
expressing properties about systems described using the Brane Calculus. Like Ambient
Logic, our logic features spatial and temporal modalities for expressing properties about
the topology and the dynamic behaviour of nested systems. However, differently from
Ambient Logic, we have also a logic for expressing properties of membranes themselves.

1 Email: miculan@dimi.uniud.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:miculan@dimi.uniud.it

Bacci, Miculan

Membranes are more similar to CCS than to Ambients; as a consequence, the logic for
membranes is similar to Hennessy-Milner logic [8], extended with spatial connectives as
in [2]. These spatial connectives are useful for expressing properties about a system when
it is put in a particular context, i.e., inside a membrane or close to another system. A
particularly expressive form of spatial constructors are the “guarantees”, e.g., “A B B”
means “whenever the system comes close to another one satisfying A, the whole system
satisfies B.” Its importance in biological applications should be evident (think, e.g., of A
as being a virus, and B of evolving to a virus-free system).

Now, a problem of great importance is whether model checking is decidable for this
logic. In [10], we have presented a model checking algorithm for a guarantee-free frag-
ment of the logic against replication-free systems. In this paper, first we show that model
checking of guarantee-free formulas against systems with replication is undecidable. Then,
we show that also admitting any guarantee constructor in formulas (and in presence of
quantifiers), leads model checking to be undecidable. We give also a correspondence result
between membranes and systems, showing that any system with arbitrarily nested compart-
ments can be obtained by a canonical one composed by an empty compartment enclosed
by a membrane carrying all the information.

2 Summary of Brane Calculus and Brane Logic
Brane Calculus In this paper we focus on the basic version of Brane Calculus without com-
munication primitives and molecular complexes. For a description of the intuitive meaning
of the language and the reduction rules, we refer the reader to [3].

Syntax of (Basic) Brane Calculus
Systems Π : P,Q ::= k | σhPi | P mQ |!P
Membranes Σ : σ, τ ::= 0 | σ|τ | a.σ |!σ
Actions Ξ : a, b ::= Jn | JI

n(σ) | Kn | KI
n | G(σ)

where n is taken from a countable set Λ of names. We will write a, hPi and σhi, instead
of a.0, 0hPi and σhki, respectively. The set of free names of a system P , of a membrane
σ and of an action a, denoted by FN(P), FN(σ), FN(a) respectively, are defined as usual;
notice that in this syntax there are no binders.

Systems can be rearranged according to a structural congruence relation (≡); the in-
tended meaning is that two congruent terms actually denote the same “semantic” system.

Structural Congruence

P mQ ≡ Q m P P m (Q mR) ≡ (P mQ) mR P m k ≡ P !k ≡ k

0hki ≡ k !(P mQ) ≡!Pm!Q !!P ≡!P !P ≡ Pm!P
σ|τ ≡ τ |σ σ|(τ |ρ) ≡ (σ|τ)|ρ σ|0 ≡ σ

!0 ≡ 0 !(σ|τ) ≡!σ|!τ !!σ ≡!σ !σ ≡ σ|!σ
P ≡ Q

P mR ≡ Q mR

P ≡ Q
!P ≡!Q

σ ≡ τ
σ|ρ ≡ τ |ρ

σ ≡ τ
!σ ≡!τ

P ≡ Q σ ≡ τ
σhPi ≡ τhQi

a ≡ b σ ≡ τ
a.σ ≡ b.τ

σ ≡ τ
G(σ) ≡ G(τ)

σ ≡ τ
JI
n(σ) ≡ JI

n(τ)

With respect to the structural congruence of [3], we have added the possibility of rearrang-
ing the sub-membranes contained in co-phago and pino actions (last three rules of the table

2

Bacci, Miculan

above). Decidability of structural congruence can be proved as for Mobile Ambients [5]
(actually our situation is simpler because we do not have restriction on names). In partic-
ular, in the structural congruence of membranes, co-phago and pino actions can be treated
as “ambient-like” constructors, since they “embed” a membrane within another.

The dynamic behaviour of Brane Calculus is specified by means of a reduction relation
(“reaction”) between systems P }Q, whose rules are the following:

Operational Semantics

J
I
n(ρ).τ |τ0hQi m Jn.σ|σ0hPi}τ |τ0hρhσ|σ0hPii mQi (React phago)
K
I
n.τ |τ0hKn.σ|σ0hPi mQi}σ|σ0|τ |τ0hQi m P (React exo)

G(ρ).σ|σ0hPi}σ|σ0hρhki m Pi (React pino)
P }Q

σhPi} σhQi

P }Q

P mR}Q mR
(React loc, React comp)

P ≡ P ′ P ′}Q′ Q′ ≡ Q
P }Q

(React equiv)

We denote by }∗ the usual reflexive and transitive closure of }.
As in [3], the Mate-Bud-Drip calculus is easily encoded, as follows:

Derived membrane constructors and reaction
Mate : maten.σ , Jn.Kn′ .σ mateI

n.τ , JI
n(KI

n′ .Kn′′).KI
n′′ .τ

maten.σ|σ0hPi m mateI
n.τ |τ0hQi}∗ σ|σ0|τ |τ0hP mQi

Bud : budn.σ , Jn.σ budI
n(ρ).τ , G(JI

n(ρ).Kn′).KI
n′ .τ

budI
n(ρ).τ |τ0hbudn.σ|σ0hPi mQi}∗ ρhσ|σ0hPii m τ |τ0hQi

Drip : dripn.(ρ).σ , G(G(ρ).Kn).KI
n.σ

dripn(ρ).σ|σ0hPi}∗ ρhi m σ|σ0hPi

Instead of using this encoding, in the following, we consider mate, bud and drip actions
as atomic actions to be appended to the Phago-Exo-Pino calculus. Notice that, due to this
choice, we will use } instead of }∗ in mate, bud and drip reactions, and we will not
explicitly deal with the freshness of auxiliary names used in the encoding.

Brane Logic has been introduced in [10] for expressing properties of systems in Brane Cal-
culus. Notice that the actions take place on membranes, not only in systems. Thus, there are
actually two spatial logics, interacting with each other: one for reasoning about membranes
(called membrane logic) and one for reasoning about systems (the system logic).

The syntax of the Brane Logic is the following:

Syntax of Brane Logic
System formulas Φ
A,B ::= T | ¬A | A ∨ B (classical propositional fragment)

k | MhAi | A@M (void system, compartment, compartment adjoint)
A m B | A B B (spatial composition, composition adjoint)
NA | mA (eventually modality, somewhere modality)
∀x.A (quantification over names)

3

Bacci, Miculan

Membrane formulas Ω
M,N ::= T | ¬M | M∨N (classical propositional fragment)

0 (void membrane)
M|N | M I N (spatial composition, composition adjoint)
)α*M (action modality)

Action formulas Θ
α, β ::= Jη | JI

η(M) (phago, co-phago)
Kη | KI

η (exo, co-exo)
G(M) (pino)

η ::= n | x (terms)

Given a formula A, its free names FN(A) are easily defined, since there are no binders
for names. Similarly, we can define the set of free variables FV(A), noticing that the
only binder for variables is the universal quantifier. As usual, a formula A is closed if
FV(A) = ∅. For sake of simplicity, we will use the shorthandsMhi and)α* in place of
Mhki and)α*0 respectively.

For an intuitive explanation of these logical constructors, see [10].
The meaning of a formula is defined by means of a family of satisfaction relations, one

for each syntactic sort of logical formulas 2

�⊆ Π× Φ �⊆ Σ× Ω �⊆ Ξ×Θ

These relations are defined by (mutual) induction on the syntax of the formulas. Let us start
with satisfaction of system formulas. First, we have to introduce the subsystem relation
P ↓ Q (read “Q is an immediate subsystem of P ”):

P ↓ Q , ∃P ′ : Π, σ : Σ.P ≡ σhQi|P ′

We denote by ↓∗ the reflexive-transitive closure of ↓.

Satisfaction of System Formulas
∀P : Π P � T
∀P : Π,A : Φ P � ¬A , P 2 A
∀P : Π,A,B : Φ P � A ∨ B , P � A ∨ P � B
∀P : Π P � k , P ≡ k

∀P : Π,A : Φ,M : Ω P �MhAi , ∃P ′ : Π, σ : Σ.P ≡ σhP ′i ∧ P ′ � A ∧ σ �M
∀P : Π,A,B : Φ P � A m B , ∃P ′, P ′′ : Π.P ≡ P ′ m P ′′ ∧ P ′ � A ∧ P ′′ � B
∀P : Π,A : Φ, x : ϑ P � ∀x.A , ∀m : Λ.P � A{x← m}
∀P : Π,A : Φ P � NA , ∃P ′ : Π.P }∗ P ′ ∧ P ′ � A
∀P : Π,A : Φ P � mA , ∃P ′ : Π.P ↓∗ P ′ ∧ P ′ � A
∀P : Π,A : Φ,M : Ω P � A@M , ∀σ : Σ.σ �M⇒ σhPi � A
∀P : Π,A,B : Φ P � A B B , ∀P ′ : Π.P ′ � A ⇒ P m P ′ � B

This definition relies on the satisfaction of membrane formulas, which we define next.

2 We use the same symbol � for the three relations, since it is easily distinguishable from the context.

4

Bacci, Miculan

Satisfaction of membrane formulas
∀σ : Σ σ � T
∀σ : Σ,M : Ω σ � ¬M , σ 2M
∀σ : Σ,M,N : Ω σ �M∨N , σ �M∨ σ �M
∀σ : Σ σ � 0 , σ ≡ 0
∀σ : Σ,N ,M : Ω σ �M|N , ∃σ′, σ′′ : Σ.σ ≡ σ′|σ′′ ∧ σ′ �M∧ σ′′ � N
∀σ : Σ, α : Θ σ �)α*M , ∃σ′, σ′′ : Σ.∃a : Γ.σ ≡ (a.σ′)|σ′′ ∧ a � α ∧

σ′|σ′′ �M
∀σ : Σ,M,N : Ω σ �M I N , ∀σ′ : Σ.σ′ �M⇒ σ|σ′ � N

In particular, the truth of the action modality)α*M is defined using satisfaction of action
formulas a �M, which we have to define next.

Satisfaction of action formulas
∀a : Γ, n : Λ a � Jn , a = Jn

∀a : Γ, n : Λ,M : Ω a � JI
n(M) , ∃σ : Σ.a = JI

n(σ) ∧ σ �M
∀a : Γ, n : Λ a � Kn , a = Kn

∀a : Γ, n : Λ a � KI
n , a = KI

n

∀a : Γ,M : Ω a � G(M) , ∃σ : Σ.a = G(σ) ∧ σ �M

Notice that the satisfaction of action formulas is defined in terms of the satisfaction of
membrane formulas, therefore these are two mutually defined judgments.

In a given membrane or system, even if infinite, only a finite number of names can ap-
pear, because Brane Calculus processes cannot create fresh names (differently from, e.g.,
π-calculus). As a consequence, for instance, some formulas quantifying over all possible
names cannot be satisfied (e.g., ∀x.)Jx*hTi is satisfied by systems which can perform a
phago on all possible names, which is clearly impossible). However, this kind of formu-
las may become satisfiable in future extensions of the Brane Calculus, incorporating the
possibility of generating fresh names (as it is already possible in Beta-binders [15]).

3 Undecidability of satisfaction in presence of replication

Using the approach of [4] we show that if the processes have unbound replication either
on the membranes or on the systems, model checking for the Brane Calculus against the
Brane Logic is undecidable. In fact, the fragment of the logic needed for this result is very
restricted: it contains only propositional connectives, temporal and spatial modalities and
the compartment connective. There is no need of quantifiers or adjoint connectives.

The undecidability proof is done by a reduction of the Post Correspondence Problem
(PCP). In the following we use α, β, γ for words in {a, b}∗, σ for letters in {a, b} and ε for
the empty word. An instance of PCP is a set of pairs of words {(α1, β1), . . . , (αn, βn)} over
the two-letter alphabet {a, b} (that is, αi, βi ∈ {a, b}∗). The question is whether there exists
a sequence i0, i1, . . . , ik (1 ≤ ij ≤ n for all 0 ≤ j ≤ k) such that αi0 ·. . .·αik = βi0 ·. . .·βik ,
where · denotes word concatenation. It is well known that PCP is undecidable [13].

The idea of the reduction is to construct for a given instance of PCP a system PCP
whose reductions simulates all possible concatenations of pairs of words in the instance.
Then we have only to check if a system representing two equal words is reachable. This
approach is used both for showing the undecidability in the case of replication on sys-

5

Bacci, Miculan

tems, and in the case of replication on membranes. To discriminate the two distinct cases
we define PCPS for systems (where we admit replication only on systems); PCPm for
membranes (where we admit replication only on membranes).

3.1 Replication on systems

The system PCPS is defined as the composition

PCPS , mateI
starthWord1(ε) m Word2(ε) m Endi m Concatenate m Compare

where Wordi(γ) is a system representing the word γ.
Before giving the definition of the entire system, we briefly describe the leading idea.

Concatenate is the system responsible for concatenating pairs of words from the given
instance of PCP: a pair (αi, βi) is nondeterministically choosen and Word1(α)mWord2(β)
is rewritten to Word1(αi ·α)mWord2(βi ·β); this is done again and again. Compare is
the system deputed to check if the two words represented by Word1 and Word2 are equal.
This is done by nondeterministically choosing the letter a or b and trying to delete it simul-
taneously from both words; this is repeated until both words are empty or they starts with
a different letter. In this way, an instance of PCP has a solution if and only if there exists a
(nonempty) execution of PCPS that ends with the representation of two empty words.

Word1 and Word2 are enveloped in a “protective” membrane designed to permit only
a kind of manipulation per time, i.e. Compare could enter and work on the words if and
only if Concatenate has terminated is job and viceversa. This membrane is also used
for synchronization during the concatenation process. End is the system responsible for
the final step of all jobs: it waits for a signal (in the form of a small membrane) from
the manipulator system, then recreates the protective membrane giving it the capability to
accept the new manipulation.

Given an instance {(α1, β1), . . . , (αn, βn)}, then Concatenate is defined as follows

Concatenate ,!Concatenate(α1, β1) m . . . m!Concatenate(αn, βn)

where Concatenate(αi, βi) is one of the infinite replications which performs the con-
catenation: one (and only one) Concatenate(αi, βi) enters the protective membrane and
then do the requested concatenation. Actually, the following property holds

mateI
starthWord1(α) m Word2(β) m Endi m Concatenate(αi, βi) }

∗

mateI
starthWord1(αi · α) m Word2(βi · β) m Endi

Intuitively, a string γ = σ1 . . . σk in {a, b}∗ is represented by an ordered nesting of
membranes such that each membrane shows an action labelled with the character σi. In
order to distinguish Word1 from Word2 we envelope the strings-encoding in a membrane
“labelled” with a fresh such as wi.

Definition of Wordi(γ)
Wordi(γ) , mateI

wi
hString(γ)i

String(ε) , mateI
ophki

String(σα) , mateI
ophmateσhString(α)ii

6

Bacci, Miculan

Notice that, since the strings are represented as a nested structure, if we want to concatenate
two words we need to insert the fist string into the other. For this reason we include in the
encoding the ability to attach actions on strings, therefore, a string could be programmed
by a process to move into another string: this is the task of the membrane mateI

oph. . .i.

Definition of Concatenate(α, β)
Concatenate(α, β) , matestart.KI

starth

matew1 .K
I
w1
hPatch(α) m String′(α,Signal1(αR)im

matew2 .K
I
w2
hPatch(β) m String′(β,Signal2(βR)ii

Patch(γ) , mateop.MoveIn(γ)hki

MoveIn(ε) , mateI
op.0

MoveIn(σα) , Jσ.MoveIn(α)

String′(ε,P) , P
String′(σα,P) , JI

σ(matemake).KI
ophmateI

make.K
I
σhString′(α,P)ii

Signali(ε) , Kwi .mateI
wi
hmatesihkii

Signali(σα) , Kσ.mateσhKop.mateI
ophSignali(α)ii

Concatenate(αi, βi) enters the protective membrane that envelops the two words,
and leads the strings in Word1 and Word2 respectively inside αi and βi, which are the
instances of PCP it carries. Each concatenation takes place in two distinct membranes (the
two membranes that cover and give the name to the words), so that each activity is disjunct
from the other. Patch “programs” the string in Word attaching a list of actions (MoveIn)
that forces it to enter String′. String′ differs from the previously given encoding of a
string: it is defined such that it will become a string (in the sense of our encoding) only
after the string concatenation process is done. To make possible this transformation only
after the concatenation process is finished, we have defined String′ with an auxiliary
process Signal in it, that reconstructs the right encoding and releases a signal to End.

Definition of End

End , !(mateI
s1 .mateI

s2 .Kstart.mateI
starthki)

End waits for the signal from the two concatenation processes and, only if both correctly
terminate, it recomposes the original state of the protective external membrane, in order to
recreate the initial conditions that permits a new concatenation process.

The comparison is carried out by the process Compare

Compare ,!Consume(a)m!Consume(b)

Consume(σ) is the system which deletes the first character both in Word1(α) and
Word2(β) if α = σα′ and β = σβ′, otherwise terminates. Consume(σ) is defined
such that the following property holds

mateI
starthWord1(σα) m Word2(σβ) m Endi m Consume(σ) }

∗

mateI
starthWord1(α) m Word2(β) m Endi

7

Bacci, Miculan

Definition of Consume(σ)

Consume(σ) , matestart.KI
starth

matew1 .K
I
w1
hDelChar(σ,Signal1)im

matew2 .K
I
w2
hDelChar(σ,Signal2)ii

DelChar(σ,P) , mateop.KI
op.K

I
exithmateI

σ.K
I
σ.K

I
exithPatch m Del m Pii

Patch , mateop.Jdel.mateI
ophki

Del(σ) , JI
del(Kop).Kσhki

Signali , KexithKexithKwi .mateI
wi
hmatesihkiiii

Consume enters the external protective membrane, and works separately on the two
words. DelChar attacks the encoding of the string, enters the first two membranes (i.e.
the two membrane that represent the first character) releasing three subprocess: Patch,
Del and Signal. Patch attaches on the surface of the substring (i.e., the string without
the first character) the actions that force it to enter Del, which moves the substring out of
the membrane representing the first character. Now the substring and the first character
are separated. Finally Signal exits from what remains of the double compartment (the
first character) and from the membrane that covers the whole word; then, it releases to
End the signal that the character has been completely cancelled. It is interesting to note
that Signal also dissolves the double compartment, thus deleting what remains of the
first character. If End receives both signals from the two deletion processes (i.e. the
comparison is successful), it restores the original state of the protective membrane.

We have the following theorem:

Theorem 3.1 The model checking problem for Brane Calculi with replication on systems
against the Brane Logic is undecidable.

Proof. Let PCPS the system defined above (note that the definition of PCPS depends
on the instance of PCP). We have already seen that the instance has a solution if and only if
there exists an execution of PCPS starting with the concatenation of at least one pair and
ending in a configuration representing the pair of empty words. This can be represented by
the formula

A , N(nonempty(w1) ∧N(empty(w1) ∧ empty(w2)))

where

nonempty(wi) , m)mateI
wi
*h)mateI

op*h)matea*hTi ∨)mateb*hTiii
empty(wi) , m)mateI

wi
*h)mateI

op*hkii

Here wi is a name used in the encoding of the process Wordi(γ), and the formula
)mateI

op*h)matea*hTi ∨)mateb*hTii is matched by (the encoding of) the first letter in
the word γ. It is easy to check that, for systems obtained from the translation PCPS , it is
nonempty(wi) ⇐⇒ ¬empty(wi).

Then, PCPS � A if and only if the instance of PCP has a solution. 2

8

Bacci, Miculan

3.2 Replication on membranes

For the case of replication on membranes, we do not directly define the system PCPm as
done for the case of replication on systems, but we will reduce its definition to the definition
of PCPS . In fact, we show that given any system P , there exists a single empty “bubble”
σhki, with the correct membrane, which reduces exactly to P . This allows to reduce the
model checking for membranes to that for systems.

This special membrane, which we denote by Generateφ(P) where φ : Π → Λ is an
injective labeling function from systems to names, can be generated by induction on the
structure of P , as follows:

Definition of Generateφ(P)
Generateφ(k) , 0
Generateφ(σhPi) , drip(EndoI

φ(P, σ))|Endoφ(P)
Generateφ(P mQ) , drip(Generateφ(P))|drip(Generateφ(Q))
Generateφ(!P) , !Generateφ(P)

Endoφ(k) , 0

Endoφ(τhQi) ,

{
0 if Q ≡ k

drip(Jφ(τhQi).Generateφ(Q)) otherwise
Endoφ(P mQ) , Endoφ(P)|Endoφ(Q)

EndoI
φ(k, σ) , σ

EndoI
φ(τhQi, σ) ,

{
G(τ).σ if Q ≡ k

JI
φ(τhQi)(τ).σ otherwise

EndoI
φ(P mQ, σ) , EndoI

φ(P,EndoI
φ(Q, σ))

The special capabilities of this membrane is due to the following property:

Proposition 3.2 Let P a replication-free system and φ : Π → (Λ \ FN(P)) an injective
labeling function, then:

(i) Generateφ(P)hki }∗ P ;

(ii) Generateφ(!P)hki }∗ Generateφ(!P)hki m P .

The first part of this proposition can be easily proved by induction on the structure of
P . Note that the labeling function φ uses only names not in FN(P) so that the generation
process does not influence the evolution of the system P .

The second part of Proposition 3.2 can be seen as a variant of the equivalence !P ≡
!P m P . Indeed, using this result we can replace replication on systems with replication
on membrane, since Generateφ(!P) = !Generateφ(P) (the substitution must be done
only using labeling functions φ that does not use names in FN(P)).

The fact that any system of the Brane Calculus can be generated from a single mem-
brane enclosing an empty compartment, is due to the expressive power of the endo-actions:
phago and pino actions carry a “membrane patch” which will become a nested membrane
in the reaction, modifying at the same time the tree structure of the system. See Fig. 1 for
an example of generation.

9

Bacci, Miculan

σ1

σ2

σ3

σ6
σ7

σ4 σ5σ8

σ9
σ10P =

Generate(P)
drip

Endo (σ2 ... , Endo (σ3 ... ,σ1))h i h i
II

Endo(σ2 ...)h i

Endo(σ3 ...)h i

drip

2

Jm.Generate(σ4 ... σ5 ...)mh i h i

Jn.Generate(σ6 σ7)mhi hi

Endo (σ2 ... , Endo (σ3 ... , σ1))h i h i
II

JI
m(σ2). n(σ3).σ1JI

=

phago

2

Generate(σ4 ... σ5 ...)mh i h i

σ2

σ1

Generate(σ6 σ7)mhi hi
σ34

drip

σ2

σ1

σ3

Generate(σ4 ...)h i
Generate(σ5 ...)h i

Generate(σ6)hi

Generate(σ7)hi

4

drip

σ2

σ1

σ3

Generate(σ4 ...)h i

Generate(σ5 ...)h i

σ6 σ7

2
drip

σ2

σ1

G(σ8). (σ9).σ4G G(σ10).σ5

3

pino

σ3σ6 σ7

P

Fig. 1. Generate(P)hki reduces to P (m,n are names not in FN(P))

10

Bacci, Miculan

Note that a Generate-like membrane could also be defined using only (well-)nested
pino actions and drip actions, without using phago (so without use a labeling function φ).
However this is not easy to define by induction on systems, so we prefer the previous one.

Using Proposition 3.2(ii), in the definition of system PCPm we can replace on systems
with replication on membrane. So the following result holds, in virtue of Theorem 3.1.

Theorem 3.3 The model checking problem for Brane Calculi with replication on mem-
branes against the Brane Logic is undecidable.

4 Undecidability in presence of guarantee and quantifiers

In this section we consider the problem of model checking the finite state Brane Calculus
(i.e., without replication) against formulas that may contain guarantee and quantifiers. As
observed in [10] the logic with guarantee can express the satisfiability of a formula via the
AF operator, defined as AF , A B F; it is easy to check that P � ¬(AF) if and only if A
is satisfiable. Therefore, the model checking problem subsumes the satisfiability problem
of formulas: if we can decide P � ¬(AF) then we can decide whether A is satisfiable. We
will show now that the satisfiability problem for brane formulas (even without guarantee)
is an undecidable problem; this is obtained by reducing to it the finite-model problem for
first-order logic. As a consequence, also model checking is undecidable.

Let us consider the set FO of first-order formulas defined on a countable set of variables
x, y, z, . . . and some relational symbols {R1, R2, . . . , Rk}, each having strictly positive
arity. Formulas from FO are interpreted over structures; a structure S over some domain
D is simply a set containing objects of the form Ri(a1, . . . , an) where Ri is an n-ary
relational symbol and a1, . . . , an are elements of D. We say that a structure S is finite
whenever its domain D is finite. For first-order formula ϕ and a structure S with domain
D, a valuation σ is a mapping from the free variables of ϕ to D. A structure S is a model
for a formula ϕ under a valuation σ if S, σ � ϕ (defined as usual). Then, it is undecidable
to know whether a given first-order formula ϕ has a finite model [17].

We use this result to prove that satisfiability on Brane Logic with guarantee and quan-
tifiers is undecidable. We give a translation J·K of FOL in the logic for Brane Calculus;
thus, we prove that a first-order formula ϕ admits a finite model if and only if there exists a
Brane Calculus system P (without replication) that satisfies JϕK in the Brane Logic.

JRi(x1, . . . , xk)K ,)Kri*h)Jx1*h)Jx2*h. . .)Jxk
*hki . . .iii m T

Jϕ ∧ ψK , JϕK ∧ JψK
J¬ϕK , ¬JϕK
J∃x.ϕK , ∃x.(()Kd*h)Jx*hkii m T) ∧ JϕK)

This encoding identifies first-order variables with Brane Logic variables. Let us con-
sider the semantics: if S is a model for ∃x.ϕ, the first-order quantificator ranges over the
domainD of the structure but, in the encoding ∃x.JϕK, the Brane Logic quantificator ranges
over a countable set of names. This imply that the encoding is correct only if we consider
first-order semantical structure with countable domains. In the following we consider only
finite structure, so the encoding is correct.

The key idea of this encoding is to think the composition of Brane Calculus as a
(multi-)set constructor. Then, the finite domainD, as well as the structure S are encoded in

11

Bacci, Miculan

a straightforward way using simply action names d for elements of D and action names ri
for relational symbols Ri in S. We now define the relation ;Sys between finite structures
and brane processes without replication. For a system P and structure S whose domain is
D, P ;Sys S if:

• ∃P ′.P ≡ KdhJahkii m P ′ iff a ∈ D
• if a1, . . . , ak ∈ D then ∃P ′′.P ≡ KrihJa1h. . .Jak

hki . . .ii m P ′′

iff Ri(a1, . . . , ak) ∈ S

We denote with ;Struct the symmetric relation of ;Sys.

Proposition 4.1 Let ϕ a first-order formula of FO, then the following holds:

(i) let S a finite structure over a domain D and σ a valuation for the free variables of ϕ.
If S, σ � ϕ and S ;Sys P , then P � JϕKσ;

(ii) let P a system of finite state Brane Calculus and σ a mapping from free variables of
ϕ to action names. If P � JϕKσ and P ;Struct S, then S, σ � ϕ.

The proof is a trivial induction on the structure of ϕ.
As a result of the last proposition, the following lemma holds.

Lemma 4.2 A closed first-order formula ϕ of FO admits a finite model if and only if there
exists a finite state Brane Calculus system P such that P � JϕK.

It is easy to see that Lemma 4.2 and undecidability of the existence of finite models for
first-order logic yield the undecidability of the satisfiability problem of the logic without
guarantee over finite state brane systems, hence holds the following theorem:

Theorem 4.3 The model checking problem of finite states Brane Calculus against formulas
with guarantee is undecidable.

Note that the encoding uses only a little fragment of the logic, and the only use of
guarantee and quantification it is enough to yield undecidability.

5 Conclusions

In this paper, we have shown the undecidability of model checking of the fragment of Brane
Logic without quantifiers and adjoints, in presence of the replication (either on systems or
on membranes). This result has been obtained by reducing the Post Correspondence Prob-
lem to the model checking problem, following [4]. Also, we have shown the undecidability
of model checking of the fragment of Brane Logic with quantifiers and adjoints, in absence
of replication. This result has been obtained by reducing the existence of finite models for
first-order formulas, to the model checking problem. Beside this, we have given a corre-
spondence between membranes and systems, showing that any system can be obtained by
a canonical one where all information are contained on a membrane enclosing an empty
compartment. We think that these results can be readily transposed to other variants of the
Brane Calculus (with enough expressive power), such as the Projective Branes [6].

At this point, we plan to look for some weaker logical connectives to be used in place
of adjoints, but yielding a decidable logic. In this direction, the work about epistemic
logics [9] seems very promising. Also the comparison with customary first order tem-
poral logics can be fruitful. Actually, a quite natural attempt is to consider a first order

12

Bacci, Miculan

temporal logic extended with indexed modalities for describing nesting properties (e.g.,

P � 〈|M|〉A 4⇐⇒ ∃σ,Q,R.P ≡ σhQi m R ∧ σ �M∧Q � A); however, it seems that
the fragments of Brane Logics we have considered, are strictly more expressive than a first
order temporal logic with nesting modalities, due to the presence of spatial connectives.

Another possibility is to look for subsets of the calculus for which the satisfaction prob-
lem is dedidable. In particular, we can consider restricted forms of replication or movement,
like the Mate-Bud-Drip calculus; it is already known that these subcalculi have nice decid-
ability properties [1], although they are not as expressive as the full one.

We can also consider different notions of quantifier, in place of the classical “forall”
quantifier. Recently, several logics for process algebras use some “freshness” quantifier,
like Miller-Tiu’s “nabla” [11] or Gabbay-Pitts’ “new” [12], to represent freshness of local
names. For instance, ∇x.A(x) m B(x) could represent processes which can be split in
two parts, sharing a private name (which can be seen as a bound site connecting the two
parts). In these cases, we want to express that the bound is private, i.e., the name used in
the connection does not clash with those in the context; this is impossible to achieve with
the forall/exists quantifier, but would be possible with nabla and new operators.

One may consider the logical equivalence induced by Brane Logic over membranes
and systems. As for Ambient Logic [16], we could give a coinductive characterization of
logical equivalence; however, our feeling is that logical equivalence is very close, if not
equal, to structural congruence.

References
[1] Busi, N., Deciding behavioural properties in brane calculi., in: Priami [14], pp. 17–31.

[2] Caires, L., Behavioral and spatial observations in a logic for the pi-calculus., in: I. Walukiewicz, editor, FoSSaCS,
Lecture Notes in Computer Science 2987 (2004), pp. 72–89.

[3] Cardelli, L., Brane calculi., in: Danos and Schachter [7], pp. 257–278.

[4] Charatonik, W., S. Dal-Zilio, A. D. Gordon, S. Mukhopadhyay and J.-M. Talbot, Model checking mobile ambients,
Theor. Comput. Sci. 308 (2003), pp. 277–331.

[5] Dal-Zilio, S., Spatial congruence for ambients is decidable, in: ASIAN ’00: Proceedings of the 6th Asian Computing
Science Conference on Advances in Computing Science (2000), pp. 88–103.

[6] Danos, V. and S. Pradalier, Projective brane calculus., in: Danos and Schachter [7], pp. 134–148.

[7] Danos, V. and V. Schachter, editors, “Computational Methods in Systems Biology, International Conference CMSB
2004,” Lecture Notes in Computer Science 3082, Springer, 2005.

[8] Hennessy, M. and R. Milner, Algebraic laws for nondeterminism and concurrency, J. ACM 32 (1985), pp. 137–161.

[9] Mardare, R. and C. Priami, Decidable extensions of Hennessy-Milner logic, in: E. Najm, J.-F. Pradat-Peyre and
V. Donzeau-Gouge, editors, Proc. FORTE, Lecture Notes in Computer Science 4229 (2006), pp. 196–211.

[10] Miculan, M. and G. Bacci, Modal logics for brane calculus, in: Priami [14], pp. 1–16.

[11] Miller, D. and A. Tiu, A proof theory for generic judgments, ACM Trans. Comput. Log. 6 (2005), pp. 749–783.

[12] Pitts, A. M., Nominal logic, a first order theory of names and binding, Information and Computation 186 (2003),
pp. 165–193.

[13] Post, E. L., Recursively enumerable sets of positive integers and their decision problems, Bulletin of the American
Mathematical Society 50 (1944), pp. 284–316.

[14] Priami, C., editor, “Computational Methods in Systems Biology, International Conference, CMSB 2006, Trento, Italy,
October 18-19, 2006, Proceedings,” Lecture Notes in Computer Science 4210, Springer, 2006.

[15] Priami, C. and P. Quaglia, Beta binders for biological interactions, in: V. Danos and V. Schächter, editors, Proc. CMSB,
Lecture Notes in Computer Science 3082 (2004), pp. 20–33.

[16] Sangiorgi, D., Extensionality and intensionality of the ambient logics, in: Proc. POPL, 2001, pp. 4–13.

[17] Trakhtenbrot, B. A., The impossibility of an algorithm for the decision problem for finite models, Doklady Akademii
Nauk SSR 70 (1950), pp. 569–572.

13

	Introduction
	Summary of Brane Calculus and Brane Logic
	Undecidability of satisfaction in presence of replication
	Replication on systems
	Replication on membranes

	Undecidability in presence of guarantee and quantifiers
	Conclusions
	References

